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Abstract. Soil moisture plays a crucial role in the hydrological cycle, but accurately predicting soil 10 

moisture presents challenges due to the nonlinearity of soil water transport and variability of boundary 

conditions. Deep learning has emerged as a promising approach for simulating soil moisture dynamics. 

In this study, we explore ten different network structures to uncover their mechanisms of data utilization 

and maximize the potential of deep learning for soil moisture prediction, including three basic feature 

extractors and seven diverse hybrid structures, six of which are applied to soil moisture prediction for the 15 

first time. We compare the predictive abilities and computational costs of the models across different soil 

textures and depths systematically. Furthermore, we exploit the interpretability of the models to gain 

insights into their workings and attempt to advance our understanding of deep learning in soil moisture 

dynamics. For soil moisture forecasting, our results demonstrate that the temporal modeling capability 

of Long Short-Term Memory (LSTM) is well-suited. Besides, the improved accuracy achieved by feature 20 

attention LSTM (FA-LSTM) and the generative adversarial network-based LSTM (GAN-LSTM), along 

with the Shapley additive explanations (SHAP) analysis, help us discover the effectiveness of attention 

mechanisms and the benefits of adversarial training in feature extraction. These findings provide 

effective network design principles. The Shapley values also reveal varying data leveraging approaches 

among different models. The t-Distributed Stochastic Neighbor Embedding (t-SNE) visualization 25 

illustrates differences in encoded features across models. In summary, our comprehensive study provides 

insights into soil moisture prediction and highlights the importance of the appropriate model design for 

specific soil moisture prediction tasks. We also hope this work serves as a reference for deep learning 

studies in other hydrology problems. The codes of 3 machine learning and 10 deep learning models are 

open sourced. 30 
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1.Introduction 

Soil moisture is significant in simulating many hydrological processes since it controls the interaction 35 

of water and energy between the land surface and the atmosphere (Entin et al., 2000; Vereecken et al., 

2022). Accurately providing information on soil moisture dynamics is crucial for effective water 

resources planning and management, agricultural production, climate prediction, and flood disaster 

monitoring (Vereecken et al., 2008; Sampathkumar et al., 2013). However, caused by the randomness of 

rainfall and the nonlinear features of infiltration and evaporation processes (Guswa et al., 2002), soil 40 

moisture is highly variable and nonlinear in space and time (Heathman et al., 2012), which makes it 

difficult to forecast.  

Since various mainstream approaches have been applied for soil moisture dynamics prediction, a 

comprehensive study is needed to provide suitable solutions for different predicting tasks, encourage 

improvements on models and build confidence in this area. Traditionally, soil moisture dynamics 45 

prediction is widely based on physical models, such as the soil-plant-air model (Saxton et al., 1974), 

HYDRUS (Simunek et al., 2005), and CATHY (Camporese et al., 2015). Though these models are 

interpretable, they perform poorly in practical applications, because of the inestimable parameters (Gill 

et al., 2006) and inadequate description of physical processes (Li et al., 2022b). With the reduction in 

data acquisition costs and advancements in computation, there has been an increasing focus on data-50 

driven models. Initially, multiple linear regression (Qiu et al., 2003; Hummel et al., 2001) and empirical 

models (Azhar et al., 2011; Verma and Nema, 2021) are applied for soil moisture prediction. However, 

one nonnegligible problem is that these methods require calibrations and have limited generalization 

capabilities (Holzman et al., 2017; Jackson, 2003). Compared to these traditional data-driven models, 

machine learning methods appear to possess stronger data fitting ability. For instance, support vector 55 

regression (SVR) (Gill et al., 2006) and random forest (RF) (Prasad et al., 2019) have both shown 

satisfactory and robust results with low computing costs in soil moisture prediction. Additionally, the 

single-layer feedforward neural network with generalized inverse operation -- Extreme Learning 

Machine (ELM) (Huang et al., 2006) can precisely predict the future trends of soil moisture and support 

future irrigation scheduling. (Liu et al., 2014). What’s more, when dealing with multi-scale soil moisture 60 
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data, such as satellite data, Abbaszadeh et al. employed 12 distinct Random Forest models to downscale 

the daily composite version of SMAP data (Abbaszadeh et al., 2019).  

Currently, deep learning is the state-of-the-art data-driven method, which has made obvious 

improvements in many research areas (Lecun et al., 2015). Due to their powerful approximation ability, 

deep neural networks (DNNs) (Goodfellow et al., 2016) have been extensively researched from soil 65 

moisture descriptions (Cai et al., 2019; Prakash et al., 2018). Notably, recurrent neural networks (RNNs) 

(Pollack, 1990) excel at capturing temporal information in time series data and model sequential 

dependencies for predictions (Mikolov et al., 2011). This is consistent with the characteristics of soil 

moisture dynamics simulation. Fang et al. (2019) utilized Long Short-term Memory (LSTM) (Hochreiter 

and Schmidhuber, 1997) for soil moisture and received satisfactory results. Besides, Sungmin O et al. 70 

efficiently employed LSTM to interpolate global gridded datasets from in-situ observations (Orth, 2021; 

Orth et al., 2022). From a different perspective, Convolution Neural Networks (CNNs) (LeCun, 1989) 

are capable of extracting features from training data in specific dimensions, making them widely used in 

dealing with 2-D (Albawi et al., 2018; Patil and Rane, 2021) or 1-D data (Severyn and Moschitti, 2015; 

Shi et al., 2015). Therefore, 1D-CNNs are applied in many hydrology researches(Hussain et al., 2020; 75 

Chen et al., 2021). Additionally, attention mechanisms enable the selection of critical information from 

multiple input features or model outputs, which can be visualized using attention weight (Ding et al., 

2020; Li et al., 2022a). On this foundation, self-attention can model dependencies and aggregate features 

from inputs disregarding their distance (Vaswani et al., 2017), which shows great potential in soil 

moisture prediction. 80 

As various deep learning approaches focused on distinct mechanisms of data utilization, hybrid 

structures become a vital research area. On one hand, combining the feature importance processing 

methods -- attention mechanisms, with deep learning models, can indeed lead to improvements (Ahmed 

et al., 2021; Ding et al., 2019; Kilinc and Yurtsever, 2022). Li et al. proposed an attention-aware LSTM 

to estimate soil moisture and temperature and achieved better performance than LSTM alone (2022). In 85 

their work, three attention mechanisms help obtain the spatial-temporal feature vectors of LSTM inputs 

or outputs. On the other hand, the combinations of multiple neural networks tend to perform better than 

a single network alone (Semwal et al., 2021). The hybrid CNN-GRU model proposed by Yu et al.(2021) 

outperformed the independent CNN or GRU model in predicting root zone moisture. Besides, Li, et al. 

(2022) proposed EDT-LSTM, a stacked LSTM model based on the encoder-decoder structure (Sutskever 90 
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et al., 2014) and residual learning (He et al., 2016). This achieved more stable results than a single LSTM. 

Regarding the optimization of training strategies, adversarial training in generative adversarial networks 

(GANs) (Goodfellow et al., 2014) can capture more information on real data. This helps to address the 

problem of fuzzy prediction and provides a superior solution for weather forecasts (Jing et al., 2019; 

Ravuri et al., 2021). Moreover, advancements in model structure have been instrumental in enhancing 95 

performance and improving generalization abilities. For instance, Liu et al integrated multi-scale designs 

into their models (Liu et al., 2022). In addition to pure deep learning models, differentiable, physics-

informed machine learning models with a physical foundation have emerged as a noteworthy 

development. This kind of model systematically integrates physical equations with deep learning, 

enabling the prediction of untrained variables and processes with high accuracy (Feng et al., 2023). 100 

 Therefore, it is essential to design effective and suitable neural network structures for soil moisture 

prediction tasks. In this study, we comprehensively evaluate the performance of various deep learning 

methods in soil moisture prediction, highlighting their key characteristics in terms of prediction accuracy 

and computational costs. The models evaluated in this research range from machine learning models 

such as RF, ELM, and SVR to basic deep learning models, including 1D-CNN, LSTM, and the encoder 105 

of Transformer(Vaswani et al., 2017), and hybrid deep learning models, including CNN-LSTM, LSTM-

CNN, CNN-with-LSTM, FA-LSTM, TA-LSTM, FTA-LSTM, and GAN- LSTM. Notably, the encoder 

of the Transformer is first developed in soil moisture prediction, with CNN-LSTM, LSTM-CNN, FA-

LSTM, TA-LSTM, FTA-LSTM, and GAN-LSTM first applied and systematically compared for soil 

moisture. To gain insights into their workings and provide a thorough analysis of why some methods 110 

perform better, we utilize the SHAP (Lundberg et al., 2018) method to demonstrate the importance of 

features in different models and employ t-SNE visualization (Van der Maaten and Hinton, 2008) to show 

the encoded features across models. The systematical assessment of the models is carried out across 

multiple sites at 5 depths. For forecasting soil moisture, the utilized data include meteorological data, 

soil temperature data, and soil moisture content data from previous days, as these inputs are closely 115 

associated with evaporation and infiltration processes.  

In the remainder of this article, Sect. 2 describes the data used and the deep learning background; Sect. 

3 presents a detailed description of the participating methods; Sect. 4 analyzes comparison results and 

discusses the interpretability of the models. The conclusion is drawn in Sect. 5. 

 120 
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2. Data Description and Backgrounds  

2.1 Data Description 

To create a comprehensive evaluation under different soil types, in-situ observations at thirty different 

sites are downloaded from the International Soil Moisture Network (ISMN) 

(https://ismn.geo.tuwien.ac.at/en/). The research sites are carefully chosen according to the geographical 125 

location (dispersed as much as possible), soil textures, and distinct land cover types (diverse as much as 

possible). The spatial locations of the sites are shown on a world map in Fig. 1. More detailed site 

meteorological information and soil moisture time series data are provided in Appendix D. 

 

  130 
Figure 1. The spatial locations and soil moisture content time series at various depths of thirty sites.  

 

In the process of input factor screening, we carefully choose meteorological inputs based on the 

precipitation and evapotranspiration calculation, including precipitation (P), atmospheric 

temperature(AT), long-wave radiation(LR), short-wave radiation(SR), wind speed(WS), and relative 135 

humidity(RH)), which are closely related to the soil evapotranspiration and infiltration processes. Besides, 

soil temperature(ST) data, along with soil moisture data from the previous day(SM) are incorporated to 

represent the soil condition. Fig. 2 displays the Pearson correlation analysis results for input factors at 

the Cape-Charles and UpperBethlem sites. Pearson correlation analysis examines the relationship 

between two variables by calculating the correlation coefficient, measuring the strength and direction of 140 

https://ismn.geo.tuwien.ac.at/en/
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their association. Notably, the correlation coefficients between soil moisture and the input data vary 

greatly with both the station and depth. While the correlation coefficient between longwave radiation and 

soil moisture is low at UpperBethlem site, it is significant at Cape-Charles, highlighting the influence of 

site-specific differences. Although utilizing highly correlated factors as inputs appears to be a logical 

choice, achieving uniformity across different sites and depths can be difficult. This presents a crucial 145 

aspect to explore when evaluating the performance of models for self-learning screening of significant 

influencing factors. Therefore, the input data 𝒙𝒙𝑡𝑡  at time t consists of all eight factors, 𝒙𝒙𝑡𝑡 =

{𝑃𝑃𝑡𝑡 ,𝑇𝑇𝑡𝑡 , 𝐿𝐿𝐿𝐿𝑡𝑡 , 𝑆𝑆𝐿𝐿𝑡𝑡 ,𝑅𝑅𝑅𝑅𝑡𝑡 ,𝐿𝐿𝑆𝑆𝑡𝑡 , 𝑆𝑆𝑇𝑇𝑡𝑡 , 𝑆𝑆𝑆𝑆𝑡𝑡−1 }. Since groundwater level observations are difficult to obtain, 

changes in the lower boundary conditions are excluded from the inputs. 

Fig. 3 shows the autocorrelation analysis conducted at 5 soil depths. The autocorrelation coefficients 150 

for soil water content at different depths decrease with increasing delay days. The most significant change 

is observed in the surface layer. As a result, we have utilized a 4-day delay as our input for all deep 

learning models in this study to forecast the soil moisture content on the fifth day. This means the input 

vector 𝑰𝑰, {𝒙𝒙𝑡𝑡−3,𝒙𝒙𝑡𝑡−2,𝒙𝒙𝑡𝑡−1,𝒙𝒙𝑡𝑡} is used to predict the target value 𝑦𝑦𝑡𝑡 , that is the soil moisture 𝑆𝑆𝑆𝑆𝑡𝑡 at 

time t. For machine learning, we only utilize the 𝒙𝒙𝑡𝑡 to generate predictions. 155 

 
Figure 2. Pearson correlation analysis results among the observed variables of 0.05m and 1.00m at Cape-Charles 

(a) (b) and UpperBethlem (c) (d) sites. 
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 160 
Figure 3. Autocorrelation analysis results of soil water content with different days delay at Cape-Charles.  

 

This study builds individual predictive models for each site and depth, disregarding the inclusion of 

static properties such as land cover, soil hydraulic properties, and topography. Soil moisture and soil 

temperature data are obtained from the ISMN. Specifically, the meteorological data applied in this work 165 

is sourced from the NASA POWER project (https://power.larc.nasa.gov/), which provides a wide range 

of meteorological data, including temperature, precipitation, solar radiation, and more. Detailed 

information can be found at (https://power.larc.nasa.gov/docs/methodology/data/sources/). The 

meteorological data are used as an auxiliary component for soil moisture prediction in our work. 

Therefore, even though the resolution of some variables appears coarse, we can safely disregard the 170 

potential influence of resolution on our research findings and conclusions. 

  

https://power.larc.nasa.gov/
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Table 1. Summary of main characteristics of thirty sites. 

 Sand Silt Clay Land cover Period Lat. Lon. 

Kingston-1-W 85 10 5 Grassland 2012-2023 41.48 -71.54 

HubbardBrook 85 11 4 Tree cover 2003-2022 43.93 -71.72 

Monahans-6-ENE 83 6 11 Shrub cover 2010-2022 31.62 102.81 

Necedah-5-WNW 83 11 6 Grassland 2009-2022 44.06 -90.17 

Shadow Mtns 79 10 11 Shrub cover 2013-2017 35.47 -115.72 

Falkenberg 73 21 6 Cropland, rained 2003-2020 52.17 14.12 

Kenai-29-ENE 54 38 8 Shrub cover 2012-2023 60.72 -150.45 

AAMU-jtg 53 22 25 Grassland 2010-2022 34.78 -86.55 

Darrington-21-NNE 53 22 25 Tree cover 2013-2019 48.54 -121.45 

Palestine-6-WNW 49 27 24 Grassland 2009-2013 31.78 -95.72 

Durham-11-W 49 27 24 Herbaceous cover 2009-2016 40.37 -81.78 

Cullman 49 27 24 Mosaic Cropland 2006-2022 34.20 -86.80 

Cape-Charles 49 27 24 Herbaceous cover 2011-2022 37.29 -75.93 

LittleRiver 47 30 23 Grassland 2005-2020 31.50 -83.55 

Montrose-11-ENE 43 35 22 Tree cover 2010-2023 38.54 -107.69 

Coshocton-8-NNE  41 39 20 Grassland 2009-2016 40.37 -81.78 

MahantangoCk 41 39 20 Cropland 2002-2021 40.67 -76.67 

Bodega-6-WSW 39 38 23 Grassland 2011-2023 38.32 -123.08 

GrouseGreek 36 41 23 Grassland 2016-2023 41.78 -113.82 

Aberdeen-35-WNW  36 41 23 Grassland 2012-2023 45.71 -99.13 

Goodwell-2-SE 36 41 23 Grassland 2010-2022 36.57 -101.61 

FortAssiniboine#1 36 41 23 Grassland 2017-2021 48.48 -109.8 

Cper 36 41 23 Grassland 2013-2021 40.82 -104.71 

Riley-10-WSW 36 41 23 Shrub cover 2011-2021 43.47 -119.69 

Spickard 35 41 24 Grassland 2010-2022 40.25 -93.72 

Joplin-24-N 35 41 24 Grassland 2010-2020 37.43 -94.58 

Weslaco 34 45 21 Cropland, rained 2017-2021 26.16 -97.96 

UpperBethlehem 32 38 30 Herbaceous cover 2008-2010 17.72 -64.80 

Buffalo-13-ESE 31 44 25 Grassland 2012-2023 45.52 -103.30 

ClotdelesPeresII 19 49 32 Cropland 2021-2023 42.16 0.84 

 175 

2.2 Deep Learning Backgrounds 
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Deep learning enhances the complexity and learning capability of traditional machine learning 

methods by adding multiple layers (Kamilaris and Prenafeta-Boldú, 2018). At each layer, input signals 

are weighted through the connections of each neuron and subsequently activated by activation functions 

(Schmidhuber, 2015). Deep learning discovers intricate structures in training data by utilizing 180 

backpropagation to guide the machine in adjusting its internal parameters (Lecun et al., 2015).  

In this study, the primary challenge in soil moisture prediction is processing the time-series data with 

specific dimensions and simulating soil moisture dynamics with high spatiotemporal variability. Given 

the diversity of neural networks, numerous methods have the potential to deal with specific time-series 

data. CNNs can extract local temporal information from the data by sliding convolutional kernels along 185 

the time dimension. On the other hand, RNNs excel at capturing the overall temporal sequence 

information. Additionally, self-attention has the potential to associate inputs and make predictions, 

making them capable of handling sequence data effectively. These three types of networks can be 

regarded as fundamental feature extractors in deep learning. Furthermore, hybrid deep learning models 

integrate the characteristics of multiple models, enhancing their prediction capacities (Yu et al., 2021). 190 

Combinations of CNNs, RNNs, and attention mechanisms have been widely utilized in many studies. 

Besides, employing specified training strategies with suitable network structures can also improve 

prediction performance. For instance, GANs enable the training objective of neural networks to go 

beyond minimizing data mean squirt error and utilize adversarial training to fully capture data regularities. 

By designing appropriate network structures and training strategies, it is possible to further improve 195 

prediction accuracy. 

It is necessary to conduct a comprehensive evaluation to analyze the internal combining meaning of 

models and decide the most suitable combination rule for soil moisture prediction. With the collected 

data in 2.1, it is possible to deeply explore the prediction abilities of the deep learning models. We 

evaluate models from the perspectives of prediction accuracy and computational costs to provide a 200 

reference for soil moisture dynamics predictions. Further research on model interpretability can provide 

insights into how the model structure influences the utilization of data, leading to a more effective design 

of the model structure. 

 

3.Models and Methodology 205 
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Three machine learning models and seven deep learning models take part in this comparative research. 

Introductions to each model are provided below, along with key references for interested readers. The 

parameters of each model are recorded in Appendix A. 

 

3.1 Machine Learning Methods 210 

In this study, machine learning models Random Forest (RF), Extreme Learning Machine (ELM), and 

Support Vector Machine (SVM) are applied to compare with the deep learning models as a benchmark. 

Random Forest, proposed by Breiman (Breiman, 2001), is used for regression and classification tasks 

and has gained popularity for its high accuracy. RF works by constructing multiple decision trees on 

randomly sampled subsets of the training data. Each tree is trained on a random subset of features, and 215 

the final prediction is made by averaging the predictions of the individual trees. This approach reduces 

overfitting and increases model stability. For soil moisture prediction, RF has proven to be a stable and 

reliable method (Carranza et al., 2021). 

Extreme Learning Machine (Huang et al., 2006) utilizes a single-layer feedforward neural network as 

its foundation. ELM achieves fast learning speed and strong generalization ability by employing random 220 

input layer weights and biases and applying generalized inverse matrix theory to calculate the output 

layer weights. The algorithm has been applied in various fields and has shown promising results. Liu et 

al.(2014) employed ELM to predict the large-scale soil moisture in Australian orchards. The results 

demonstrated that the model was capable of accurate forecasting. 

Support Vector Machine (Cortes and Vapnik, 1995) was proposed for applications in classification 225 

and regression. It aims to find the maximum-margin hyperplane that best separates sample points. To 

make this hyperplane more robust in high-dimensional feature spaces, SVM uses kernel functions to 

perform nonlinear mapping and create a new feature space where the data can be linearly separable. The 

algorithm then finds the optimal classification hyperplane with the maximum margin. SVMs have 

achieved great success in various fields. Gill et al. (2006) applied SVM to soil moisture prediction and 230 

compared it with DNNs. The results showed that SVM was suitable for soil moisture content prediction. 

Support Vector Regression (SVR) is a variant of SVM that is specifically designed for regression tasks, 

which is applied in this study. 

For machine learning, 𝒙𝒙𝑡𝑡  and  𝑦𝑦𝑡𝑡  represents the input feature and target object, respectively. The 

input data corresponds one-to-one in time to the target and serves as both the input and output of the 235 
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machine learning models. The prediction accuracy of machine learning serves as a comparison for deep 

learning models. Hyperparameters used in models are recorded in Appendix A.  

 

3.2 Basic Deep Neural Networks 

 240 

Figure 4. Network structures of the LSTM(a), the 1D-CNN(b), and the proposed Transformer (c) inspired by 

Dosovitskiy et al.(2020) with the self-attention structure (d)for soil moisture prediction. 

 

3.2.1 LSTM 

RNNs (Pollack, 1990) operate by recursing in the direction of sequence progression, with all nodes in 245 

the network being chained together. These unique properties make RNNs effective in processing 

sequence data and extracting temporal information, which has led to breakthroughs in natural language 

processing (Connor et al., 1994). The ability of RNNs to model temporal dependencies is suitable for 

predicting soil moisture.  

Long Short-Term Memory (LSTM) (Hochreiter and Schmidhuber, 1997) neural networks, were 250 

proposed to address the limitations of traditional RNNs. LSTM can overcome the issue of gradient 
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vanishing and memorize more useful information through a special unit, which is called the cell state. 

Thus, LSTM operates as follows: 

𝑖𝑖𝑡𝑡 = 𝜎𝜎(𝐿𝐿𝑖𝑖 ∙ [ℎ𝑡𝑡−1, 𝑥𝑥𝑡𝑡] + 𝑏𝑏𝑖𝑖) (1) 

𝑓𝑓𝑡𝑡 = 𝜎𝜎�𝐿𝐿𝑓𝑓 ∙ [ℎ𝑡𝑡−1, 𝑥𝑥𝑡𝑡] + 𝑏𝑏𝑓𝑓� (2) 

𝑜𝑜𝑡𝑡 = 𝜎𝜎(𝐿𝐿𝑜𝑜 ∙ [ℎ𝑡𝑡−1, 𝑥𝑥𝑡𝑡] + 𝑏𝑏𝑜𝑜) (3) 

�̃�𝐶𝑡𝑡 = 𝑡𝑡𝑡𝑡𝑡𝑡ℎ(𝐿𝐿𝑐𝑐 ∙ [ℎ𝑡𝑡−1, 𝑥𝑥𝑡𝑡] + 𝑏𝑏𝑐𝑐) (4) 

𝑐𝑐𝑡𝑡 = 𝑓𝑓𝑡𝑡 ∙ 𝑐𝑐𝑡𝑡−1 + 𝑖𝑖𝑡𝑡 ∙ �̃�𝐶𝑡𝑡 (5) 

ℎ𝑡𝑡 = 𝑜𝑜𝑡𝑡 ∙ 𝑡𝑡𝑡𝑡𝑡𝑡ℎ(𝑐𝑐𝑡𝑡) (6) 

where 𝐿𝐿𝑖𝑖 and 𝑏𝑏𝑖𝑖 are the parameters for the input gate, 𝐿𝐿𝑓𝑓 and 𝑏𝑏𝑓𝑓 are the parameters for the forget 

gate, 𝐿𝐿𝑜𝑜  and 𝑏𝑏𝑜𝑜 are the parameters for the output gate, 𝐿𝐿𝑐𝑐  and 𝑏𝑏𝑐𝑐 are used for cell state updating; 𝜎𝜎 255 

is the activation function.  

We generate the time-dependent hidden states 𝑯𝑯, {𝒉𝒉𝑡𝑡−3,𝒉𝒉𝑡𝑡−2,𝒉𝒉𝑡𝑡−1,𝒉𝒉𝑡𝑡}  from 

input 𝑰𝑰, {𝒙𝒙𝑡𝑡−3,𝒙𝒙𝑡𝑡−2,𝒙𝒙𝑡𝑡−1,𝒙𝒙𝑡𝑡} through the LSTM. After sequentially processing all inputs in the LSTM, 

the last hidden state 𝒉𝒉𝑡𝑡 of the sequential output is used as the prediction for network training, as depicted 

in Fig. 4a. This is because the input features at each time step can be encoded in the last hidden state. 260 

The parameters in this model are recorded in Appendix A. 

 

3.2.2 1D-CNN 

CNNs (LeCun, 1989) were originally applied for image recognition. The convolution and pooling 

layers in CNNs can extract the distinguishing features of the given data while reducing the amount of 265 

data to be processed (Ajit et al., 2020). Consequently, CNNs are highly effective in processing data that 

come in the form of multiple arrays.  

For time series data, 1D-CNNs can extract local temporal features via convolution kernels that slide 

along the time dimension. 1D-CNNs have demonstrated success in speech and natural language 

processing applications (Abdel-Hamid et al., 2014; Severyn and Moschitti, 2015). Hence, 1D-CNNs are 270 

capable of soil moisture prediction tasks. The complete forward-propagation process of a simple 1D-

CNN for soil moisture prediction is illustrated in Fig. 4b. Given that the input vector 

𝐼𝐼, {𝒙𝒙𝑡𝑡−3,𝒙𝒙𝑡𝑡−2,𝒙𝒙𝑡𝑡−1,𝒙𝒙𝑡𝑡} , two convolution layers are employed in the 1D-CNN architecture. The 
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convolution kernel size (Kernel_size) is set to 2, with a stride of 1. Specific parameters are listed in Table 

A1. To preserve the information of the data, pooling layers are intentionally omitted.  275 

 

3.2.3 Transformer 

The self-attention mechanism can model the dependencies and aggregate features from inputs. 

Therefore, a stacking structure of self-attention mechanisms like Transformer  (Vaswani et al., 2017) 

can achieve the functions of CNNs and RNNs without iterations. This provides a novel way for 280 

predictions. In this study, we utilize the encoder structure of the Transformer (Vaswani et al., 2017), as 

depicted in Fig. 4c, to predict soil moisture. The self-attention is shown in Fig. 4d, which operates as 

follows: 

𝑆𝑆𝐴𝐴 = 𝑠𝑠𝑜𝑜𝑓𝑓𝑡𝑡𝑠𝑠𝑡𝑡𝑥𝑥 �
𝑄𝑄𝐾𝐾𝑇𝑇

�𝑑𝑑𝑘𝑘
� = 𝑠𝑠𝑜𝑜𝑓𝑓𝑡𝑡𝑠𝑠𝑡𝑡𝑥𝑥 �

�𝐿𝐿𝑄𝑄𝐼𝐼𝐸𝐸�(𝐿𝐿𝐾𝐾𝐼𝐼𝐸𝐸)𝑇𝑇

�𝑑𝑑𝑘𝑘
� (7) 

𝑆𝑆𝑓𝑓(𝐼𝐼𝐸𝐸) = 𝑆𝑆𝐴𝐴⨂𝑉𝑉 =  𝑠𝑠𝑜𝑜𝑓𝑓𝑡𝑡𝑠𝑠𝑡𝑡𝑥𝑥 �
�𝐿𝐿𝑄𝑄𝐼𝐼𝐸𝐸�(𝐿𝐿𝐾𝐾𝐼𝐼𝐸𝐸)𝑇𝑇

�𝑑𝑑𝑘𝑘
�𝐿𝐿𝑉𝑉𝐼𝐼𝐸𝐸  (8) 

where 𝐿𝐿𝐾𝐾 , 𝐿𝐿𝑉𝑉  and 𝐿𝐿𝑄𝑄  are the key, value, and query parameter matrices, respectively; 𝐼𝐼𝐸𝐸  is the 

Transformer input; 1
�𝑑𝑑𝑘𝑘

  is the scaling factor, 𝑑𝑑𝑘𝑘 = 4. 285 

 The outputs generated by the self-attention mechanism correspond to the inputs one-to-one. In this 

study, a "class token" vector 𝒙𝒙𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 is introduced as additional input to start the prediction process. The 

class token is randomly initialized and can be trained, serving as the fifth input. It enables aggregate 

global features from all other inputs and avoids bias towards a specific time step in the sequence. 

However, the self-attention mechanism ignores the temporal order of the inputs. To address this issue, 290 

we incorporate positional encoding to preprocess the inputs. Both the learnable positional encoding and 

sine cosine coding are tested in this research. The sine cosine positional encoding is defined as: 

𝑃𝑃𝑃𝑃(𝑝𝑝𝑜𝑜𝑐𝑐1,2𝑝𝑝𝑜𝑜𝑐𝑐2) = 𝑠𝑠𝑖𝑖𝑡𝑡 �
𝑝𝑝𝑜𝑜𝑠𝑠1

10000
2𝑝𝑝𝑜𝑜𝑐𝑐2
𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

� (9) 

𝑃𝑃𝑃𝑃(𝑝𝑝𝑜𝑜𝑐𝑐1,2𝑝𝑝𝑜𝑜𝑐𝑐2+1) = 𝑐𝑐𝑜𝑜𝑠𝑠 �
𝑝𝑝𝑜𝑜𝑠𝑠1

10000
2𝑝𝑝𝑜𝑜𝑐𝑐2
𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

� (10) 

where the parameters 𝑝𝑝𝑜𝑜𝑠𝑠1 and 𝑝𝑝𝑜𝑜𝑠𝑠2 represent the positions of the first and second dimensions of the 

input, respectively. Here, 𝑑𝑑𝑚𝑚𝑜𝑜𝑑𝑑𝑚𝑚𝑐𝑐 = 8 denotes the parameter of self-attention, which is equal to the input 

features at each time step.  295 
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The encoded position vectors 𝑃𝑃𝑃𝑃  are added to the original inputs before feeding them into the 

Transformer. With 𝑃𝑃𝑃𝑃, the input of the Transformer is defined as follows: 

𝐼𝐼𝐸𝐸 = {𝒙𝒙𝑡𝑡−3,𝒙𝒙𝑡𝑡−2,𝒙𝒙𝑡𝑡−1,𝒙𝒙𝑡𝑡 ,𝒙𝒙𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐} + 𝑃𝑃𝑃𝑃 (11) 

 

3.3 Hybrid Deep Learning Models 

3.3.1 Hybrid structure of CNN and LSTM 300 

In this section, three connecting ways of CNNs and LSTMs, CNN-LSTM, LSTM-CNN, and CNN-

with-LSTM, are considered. These hybrid models possess advanced capabilities in handling diverse 

types of data, generally leading to improved prediction accuracy. To ensure a rigorous comparison with 

the previous 1D-CNN and LSTM models, the parameters of the CNN and LSTM layers in our hybrid 

models are kept as consistent as possible with the 1D-CNN and LSTM models. The detailed parameter 305 

setting information can be found in Table A1. 

 

Figure 5. The framework of the proposed CNNs and LSTMs hybrid models: CNN-LSTM(a), LSTM-CNN(b), and 

CNN-with-LSTM(c).  

 310 

CNN-LSTM 
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Generally, the CNN-LSTM model is comprised of CNN layers followed by LSTM layers. The input 

data first passes through convolution layers to better extract local features in the sequence data. Then 

LSTM layers are used to associate the time-series extracted features. Therefore, this kind of model excels 

at handling the input data in image format, which has been widely utilized in prediction tasks, yielding 315 

positive outcomes in various applications (Semwal et al., 2021). In our soil moisture prediction task, 

CNN-LSTM consists of 2 convolution layers and an LSTM layer, which is shown in Table A1. As we 

mentioned in Section 3.2, the last hidden state 𝒉𝒉𝑡𝑡 is still applied as the prediction. Fig. 5a depicted the 

structure of CNN-LSTM applied in this research. 

 320 

LSTM-CNN: 

In contrast to the CNN-LSTM model, the LSTM-CNN model first utilizes LSTM layers to associate 

the time series data and output high-dimensional related hidden states. Subsequently, convolution layers 

are employed to extract the features of these time-dependent hidden states. This model has also been 

widely adopted in various applications (Xia et al., 2020). In this study, LSTM-CNN for soil moisture 325 

prediction consists of an LSTM layer and 2 convolution layers sequentially. The structure of LSTM-

CNN can be seen in Fig. 5b. Detailed layers and parameters of this model are presented in Table A1. 

 

CNN-with-LSTM: 

CNN-with-LSTM is a model that employs the parallel combination of both CNN and LSTM, merging 330 

their outputs through concatenation, and uses a fully connected network for regression analysis. By 

combining the feature extraction capabilities of CNN with the time series memory ability of LSTM, this 

model captures both the local and global temporal characteristics of the input data. This kind of hybrid 

structure has been used in soil moisture prediction and achieved satisfactory results(Yu et al., 2021). In 

our work, CNN-with-LSTM is comprised of an LSTM layer and 2 convolution layers parallelly, and the 335 

structure is depicted in Fig. 5c. Table A1 lists the network structures of the CNN and LSTM models in 

addition to the parameter settings.  

 

3.3.2 Hybrid Structure of Attention and LSTM 

To enhance the accuracy of deep learning models and address the issue of lack of interpretability, 340 

attention mechanisms have been incorporated into LSTM models to weigh the importance of different 
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input and output vector dimensions (Li et al., 2022a; Ding et al., 2020; Xia et al., 2020). Attention 

mechanisms are commonly used in combination with other neural networks as a form of pre-processing 

or post-processing. Through training, attention mechanisms dynamically generate spatiotemporal 

attention importance weights to selectively focus on critical parts of the input or output, as illustrated in 345 

Fig. 6. These attention weights enable the model to assign importance to various elements within the 

input sequence, thus helping make more accurate predictions. Additionally, these attention weights offer 

a visualized representation, which provides insights into the sections of the input sequence most essential 

for a specific prediction. According to the specific roles of the attention mechanisms, the hybrid models 

can be classified into three categories: FA-LSTM (a feature attention mechanism with LSTM), TA-350 

LSTM (a temporal attention mechanism with LSTM), and FTA-LSTM (an LSTM combines both feature 

and temporal attention mechanisms). Ding et al.(2020) conducted experiments on these three kind of 

hybrid models in flood prediction, confirming the effectiveness of incorporating LSTM with attention 

mechanisms.  

 355 

Figure 6. Framework of the proposed FA-LSTM hybrid models (a), the feature attention mechanism (FA) (b), and 

the temporal attention mechanism (TA) (c), inspired by Ding et al.(2020). 

 

FA-LSTM: 

FA-LSTM applies an attention mechanism to assign weights for distinct features in the input vector. 360 

In this study, for soil moisture prediction, the feature attention mechanism in FA-LSTM processes the 

input vector  𝑰𝑰, {𝒙𝒙𝑡𝑡−3, … ,𝒙𝒙𝑡𝑡} , where 𝒙𝒙𝑡𝑡 = {𝑓𝑓1𝑡𝑡 , 𝑓𝑓2𝑡𝑡 , … , 𝑓𝑓𝑡𝑡𝑡𝑡  }  and generate the weighted output 
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{𝒙𝒙𝑡𝑡−3′ , … ,𝒙𝒙𝑡𝑡′ }. Through the attention mechanism, the output 𝒙𝒙𝑡𝑡′  remains the same dimension size as the 

input 𝒙𝒙𝑡𝑡. The feature attention importance weight α𝑡𝑡 and attention mechanism output 𝒙𝒙𝑡𝑡′  are defined 

as follows: 365 

α𝑡𝑡 = 𝐹𝐹𝐹𝐹(𝒙𝒙𝑡𝑡) (12) 

𝒙𝒙𝑡𝑡′ = α𝑡𝑡 ⊗ 𝒙𝒙𝑡𝑡 (13) 

Fig. 6b also shows the operation of the feature attention mechanism. The FA-LSTM model consists of 

an LSTM and a feature attention mechanism for input preprocessing, as detailed in Table A1. 

 

TA-LSTM: 

TA-LSTM utilizes the temporal attention mechanism to weigh the importance of LSTM output vectors 370 

across time steps. This enables the model to concentrate on the most relevant hidden states, potentially 

enhancing its performance on tasks that involve temporal modeling. The temporal attention mechanism 

is shown in Fig. 6c. In our work, the output vector 𝑯𝑯𝑐𝑐𝑡𝑡𝑡𝑡 , which is obtained through the temporal attention 

mechanism in TA-LSTM, is the weighted sum of all states in 𝑯𝑯, {𝒉𝒉𝑡𝑡−3,𝒉𝒉𝑡𝑡−2,𝒉𝒉𝑡𝑡−1,𝒉𝒉𝑡𝑡}. The temporal 

attention weight 𝛽𝛽 and attention mechanism output 𝑯𝑯𝑐𝑐𝑡𝑡𝑡𝑡  can be defined as: 375 

𝛽𝛽 = 𝑇𝑇𝐹𝐹(𝑯𝑯) (14) 

𝑯𝑯𝑐𝑐𝑡𝑡𝑡𝑡 = �𝛽𝛽𝑖𝑖 ⊗ 𝒉𝒉𝑖𝑖

4

𝑖𝑖=1

 (15) 

Compared to LSTM, the difference with TA-LSTM lies in the post-processing of the LSTM output. 

LSTM utilizes the last hidden state output for prediction, while TA-LSTM employs temporal weighting 

to utilize all hidden state outputs. Table A1 contains the network structure and parameters information. 

 

FTA-LSTM: 380 

FTA-LSTM is the model that combines both feature and temporal attention mechanisms, as illustrated 

in Fig. 6a. It applies the feature attention mechanism before the LSTM layer to assign weights for the 

input features, and the temporal attention mechanism after the LSTM layer to weigh the importance of 

the LSTM output vectors of different time steps. The parameters of FTA-LSTM can be found in Table 

A1. 385 
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3.3 GAN-LSTM 

GANs (Goodfellow et al., 2014) comprise a generator and a discriminator. The generator is designed 

to generate predictions that are similar to the truth, while the discriminator tries to distinguish between 

the truth and the predictions. The unique network structure and adversarial training of GANs make them 390 

highly effective in various fields, particularly in dealing with fuzzy prediction (Jing et al., 2019). Thus, 

GANs offer a promising way to predict soil moisture, potentially leading to accurate results in real 

situations. For predicting soil moisture, the GAN-LSTM model is used, where the generator G employs 

an LSTM model capable of processing time series data, and the discriminator D uses a single-layer 

feedforward neural network, similar to the work of Li et al. (2020). Alternating adversarial training is 395 

performed between G and D, meaning that one of them is trained while keeping the other one fixed. The 

structure and training strategies of GAN-LSTM are shown in Fig. 7. 

 

Figure 7. The framework of the proposed GAN-LSTM model. 

 400 

The training objective of the discriminator D is to distinguish between predictions generated by the 

generator G and the ground truth, by minimizing the loss function ℒ𝑑𝑑. The binary cross-entropy loss is 

utilized as the similarity evaluation metric, with the objective of training D to output 1 when presented 

with ground truth as input and 0 when presented with predictions as input: 

ℒ𝑑𝑑 = ℒ𝑏𝑏𝑐𝑐𝑚𝑚(𝑑𝑑([𝑆𝑆𝑆𝑆𝑡𝑡−4, . . , 𝑆𝑆𝑆𝑆𝑡𝑡−1,𝑦𝑦𝑡𝑡]), 1) + ℒ𝑏𝑏𝑐𝑐𝑚𝑚(𝑑𝑑([𝑆𝑆𝑆𝑆𝑡𝑡−4, . . , 𝑆𝑆𝑆𝑆𝑡𝑡−1,𝑦𝑦�𝑡𝑡]), 0) (16) 

where ℒ𝑏𝑏𝑐𝑐𝑚𝑚 is the binary cross-entropy loss, which is defined as: 405 

ℒ𝑏𝑏𝑐𝑐𝑚𝑚(�̂�𝑝, 𝑝𝑝) = −𝑝𝑝𝑝𝑝𝑜𝑜𝑝𝑝(�̂�𝑝) − (1 − 𝑝𝑝)𝑝𝑝𝑜𝑜𝑝𝑝(1 − �̂�𝑝) (17) 

where p denotes the label (0 or 1) and �̂�𝑝 denotes the logit value between 0 and 1. 

For generator G, there are two training objectives: first, to generate soil moisture dynamics predictions 

that are accurate and consistent with the truth, which is achieved by minimizing the fitting error of the 
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soil moisture content data, denoted as ℒ𝑚𝑚𝑐𝑐𝑚𝑚 . Second, to deceive D, which is achieved by minimizing the 

binary cross-entropy loss ℒ𝑏𝑏𝑐𝑐𝑚𝑚 between the predictions and the truth in D. The output of D should be 410 

close to 1 when inputting the G predictions into D, ensuring that the prediction is close to the truth. 

Therefore, we train G by minimizing the following loss function ℒ𝑔𝑔: 

ℒ𝑔𝑔 = ℒ𝑚𝑚𝑐𝑐𝑚𝑚(𝑦𝑦𝑡𝑡 ,𝑦𝑦�𝑡𝑡) + 𝜆𝜆𝑏𝑏𝑐𝑐𝑚𝑚ℒ𝑏𝑏𝑐𝑐𝑚𝑚(𝑑𝑑([𝑆𝑆𝑆𝑆𝑡𝑡−4, . . , 𝑆𝑆𝑆𝑆𝑡𝑡−1,𝑦𝑦�𝑡𝑡]), 1) (18) 

where 𝜆𝜆𝑏𝑏𝑐𝑐𝑚𝑚  is the hyperparameter that controls the importance of the second term. Here we determine 

𝜆𝜆𝑏𝑏𝑐𝑐𝑚𝑚 to be 1 × 10−7 through manual testing. For adversarial training in our GAN-LSTM, the parameter 

update ratio of G and D in the model is 3:1, that is, every time G is updated (the learning rate is set to 415 

0.0005), D will be updated 3 times (the learning rate is set to 0.001). The network structure parameters 

of GAN-LSTM are recorded in Table A1. 

 

4. Results and Discussions 

This study evaluates the performance of 3 machine learning methods and 10 deep learning models in 420 

predicting soil moisture at 10 sites and 5 depths. To evaluate the model's ability to predict over time 

series, we examined forecasts for 1, 3, and 7 days ahead. When making predictions longer than 1 day, 

we adopted iterative predictions. The generated soil moisture data for the first day, along with the 

corresponding observed meteorological data and historical three-day data reconstruct the new four-day 

input, which is used to predict soil water for the second day. Two standard metrics, 𝑅𝑅2 and root mean 425 

square error (RMSE) are used to evaluate the performance of the models. 𝑅𝑅2 represents how well the 

model captures the variability in data, while RMSE measures the accuracy of the model's predictions. 

These metrics are calculated as follows: 

𝑅𝑅2 = 1 −
∑ (𝑦𝑦𝑖𝑖 − 𝑦𝑦�𝑖𝑖)2𝑁𝑁
𝑖𝑖=1

∑ (𝑦𝑦𝑖𝑖 − 𝑦𝑦�𝑖𝑖)2𝑁𝑁
𝑖𝑖=1

 (19) 

RMSE = �∑ (𝑦𝑦𝑖𝑖 − 𝑦𝑦�𝑖𝑖)2𝑁𝑁
𝑖𝑖=1

𝑁𝑁
 (20) 

where 𝑦𝑦𝑖𝑖  denotes the ground truth; 𝑦𝑦�𝑖𝑖  denotes the model prediction,   𝑦𝑦�𝑖𝑖  denotes the mean of the 

ground truth, and N denotes the sample size. 430 

The collected data in Section 2 is split into training, validation, and test sets in a 6:2:2 ratio in time 

order. The training set is used to train the models with a learning rate of 0.001 unless stated otherwise. 

We train the deep learning models for at least 1500 epochs, with a batch size of 50. In each epoch, 20 



20 
 

batches are used for training. The validation set is employed to determine whether the deep learning 

model should be updated. If the trained model performs worse on the validation set compared to the 435 

previous model, the previous model is retained. Finally, the test set is utilized to evaluate and compare 

the accuracy of the trained models. To ensure statistical robustness, each final result is obtained by 

averaging the outcomes of 25 repetitions of the training process. 

 

4.1 Comparisons of Machine Learning and LSTM 440 

This section compares the machine learning models with the deep learning model, represented by 

LSTM. Table 2 summarizes the 𝑅𝑅2 between the soil moisture predictions of the three machine learning 

methods and the ground truth at ten sites and five depths for the following 1, 3, and 7 days. The symbol 

(-) signifies an extremely poor 𝑅𝑅2 result. The results show that all three methods perform well on short-

term (1-3 days) soil moisture forecasts, but their performance tends to diverge when predicting at the 445 

lead time of 7 days. Among these three, RF is the most stable and best-performing model. 

Fig. 8(a-e) compares the average RMSE of the soil moisture predictions of the machine learning 

models and LSTM at different depths for 1, 3, and 7 days ahead across 30 sites. It reveals that LSTM 

outperforms the three machine learning models in terms of prediction accuracy and stability, which 

suggests that deep learning has a better capability of processing time series data for soil moisture 450 

dynamics simulation than traditional machine learning. 

Machine learning models are limited in handling inputs from multiple time steps when processing time 

series data. Therefore, while they exhibit proficiency in short-term predictions, they may not perform 

well in long-term prediction tasks and demonstrate comparatively lower accuracy and stability than deep 

learning models. Nevertheless, a notable advantage of machine learning models is that they require little 455 

training time, enabling rapid deployment, which incurs lower computational costs compared to deep 

learning models. 
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Figure 8. Top: RMSE comparisons between RF, ELM, SVR, and LSTM at the Cape site at 5 depths: 0.05m(a), 460 

0.10m(b), 0.20m(c), 0.50m(d), 1.00m(e). 

 

Table 2. The values of 𝑅𝑅2 between the predictions (1, 3, and 7 days) of RF, ELM, and SVR and the ground truth 

for ten sites at five depths. 

depth/m RF ELM SVR 
R2 R2 R2 

 1d 3d 7d 1d 3d 7d 1d 3d 7d 
0.05 0.924 0.874 0.797 0.889 0.735 (-) 0.910 0.816 (-) 
0.10 0.930 0.886 0.815 0.922 0.823 0.459 0.920 0.814 (-) 
0.20 0.929 0.891 0.832 0.927 0.809 0.361 0.914 0.759 (-) 
0.50 0.898 0.814 0.725 0.914 0.503 (-) 0.860 0.528 (-) 
1.00 0.903 0.818 0.671 0.909 0.805 0.170 0.768 (-) (-) 

 465 

4.2 Comparisons of 1D-CNN, LSTM and Transformer 

In this section, we conduct a comparative analysis of three basic deep learning networks. We evaluate 

their prediction performance by assessing both prediction accuracy and computational costs. The values 

of 𝑅𝑅2 between the soil moisture predictions generated by the three models and the ground truth across 

ten sites and five depths are presented in Table 3. Additionally, Fig. 9(a-e) displays the average RMSE 470 

for soil moisture predictions of 30 sites.  

The results reveal that the LSTM model achieves the highest prediction accuracy, followed by the 1D-

CNN model and subsequently the Transformer model. Notably, LSTM and Transformer are more stable 

when making long-term or deep soil moisture predictions, while 1D-CNN is better suited for short-term 

and shallow prediction tasks. This aligns with the inherent characteristics of the three models. In essence, 475 

LSTM is designed to model temporal dependencies in sequence data, emphasizing global features. 

Transformer operates by modeling relationships in input time series without iterations and highlights 

important features by self-attention weighting. These characteristics prevent overfitting in the LSTM and 

Transformer, resulting in stability in long-term predictions. In contrast, 1D-CNN excels at extracting and 
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expressing local features, which facilitates it to capture the connections between subtle feature changes 480 

and their corresponding outcomes. This capability allows for adaptation to shallow soil moisture 

prediction tasks with significant variations. 

Fig. 9g shows the training epochs required for each model, while Fig. 9h illustrates the time taken for 

100 epochs. The 1D-CNN demonstrates the fastest training speed and achieves early convergence. 

Conversely, LSTM shows slower training speed attributed to its iterations. The Transformer trains 485 

quickly but converges at a slower pace than LSTM, resulting in a similar total training time. In summary, 

although 1D-CNN offers the lowest computational costs, LSTM has been proven to be the most 

appropriate for soil moisture prediction tasks among the three with the highest accuracy. 

 

 490 

Figure 9. Top: Average RMSE comparisons between CNN, LSTM, and Transformer at 5 depths: 0.05m(a), 

0.10m(b), 0.20m(c), 0.50m(d), 1.00m(e). Bottom: comparisons of the training epoch (g) and training time (h) for 

three models. 

 

Table 3. The values of 𝑅𝑅2 between the predictions (1, 3, and 7 days) generated by CNN, LSTM, and Transformer, 495 

and the ground truth across ten sites at five depths. 

depth/m CNN LSTM Transformer 
R2 R2 R2 

 1d 3d 7d 1d 3d 7d 1d 3d 7d 
0.05 0.939  0.884  0.793  0.943  0.895  0.816  0.933  0.886  0.805  
0.10 0.956  0.909  0.826  0.954  0.909  0.838  0.949  0.906  0.839  
0.20 0.961  0.912  0.823  0.963  0.916  0.842  0.952  0.912  0.843  
0.50 0.909  0.702  0.532  0.937  0.873  0.749  0.917  0.840  0.716  
1.00 0.919  0.811  0.547  0.944  0.878  0.746  0.939  0.879  0.758  
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4.3 Comparisons of CNN and LSTM Hybrid Models 

This section compares the three CNN and LSTM hybrid models (LSTM-CNN, CNN-LSTM, and 

CNN-with-LSTM) across 10 sites in terms of prediction accuracy and computational costs. Table 4 500 

presents the e 𝑅𝑅2 values between the soil moisture predictions generated by the three hybrid models and 

the ground truth across ten sites at five depths. It can be observed that the prediction accuracy of these 

models is comparable, with LSTM-CNN slightly outperforming the others. Moreover, Fig. 10(a-e) shows 

the average RMSE results of hybrid models and LSTM across 30 research sites, indicating that the hybrid 

models do not exhibit obvious advantages over the standard LSTM.  505 

Specifically, the three models are hybrids of CNN and LSTM with varying incorporation degrees. 

According to their combination ways, we can infer that the models excel in handling different types of 

data and place different emphases on data characteristics. The CNN-LSTM appears to prioritize local 

features and model long-distance dependencies, while LSTM-CNN focuses on global features and 

context information. CNN-with-LSTM simultaneously considers both local features and temporal 510 

information for predictions. These integrations increase the complexity and enhance the expression 

capacities of models, but their applications should depend on the input data and prediction task. In the 

case of soil moisture prediction, the benefits of this combination approach are not significant. 

Fig. 10g and Fig. 10h display the computational costs of the three hybrid models. It is evident that the 

CNN-LSTM shows the fastest training speed and the lowest computational costs, owing to its 515 

convolution layers for input data pre-processing. Besides, the computational costs of LSTM-CNN are 

higher than CNN-with-LSTM. Overall, compared to LSTM and 1D-CNN, we could draw the conclusion 

that the hybrid models have limited practical values in soil moisture prediction. 

 



24 
 

 520 
Figure 10. Top: Average RMSE comparisons between LSTM-CNN, CNN-LSTM and CNN-with-LSTM at 5 depths: 

0.05m(a), 0.10m(b), 0.20m(c), 0.50m(d), 1.00m(e). Bottom: comparisons of the training epoch (g) and training time 

(h) for three models. 

 

Table 4. The values of 𝑅𝑅2 between the predictions (1, 3, and 7 days) of LSTM-CNN, CNN-LSTM, and CNN-with-525 

LSTM and the ground truth for ten sites at five depths 

depth/m LSTM-CNN CNN-LSTM CNN-with-LSTM 
R2 R2 R2 

 1d 3d 7d 1d 3d 7d 1d 3d 7d 
0.05 0.939  0.889  0.809  0.936  0.885  0.800  0.936  0.880  0.792  
0.10 0.950  0.901  0.820  0.943  0.895  0.821  0.951  0.899  0.810  
0.20 0.959  0.906  0.822  0.952  0.899  0.816  0.950  0.891  0.795  
0.50 0.916  0.814  0.683  0.867  0.715  0.546  0.886  0.782  0.644  
1.00 0.908  0.788  0.546  0.908  0.821  0.651  0.897  0.787  0.575  

 

4.4 Comparisons of Attention Mechanisms and LSTM Hybrid Models 

To investigate the impact of different attention mechanisms on models, this section compares these 

three models: FA-LSTM, TA-LSTM, and FTA-LSTM. Fig. 11(a-e) displays the average RMSE values 530 

of the soil moisture predictions for 1, 3, and 7 days ahead generated by these three models and the 

standard LSTM at 30 sites. Table 5 records the values of 𝑅𝑅2 between the soil moisture predictions of 

three models and the ground truth across ten sites and five depths.  
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 535 
Figure 11. Top: Average RMSE comparisons between FA-LSTM, TA-LSTM, and FTA-LSTM at 5 depths: 

0.05m(a), 0.10m(b), 0.20m(c), 0.50m(d), 1.00m(e). Bottom: comparisons of the training epoch (g) and training time 

(h) for three models. 

 

Table 5. The values of 𝑅𝑅2 between the predictions (1, 3, and 7 days) of FA-LSTM, TA-LSTM, and FTA-LSTM 540 

and the ground truth for ten sites at five depths. 

depth/m FA-LSTM TA-LSTM FTA-LSTM 
R2 R2 R2 

 1d 3d 7d 1d 3d 7d 1d 3d 7d 
0.05 0.944  0.902  0.827  0.937  0.888  0.809  0.942  0.897  0.823  
0.10 0.960  0.921  0.848  0.950  0.899  0.826  0.950  0.906  0.839  
0.20 0.965  0.925  0.849  0.957  0.909  0.823  0.954  0.907  0.825  
0.50 0.949  0.881  0.770  0.923  0.869  0.745  0.870  0.773  0.653  
1.00 0.947  0.896  0.794  0.927  0.854  0.703  0.915  0.842  0.672  

 

Based on the results, the prediction accuracy of the three models ranked from high to low is FA-LSTM, 

FTA-LSTM, and TA-LSTM in most situations. It can be found that the feature attention mechanism has 

a stable gain effect on LSTM, potentially because it assigns the appropriate feature importance weights 545 

to various influencing factors, especially in deep soil moisture prediction tasks. On the contrary, the 

improvement of the temporal attention mechanism is not evident and may lead to deterioration. TA-

LSTM differs from LSTM in its output post-processing, as it is trained to weigh the LSTM output at each 

time step to make predictions. The reason why TA-LSTM is worse may be that LSTM already encodes 

enough past features for predictions in the last hidden state. Moreover, the FTA-LSTM model, which 550 

combines both feature and temporal attention mechanisms, is the most complex but not necessarily the 
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optimal one among the three. From the results, we can also infer the effective feature learning ability of 

attention mechanisms. 

According to Fig. 11(g-h), attention mechanisms introduce some acceptable computational costs. 

Notably, FA-LSTM requires more training steps to reach convergence. However, despite this 555 

computational requirement, we believe that the implementation of FA-LSTM is still advantageous for 

soil moisture prediction tasks.  

Fig. 12 provides visualizations of the input feature importance and temporal importance weights 

learned by FA-LSTM and TA-LSTM for soil moisture prediction at the AAMU site across 5 depths. The 

feature importance in Fig. 12 (a-e) shows a reasonable adaptation to the varying depth, demonstrating 560 

the effective feature selection capability of attention mechanisms. Moreover, the temporal importance in 

Fig. 12(f-j) indicates the high utilization of recent temporal features, which is consistent with real 

situations. This indicates the effective feature learning capacity of attention mechanisms. What’s more, 

these results contribute to a deeper understanding of the utilization mechanisms of feature and temporal 

information within the model. 565 

 

Figure 12. Feature importance and temporal importance for soil moisture prediction at the AAMU site across 5 

depths. 

 

4.5 Comparisons of GAN-LSTM and LSTM 570 
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In this section, we evaluate the impact of the GAN structure and adversarial training strategy on the 

standard LSTM model. LSTM and GAN-LSTM for soil moisture prediction are compared. The 𝑅𝑅2 

values for the following 1, 3, and 7 days across ten sites at different depths are recorded in Table 6. Fig. 

13(a-e) shows the RMSE results of LSTM and GAN-LSTM at the Weslaco site.  

The results demonstrate that the GAN-LSTM achieves better performance than the standard LSTM in 575 

most situations, particularly in long-term prediction tasks (3-7 days). The application of GAN structure 

and training strategies enhances the prediction accuracy of LSTM. The adversarial training of GAN-

LSTM allows the model to not only learn from the data itself but also extract additional information 

embedded in the data. This helps address performance degradations due to overfitting on data mean 

square error. We can regard this training strategy as a general principle to enhance the performance of 580 

neural networks. However, the selection of hyperparameters in the loss function of GAN is crucial and 

currently requires manual adjustments. In future work, adaptive methods can be adopted to automatically 

adjust the GAN-LSTM loss function to increase training flexibility and prediction accuracy. 

 

 585 

Figure 13. Top: Average RMSE comparisons between LSTM and GAN-LSTM at 5 depths: 0.05m(a), 0.10m(b), 

0.20m(c), 0.50m(d), 1.00m(e). Bottom: comparisons of the training epoch (g) and training time (h). 
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Table 6. The values of 𝑅𝑅2 between the predictions (1, 3, and 7 days) generated by LSTM and GAN-LSTM and the 590 

ground truth across ten sites at five depths. 

depth/m LSTM GAN-LSTM 
R2 R2 

 1d 3d 7d 1d 3d 7d 
0.05 0.943  0.895  0.816  0.944  0.897  0.819  
0.10 0.954  0.909  0.838  0.956  0.910  0.838  
0.20 0.963  0.916  0.842  0.963  0.919  0.846  
0.50 0.937  0.873  0.749  0.946  0.893  0.777  
1.00 0.944  0.878  0.746  0.948  0.896  0.793  

 

Based on the computational cost comparisons presented in Fig. 13(g-h), both LSTM and GAN-LSTM 

exhibit similar computational costs. Consequently, in most scenarios, it is advisable to apply the GAN-

LSTM model to predict soil moisture dynamics. It improves the stability and prediction ability of the 595 

model without imposing a significant increase in computational costs. 
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4.6 Visualization Analysis 

 600 
Figure 14. SHAP summary plots for ten deep learning models. The samples are from the test set of the Monahans 

site at 0.0500m.  

 

In this study, we employ the SHAP (Lundberg et al., 2018) to quantify the contributions of input 

features to investigate the distinct mechanisms of data utilization in different network structures. Brief 605 

introductions to SHAP are provided in Appendix B. Fig. 14 illustrates the SHAP summary plots of these 

ten deep learning models utilizing samples from the test set of the Monahans site. The y-axis represents 

the input features ranked by importance. Each point shows the Shapley value of a specific feature in a 

sample, with the color indicating the value of the input feature. The plot clearly shows the identified main 

influential factors and established correlations between input features and soil moisture by the models. 610 

We aim to analyze different ways of using data across various models. For soil moisture predictions, a 

SHAP analysis visualization for a well-performing model should reflect its emphasis on influential 

features for improved results in surface soil moisture or short-term predictions. Simultaneously, it can 
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illustrate the model’s capability to avoid overlearning irrelevant features. This avoidance can prevent 

false correlations that can degrade long-term forecast performance. 615 

Fig. 14(a-c) displays the Shapley values of three basic deep learning models: CNN, LSTM, and 

Transformer. It can be observed that CNN shows a broader range of Shapley values compared to the 

others, indicating its greater feature expression capacity. This suggests that CNN focuses more on 

specific local features, while LSTM emphasizes capturing global features. However, both CNN and 

LSTM tend to learn incorrect correlations. For instance, the learned positive correlation between the 620 

feature ST3 and soil moisture is contrary to the facts. The Transformer model, which aggregates features 

from all other inputs, appears to perform better in this aspect. Although the Shapley value of the 

Transformer exhibits the lowest range, the important features identified are derived from the recent input 

time series, which aligns better with real situations. This reflects the effective feature learning ability of 

attention mechanisms. Overall, each of these models—CNN, LSTM, and Transformer—possesses 625 

unique advantages in terms of data utilization. Notably, LSTM aligns most consistently with the above 

criteria. 

Fig. 14(d-f) compares the hybrid models of CNNs and LSTMs. The CNN-LSTM keeps high Shapley 

values in important features while showing minimal response to the others. This suggests that CNN-

LSTM tends to sequentially process the extracted crucial features, enabling itself to effectively capture 630 

both local data features and long-range dependencies, resembling more the CNN. LSTM-CNN shows 

similar Shapley values to the LSTM. By employing CNN to extract sequential modeling features, LSTM-

CNN emphases more on global features, resembling the characteristics of the LSTM. The Shapley value 

of the CNN-with-LSTM is the highest, displaying a heightened sensitivity to feature perturbations. This 

can be attributed to the repeated utilization of features in parallel networks. These three models represent 635 

different degrees of fusion between CNNs and LSTMs, and the hybrid architecture design depends on 

the specific task requirements and data characteristics. 

In the case of hybrid models that integrate attention mechanisms with LSTM, FA-LSTM, TA-LSTM, 

and FTA-LSTM, their Shapley values in Fig. 14(g-i) are found to differ slightly from that of LSTM. 

Considering the attention importance analysis discussed in section 4.4, we can infer that the attention 640 

mechanisms introduce slight adjustments to the time and feature attributions on the basis of the LSTM. 

Fig. 14j also presents the Shapley value of GAN-LSTM. Through the Shapley value, we can infer that 

the GAN-LSTM model introduces slight modifications during adversarial training, influencing some 
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feature contributions to improve the prediction accuracy of the LSTM model. This demonstrates that 

adversarial training strategies contribute to the refinement and enhancement of models. 645 

 

Figure 15. The t-SNE visualizations of the original input data (a) and encoded hidden states of 10 models (b-k) 

obtained from the test set of the LittleRiver site. The colors of the points indicate the corresponding soil moisture 

content values. 

 650 

Besides, t-SNE (Van der Maaten and Hinton, 2008), a dimension reduction and visualization method 

is employed to discover the structure and patterns in the high-dimensional data. When mapping data onto 

a two-dimensional space, t-SNE retains the relative distance relationships between the original data 

points, ensuring that similar samples are mapped closer to each other. The details of t-SNE can be found 

in Appendix B. Fig. 15 presents the t-SNE visualizations of the input data and the last encoded hidden 655 

states from 10 models. The input data in Fig. 15a denotes the flattened form of the four days’ inputs 𝐼𝐼. 

When conducting t-SNE visualizations, the x and y axes make no sense. Only the relative distance 

between sample points matters. The color of each point corresponds to the soil moisture content value. 

It is evident that through training, the low-dimensional embeddings of the encoded hidden states 

gradually transition from an initially irregular pattern to a more structured shape. However, the 660 

visualization shapes vary across the different models. For a soil moisture prediction regression task, we 

discover that in t-SNE visualizations of models with great forecasting capacity, the sample points can be 

arranged vertically from light to dark in color, such as the Fig. 15h. Additionally, these visualizations 

enable us to discern the impact of the attention mechanism and adversarial training on LSTM in Fig. 
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15(k-h), ultimately leading to enhanced accuracy. However, LSTM-CNN, CNN-with-LSTM, and FTA-665 

LSTM exhibit distinct clustering patterns in their embedding plots, rather than a vertical arrangement. 

This reflects their advanced data processing capabilities but is less beneficial for soil water prediction 

tasks. Generally, from the t-SNE visualizations, it can be summarized that different deep learning 

models capture distinct intrinsic characteristics of input data and encode them into various vectors 

for making predictions. To gain a more comprehensive understanding of their differences, further 670 

research is warranted in the future.  

 

5. Conclusions 

In this research, we have conducted a comprehensive analysis of traditional machine learning models 

and various deep learning models for soil moisture predictions across different sites at 5 depths. Based 675 

on our comparisons of these models, we draw the following conclusions:  

In traditional machine learning, RF seems to be the most stable method in soil moisture prediction 

tasks. However, deep learning models have been found to possess stronger capabilities in processing time 

series data for better predictions. Among the three basic deep learning models, LSTM demonstrates a 

high level of accuracy because of its temporal information modeling capability, while 1D-CNN exhibits 680 

the lowest computational cost. Transformer also shows stable long-term forecasting ability. When 

considering the hybrid models, three combinations of CNN and LSTM did not enhance the prediction 

abilities in this task. Despite the attractiveness of hybridizing the benefits of CNN and LSTM, the results 

did not find notable advantages in soil moisture prediction in terms of accuracy and computational costs. 

However, the feature attention mechanism has a constant positive effect on LSTM, while temporal 685 

attention mechanisms have little significance. In addition, combining generative adversarial network 

structures and training strategies into LSTM models (GAN-LSTM) has been found to improve prediction 

accuracy, especially in long-term predictions. To summarize, FA-LSTM and GAN-LSTM are found to 

be the most stable and effective models for soil moisture prediction. Furthermore, this study attempts to 

provide a thorough analysis of models’ performances and advance the understanding of machine learning 690 

in soil moisture prediction. Through the Shapley analysis, we can infer the different data utilization ways 

of the 10 models. Besides, the t-SNE visualizations illustrate the varying encoding capabilities in 

different models.  
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The results emphasize the importance of appropriate and effective neural network structure design for 

a given task. For soil moisture prediction, several principles of effective network design can be concluded. 695 

Firstly, leveraging the temporal modeling capability of LSTM is well-suited for soil moisture forecasting. 

Secondly, incorporating attention mechanisms properly facilitates efficient feature learning. The feature 

selection capability of attention mechanisms has been proven through the performance of the 

Transformer and the attention mechanisms and LSTM hybrid models. Lastly, applying special GAN 

structures and adversarial training strategies in models helps extract additional information embedded 700 

within data, which also potential for better soil moisture dynamics simulation.  

 This study provides a reference and lays the groundwork for the development of specialized deep 

learning models for soil moisture dynamics simulation. However, although data-driven models have 

shown satisfactory performance, they cannot make long-term predictions precisely due to their lack of 

physical laws. In the future, the integration of known physical laws with deep learning models will 705 

become a promising research direction for soil moisture dynamics simulation.  
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Appendix A. Parameters Used in machine learning and deep learning models 

Table A1. Parameters settings of the deep learning models. 
Network Type Layers Kernel_size Hidden_size (L) Activation function 

1D-CNN 

Convolution 2 32 Tanh 
Convolution 2 64 Tanh 

Flatten    
Fully-connected  1 Tanh 

CNN-LSTM 

Convolutional 2 32 Tanh 

Convolutional 2 64 Tanh 

LSTM  16 Sigmoid, Tanh 

LSTM -CNN 

LSTM  16 Sigmoid, Tanh 

Convolutional 3 32 Tanh 

Convolutional 3 64 Tanh 

Flatten    

Fully-connected  1 Tanh 

CNN-with-
LSTM 

CNN 

Convolutional 3 32 Tanh 

Convolutional 3 64 Tanh 

Flatten    

Fully-connected  1 Tanh 

LSTM 

LSTM  16 Sigmoid, Tanh 

Fully-connected  1 Tanh 

CNN-with-LSTM 

CONCAT    

Fully-connected  10 Tanh 

Fully-connected  1 Tanh 

FA-LSTM 
F-Attention  8 Sigmoid 

LSTM  16 Sigmoid, Tanh 

TA-LSTM 
LSTM  16 Sigmoid 

T-Attention  8 Relu 
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Network Type Layers Kernel_size Hidden_size (L) Activation function 

FTA-LSTM 
F-Attention  8 Sigmoid 

LSTM  16 Sigmoid, Tanh 

 
T-Attention  8 Relu 

Fully-connected  1 Tanh 

GAN-LSTM 

Generator 
LSTM  16 Sigmoid, Tanh 

Fully-connected  1 Tanh 
Discriminator 

Fully-connected  1 Sigmoid 

RF: the default parameter values in RandomForestRegressor of the sklearn library 730 

SVR: C=1.0, ε=0.1, kernel γ = ‘poly’ 

ELM: Hidden_size (L) =20 

LSTM: num_layers = 2, Hidden_size(L) = 16 

Transformer: d_k=d_v=4, d_model=feature=8, d_ff=20, n_heads=1 

 735 

Appendix B. Shapley additive explanations (SHAP)  

SHAP (Lundberg et al., 2018) is a game theoretic approach to explain the output of machine learning 

models. It measures the impact of the input feature on the prediction of an individual sample. SHAP 

employs the additive feature attribution method to provide a specific explanation: 

𝑓𝑓(𝑥𝑥) = 𝑝𝑝(𝑥𝑥′) = 𝜙𝜙0 + �𝜙𝜙𝑖𝑖𝑥𝑥′
𝑀𝑀

𝑖𝑖=1

 (B1) 

where 𝑓𝑓(𝑥𝑥) denotes the original model, 𝑝𝑝(𝑥𝑥) represents the explanation model with simplified input 740 

𝑥𝑥′, 𝑥𝑥′ ∈ {0,1}𝑀𝑀 , M is the number of input features; through a mapping function, 𝑥𝑥 = ℎ𝑥𝑥(𝑥𝑥′) ; 𝜙𝜙𝑖𝑖 

denotes the feature attribution of feature 𝑖𝑖. The explanation model 𝑝𝑝 has a unique solution: 

𝜙𝜙𝑖𝑖(𝑓𝑓, 𝑥𝑥) = �
|𝑧𝑧′|! (𝑆𝑆 − |𝑧𝑧′| − 1)!

𝑆𝑆!
𝑧𝑧′⊆𝑥𝑥′

[𝑓𝑓𝑥𝑥(𝑧𝑧′) − 𝑓𝑓𝑥𝑥(𝑧𝑧′\𝑖𝑖)] (B2) 

where |𝑧𝑧′| is the non-zero entry number in 𝑧𝑧′, 𝑧𝑧′ ⊆ 𝑥𝑥′; 𝑓𝑓(𝑥𝑥′) = 𝑓𝑓�ℎ𝑥𝑥(𝑧𝑧′)� = 𝑃𝑃[𝑓𝑓(𝑧𝑧)|𝑧𝑧𝑐𝑐], S denotes 

the non-zero indexes set in 𝑧𝑧′. 

 745 

Appendix C. The t-Distributed Stochastic Neighbor Embedding (t-SNE) visualization 

The t-SNE is a nonlinear dimension reduction technique that assumes the presence of a low-

dimensional nonlinear manifold within the high-dimensional data. Its primary task is to bring similar 

neighboring points close together in the low-dimensional representation. The working process of t-SNE 
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can be divided into several steps: calculate the similarity between data points in high-dimensional space, 750 

and then calculate the corresponding probability of points in low-dimensional space. The similarity of 

points is calculated as conditional probability. If interested, more information can be found in the work 

of Van der Maaten and Hinton (2008). The following is the formula for calculating the similarity 𝑃𝑃𝑖𝑖𝑖𝑖  

and probability 𝑞𝑞𝑖𝑖𝑖𝑖  of the points: 

The similarity between data points in high-dimensional space: 755 

𝑃𝑃𝑖𝑖𝑖𝑖 = �𝑃𝑃𝑖𝑖|𝑖𝑖 + 𝑃𝑃𝑖𝑖|𝑖𝑖�/2𝑁𝑁 (C1) 

Corresponding probability of points in low-dimensional space: 

𝑞𝑞𝑖𝑖𝑖𝑖 =
�1 + �𝑦𝑦𝑖𝑖 − 𝑦𝑦𝑖𝑖�

2�
−1

∑ (1 + ‖𝑦𝑦𝑘𝑘 − 𝑦𝑦𝑐𝑐‖2)−1𝑘𝑘≠𝑐𝑐
 (C2) 

where 𝑃𝑃𝑖𝑖|𝑖𝑖 denotes the conditional probability of point 𝑖𝑖 picking point 𝑗𝑗 as its neighbor if neighbors 

are chosen according to their probability density under a Gaussian distribution centered at 𝑖𝑖, and 𝑁𝑁 

denotes the data points number. 𝑦𝑦𝑖𝑖  denotes the low-dimensional representation of point 𝑖𝑖 , and 

�𝑦𝑦𝑖𝑖 − 𝑦𝑦𝑖𝑖� denotes the Euclidean distance between 𝑦𝑦𝑖𝑖  and 𝑦𝑦𝑖𝑖.  760 
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Appendix D. Detailed meteorological information of the research sites 

The soil moisture time series data and detailed meteorological information are recorded in this 

Appendix. 765 

 

Figure D1. Soil moisture content time series data at various depths of thirty sites. 
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Table D2. Statistical results of P, and TA at 30 station sites 770 
 Min Max Mean Std Training set Validation 

  
Test set 

Kingston-1-W P(mm) 0 144.5 3.37 9.40 2012.01.01-
2019.01.26 

2019-01-26-
2021.06.05 

2021.06.05-
2023.10.14  TA(℃) -18.00 28.28 10.71 9.02 

HubbardBrook P(mm) 0 115.57 3.10 8.32 2003.01.01-
2014.06.02 

2014.06.02-
2018.03.23 

2018.03.23-
2022.01.11  TA(℃) -25.73 27.13 7.16 10.22 

Monahans-6-ENE P(mm) 0 80.6 0.85 4.60 2010.04.21-
2017.08.25 

2017.08.25-
2020.02.05 

2020.02.05-
2022.07.19  TA(℃) -12.78 36.53 19.18 8.86 

Necedah-5-WNW P(mm) 0 127.6 2.48 7.23 2009.10.13-
2017.08.27 

2017.08.27-
2020.04.11 

2020.04.11-
2022.11.26  TA(℃) -28.87 30.47 7.92 11.69 

ShadowMtns P(mm) 0 762.25 1.06 20.00 2013.07.15-
2015.12.19 

2015.12.19-
2016.10.10 

2016.10.10-
2017.08.02  TA(℃) -2.67 35.98 17.97 8.48 

Falkenberg P(mm) 0 35.34 0.73 1.95 2003.01.17-
2013.07.07 

2013.07.07-
2017.01.01 

2017.01.01-
2020.06.30  TA(℃) -18.19 29.45 9.69 7.82 

Kenai-29-ENE P(mm) 0 35.7 1.25 3.08 2012.10.04-
2019.05.17 

2019.05.17-
2021.07.30 

2021.07.30-
2023.10.14  TA(℃) -32.24 22.09 2.47 10.01 

AAMU-jtg P(mm) 0 175.26 2.44 9.42 2010.02.06-
2017.10.07 

2017.10.07-
2020.04.27 

2020.04.27-
2022.11.18  TA(℃) -10.83 31.27 16.69 8.24 

Darrington-21-NNE P(mm) 0 119.2 5.91 11.64 2013.01.01-
2017.03.13 

2017.03.13-
2018.08.06 

2018.08.06-
2019.12.30  TA(℃) -7.43 24.26 9.78 6.41 

Palestine-6-WNW 
 

P(mm) 0 143.7 2.56 9.73 2009.08.01-
2012.02.18 

2012.02.18-
2012.12.24 

2012.12.24-
2013.10.31  TA(℃) -6.77 34.24 19.84 8.38 

Durham-11-W 
 

P(mm) 0 116.1 3.37 9.24 2011.01.01-
2018.09.07 

2018.09.07-
2021.03.31 

2021.03.31-
2023.10.23  TA(℃) -10.48 29.60 15.45 8.24 

Cullman-NAHRC P(mm) 0 177.28 2.18 7.73 2006.05.18-
2016.04.19 

2016.04.19-
2019.08.10 

2019.08.10-
2022.11.30  TA(℃) -10.07 30.61 16.00 8.28 

Cape-Charles-5-ENE P(mm) 0 159.10 2.94 9.19 2011.06.15-
2018.04.13 

2018.04.13-
2020.07.22 

2020.07.22-
2022.11.01  TA(℃) -10.47 32.11 15.67 8.53 

LittleRiver P(mm) 0 154.68 2.95 9.62 2005.10.18-
2014.04.26 

2014.04.26-
2017.02.26 

2017.02.26-
2020.01.01  TA(℃) -4.24 31.99 19.77 7.08 

Montrose-11-ENE P(mm) 0 36.9 1.32 3.55 2010.06.21-
2018.06.22 

2018.06.22-
2021.02.20 

2021.02.20-
2023.10.23  TA(℃) -24.30 24.02 6.51 9.46 

Coshocton-8-NNE P(mm) 0 76.0 2.94 7.06 2009.09.18-
2013.11.30 

2013.11.30-
2015.04.25 

2015.04.25-
2016.09.18  TA(℃) -20.84 29.58 10.78 10.23 
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  Min Max Mean Std Training set Validation set 
 

Test set 

MahantangoCk P(mm) 0 53.09 1.12 4.89 2002.10.17-
2006.12.19 

2006.12.19-
2008.05.10 

2008.05.10-
2009.10.01  TA(℃) -14.53 27.60 10.19 9.29 

Bodega-6-WSW P(mm) 0 129.6 1.86 7.07 2011.09.18-
2018.12.15 

2018.12.15-
2021.05.15 

2021.05.15-
2023.10.14  TA(℃) 3.70 21.86 11.82 2.21 

GrouseCreek P(mm) 0 786.38 1.24 15.09 2016.01.01-
2020.09.02 

2020.09.02-
2022.03.25 

2022.03.25-
2023.10.15  TA(℃) -18.475 28.25 7.58 10.27 

Aberdeen-35-WNW  P(mm) 0 70.1 1.30 4.78 2012.01.01-
2019.01.31 

2019.01.31-
2021.06.12 

2021.06.12-
2023.10.23  TA(℃) -31.07 28.97 6.13 12.81 

Goodwell-2-SE P(mm) 0 72.1 1.18 4.65 2011.08.17-
2018.11.09 

2018.11.09-
2021.04.08 

2021.04.08-
2023.09.06  TA(℃) -21.85 33.65 14.01 10.24 

FortAssiniboine#1 P(mm) 0 56.90 0.82 3.51 2010.10.01-
2017.11.04 

2017.11.04-
2020.03.17 

2020.03.17-
2022.07.29  TA(℃) -33.08 30.24 6.94 12.05 

Cper P(mm) 0 177.04 1.12 6.01 2013.09.13-
2018.08.01 

2018.08.01-
2020.03.18 

2020.03.18-
2021.11.03  TA(℃) -29.26 27.45 8.16 10.50 

Riley-10-WSW P(mm) 0 28.9 0.69 2.10 2011.01.01-
2017.07.02 

2017.07.02-
2019.09.02 

2019.09.02-
2021.11.02  TA(℃) -20.34 29.27 7.98 9.49 

Spickard P(mm) 0 152.91 2.43 8.59 2010.10.08-
2018.01.18 

2018.01.18-
2020.06.22 

2020.06.22-
2022.11.26  TA(℃) -22.13 32.31 11.64 11.17 

Joplin-24-N P(mm) 0 138.5 3.12 9.70 2010.01.01-
2016.08.06 

2016.08.06-
2018.10.18 

2018.10.18-
2020.12.30  TA(℃) -16.72 34.26 13.88 9.92 

Weslaco P(mm) 0 294.89 1.65 11.66 2017.01.01-
2019.08.07 

2019.08.07-
2020.06.18 

2020.06.18-
2021.05.01  TA(℃) -1.41 32.46 23.46 6.07 

UpperBethlehem P(mm) 0 156.20 2.78 10.12 2008.09.15-
2009.09.05 

2009.09.05-
2010.01.01 

2010.01.01-
2010.05.01 

 
 TA(℃) 21.64 28.78 25.93 1.46 

Buffalo-13-ESE P(mm) 0 92.7 1.22 4.56 2010.08.19-
2018.07.15 

2018.07.15-
2021.03.03 

2021.03.03-
2023.10.22  TA(℃) -31.14 30.74 7.18 11.77 

ClotdelesPeresII P(mm) 0 33.2 0.96 3.38 2021.07.21-
2022.08.14 

2022.08.14-
2022.12.22 

2022.12.22-
2023.05.01  TA(℃) -1.34 31.36 13.09 8.28 
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