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Abstract. Global change is altering hydrologic regimes worldwide, including large basins that play a central role in the sustain-

ability of human societies and ecosystems. The basin water budget is a fundamental framework for understanding these basins’

sensitivity and future dynamics under changing forcings. In this budget, studies often treat atmospheric processes as external

to the basin and assume that atmosphere-related water storage changes are negligible in the long term. These assumptions are

potentially misleading in large basins with strong land-atmosphere feedbacks, including terrestrial moisture recycling, which is5

critical for global water distribution. Here we introduce the Land-Atmosphere Reservoir (LAR) concept to include atmospheric

processes as a critical component of the basin water budget and use it to study long-term changes in the water storage of some

of the world’s largest basins. Our results show significant LAR water storage trends over the last four decades, with a marked

latitudinal contrast: while tropical basins have been accumulating water, temperate basins have been drying. If continued, these

trends will disrupt the discharge regime and compromise the sustainability of these basins with widespread impacts.10
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1 Introduction: the Land-Atmosphere Reservoir

River basins are complex systems comprising physical, biological, and social components and a basic unit for studying the

water cycle on land and implementing management and governance strategies (Cohen and Davidson, 2011). The sustainability

of terrestrial ecosystems and human societies will depend on how river basins respond under the influence of global change

(Vörösmarty et al., 2010; Kuil et al., 2016; Mekonnen and Hoekstra, 2016; Best, 2019), including alterations due to climate20

change (Palmer et al., 2008), land use/land cover (LULC) change (Posada-Marín and Salazar, 2022), and other anthropogenic
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stresses (Best, 2019). River discharge at the basin outlet is an integrated response resulting from the basin’s water budget and,

therefore, depending on the basin’s properties and internal processes affecting terrestrial water fluxes and storage. Previous

studies have identified changes in these fluxes and storage worldwide, including trends in precipitation (Lausier and Jain,

2018), river discharge (Barichivich et al., 2018; Li et al., 2020), terrestrial water storage (TWS) (Scanlon et al., 2018) and,25

generally, different components of the basin’s water budget (Pan et al., 2012; Wang-Erlandsson et al., 2018; Zhang et al., 2019;

Pabón-Caicedo et al., 2020). While critical for future sustainability, how and why the water budget of large basins is changing

has yet to be fully understood (Pan et al., 2012; Jing et al., 2019; Posada-Marín and Salazar, 2022; Xiong et al., 2022). Here

we first introduce the Land-Atmosphere Reservoir (LAR) concept for explicitly including the atmosphere in the basin water

budget and then use this concept to show ongoing changes in some of the world’s largest basins.30

The most common approach to studying a basin’s water budget, including theoretical, observational, and modeling studies,

defines a control volume that includes the land and excludes the atmosphere (e.g., Pan et al., 2012; Kuil et al., 2016; Zhang et al.,

2017, 2019; Posada-Marín and Salazar, 2022), i.e., a land reservoir (Fig. 1a,b). This control volume definition is a prevailing

concept in catchment hydrology to study how basins respond to an external climatic input (Sivapalan, 2005; McDonnell et al.,

2007) and for understanding human impacts on the water cycle (Abbott et al., 2019). From this perspective, precipitation is35

a flux that enters the basin from the exterior (it is regarded as an external forcing), and evapotranspiration represents a flux

exiting the basin.

If defined as a land reservoir, the water budget equation for a basin,

R = P −E− dSL

dt
, (1)

establishes that river discharge (R) depends on the difference between precipitation (P ) and evapotranspiration (E), as well as40

on temporal changes in water storage within the land reservoir (dSL/dt). The land reservoir (sometimes limited to a shallow

soil layer) is widely used to define the control volume for computing a basin water budget in hydrological and land-surface

models (e.g., Devia et al., 2015; Sood and Smakhtin, 2015; Blyth et al., 2021; Posada-Marín and Salazar, 2022). As a result,

these models inherently assume that atmospheric processes exert external effects but do not make part of a basin’s internal

dynamics and water budget. This approach is the most widely used to simulate, for instance, the river discharge response to45

deforestation (Zhang et al., 2017; Posada-Marín and Salazar, 2022).

However, defining a basin system as a land reservoir may be misleading, especially for large basins with strong land-

atmosphere feedbacks. For instance, let us consider the largest basin on Earth: the Amazon (≈ 6 million km2, Fig. 1). Approx-

imately 30% of rainfall that falls over the Amazon basin originates internally as evapotranspiration (Tuinenburg et al., 2020),

mainly forest transpiration (Staal et al., 2018), resulting in the mechanism known as moisture (precipitation and evapotranspi-50

ration) recycling within the basin (Eltahir and Bras, 1994), i.e., local moisture recycling (LMR). Globally, 40% of the total

rainfall falling over land comes from terrestrial evapotranspiration (van der Ent et al., 2010), and 57% of the rainfall over land

returns to the atmosphere via evapotranspiration (Tuinenburg et al., 2020), meaning that moisture recycling from terrestrial

sources plays a major role in distributing water over the land worldwide (te Wierik et al., 2021; Posada-Marín et al., 2023).
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Figure 1. The Land versus Land-Atmosphere Reservoirs. a, Control volume and exchanges (precipitation, evapotranspiration, and dis-

charge) for the land reservoir. See equation (1). b, Schematic representation of the land reservoir and exchanges in the Amazon basin,

including the surface and land beneath it but excluding the atmospheric column. c, Control volume and exchanges (moisture convergence

and discharge) for the LAR. See equation (2). d, Schematic representation of the LAR and exchanges in the Amazon basin, including the

land reservoir and the atmospheric column above it. Moisture recycling occurs within the LAR. Imagery/Map data: ©2021 Google; Data

SIO, NOAA, U.S. Navy, NGA, GEBCO; Landsat / Copernicus; IBCAO; INEGI. Basin polygon: GRDC.
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Given its dependence on transpiration and, therefore, on the surface water budget and vegetation dynamics, LMR should55

not be generally considered an external mechanism to the basin. In contrast, in cases such as large basins with strong land-

atmosphere feedbacks, this mechanism should be considered a crucial part of the system’s internal dynamics, which plays a

role in regulating river discharge (Salazar et al., 2018) and is sensitive to anthropogenic effects such as LULC change (Ruiz-

Vásquez et al., 2020; te Wierik et al., 2021). To consider LMR and any other land-atmosphere interaction as part of a basin’s

internal dynamics and their role in producing the river discharge regime, the control volume needs to be re-defined by including60

the atmospheric column. The resulting land-atmosphere control volume is the Land-Atmosphere Reservoir or LAR (Fig. 1c,d),

i.e., the natural reservoir that receives water from the basin system’s exterior, mainly through the atmosphere, and then stores

or releases it leading to the discharge regime.

The water budget equation for the LAR is

R = Q− d(SL + SA)
dt

, (2)65

where river discharge (R) results from the difference between the net atmospheric convergence towards the basin system (Q)

and temporal changes in water storage within the LAR, including land (SL) and atmospheric (SA) components. In contrast to

the land reservoir, the water influx to the LAR is not precipitation but the atmospheric flux

Q =
∮

C

Θ ·dℓ, (3)

where Θ is the vertically integrated atmospheric water flux and the integral is performed across the LAR’s lateral contour70

(more details in Section 2).

Equations (1) and (2) exclude a term representing the net convergence of groundwater. Unlike the atmospheric fields, the

global estimates of the groundwater flow field needed to estimate this underground convergence are limited. However, we do

not expect this term to significantly affect our results. Estimates of the continent-to-ocean groundwater flow show that this flow

is small relative to river discharge: 1 km3 yr−1 compared to 1× 103 km3 yr−1 in the Amazon basin, for example (more details75

in Sections 2 and 3). Furthermore, groundwater fluxes in a large river basin contribute significantly to runoff and, therefore, are

largely accounted for in the outlet’s river discharge.

A critical difference between the land reservoir and the LAR concepts is that in the latter, P and E are internal fluxes in the

basin system, allowing LMR to be a mechanism of the basin’s internal dynamics that takes part in the basin water budget and,

therefore, in sustaining and regulating the discharge regime. A possible reason why the more traditional approach (the land80

reservoir) excludes the atmosphere is that it has a much smaller water storage capacity than the land due to thermodynamic

constraints, suggesting the assumption that the atmosphere’s role in the basin’s internal dynamics, including changes in water

storage and regulation, is negligible. Although valid as a simplification in many cases (e.g., small watersheds where external

factors primarily impose precipitation), when applied to large basins, this assumption misses a fundamental feature of the

hydrological cycle: Despite its small storage capacity, the atmosphere has a vast capacity to transport water. Indeed, in the85
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global water budget, the inland transport of atmospheric moisture compensates for the offshore flow, including both surface

water and groundwater (Trenberth et al., 2007). This transport capacity implies that a significant amount of water can be

retained within the LAR by LMR (Fig. 1c), especially in large basins with high LMR rates.

Water stored within a basin’s LAR through LMR involves not only atmospheric moisture but also the surface water that

takes part in LMR, including every source of direct evaporation and transpiration in a basin. While from the land-reservoir90

perspective, evapotranspiration leaves the basin (Fig. 1a), the LAR perspective considers that significant amounts of transpired

and evaporated water do not leave the basin but remain inside it through LMR (Fig. 1c). Hence, evapotranspiration is not

necessarily a “loss” of water from the basin but can be a significant source of precipitation (e.g., see the “demand-side” and

“supply-side” contrasting views discussed by Ellison et al., 2012).

Another difference between water storage dynamics in the LAR and the land reservoir is that the atmospheric processes95

and land-atmosphere interactions (occurring within the LAR but excluded from the land reservoir) are much more sensitive to

climate change than, for instance, underground processes. These atmospheric processes include LMR as an essential component

of the LAR’s water storage and basins’ internal dynamics and relate to the “green water” that is fundamental to the Earth

system dynamics and is now extensively perturbed by human pressures at continental to planetary scales (Wang-Erlandsson

et al., 2022).100

Choosing between the land reservoir or LAR has important practical implications for modeling studies. Coe et al. (2009)

compared results from models with land or land-atmosphere domains and showed that they produce contradictory results when

investigating deforestation impacts on river discharge in some basins of South America. This contrast between results from

models with land reservoir- or LAR-type domains is a general pattern across multiple studies (Posada-Marín and Salazar,

2022). A key reason is that models with land reservoir-type domains forced with measured precipitation do not “see” future105

changes in precipitation due to LULC change, including LULC impacts on LMR (or terrestrial moisture recycling in general).

Lastly, the LAR should not be confused with other established and related concepts such as moisture recycling (Eltahir and

Bras, 1994) or the precipitationshed (Keys et al., 2012). While the LAR is a control volume, moisture recycling is a mechanism

that can occur within it. The precipitationshed is not an Eulerian control volume such as the LAR, has different and more

dynamic boundaries, excludes the land, and points to answer different questions (e.g., where does precipitable water come110

from?).

In the following sections, after describing data and methods, we use the LAR concept to study changes in the water budget

of six of the largest basins on Earth, including tropical (the Amazon, Parana —most of its drainage is tropical—, and Congo)

and temperate (the Mississippi, Ob, and Yenisei) river basins.

2 Data and methods115

2.1 River discharge and its uncertainty

We obtained time series of monthly discharge, R [m3 s−1], from the HYdro-geochemistry of the AMazonian Basin (HYBAM)

observatory (Cochonneau et al., 2006) and the Global Runoff Data Centre (GRDC). We selected the following gauging stations
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to maximize the drainage area and record length in each basin: Obidos for the Amazon River, Timbues for the Parana River,

Kinshasa for the Congo River, Vicksburg for the Mississippi River, Salekhard for the Ob River, and Igarka for the Yenisei120

River. Supplementary Figures A1–A6 show the discharge time series used in our analysis.

HYBAM and GRDC do not report uncertainties in their discharge records. As a first-order approximation, we explored

relative errors in the discharge of 5% and 25%. The latter represents a conservative value for our uncertainty analysis. These

relative errors are consistent with the error estimates proposed by Syed et al. (2005), who assumed a relative error in the

observed Amazon and Mississippi discharge of 15%. Using these relative errors, we bound our estimates of changes in storage125

and storage trends.

2.2 Moisture convergence and its uncertainty

We used 1979–2020 data from the ERA5 reanalysis (Hersbach et al., 2019) to estimate moisture convergence, Q [kgs−1], for

each basin. Across a boundary C, Q is defined by the contour integral shown in equation (3), where the vertically integrated

water flux, Θ [kgm−1 s−1], is defined as130

Θ =
1
g

ps∫

0

qvh dp, (4)

with q [gkg−1] the specific humidity, vh [ms−1] the horizontal wind field at each pressure level, p [kgm−1 s−2] the total

air pressure, ps [kgm−1 s−2] the pressure at the Earth’s surface, and g [ms−2] the acceleration due to the Earth’s gravity. Q

accounts for the vertically integrated atmospheric water fluxes in the solid, liquid, and vapor phases.

ERA5 provides monthly estimates of the eastward and northward components of the vertically integrated water fluxes within135

a rectangular grid of 0.25°× 0.25° resolution. We used this rectangular grid to rasterize each basin (Supplementary Fig. A7a)

and identify the grid edges defining its boundary (Supplementary Fig. A7b). From an implementation perspective, once the

boundary edges were defined, we differentiated them based on their orientation and whether the water flux was entering (inflow

edge) or leaving (outflow edge) the basin. For example, the edges oriented south-north were separated into inflow (Supplemen-

tary Fig. A7c) and outflow (Supplementary Fig. A7d) edges for eastward fluxes, the only flow component contributing to the140

integral. Similarly, the edges oriented east-west were separated into inflow (Supplementary Fig. A7e) and outflow (Supple-

mentary Fig. A7f) edges for northward fluxes. As a convention, we assumed that inflow fluxes are positive and outflow fluxes

are negative. The discretized version of the contour integral defining Q is estimated as the summation of the water fluxes

[kgm−1 s−1] crossing each edge multiplied by the edge’s length [m] (Supplementary Fig. A8). Supplementary Figures A1–A6

show the resulting time series of Q.145

ERA5 does not provide uncertainty estimates for Θ, or all the variables used for its calculation. Therefore, we cannot

simply propagate these variables’ uncertainty through our approach to estimate Q. However, as part of their data assimilation

framework, ERA5 provides the ensemble spread at a coarser resolution (0.5°×0.5°) for a set of state variables (Hersbach et al.,

2020), including the vertically integrated water vapor divergence D [kgm−2 s−1], which is a proxy for Q. This spread is not a
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strict measure of uncertainty for the state variable estimates, as it ignores some important sources of error (e.g., systematic and150

correlated errors) (Asch et al., 2016), but provide a first-order approximation to bound our estimates of Q. More specifically,

moisture convergence can be estimated as a function of water divergence with the divergence theorem by integrating D over

the basin area, i.e.,

Q =
∫

D dS (5)

with155

D ≡ 1
g

ps∫

0

∇ · (qvh) dp. (6)

Even though the spatial and temporal resolutions are different and the divergence only accounts for the vapor phase, the

moisture convergence Q computed with equations (3) and (5) show good agreement (Supplementary Figs. A9–A14 show the

scatter plots). In other words, estimating the uncertainty of Q by propagating the uncertainties of D is reasonable. To do this,

we used linear propagation of uncertainties (Taylor, 1997) and the assumption of independent random errors to quantify the160

uncertainty in Q as follows. First, a discretization of equation (5) allowed us to estimate moisture convergence, Qt, at a time t,

as

Qt =
Nc∑

i=1

AiDi,t, (7)

where Nc is the number of grid cells within the basin, Ai is the area of the i-th grid cell, and Di,t is the divergence value in

grid cell i at time t. Under the previous assumptions, the error in Qt is given by (Taylor, 1997)165

δQt =

√√√√
Nc∑

i

(Ai δDi,t)2 (8)

where δDi,t is the error in the divergence Di,t, assumed to equal the ensemble spread from ERA5. Finally, for a conservative

estimate of the errors of Q, we assumed that the relative errors of Q from equation (3) equal the relative errors of Q from

equation (5). That is

δQ(t) =
(

δQt

Qt

)
Q(t). (9)170
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2.3 Basin storage changes and its uncertainty

We used conservation of mass to estimate changes in the total LAR storage (SL + SA). From the continuity equation (2), the

LAR accumulates water, i.e., d(SL+SA)/dt > 0, when Q > R and releases it, i.e., d(SL+SA)/dt < 0, when Q < R. Figure 2

uses the Amazon data to exemplify the schematic steps we followed to estimate these dynamics. First, we identified transitions

between accumulation and release periods, corresponding to times where the R and Q time series intersect (vertical gray lines175

in Fig. 2). Supplementary Figures A1–A6 show these transitions for all basins.

Second, we calculated changes in water storage between transitions, ∆(SL +SA), by integrating the differences between R

and Q over time, i.e., by solving

∆(SL + SA) =

τ2∫

τ1

[Q(t)−R(t)]dt, (10)

which represents accumulation within (∆(SL + SA) > 0) or release from (∆(SL + SA) < 0) the basin’s LAR over the period180

between τ1 and τ2, with τ1 and τ2 being the onset and end of each accumulation or release period, respectively. Accumulation

(green shaded bands in Figure 2a,b and Supplementary Figures A1–A6) occurs during prolonged periods (lasting from several

days to months) when the atmospheric water converging into the LAR exceeds the river discharge (i.e., Q > R so ∆(SL +

SA) > 0). Similarly, release (orange shaded bands in Figure 2a,b and Supplementary Figures A1–A6) occurs when discharge

exceeds atmospheric water convergence (i.e., Q < R so ∆(SL + SA) < 0).185

Third, we obtained the net accumulated or released volume from the onset of an accumulation period and the end of the next

release period by adding consecutive volumes of accumulation and release (Fig. 2c). Finally, we obtained the long-term trends

in the LAR’s water storage by adding net accumulated or released volumes over time.

The accumulated storage shown in Figure 2d was calculated from data for R and our estimates for Q. For convenience,

the following discussion refers to these values as nominal values and includes bars in the variable names to emphasize their190

meaning (i.e., R and Q). However, these values are uncertain and their uncertainty propagates through the storage calculations.

We used a Monte Carlo analysis informed by the uncertainty metrics described for R and Q to estimate the uncertainty of our

storage calculations and gain perspective regarding the robustness of our analyses and conclusions, as follows.

For each basin, we generated 1000 random realizations of the R and Q time series that preserve their correlation and error

structure. Then, for each random realization of these fluxes, we identified the accumulation and release periods and estimated195

the corresponding storage change, rate of storage change, and accumulated storage. These new LAR storage metrics allowed

us to bound the uncertainty in our estimates.

Individual realizations of the fluxes time series were generated by assuming that at any given time, t, the random variables

Rt and Qt are described by a multivariate normal distribution

[Rt,Qt]T ∼N ([Rt,Qt]
T,ΣRQ) (11)200
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Figure 2. Schematic steps to obtain accumulation and release periods and their metrics in the Amazon basin. a, Time series of R

and Q with accumulation and release periods, highlighting the period shown in the next panels. b, Accumulation and release periods. c, Net

accumulated or released volume after two consecutive accumulation and release periods. d, Accumulated storage in the LAR after adding

volumes in panel c.

with covariance matrix
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ΣRQ =


 δR2

t ρRQ δRt δQt

ρRQ δRt δQt δQ2
t


 , (12)

where, for any time t, Rt and Qt are the nominal discharge and moisture convergence values and δRt and δQt are their

absolute errors. Recall the two scenarios of relative errors in discharge we considered: (i) 5% or δRt = 0.05Rt and (ii) 25% or

δRt = 0.25Rt. Lastly, ρRQ is the Pearson’s correlation coefficient, defined as205

ρRQ =
1

σRσQ

∑

t

(Rt−⟨R⟩)(Qt−⟨Q⟩), (13)

where ⟨R⟩ and ⟨Q⟩ correspond to the time average of the nominal values for both quantities. The difference ⟨Q⟩− ⟨R⟩ cor-

responds to the average LAR storage change, a quantity estimated from the mean annual cycles of Q and R in each basin

(Supplementary Figs. A15–A20).

2.4 Estimating the annual cycle210

We calculated the annual cycles of Q and R for each basin (Supplementary Figs. A15–A20) by transforming the time series to

the phase domain. The phase associated with each point in the time series was calculated as an iterative optimization process,

where we started with an arbitrary initial time, t0, and assumed a cycle duration, T (we used the tropical year duration of

365.24 days as an initial guess). Then, we divided the signal into time windows with a duration of T days. In the n-th time

window, which is contained between tn = t0 +nT and tn+1 = t0 +(n+1)T , the value of the phase for each point in the series215

is computed as ϕ = (t− tn)/T . After folding the signal, we found the average (solid lines in Supplementary Figs. A15–A20)

and the envelope (maximum and minimum value of the signal). For a given pair of the free parameters t0 and T , we computed

the area of the envelope as a measure of the goodness-of-folding (GoF), which minimizes seasonal variability. Finally, we

minimized GoF with respect to t0 and T for each basin and plotted the resulting envelopes.

2.5 Constraining groundwater discharge to the ocean220

Our conceptual framework assumes that net groundwater fluxes leaving (or entering) the LAR control volume are small com-

pared with (atmospheric) moisture convergence and discharge. Given that most of the fluxes exiting the large basins likely

discharge into the ocean as submarine groundwater discharge (SGD), we present a back-of-the-envelope estimate to support

our assumption. First, reported values of SGD are sparse, given the complexity when estimating these fluxes with environ-

mental tracers, modeling, or a combination of both. Here, to obtain an order-of-magnitude estimate, we used an analysis by225

Sawyer et al. (2016) where annual volumetric discharge per unit length of the coast was estimated for the contiguous United

States. In their analysis, the upper limit of the SGD is of the order of 1× 103 m2 yr−1. As an example, the coast length of the

projected Amazon basin is of the order of 1× 106 m. With these two values, we estimate that a reasonable upper limit for the
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groundwater flux leaving the Amazon’s LAR control volume and discharging to the ocean is of the order of 1 km3 yr−1. This

order of magnitude is consistent for all the basins.230

3 Results and discussion

3.1 The LAR in some of the world’s largest basins

Figure 3a shows periods of net accumulation (green bars) and release (orange bars) for the Amazon basin and the corresponding

change in water storage estimated with equation (10). Supplementary Figures A21–A25 show the same results but for the other

basins.235

The alternation between accumulation and release periods reflects seasonality in the basin, which in the Amazon is char-

acterized by the occurrence of one wet and one dry season over a period that is close to a year (Supplementary Fig. A15).

Changes in this seasonality are expected under global change (Costa and Pires, 2010; Fu et al., 2013; Wright et al., 2017),

potentially altering the LAR’s dynamics and, therefore, the discharge regime.

Accumulation and release periods and their corresponding storage changes are not mirrored images of each other. Every pair240

of consecutive accumulation and release periods produce a net change in water storage (Fig. 3b) that, if imbalanced over time,

produces long-term trends of accumulation (Fig. 3c) or release. If accumulation and release periods were always balanced,

there would not be long-term trends.

We found significant trends indicating that water storage has changed over the recent decades in all the basins’ LAR (Fig.

4), with a marked latitudinal contrast: water storage has been increasing in tropical basins and decreasing in temperate ones.245

These trends result from the accumulated imbalance between the LAR’s water influx (Q) and efflux (R) (equation (2)). The

initial storage value is uncertain, so these trends have to be interpreted as changes in water storage relative to this initial value,

similar to the interpretation of TWS in GRACE studies.

GRACE studies serve as a reference for contextualizing LAR’s storage trends. Notice, however, that even though TWS and

LAR storage are related, they are state variables describing the dynamics of different control volumes. Therefore, temporal250

trends in these state variables do not have to be the same for a given basin. In a global study using three different GRACE

products for the period 2002–2014, Scanlon et al. (2018) reported TWS trends in our study basins varying from −5 km3 yr−1

in the Ob basin to 44 km3 yr−1 in the Amazon basin. Roughly, this is equivalent to −200 km3 to 1760 km3 over 40 years,

which is about one order of magnitude less than changes in the LAR’s water storage over 1980–2020 (Fig. 4). Our results

coincide with Scanlon et al. (2018) in that the Amazon and Parana basins have been accumulating water after 2002, but not255

for the Congo basin, where TWS has been slightly increasing (Scanlon et al., 2018) while the LAR’s water storage has been

decreasing (Fig. 4). GRACE data are available only after 2002, so in this comparison between GRACE and LAR results, we are

considering only the trends shown in Figure 4 after that year. In temperate basins, results coincide for the Ob basin (decreasing

trend) but not for the Yenisei basin (increasing TWS trend). Scanlon et al.’s results for the Mississippi are mixed: they found

positive and negative trends in different sub-basins. Discrepancies between different GRACE products are common for large260

basins, can be highly contrasting (e.g., positive versus negative trends), and remain a matter of investigation (Jing et al., 2019).
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Figure 3. LAR’s dynamics in the Amazon river basin. a, Monthly river discharge R and net atmospheric convergence Q (left axis). Green

and orange bars show, respectively, the extent and volume (right axis) of accumulation and release periods. b, Net change in the LAR water

storage after pairs of consecutive storage and release periods. c, Cumulative change in the LAR’s water storage, including the corresponding

errors in convergence and estimated discharge uncertainties (shadowed bands).
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Figure 4. Changing water storage in large basins’ LAR. a, Large basins in this study. b, Cumulative change in the LAR’s water storage

over time.
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Basin
Area P P recycling Recycled volume Average change in(
km2

) (
mmyr−1

)
rate (0–1)

(
km3 yr−1

)
LAR’s storage

(
km3 yr−1

)
Amazon 4690963 2194 0.36 3706 390

Congo 3634880 1497 0.47 2558 296

Parana 2527003 1242 0.28 879 438

Mississippi 2914994 762 0.25 556 −55

Ob 2441939 483 0.23 271 −22

Yenisei 2419867 428 0.26 269 −92

Table 1. Estimates of the recycled volume of water in each basin. Data sources: P (Schneider et al., 2020) and P recycling rate (Tuinenburg

et al., 2020). LAR’s averages correspond to Figures A15–A20.

Since TWS excludes the atmosphere (Wahr et al., 2004), it does not account for the water storage through LMR that de-

pends on atmospheric water and dynamics. In contrast to the land reservoir and TWS measurements, the LAR’s water storage

inherently includes water circulation via LMR (Fig. 1). Annual recycled precipitation represents a water volume that is always

greater in magnitude than the average change in the LAR’s water storage (Table 1), meaning that changes in LMR (e.g., driven265

by anthropogenic effects (te Wierik et al., 2021; Ruiz-Vásquez et al., 2020) or climate variability (Posada-Marín et al., 2023))

are potentially enough to explain the trends shown in Figure 4. The amount of water involved in LMR annually (recycled vol-

ume in Table 1) exceeds the average rates in TWS trends (Scanlon et al., 2018) by one to two orders of magnitude. Further, in

the global water budget, the amount of atmospheric water entering the continents from the ocean (≈ 40000 km3/yr) (Trenberth

et al., 2007) is two to three orders of magnitude greater than the average change in the LAR’s storage (Table 1). These numbers270

show that, although seemingly counterintuitive, the idea that LMR can represent a significant part of a large basin’s LAR water

storage and contribute to explaining the found trends is plausible. Notice that this claim depends on the order of magnitude of

the recycling ratio, which does not generally vary among studies (e.g., Dominguez et al., 2022), rather than on its “true” value

that is uncertain and currently not directly measurable for vast regions.

3.2 Confidence and uncertainty275

The “true” value of Q, R, and d(SA + SL)/dt is unknown and difficult, if not impossible, to obtain with direct observations.

We cannot measure SA, SL, or Q directly and globally; even R is hard to measure in vast rivers like the ones studied here.

Further, TWS estimates can be contradictory among different GRACE products for reasons that remain unclear (Jing et al.,

2019). The best we have are estimates based on different inherently uncertain techniques.

However, our uncertainty estimates indicate that the LAR trends are statistically robust (see bands in Fig. 3 and Supple-280

mentary Figs. A21–A25). The bands in panel c of these figures result from the uncertainty analysis explained in Section 2.

The solid line represents the mean value of the accumulated storage and the bands the 5th and 95th percentiles of the Monte

Carlo realizations for a relative error in R of 5% and 25%. Hence, the width of these bands is a measure of the uncertainty in
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our estimates of storage and how errors in the fluxes propagate through the analysis. Despite the uncertainties, the trends in

accumulated storage remain.285

Besides the uncertainty estimates, we have several reasons to think that the LAR trends are plausible and indicative of

important phenomena requiring attention. Every basin on Earth is under the influence of climate change, which, by definition,

means trends and imbalance. The Earth’s climate system has been imbalanced over the last centuries and will remain so over

the coming decades, altering the water budgets globally (Xiong et al., 2022; Zaitchik et al., 2023).

Contrary to the widely-used assumption that changes in a basin water storage are negligible “in the long-term” (e.g., Poveda290

et al., 2007; Wang-Erlandsson et al., 2018; Hoek van Dijke et al., 2022), a growing body of literature shows that water fluxes

entering and exiting the world’s river basins are not necessarily balanced, so trends in water storage are not only plausible

but likely. Wetting and drying trends are underway worldwide (Pan et al., 2012; Scanlon et al., 2018; Zhang et al., 2019;

Pabón-Caicedo et al., 2020; Li et al., 2022; Xiong et al., 2022; Zaitchik et al., 2023). Examples include the study by Scanlon

et al. (2018) showing temporal changes in water storage inferred from GRACE data. The reduction of water storage due to295

permafrost thawing in large Siberian basins is consistent with LAR storage reductions in the Ob and Yenisei basins. A recent

paper by Li et al. (2022) shows that basins draining from the Tibetan Plateau face drastic water availability reductions due to

water storage losses, which implies long-term water budget imbalance in such basins.

The signal of droughts in the Amazon is notorious (Fig. 3): the basin’s LAR has released water during documented droughts

in the last two decades, including the events of 1996–1997, 2001, 2004–2005, 2007, 2010, and 2015–2016 (Nepstad et al.,300

2004; Marengo et al., 2011; Tomasella et al., 2011; Jiménez-Muñoz et al., 2016; Tyukavina et al., 2017; Libonati et al., 2021).

The largest release of water coincides with the record-breaking drought of 2010 (Marengo et al., 2011). This coincidence

between LAR’s release dynamics and severe droughts in the Amazon is unlikely a random error or systematic bias.

Also, the latitudinal contrast in the LAR trends is unlikely a random error or systematic bias. This contrast implies that

⟨Q⟩ is larger than ⟨R⟩ in the South (tropical basins) and ⟨Q⟩ is smaller than ⟨R⟩ in the North (temperate basins), where305

the brackets represent long-term averages. If there was a systematic bias in our estimates based on ERA5 data, Q should be

consistently overestimated or underestimated. The latitudinal contrast suggests this would be the case only if ERA5 also has a

latitude-dependent water budget bias, which would be an unknown bias requiring new evidence from future studies.

We also found temporal changes in the LAR trends. The most conspicuous case occurs in the Congo River basin, where

the slope changes sign (Fig. 4). If the trend does not reflect an actual phenomenon and ERA5 consistently overestimates or310

underestimates Q for this basin, then there would not be a change in the trend slope. This change indicates that ⟨Q⟩ is larger

than ⟨R⟩ during a period, and ⟨Q⟩ is smaller than ⟨R⟩ afterward.

Overall, our uncertainty analysis reinforces our main general conclusions about temporal changes in the LAR’s water storage

for some of the world’s largest basins. The trends we found are plausible and statistically robust, providing fundamental insight

into the water storage dynamics constraining these big rivers’ sustainability.315
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3.3 Regulation and sustainability

We use an artificial reservoir as an analogy to interpret our results. An artificial reservoir regulates river discharge either by

mitigating floods through water accumulation or by enhancing low flows through water release, changing the river discharge

regime. This reservoir’s capacity to regulate discharge depends on the available volume to accumulate water during wet seasons

and floods or to release previously stored water during dry seasons and droughts. Analogously, a basin’s LAR can accumulate320

or release water leading to discharge regulation.

A basin’s capacity to regulate river discharge depends on a complex and dynamic balance between accumulation and release

processes (e.g., Fig. 3a) occurring within the whole LAR, not within the land reservoir alone. When a basin receives excessive

water from the exterior (e. g., wet season) due to climate forcing (e. g., climate change or variability), discharge regulation

manifests through temporal storage of water within the LAR, leading to discharge reduction, e. g., flood mitigation. Conversely,325

if the external water input is small (e. g., dry season or drought linked to reduced Q), regulating discharge (increasing low flow)

requires the basin to release previously stored water.

The discovered trends (Fig. 4) affect these basins’ regulation capacity, potentially compromising their river discharge regimes

and sustainability. Since the regulation capacity requires available volume to store water during wet seasons (increased Q), a

prolonged positive trend in the LAR’s water accumulation (as we found in tropical basins) tends to reduce the LAR’s capacity330

to store water. If continued, this trend will weaken the tropical basins’ capacity to regulate river discharge by accumulating

water. Such reduced storage capacity can combine with precipitation intensification due to climate change (Westra et al., 2013;

Zhang et al., 2013) to weaken the tropical basins’ capacity to mitigate (regulate) floods. We think that this regulation weakening

in the LAR is a previously unknown mechanism behind the marked increase in very severe floods observed over recent decades

in the Amazon (Marengo and Espinoza, 2016; Barichivich et al., 2018), related but not limited to a reduced storage capacity of335

the land reservoir (Reager and Famiglietti, 2009).

The trend reversal in the Congo basin (around the year 2000, the trend slope changes from positive to negative, Fig. 4)

suggests the possibility of longer-scale transitions between accumulation and release periods, possibly leading to regulation

patterns at the scale of centuries. The possibility of confirming this is limited by the length of available records. Regardless of

the case, decadal trends and their impacts can strongly affect river discharge regimes and should be monitored.340

The negative trend in the LAR’s water storage reduces the temperate basins’ capacity to enhance low flow by releasing

previously stored water. Hence, if continued, these negative trends can combine with more extreme droughts due to climate

change (Mann and Gleick, 2015) to weaken these basins’ capacity to regulate low flows. Continuous storage reduction in the

Ob and Yenisei rivers coincides with permafrost thawing, which is a driver of discharge increase in these Siberian basins,

especially in winter (Wang et al., 2021) (see also the Supplementary Figs. A19 and A20). Analogously, our results suggest that345

the observed increase in the Mississippi river discharge (Shi et al., 2019) has occurred at the expense of storage reduction that

is noticeable in the LAR (Fig. 4). Non-perennial rivers and streams are common in the Mississippi, Ob, and Yenisei basins

(Messager et al., 2021) and will become more common if the LAR’s drying trends continue.
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4 Conclusions

We studied the water budget of six of the largest river basins on Earth (the Amazon, Parana, Congo, Mississippi, Ob, and350

Yenisei) through the lens of the LAR. The LAR is a control volume that explicitly includes land-atmosphere interactions, such

as moisture recycling, as part of these basins’ internal dynamics. This definition contrasts the more traditional perspective,

which we described as the land reservoir, which considers the atmosphere external to river basins and precipitation as an

external forcing.

Using observational and reanalysis data and the water budget equation for the LAR, we found trends in water storage within355

the studied basins’ LAR, exhibiting a marked latitudinal contrast: while tropical basins are getting wetter, temperate basins

are getting drier. These patterns result from long-term imbalances in which tropical basins have received more water through

the atmosphere than they have released through river discharge. The opposite has occurred in temperate basins. As for our

uncertainty analysis, these trends are robust.

If continued, the found trends may disrupt the basins’ river discharge regimes. More specifically, sustained long-term in-360

creases in the water storage of the tropical basin’s LAR (wetting trends) could reduce these basins’ capacity to mitigate floods

through water storage during wet seasons. Likewise, drying trends can reduce the temperate basins’ capacity to sustain low

flows by releasing previously stored water during dry seasons or droughts. The LAR provides a framework for monitoring and

further investigating these changes, which are critical for the sustainability of human societies and ecosystems in the face of

climate change.365
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Appendix A: Supplementary Figures380

Figure A1. Identification of the onset and end of accumulation (green) and release (orange) periods in the Amazon basin.
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Figure A2. Identification of the onset and end of accumulation (green) and release (orange) periods in the Parana basin.
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Figure A3. Identification of the onset and end of accumulation (green) and release (orange) periods in the Congo basin.
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Figure A4. Identification of the onset and end of accumulation (green) and release (orange) periods in the Mississippi basin.
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Figure A5. Identification of the onset and end of accumulation (green) and release (orange) periods in the Ob basin.
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Figure A6. Identification of the onset and end of accumulation (green) and release (orange) periods in the Yenisei basin.
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Figure A7. Identification of the inflow and outflow edges used to compute moisture convergence in the Amazon basin. a, Rasterization

of the basin polygon with the ERA5 latitude-longitude rectangular grid. b, Identification of the basin contour edges. c, Inflow edges for

eastward fluxes. d, Outflow edges for eastward fluxes. e, Inflow edges for northward fluxes. f, Outflow edges for northward fluxes.
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Figure A8. Length (m) of the contour edges for the Amazon basin. a, Inflow edges for eastward fluxes. b, Outflow edges for eastward

fluxes. c, Inflow edges for northward fluxes. d, Outflow edges for northward fluxes.
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Figure A9. Comparison of moisture convergence estimated from the vertically integrated water flux (equation (3); x-axis) and vertical

integral of the divergence of water vapor (equation (5); y-axis) for the Amazon basin. Each point corresponds to the monthly average of Q(t)

during the time span available in the ERA5 data products. Error bars are calculated with equation (8).
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Figure A10. Comparison of moisture convergence estimated from the vertically integrated water flux (equation (3); x-axis) and vertical

integral of the divergence of water vapor (equation (5); y-axis) for the Parana basin. Each point corresponds to the monthly average of Q(t)

during the time span available in the ERA5 data products. Error bars are calculated with equation (8).
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Figure A11. Comparison of moisture convergence estimated from the vertically integrated water flux (equation (3); x-axis) and vertical

integral of the divergence of water vapor (equation (5); y-axis) for the Congo basin. Each point corresponds to the monthly average of Q(t)

during the time span available in the ERA5 data products. Error bars are calculated with equation (8).
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Figure A12. Comparison of moisture convergence estimated from the vertically integrated water flux (equation (3); x-axis) and vertical

integral of the divergence of water vapor (equation (5); y-axis) for the Mississippi basin. Each point corresponds to the monthly average of

Q(t) during the time span available in the ERA5 data products. Error bars are calculated with equation (8).
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Figure A13. Comparison of moisture convergence estimated from the vertically integrated water flux (equation (3); x-axis) and vertical

integral of the divergence of water vapor (equation (5); y-axis) for the Ob basin. Each point corresponds to the monthly average of Q(t)

during the time span available in the ERA5 data products. Error bars are calculated with equation (8).
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Figure A14. Comparison of moisture convergence estimated from the vertically integrated water flux (equation (3); x-axis) and vertical

integral of the divergence of water vapor (equation (5); y-axis) for the Yenisei basin. Each point corresponds to the monthly average of Q(t)

during the time span available in the ERA5 data products. Error bars are calculated with equation (8).

Figure A15. Annual cycle of LAR exchanges for the Amazon basin. Solid line corresponds to the seasonal average and shaded area to the

corresponding envelope. Dashed lines show long-term average river discharge and moisture convergence.
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Figure A16. Annual cycle of LAR exchanges for the Parana basin. Solid line corresponds to the seasonal average and shaded area to the

corresponding envelope. Dashed lines show long-term average river discharge and moisture convergence.

Figure A17. Annual cycle of LAR exchanges for the Congo basin. Solid line corresponds to the seasonal average and shaded area to the

corresponding envelope. Dashed lines show long-term average river discharge and moisture convergence.
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Figure A18. Annual cycle of LAR exchanges for the Mississippi basin. Solid line corresponds to the seasonal average and shaded area to

the corresponding envelope. Dashed lines show long-term average river discharge and moisture convergence.

Figure A19. Annual cycle of LAR exchanges for the Ob basin. Solid line corresponds to the seasonal average and shaded area to the

corresponding envelope. Dashed lines show long-term average river discharge and moisture convergence.

34

https://doi.org/10.5194/hess-2023-172
Preprint. Discussion started: 3 August 2023
c© Author(s) 2023. CC BY 4.0 License.



Figure A20. Annual cycle of LAR exchanges for the Yenisei basin. Solid line corresponds to the seasonal average and shaded area to the

corresponding envelope. Dashed lines show long-term average river discharge and moisture convergence.
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Figure A21. LAR’s dynamics in the Parana river basin. a, Monthly river discharge R and net atmospheric convergence Q (left axis).

Green and orange bars show, respectively, the extent and volume (right axis) of accumulation and release periods. b, Net change in the

LAR water storage after pairs of consecutive storage and release periods. c, Cumulative change in the LAR’s water storage, including the

corresponding errors in convergence and estimated discharge uncertainties (shadowed bands). See Methods for more details.
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Figure A22. LAR’s dynamics in the Congo river basin. a, Monthly river discharge R and net atmospheric convergence Q (left axis). Green

and orange bars show, respectively, the extent and volume (right axis) of accumulation and release periods. b, Net change in the LAR water

storage after pairs of consecutive storage and release periods. c, Cumulative change in the LAR’s water storage, including the corresponding

errors in convergence and estimated discharge uncertainties (shadowed bands). See Methods for more details.
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Figure A23. LAR’s dynamics in the Mississippi river basin. a, Monthly river discharge R and net atmospheric convergence Q (left axis).

Green and orange bars show, respectively, the extent and volume (right axis) of accumulation and release periods. b, Net change in the

LAR water storage after pairs of consecutive storage and release periods. c, Cumulative change in the LAR’s water storage, including the

corresponding errors in convergence and estimated discharge uncertainties (shadowed bands). See Methods for more details.
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Figure A24. LAR’s dynamics in the Ob river basin. a, Monthly river discharge R and net atmospheric convergence Q (left axis). Green

and orange bars show, respectively, the extent and volume (right axis) of accumulation and release periods. b, Net change in the LAR water

storage after pairs of consecutive storage and release periods. c, Cumulative change in the LAR’s water storage, including the corresponding

errors in convergence and estimated discharge uncertainties (shadowed bands). See Methods for more details.
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Figure A25. LAR’s dynamics in the Yenisei river basin. a, Monthly river discharge R and net atmospheric convergence Q (left axis).

Green and orange bars show, respectively, the extent and volume (right axis) of accumulation and release periods. b, Net change in the

LAR water storage after pairs of consecutive storage and release periods. c, Cumulative change in the LAR’s water storage, including the

corresponding errors in convergence and estimated discharge uncertainties (shadowed bands). See Methods for more details.

40

https://doi.org/10.5194/hess-2023-172
Preprint. Discussion started: 3 August 2023
c© Author(s) 2023. CC BY 4.0 License.



References

Abbott, B. W., Bishop, K., Zarnetske, J. P., Minaudo, C., Chapin, F., Krause, S., Hannah, D. M., Conner, L., Ellison, D., Godsey, S. E.,

et al.: Human domination of the global water cycle absent from depictions and perceptions, Nature Geoscience, 12, 533–540, https:

//doi.org/10.1038/s41561-019-0374-y, 2019.

Asch, M., Bocquet, M., and Nodet, M.: Data Assimilation, Fundamentals of Algorithms, Society for Industrial and Applied Mathematics,385

https://doi.org/10.1137/1.9781611974546, 2016.

Barichivich, J., Gloor, E., Peylin, P., Brienen, R. J., Schöngart, J., Espinoza, J. C., and Pattnayak, K. C.: Recent intensification of Ama-

zon flooding extremes driven by strengthened Walker circulation, Science Advances, 4, eaat8785, https://doi.org/10.1126/sciadv.aat8785,

2018.

Best, J.: Anthropogenic stresses on the world’s big rivers, Nature Geoscience, 12, 7–21, https://doi.org/10.1038/s41561-018-0262-x, 2019.390

Blyth, E. M., Arora, V. K., Clark, D. B., Dadson, S. J., De Kauwe, M. G., Lawrence, D. M., Melton, J. R., Pongratz, J., Turton,

R. H., Yoshimura, K., et al.: Advances in land surface modelling, Current Climate Change Reports, 7, 45–71, https://doi.org/10.1007/

s40641-021-00171-5, 2021.

Cochonneau, G., Sondag, F., Guyot, J.-L., Geraldo, B., Filizola, N., Fraizy, P., Laraque, A., Magat, P., Martinez, J.-M., Noriega, L., et al.: The

Environmental Observation and Research project, ORE HYBAM, and the rivers of the Amazon basin, in: Climate variability and change:395

Hydrological impacts, edited by Demuth, S., Gustard, A., Planos, E., Scatena, F., and Servat, E., pp. 44–50, IAHS Press, Havana, Cuba,

https://iahs.info/uploads/dms/13634.12-44-50-55-308-Cochonneau.pdf, 2006.

Coe, M. T., Costa, M. H., and Soares-Filho, B. S.: The influence of historical and potential future deforestation on the stream flow of the

Amazon River–Land surface processes and atmospheric feedbacks, Journal of Hydrology, 369, 165–174, https://doi.org/10.1016/j.jhydrol.

2009.02.043, 2009.400

Cohen, A. and Davidson, S.: The Watershed Approach: Challenges, Antecedents, and the Transition from Technical Tool to Governance

Unit., Water alternatives, 4, https://www.water-alternatives.org/index.php/alldoc/articles/Vol4/v4issue1/123-a4-1-1, 2011.

Costa, M. H. and Pires, G. F.: Effects of Amazon and Central Brazil deforestation scenarios on the duration of the dry season in the arc of

deforestation, International Journal of Climatology, 30, 1970–1979, https://doi.org/10.1002/joc.2048, 2010.

Devia, G. K., Ganasri, B. P., and Dwarakish, G. S.: A review on hydrological models, Aquatic procedia, 4, 1001–1007, https://doi.org/10.405

1016/j.aqpro.2015.02.126, 2015.

Dominguez, F., Eiras-Barca, J., Yang, Z., Bock, D., Nieto, R., and Gimeno, L.: Amazonian moisture recycling revisited using WRF with

water vapor tracers, Journal of Geophysical Research: Atmospheres, 127, e2021JD035 259, https://doi.org/10.1029/2021JD035259, 2022.

Ellison, D., N Futter, M., and Bishop, K.: On the forest cover–water yield debate: from demand-to supply-side thinking, Global Change

Biology, 18, 806–820, 2012.410

Eltahir, E. A. B. and Bras, R. L.: Precipitation recycling in the Amazon basin, Quarterly Journal of the Royal Meteorological Society, 120,

861–880, https://doi.org/10.1002/qj.49712051806, 1994.

Fu, R., Yin, L., Li, W., Arias, P. A., Dickinson, R. E., Huang, L., Chakraborty, S., Fernandes, K., Liebmann, B., Fisher, R., et al.: Increased

dry-season length over southern Amazonia in recent decades and its implication for future climate projection, Proceedings of the National

Academy of Sciences, 110, 18 110–18 115, https://doi.org/10.1073/pnas.1302584110, 2013.415

41

https://doi.org/10.5194/hess-2023-172
Preprint. Discussion started: 3 August 2023
c© Author(s) 2023. CC BY 4.0 License.



Hersbach, H., Bell, B., Berrisford, P., Biavati, G., Horányi, A., Muñoz Sabater, J., Nicolas, J., Peubey, C., Radu, R., Rozum, I., Schep-

ers, D., Simmons, A., Soci, C., Dee, D., and Thépaut, J.-N.: ERA5 monthly averaged data on single levels from 1979 to present,

https://doi.org/10.24381/cds.f17050d7, 2019.

Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D., Sim-

mons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P., Biavati, G., Bidlot, J., Bonavita, M., De Chiara, G., Dahlgren,420

P., Dee, D., Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer, A., Haimberger, L., Healy, S., Hogan, R. J.,

Hólm, E., Janisková, M., Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., de Rosnay, P., Rozum, I., Vamborg, F., Vil-

laume, S., and Thépaut, J.-N.: The ERA5 global reanalysis, Quarterly Journal of the Royal Meteorological Society, 146, 1999–2049,

https://doi.org/10.1002/qj.3803, 2020.

Hoek van Dijke, A. J., Herold, M., Mallick, K., Benedict, I., Machwitz, M., Schlerf, M., Pranindita, A., Theeuwen, J. J., Bastin,425

J.-F., and Teuling, A. J.: Shifts in regional water availability due to global tree restoration, Nature Geoscience, 15, 363–368,

https://doi.org/10.1038/s41561-022-00935-0, 2022.

Jiménez-Muñoz, J. C., Mattar, C., Barichivich, J., Santamaría-Artigas, A., Takahashi, K., Malhi, Y., Sobrino, J. A., and Schrier, G. v. d.:

Record-breaking warming and extreme drought in the Amazon rainforest during the course of El Niño 2015–2016, Scientific Reports, 6,

1–7, https://doi.org/10.1038/srep33130, 2016.430

Jing, W., Zhang, P., and Zhao, X.: A comparison of different GRACE solutions in terrestrial water storage trend estimation over Tibetan

Plateau, Scientific reports, 9, 1765, https://doi.org/10.1038/s41598-018-38337-1, 2019.

Keys, P. W., van der Ent, R. J., Gordon, L. J., Hoff, H., Nikoli, R., and Savenije, H. H. G.: Analyzing precipitationsheds to understand the

vulnerability of rainfall dependent regions, Biogeosciences, 9, 733–746, https://doi.org/10.5194/bg-9-733-2012, 2012.

Kuil, L., Carr, G., Viglione, A., Prskawetz, A., and Blöschl, G.: Conceptualizing socio-hydrological drought processes: The case of the Maya435

collapse, Water resources research, 52, 6222–6242, https://doi.org/10.1002/2015WR018298, 2016.

Lausier, A. M. and Jain, S.: Overlooked trends in observed global annual precipitation reveal underestimated risks, Scientific Reports, 8, 1–7,

https://doi.org/10.1038/s41598-018-34993-5, 2018.

Li, L., Ni, J., Chang, F., Yue, Y., Frolova, N., Magritsky, D., Borthwick, A. G., Ciais, P., Wang, Y., Zheng, C., et al.: Global trends in water

and sediment fluxes of the world’s large rivers, Science Bulletin, 65, 62–69, https://doi.org/10.1016/j.scib.2019.09.012, 2020.440

Li, X., Long, D., Scanlon, B. R., Mann, M. E., Li, X., Tian, F., Sun, Z., and Wang, G.: Climate change threatens terrestrial water storage over

the Tibetan Plateau, Nature Climate Change, pp. 1–7, https://doi.org/10.1038/s41558-022-01443-0, 2022.

Libonati, R., Pereira, J., Da Camara, C., Peres, L., Oom, D., Rodrigues, J., Santos, F., Trigo, R., Gouveia, C., Machado-Silva, F., et al.:

Twenty-first century droughts have not increasingly exacerbated fire season severity in the Brazilian Amazon, Scientific reports, 11, 1–13,

https://doi.org/10.1038/s41598-021-82158-8, 2021.445

Mann, M. E. and Gleick, P. H.: Climate change and California drought in the 21st century, Proceedings of the National Academy of Sciences,

112, 3858–3859, https://doi.org/10.1073/pnas.1503667112, 2015.

Marengo, J. A. and Espinoza, J. C.: Extreme seasonal droughts and floods in Amazonia: Causes, trends and impacts, International Journal of

Climatology, 36, 1033–1050, https://doi.org/10.1002/joc.4420, 2016.

Marengo, J. A., Tomasella, J., Alves, L. M., Soares, W. R., and Rodriguez, D. A.: The drought of 2010 in the context of historical droughts450

in the Amazon region, Geophysical Research Letters, 38, https://doi.org/10.1029/2011GL047436, 2011.

42

https://doi.org/10.5194/hess-2023-172
Preprint. Discussion started: 3 August 2023
c© Author(s) 2023. CC BY 4.0 License.



McDonnell, J., Sivapalan, M., Vaché, K., Dunn, S., Grant, G., Haggerty, R., Hinz, C., Hooper, R., Kirchner, J., Roderick, M., et al.: Moving

beyond heterogeneity and process complexity: A new vision for watershed hydrology, Water Resources Research, 43, https://doi.org/10.

1029/2006WR005467, 2007.

Mekonnen, M. M. and Hoekstra, A. Y.: Four billion people facing severe water scarcity, Science advances, 2, e1500 323, https://doi.org/10.455

1126/sciadv.1500323, 2016.

Messager, M. L., Lehner, B., Cockburn, C., Lamouroux, N., Pella, H., Snelder, T., Tockner, K., Trautmann, T., Watt, C., and Datry, T.: Global

prevalence of non-perennial rivers and streams, Nature, 594, 391–397, https://doi.org/10.1038/s41586-021-03565-5, 2021.

Nepstad, D., Lefebvre, P., Lopes da Silva, U., Tomasella, J., Schlesinger, P., Solórzano, L., Moutinho, P., Ray, D., and Guerreira Benito, J.:

Amazon drought and its implications for forest flammability and tree growth: A basin-wide analysis, Global change biology, 10, 704–717,460

https://doi.org/10.1111/j.1529-8817.2003.00772.x, 2004.

Pabón-Caicedo, J. D., Arias, P. A., Carril, A. F., Espinoza, J. C., Borrel, L. F., Goubanova, K., Lavado-Casimiro, W., Masiokas,

M., Solman, S., and Villalba, R.: Observed and projected hydroclimate changes in the Andes, Frontiers in Earth Science, 8, 61,

https://doi.org/10.3389/feart.2020.00061, 2020.

Palmer, M. A., Reidy Liermann, C. A., Nilsson, C., Flörke, M., Alcamo, J., Lake, P. S., and Bond, N.: Climate change and the world’s river465

basins: Anticipating management options, Frontiers in Ecology and the Environment, 6, 81–89, https://doi.org/10.1890/060148, 2008.

Pan, M., Sahoo, A. K., Troy, T. J., Vinukollu, R. K., Sheffield, J., and Wood, E. F.: Multisource estimation of long-term terrestrial water

budget for major global river basins, Journal of Climate, 25, 3191–3206, https://doi.org/10.1175/JCLI-D-11-00300.1, 2012.

Posada-Marín, J. A. and Salazar, J. F.: River flow response to deforestation: Contrasting results from different models, Water Security, p.

100115, https://doi.org/10.1016/j.wasec.2022.100115, 2022.470

Posada-Marín, J. A., Arias, P. A., Jaramillo, F., and Salazar, J. F.: Global impacts of El Niño on terrestrial moisture recycling, Geophysical

Research Letters, 50, e2023GL103 147, https://doi.org/10.1029/2023GL103147, 2023.

Poveda, G., Vélez, J. I., Mesa, O. J., Cuartas, A., Barco, J., Mantilla, R. I., Mejía, J. F., Hoyos, C. D., Ramírez, J. M., Ceballos, L. I.,

et al.: Linking long-term water balances and statistical scaling to estimate river flows along the drainage network of Colombia, Journal of

Hydrologic Engineering, 12, 4–13, https://doi.org/10.1061/(ASCE)1084-0699(2007)12:1(4), 2007.475

Reager, J. T. and Famiglietti, J. S.: Global terrestrial water storage capacity and flood potential using GRACE, Geophysical research letters,

36, https://doi.org/10.1029/2009GL040826, 2009.

Ruiz-Vásquez, M., Arias, P. A., Martínez, J. A., and Espinoza, J. C.: Effects of Amazon basin deforestation on regional atmospheric circula-

tion and water vapor transport towards tropical South America, Climate Dynamics, 54, 4169–4189, https://doi.org/10.1007/s00382-020-

05223-4, 2020.480

Salazar, J. F., Villegas, J. C., Rendón, A. M., Rodríguez, E., Hoyos, I., Mercado-Bettín, D., and Poveda, G.: Scaling properties re-

veal regulation of river flows in the Amazon through a “forest reservoir”, Hydrology and Earth System Sciences, 22, 1735–1748,

https://doi.org/10.5194/hess-22-1735-2018, 2018.

Sawyer, A. H., David, C. H., and Famiglietti, J. S.: Continental patterns of submarine groundwater discharge reveal coastal vulnerabilities,

Science, 353, 705–707, https://doi.org/10.1126/science.aag1058, 2016.485

Scanlon, B. R., Zhang, Z., Save, H., Sun, A. Y., Schmied, H. M., Van Beek, L. P., Wiese, D. N., Wada, Y., Long, D., Reedy, R. C., et al.:

Global models underestimate large decadal declining and rising water storage trends relative to GRACE satellite data, Proceedings of the

National Academy of Sciences, 115, E1080–E1089, https://doi.org/10.1073/pnas.1704665115, 2018.

43

https://doi.org/10.5194/hess-2023-172
Preprint. Discussion started: 3 August 2023
c© Author(s) 2023. CC BY 4.0 License.



Schneider, U., Becker, A., Finger, P., Rustemeier, E., and Ziese, M.: GPCC Full Data Monthly Product Version 2020 at 0.25°: Monthly Land-

Surface Precipitation from Rain-Gauges built on GTS-based and Historical Data, https://doi.org/10.5676/DWD_GPCC/FD_M_V2020_490

025, 2020.

Shi, X., Qin, T., Nie, H., Weng, B., and He, S.: Changes in major global river discharges directed into the ocean, International Journal of

Environmental Research and Public Health, 16, 1469, https://doi.org/10.3390/ijerph16081469, 2019.

Sivapalan, M.: Pattern, process and function: elements of a unified theory of hydrology at the catchment scale, in: Encyclopedia of Hydro-

logical Sciences, edited by Anderson, M. G., Wiley, https://doi.org/10.1002/0470848944.hsa012, 2005.495

Sood, A. and Smakhtin, V.: Global hydrological models: a review, Hydrological Sciences Journal, 60, 549–565, https://doi.org/10.1080/

02626667.2014.950580, 2015.

Staal, A., Tuinenburg, O. A., Bosmans, J. H., Holmgren, M., van Nes, E. H., Scheffer, M., Zemp, D. C., and Dekker, S. C.: Forest-rainfall

cascades buffer against drought across the Amazon, Nature Climate Change, 8, 539–543, https://doi.org/10.1038/s41558-018-0177-y,

2018.500

Syed, T., Famiglietti, J., Chen, J., Rodell, M., Seneviratne, S. I., Viterbo, P., and Wilson, C.: Total basin discharge for the Amazon and

Mississippi River basins from GRACE and a land-atmosphere water balance, Geophysical Research Letters, 32, https://doi.org/10.1029/

2005GL024851, 2005.

Taylor, J. R.: An Introduction to Error Analysis: The Study of Uncertainties in Physical Measurements, University Science Books, 2 edn.,

1997.505

te Wierik, S. A., Cammeraat, E. L., Gupta, J., and Artzy-Randrup, Y. A.: Reviewing the Impact of Land Use and Land-Use Change on Mois-

ture Recycling and Precipitation Patterns, Water Resources Research, 57, e2020WR029 234, https://doi.org/10.1029/2020WR029234,

2021.

Tomasella, J., Borma, L. S., Marengo, J. A., Rodriguez, D. A., Cuartas, L. A., A. Nobre, C., and Prado, M. C.: The droughts of 1996–1997

and 2004–2005 in Amazonia: Hydrological response in the river main-stem, Hydrological Processes, 25, 1228–1242, https://doi.org/10.510

1002/hyp.7889, 2011.

Trenberth, K. E., Smith, L., Qian, T., Dai, A., and Fasullo, J.: Estimates of the Global Water Budget and Its Annual Cycle Using Observational

and Model Data, Journal of Hydrometeorology, 8, 758–769, https://doi.org/10.1175/jhm600.1, 2007.

Tuinenburg, O. A., Theeuwen, J. J., and Staal, A.: High-resolution global atmospheric moisture connections from evaporation to precipitation,

Earth System Science Data, 12, 3177–3188, https://doi.org/10.5194/essd-12-3177-2020, 2020.515

Tyukavina, A., Hansen, M. C., Potapov, P. V., Stehman, S. V., Smith-Rodriguez, K., Okpa, C., and Aguilar, R.: Types and rates of forest

disturbance in Brazilian Legal Amazon, 2000–2013, Science advances, 3, e1601 047, https://doi.org/10.1126/sciadv.1601047, 2017.

van der Ent, R. J., Savenije, H. H., Schaefli, B., and Steele-Dunne, S. C.: Origin and fate of atmospheric moisture over continents, Water

Resources Research, 46, https://doi.org/10.1029/2010WR009127, 2010.

Vörösmarty, C. J., McIntyre, P. B., Gessner, M. O., Dudgeon, D., Prusevich, A., Green, P., Glidden, S., Bunn, S. E., Sullivan, C. A., Liermann,520

C. R., et al.: Global threats to human water security and river biodiversity, Nature, 467, 555–561, https://doi.org/10.1038/nature09440,

2010.

Wahr, J., Swenson, S., Zlotnicki, V., and Velicogna, I.: Time-variable gravity from GRACE: First results, Geophysical Research Letters, 31,

https://doi.org/10.1029/2004GL019779, 2004.

Wang, P., Huang, Q., Pozdniakov, S. P., Liu, S., Ma, N., Wang, T., Zhang, Y., Yu, J., Xie, J., Fu, G., et al.: Potential role of permafrost thaw525

on increasing Siberian river discharge, Environmental Research Letters, 16, 034 046, https://doi.org/10.1088/1748-9326/abe326, 2021.

44

https://doi.org/10.5194/hess-2023-172
Preprint. Discussion started: 3 August 2023
c© Author(s) 2023. CC BY 4.0 License.



Wang-Erlandsson, L., Fetzer, I., Keys, P. W., Van Der Ent, R. J., Savenije, H. H., and Gordon, L. J.: Remote land use impacts on river

flows through atmospheric teleconnections, Hydrology and Earth System Sciences, 22, 4311–4328, https://doi.org/10.5194/hess-22-4311-

2018c, 2018.

Wang-Erlandsson, L., Tobian, A., van der Ent, R. J., Fetzer, I., te Wierik, S., Porkka, M., Staal, A., Jaramillo, F., Dahlmann, H.,530

Singh, C., et al.: A planetary boundary for green water, Nature Reviews Earth & Environment, pp. 1–13, https://doi.org/10.1038/

s43017-022-00287-8, 2022.

Westra, S., Alexander, L. V., and Zwiers, F. W.: Global increasing trends in annual maximum daily precipitation, Journal of Climate, 26,

3904–3918, https://doi.org/10.1175/JCLI-D-12-00502.1, 2013.

Wright, J. S., Fu, R., Worden, J. R., Chakraborty, S., Clinton, N. E., Risi, C., Sun, Y., and Yin, L.: Rainforest-initiated wet season onset over535

the southern Amazon, Proceedings of the National Academy of Sciences, 114, 8481–8486, https://doi.org/10.1073/pnas.1621516114,

2017.

Xiong, J., Guo, S., Chen, J., Yin, J., et al.: Global evaluation of the “dry gets drier, and wet gets wetter” paradigm from a terrestrial water

storage change perspective, Hydrology and Earth System Sciences, 26, 6457–6476, https://doi.org/10.5194/hess-26-6457-2022, 2022.

Zaitchik, B. F., Rodell, M., Biasutti, M., and Seneviratne, S. I.: Wetting and drying trends under climate change, Nature Water, pp. 1–12,540

https://doi.org/10.1038/s44221-023-00073-w, 2023.

Zhang, M., Liu, N., Harper, R., Li, Q., Liu, K., Wei, X., Ning, D., Hou, Y., and Liu, S.: A global review on hydrological responses to forest

change across multiple spatial scales: Importance of scale, climate, forest type and hydrological regime, Journal of Hydrology, 546, 44–59,

https://doi.org/10.1016/j.jhydrol.2016.12.040, 2017.

Zhang, X., Wan, H., Zwiers, F. W., Hegerl, G. C., and Min, S.-K.: Attributing intensification of precipitation extremes to human influence,545

Geophysical Research Letters, 40, 5252–5257, https://doi.org/10.1002/grl.51010, 2013.

Zhang, Y., He, B., Guo, L., Liu, J., and Xie, X.: The relative contributions of precipitation, evapotranspiration, and runoff to terrestrial water

storage changes across 168 river basins, Journal of Hydrology, 579, 124 194, https://doi.org/10.1016/j.jhydrol.2019.124194, 2019.

45

https://doi.org/10.5194/hess-2023-172
Preprint. Discussion started: 3 August 2023
c© Author(s) 2023. CC BY 4.0 License.


