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Abstract 15 

Hydrological models are fundamental tools for the characterization and management of karst systems. 16 

We propose an updated version of KarstMod, software dedicated to lumped parameter rainfall-discharge 17 

modeling of karst aquifers. KarstMod provides a modular, user-friendly modeling environment for 18 

educational, research, and operational purposes. It also includes numerical tools for time series analysis, 19 

model evaluation, and sensitivity analysis. The modularity of the platform facilitates common operations 20 

related to lumped parameter rainfall-discharge modeling, such as (i) setup and parameter estimation of 21 

a relevant model structure, and (ii) evaluation of internal consistency, parameter sensitivity, and 22 

hydrograph characteristics. The updated version now includes (i) external routines to better consider the 23 

input data and their related uncertainties, i.e. evapotranspiration and solid precipitation, (ii) enlargement 24 

of multi-objective calibration possibilities, allowing more flexibility in terms of objective functions as 25 

well as observation type and (iii) additional tools for model performance evaluation including further 26 

performance criteria and tools for model errors representation. 27 

1 Introduction 28 

Karst aquifers constitute an essential source of drinking water for about 9.2% of the world population 29 

(Stevanović, 2019) and it is estimated that one-quarter of the world population depends on freshwater 30 

from karst aquifers (Ford and Williams, 2013). Karst aquifers contain an important volume of freshwater 31 
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while only 1% of its annually renewable water is used for drinking water supply (Stevanović, 2019). 32 

Understanding the functioning of karst aquifers and developing operational tools to predict the evolution 33 

of freshwater resources is therefore a major challenge for the hydrological science community (Blöschl 34 

et al., 2019). To this day, the number of tools dedicated to karst hydrogeology is limited and is mostly 35 

developed for academic purposes and not user-friendly. Nonetheless, such tools are required for a better 36 

assessment of groundwater vulnerability as well as sustainable management of the groundwater 37 

resources (Elshall et al., 2020) and should be handled by the stakeholders without programming skills 38 

requirements. 39 

KarstMod is an adjustable modeling platform (Mazzilli et al., 2019) dedicated to lumped parameter 40 

rainfall-discharge modeling allowing for (i) simulation of spring discharge, piezometric head and 41 

surface water discharge (Bailly-Comte et al., 2010; Cousquer and Jourde, 2022; Sophocleous, 2002), 42 

(ii) analysis of the internal fluxes considered in the model, (iii) model performance evaluation and 43 

parametric sensitivity analysis. In this paper, we present the new features incorporated in KarstMod: (i) 44 

external routines to better consider the input data and their related uncertainties, i.e. evapotranspiration 45 

and solid precipitation, (ii) enlargement of multi-objective calibration possibilities, allowing more 46 

flexibility in terms of objective functions as well as observation type with the possibility to include 47 

surface water discharge in the calibration procedure and (iii) model performance evaluation, including 48 

additional performance criteria as well as additional tools for model errors representation such as the 49 

diagnostic efficiency plot (Schwemmle et al., 2021). Also, we present two case studies to illustrate how 50 

KarstMod is useful in the framework of the assessment of karst groundwater resources and its sensitivity 51 

to groundwater abstraction. Section 2 is devoted to the presentation of the background and motivations 52 

to improve the functionalities of the platform while Sect. 3 presents the key features of KarstMod. 53 

Section 4 illustrates the application of rainfall-discharge modeling using KarstMod within the Touvre 54 

(western France) and the Lez (southern France) karst systems, which both constitute strategic freshwater 55 

resources and ensure drinking water supply. 56 

2 Background and motivations 57 

2.1 Challenges in karst groundwater resources 58 

Karst aquifers are affected by the combination of different components of global change such as (i) 59 

effects of climate change which are particularly pronounced in the Mediterranean area (Dubois et al., 60 

2020; Nerantzaki and Nikolaidis, 2020), (ii) increasing groundwater abstraction (Labat et al., 2022), as 61 

well as (iii) changes in land cover land use (Bittner et al., 2018; Sarrazin et al., 2018). Therefore, the 62 

assessment of karst groundwater resources sensitivity, in terms of quantity, requires operational tools 63 

for estimating the sustainable yield of karst aquifers but also to predict the impacts of climatic or 64 

anthropogenic forcing on groundwater resources in the long term (Sivelle et al., 2021). To address these 65 

issues, different modeling approaches have been developed (Jeannin et al., 2021) such as, among others, 66 
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fully-distributed models (Chen and Goldscheider, 2014), semi-distributed models (Doummar et al., 67 

2012; Dubois et al., 2020; Ollivier et al., 2020), and lumped parameter models (Mazzilli et al., 2019) 68 

including semi-distributed recharge (Bittner et al., 2018; Sivelle et al., 2022b). Among these, lumped 69 

parameter models are recognized as major tools to explore the ability of conceptual representations to 70 

explain observations in karst systems (Duran et al., 2020; Frank et al., 2021; Poulain et al., 2018; Sivelle 71 

et al., 2019) and for managing karst groundwater resources (Cousquer and Jourde, 2022; Labat et al., 72 

2022; Sivelle et al., 2021; Sivelle and Jourde, 2020). 73 

2.2 Challenges in lumped parameters modeling in karst hydrology 74 

Lumped parameter models consist of a functional approach that analyzes a hydrogeological system at 75 

the catchment scale and describes the transformation from rainfall into discharge using empirical or 76 

conceptual relationships. Therefore, parameter values or distributions cannot be determined directly 77 

from catchment physical characteristics or in-situ measurements, except the discharge coefficient to the 78 

spring that can be estimated based on recession curve analysis. Instead, model parameter values must 79 

be estimated by history-matching. In a general way, rainfall-discharge models in karst hydrology are 80 

calibrated considering spring discharge measurements. Former studies have shown in interest in 81 

considering hydrochemical observations (Chang et al., 2021; Hartmann et al., 2013; Sivelle et al., 2022a) 82 

but such an approach requires further methodological development before being included in KarstMod. 83 

To date, KarstMod allows considering complementary observations only with piezometric head and 84 

surface water discharge (Cousquer and Jourde, 2022). 85 

Another challenge concerns the evaluation of the water fluxes within the soil-vegetation-atmosphere 86 

continuum. Bittner et al. (2021) computed several models to evaluate the fluxes related to interception, 87 

evapotranspiration, and snow process. The results show significant uncertainties related to input data as 88 

well as potential compensation between the various uncertain processes. In some cases, snow melt is a 89 

controlling factor in the water balance (Doummar et al., 2018; Liu et al., 2021), thus a suitable snowmelt 90 

estimation is required to improve hydrological model performance (Çallı et al., 2022). Therefore, two 91 

meteorological modules have been added to KarstMod: (i) a "Snow routine" and (ii) a routine to compute 92 

the potential evapotranspiration 𝑃𝐸𝑇 (mm day-1), denoted "PET routine". The two additional modules 93 

allow us to better account for snow and evapotranspiration processes. 94 

3 Implementation 95 

The updated version of KarstMod implements additional features to enhance the rainfall-discharge 96 

modeling practices. First, we describe the additional modules (snow and PET routines) for a better 97 

meteorological forcing estimation. Then, we introduce the additional tools proposed for (i) the setup and 98 

calibration of the model structure, (ii) model performance evaluation as well as (iii) uncertainties 99 

consideration. Fig. 1 shows a screenshot of the KarstMod software. 100 
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Fig. 1 Screenshot of the KarstMod software with (a) model structure, (b) data import, (c) model 

parameters, (d) run parameters, (e) calibration results, (f) command bar, and (g) results and 

graphs. 

3.1 Meteorological modules 101 

3.1.1 Snow routine 102 

KarstMod allows using either observation-based precipitation time series 𝑃 (mm day-1) or estimated 103 

precipitation time series 𝑃𝑠𝑟 (mm day-1) using a snow routine. The latter is similar to the one used by 104 

Chen et al. (2018) – without the radiation components – which has been successfully used for improving 105 

the simulation of karst spring discharge in snow-covered karst systems (Chen et al., 2018; Cinkus et al., 106 

2023a). It consists of a modified HBV-snow routine (Bergström, 1992) for simulating snow 107 

accumulation and melt over different sub-catchments based on altitude ranges. Each sub-catchment is 108 

defined by two values that the user must input: (i) the proportion among the whole catchment (sum must 109 

be equal to 1) and (ii) the temperature shift, related to the altitude gradient. The different estimated 110 

precipitation 𝑃𝑠𝑟
∗  (mm day-1) associated with the subcatchments are calculated and summed to produce 111 

the estimated precipitation time series 𝑃𝑠𝑟, which corresponds to a single variable representative of the 112 

catchment. 𝑃𝑠𝑟 thus gives the water leaving the snow routine and is equivalent to the recharge into the 113 

first compartment of the model (compartment E in KarstMod). The snow routine workflow requires 114 

both air temperature 𝑇 (°C) and precipitation 𝑃 (mm day-1) time series. 𝑃 is considered as snow when 𝑇 115 

in the sub-catchment is lower than the temperature threshold 𝑇𝑠 (°C). Snow melts when the temperature 116 

exceeds the threshold according to a degree-day expression. The snow melt is a function of the melt 117 

coefficient 𝑀𝐹 (mm ºC-1 day-1), and the degrees above the temperature threshold. Runoff starts when 118 

the water level exceeds the liquid water holding capacity of snow 𝐶𝑊𝐻 (-). The refreezing coefficient 119 
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𝐶𝐹𝑅 (-) stands for refreezing liquid water in the snow when snow melt is interrupted (Bergström, 1992). 120 

The output of the snow routine consists of a redistributed precipitation time series 𝑃𝑠𝑟 . The four 121 

parameters of the snow routine (i.e., 𝑇𝑠 , 𝑀𝐹 , 𝐶𝑊𝐻, and 𝐶𝐹𝑅) can be considered in the parameter 122 

estimation procedure as well as sensitivity analysis. The snow routine features can be activated from the 123 

model structure area (Fig. 1 a). Fig. 2 shows the general workflow implemented in the snow routine. 𝑃𝑠𝑟
∗  124 

is estimated for each time step t based on the precipitation 𝑃 and air temperature 𝑇 time series for each 125 

sub-catchment 𝑖. The total snow routine output 𝑃𝑠𝑟 is calculated as a weighted sum of 𝑃𝑠𝑟
∗  time series: 126 

𝑃𝑠𝑟 =  ∑ 𝑃𝑠𝑟𝑖
∗ ×  𝑝𝑖

𝑁

𝑖 

   
Eq. 1 

 

where 𝑝𝑖 is the proportion of the sub-catchment 𝑖 regarding the complete catchment area such as ∑ 𝑝𝑖 = 127 

1, and 𝑁 is total number of sub-catchments. The snow routine allows estimating 𝑃𝑠𝑟
∗  according to the 128 

algorithm A1. 129 

 

Fig. 2 Snow routine workflow. 

 130 

Algorithm A1 Estimating 𝑃𝑠𝑟
∗  in sub-catchment 

With 𝑃𝑠𝑟
∗  = water leaving the routine/recharge to the soil (mm day-1), 𝑇𝑎 = active temperature for 

snowmelt (°C), 𝑇𝑛 = active temperature for refreezing (°C), m = snow melt (mm day-1), rfz = refreezing 

(mm day-1), v = solid component of snowpack depth (mm), vl = liquid component of snowpack depth 

(mm), and dt = temporal resolution. 

for t in time do : 

 m[t] = min(𝑀𝐹 ×𝑇𝑎 [t],v[t]) with 𝑇𝑎 [t] = 𝑇[t] − 𝑇𝑠 

rfz[t] = min(𝐶𝐹𝑅×𝑀𝐹 ×𝑇𝑛 [t], vl[t]) with 𝑇𝑛 [t] = 𝑇𝑠 − T[t] 

v[t+dt] = v[t] − m[t] + snow[t] + rfz[t] 

if vl[t+dt] > 𝐶𝑊𝐻 ×v[t+dt] then 
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  𝑃𝑠𝑟
∗  [t] = vl[t+dt] − 𝐶𝑊𝐻 ×v[t+dt] 

vl[t+dt] = CWH ×v[t+dt] 

 else 

  𝑃𝑠𝑟
∗  [t] = 0 

 end 

end 

3.1.2 Potential Evapotranspiration routine 131 

An additional module allows to compute the potential evapotranspiration 𝑃𝐸𝑇 (mm day-1) based on the 132 

Oudin’s formula (Oudin et al., 2005). The PET routine can be activated from the model structure area 133 

(Fig. 1 a). The PET routine affects only compartment E. The latter stands for soil and epikarst storage 134 

zone, where the water is available for actual evapotranspiration 𝐴𝐸𝑇 (mm day-1) and flows toward 135 

infiltration or surface discharge. Infiltration occurs when the water level in the compartment is greater 136 

than a given threshold Emin, otherwise, the compartment is considered under-saturated and does not 137 

produce infiltration. In this case, the water in compartment E is still available for evapotranspiration. 138 

KarstMod allows us to consider evapotranspiration in four separate ways (Fig. 3): 139 

(a) The water transfer in the soil-atmosphere continuum can be pre-processed by the user. In this case, 140 

the given precipitation time series consists of the effective precipitation 𝑃𝑒𝑓𝑓 (mm day-1), derived 141 

from precipitation 𝑃 (mm day-1) and actual evapotranspiration 𝐴𝐸𝑇 (mm day-1) with Eq. 2. The 142 

evapotranspiration flux is not activated in the model structure selection panel in KarstMod (Fig. 1 143 

a). 144 

𝑃𝑒𝑓𝑓 = 𝑃 −  𝐴𝐸𝑇 Eq. 2 

 

(b) User-defined 𝑃𝐸𝑇 can be given as input in KarstMod for the evapotranspiration time series. Using 145 

Emin, the user can simulate water holding capacity and non-linear behavior of karst recharge. 146 

(c) User-defined 𝐴𝐸𝑇 can be given as input data in KarstMod for evapotranspiration time series instead 147 

of 𝑃𝐸𝑇 . Then, KarstMod computes an estimation of effective precipitation by limiting the 148 

evapotranspiration to water content available in compartment E. The simulated 𝐴𝐸𝑇 can then be 149 

lower than the user defined 𝐴𝐸𝑇. Such configuration may help identifying potential inaccuracy of 150 

user defined 𝐴𝐸𝑇 for the modeling purpose but is not recommended for model set-up and parameter 151 

estimation. 152 

(d) The new feature in KarstMod consists of the PET routine which estimates the 𝑃𝐸𝑇 with the Oudin’s 153 

formula (Oudin et al., 2005) (Eq. 3). It needs a 𝑇 time series and two parameters to be estimated, 154 

which can be considered in the parameter estimation procedure as well as sensitivity analysis. 155 



 7 

𝑃𝐸𝑇 =  (
𝑅𝑒

𝜆 × 𝜌
) × (

𝑇+ 𝐾2

𝐾1
) if 𝑇 +  𝐾2 > 0 else 𝑃𝐸𝑇 = 0 Eq. 3 

 

where 𝑅𝑒 is the extraterrestrial radiation (MJ m-2 day-1) depending only on the latitude and the Julian 156 

day, 𝜆 is the latent heat flux (taken equal to 2.45 MJ kg-1), 𝜌 is the density of water (taken equal to 1000 157 

kg m-3) and 𝑇 is the mean daily air temperature (°C). 𝐾1 (°C) and 𝐾2 (°C) are constants to adjust over 158 

the catchment for rainfall-discharge model (Oudin et al., 2005). In KarstMod, both 𝐾1 and 𝐾2 can be 159 

considered in the parameter estimation procedure as well as sensitivity analysis. 160 

 

Fig. 3 The four ways to account for evapotranspiration in KarstMod. The user can provide either 

(a) a self-computed effective precipitation (P - 𝑨𝑬𝑻 ) as a single input time series, (b) both P and 

PET time series, (c) both P and 𝑨𝑬𝑻 and (d) both P and T time series.  

3.2 Set-up and calibration of the model structure 161 

The modular structure proposed in KarstMod is based on a widely used conceptual model which 162 

separates karst aquifers into an infiltration zone and a saturated zone, or low and quick flows through 163 

the unsaturated and saturated zones (Fleury et al., 2007, 2009; Guinot et al., 2015; Mazzilli et al., 2019; 164 

Sivelle et al., 2019). Based on this conceptual representation, the platform offers four compartments 165 

organized as a two-level structure: (i) compartment E (higher level) and (ii) compartments L, M and C 166 

(lower level). A priori, the higher level represents the infiltration zone or the soil and epikarst. At the 167 

lower level, compartments L, M, and C stand for the different sub-systems of the saturated zone or low 168 

and quick flows of the whole hydro system. The various model structures and their governing equations 169 

are presented in Mazzilli et al. (2022; 2019). Also, KarstMod allows to performance of hydrological 170 

modeling on both daily and hourly temporal resolutions (Sivelle et al., 2019). 171 

The user can activate (or deactivate) the various compartments (E, L, M, and C) within the "model 172 

structure" panel (Fig. 1 a). The solid and faded colors represent the activated and the inactivated features, 173 

respectively. The fluxes and their activation thresholds as well as the exponent of the discharge law α 174 

(in case of non-linear discharge law such 𝛼 ≠ 1) are managed from the "model parameters" panel (Fig. 175 

1 c). The user can account for pumping 𝑄𝑝𝑢𝑚𝑝 (water coming out of the compartment) as well as sinking 176 

stream 𝑄𝑠𝑖𝑛𝑘 (water coming into the compartment). Such an option is available only if the user provides 177 

the required time series (Fig. 1 b). 178 
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The user must provide warm-up, calibration, and validation periods (Fig. 1 d). The warm-up period must 179 

be set to be independent of initial conditions to avoid bias in the parameter estimation procedure 180 

(Mazzilli et al., 2012). Then, a calibration period (i.e. the period in which the parameters are estimated 181 

to reduce the predictive errors) and a validation period (i.e. period separated from the calibration period) 182 

can be defined to run the split sample test procedure (Klemeš, 1986). For calibration purpose, KarstMod 183 

proposes several widely used performance criteria 𝜙 : the Pearson’s correlation coefficient 𝑅𝑝 184 

(Freedman et al., 2007), the Spearman rank correlation coefficient 𝑅𝑠 (Freedman et al., 2007), the Nash-185 

Sutcliffe Efficiency NSE (Nash and Sutcliffe, 1970), the volumetric error VE (Criss and Winston, 2008), 186 

the modified balance error BE (Perrin et al., 2001), the Kling-Gupta Efficiency KGE (Gupta et al., 2009) 187 

and a non-parametric variant of the Kling-Gupta Efficiency KGENP (Pool et al., 2018). To compute a 188 

multi-objective calibration procedure the user can create his objective function Φ as a weighted sum of 189 

several objective functions: 190 

Φ =  ∑ 𝜔𝑖 × 𝜙𝑖(𝑈)

𝑁

𝑖=1

 

Eq. 4 

 

where 𝜔𝑖  is the weight affected to the objective function 𝜙𝑖(𝑈) with ∑ 𝜔𝑖
𝑁
𝑖=1 = 1 and 𝑈  a general 191 

notation for the observations used for parameter estimation purposes. In the KarstMod modeling 192 

platform, 𝑈 corresponds to either spring discharge 𝑄𝑠, piezometric head measurements 𝑍𝑜𝑏𝑠 (available 193 

for compartments E, L, M, and C), or surface water discharge 𝑄𝑙𝑜𝑠𝑠 from compartment E. Also, the 194 

objective function 𝜙 can be computed on transformed 𝑈 to avoid high water level bias on quadratic 195 

error. The following transformations are available in KarstMod: 1/𝑈, √𝑈, 1/√𝑈. Therefore, the user 196 

can use any combination of the objective function 𝜙, observations 𝑈, and variable transformations. 197 

Depending on the modeling purpose, the user must refer to the literature to define the suitable objective 198 

function (Bennett et al., 2013; Ferreira et al., 2020; Hauduc et al., 2015; Jackson et al., 2019). 199 

The model is calibrated using a quasi-Monte-Carlo sampling procedure with a Sobol sequence sampling 200 

of the parameter space (Sobol, 1998). The procedure involves finding an ensemble of parameter sets 201 

providing an objective function Φ  greater than the user-defined value. The calibration procedure 202 

stopped when either the user-defined maximum duration of the sampling procedure 𝑡𝑚𝑎𝑥 is reached or 203 

the user-defined number of parameter sets 𝑛𝑜𝑏𝑗 are collected. KarstMod offers a "run" option allowing 204 

the model to run for a user-defined parameter set, without calibration procedure, and so allows it to 205 

investigate "by-hand" the parameter space and the sensitivity of the model to specific parameters. 206 

3.3 Model evaluation 207 

The model performance can be evaluated for both the calibration and validation periods. It allows (i) to 208 

ensure the robustness of model predictions, even under changing conditions (which is a key point for 209 

the assessment of climate change impact) and (ii) to avoid model over-fitting within a specific range of 210 
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hydro-climatic conditions observed during the calibration period. KarstMod allows the computation of 211 

the above-mentioned performance criteria for both calibration and validation periods. Even though the 212 

notation "validation" is disputable such a procedure is required to evaluate both explanatory and 213 

predictive dimensions of the model structure (Andréassian, 2023). Then, KarstMod offers an ensemble 214 

of numerical tools devoted to (i) checking the model consistency, i.e. explanatory dimension of the 215 

model (Beven, 2001; Shmueli, 2010), (ii) evaluating the model performance, i.e. predictive dimension 216 

of the model structure. 217 

To check the model consistency, the simulation based on the parameter set that provides the highest 218 

objective function value can be analyzed through an ensemble of graphs such as (i) internal and external 219 

fluxes as a function of time, (ii) cumulative volumes for both observed and simulated time series for 220 

spring discharge 𝑄𝑠 and surface water discharge 𝑄𝑙𝑜𝑠𝑠, (iii) simulated mass-balance as a function of 221 

time, (iv) comparison of observations and simulations for either 𝑄𝑠 or 𝑄𝑙𝑜𝑠𝑠with probability function 222 

plots, auto-correlogram of the spring discharge time series, cross-correlogram of precipitation-discharge 223 

time series. 224 

To evaluate the model performance, KarstMod offers a "Model evaluation" panel available from the 225 

graphs panel (Fig. 1 g) that includes several sub-panels, from the left to the right: 226 

• The diagnostic efficiency DE (Schwemmle et al., 2021) which consists of a diagnostic polar plot 227 

that facilitates the model evaluation process as well as the comparison of multiple simulations. The 228 

DE accounts for constant, dynamics, and timing errors, and their relative contribution to the model 229 

errors. Also, the decomposition of the errors between the periods of high flows and low flows allows 230 

us to better investigate the model bias, as well as to provide critical evaluation for impact studies, 231 

particularly for the assessment of climate change impacts. Indeed, the accurate evaluation of low 232 

flow periods (in terms of frequency, intensity, and duration) becomes increasingly crucial for 233 

groundwater resource variability assessment. 234 

• The available objective functions Φ are presented as a radar chart which consists of a polygon where 235 

the position of each point from the center gives the value of the performance criteria. The closer the 236 

point is to the outside of the radar chart, the better the model performs. The radar chart is made for 237 

both calibration and validation periods and each of the calibration variables considered in the 238 

modeling (𝑄𝑠, 𝑍𝑜𝑏𝑠𝐴 with A for either E, M, C or L compartments and 𝑄𝑙𝑜𝑠𝑠). 239 

• The KGE (Gupta et al., 2009) consists of a diagonal decomposition of the NSE (Nash and Sutcliffe, 240 

1970) to separate Pearson’s correlation coefficient 𝑅𝑝, representation of bias 𝛽𝐾𝐺𝐸, and variability 241 

𝛼𝐾𝐺𝐸 . Thus, the 𝐾𝐺𝐸  is comparable to multi-objective criteria for calibration purposes 242 

(Pechlivanidis et al., 2013). The sub-panel offers (i) a bi-plot of the three 𝐾𝐺𝐸’s components and 243 

(ii) a radar plot visualization of the 𝐾𝐺𝐸 ’s components, allowing the identify potential 244 

counterbalancing errors according to these different components (Cinkus et al., 2023b). The two 245 
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above-mentioned plots also include the decomposition of the 𝐾𝐺𝐸𝑁𝑃 (Pool et al., 2018) in terms of 246 

Spearman’s rank correlation coefficient 𝑅𝑠 , representation of bias 𝛽𝐾𝐺𝐸𝑁𝑃 and non-parametric 247 

variability 𝛼𝐾𝐺𝐸𝑁𝑃. 248 

3.4 Dealing with uncertainties 249 

Moges et al. (2021) summarize the various sources of uncertainties in hydrological models including 250 

structural and parametric uncertainties as well as uncertainties related to input data and observations. 251 

The latter concerns both the input (i.e., precipitation and evapotranspiration) and the output (i.e., 252 

discharge) of the modeled systems. Many references are devoted to the uncertainties related to input 253 

data and observations. As an example, Westerberg et al. (2020) include information about the discharge 254 

uncertainty distribution in the objective function and perform better discharge simulation. Also, the 255 

precipitation error can be dependent on the data time step (McMillan et al., 2011) and could impact the 256 

hydrological model performance (Ficchì et al., 2016). Lumped parameter hydrological models consider 257 

meteorological time series representative of a whole catchment, which may require some pre-processing, 258 

particularly for snow processes since it can have a strong influence on flow dynamics. Thus, KarstMod 259 

includes variables related to both the snow routine (i.e., the redistributed precipitation time series 𝑃𝑠𝑟) 260 

and the PET routine (i.e., estimated potential evapotranspiration 𝑃𝐸𝑇) in the parameter estimation 261 

procedure. This allows us to investigate the sensitivity of the flow simulation to these input data when 262 

using snow and PET routines. Nonetheless, KarstMod does not include features to investigate the impact 263 

of observation uncertainties on parameter estimation. 264 

As with many environmental problems, parameter estimation in rainfall-discharge modeling consists 265 

generally of ill-posed problems, i.e. the modeling encounters issues about the unicity, identifiability, and 266 

stability of the problem solution (Ebel and Loague, 2006). As a consequence, several representations of 267 

the modeled catchment may be considered equally acceptable (Beven, 2006). Knoben et al. (2020) 268 

evaluate the performance of 36 daily lumped parameter models over 559 catchments and show that 269 

between 1 and up to 28 models can show performance close to the model structure with the highest 270 

performance criteria. Such results are widely covered in catchment hydrology (Dakhlaoui and Djebbi, 271 

2021; Darbandsari and Coulibaly, 2020; Gupta and Govindaraju, 2019; Pandi et al., 2021; Zhou et al., 272 

2021) but still poorly investigated in karst hydrology. Indeed, the structural uncertainty impacts on 273 

rainfall-discharge modeling in karst hydrology is not properly evaluated whereas many studies consider 274 

several hydrological model structures to include structural uncertainty in flow simulation (Hartmann et 275 

al., 2012; Jiang et al., 2007; Jones et al., 2006; Sivelle et al., 2021). KarstMod includes more than fifty 276 

combinations of the various compartments as well as various compartments model (i.e., compartment 277 

with linear or non-linear discharge law and compartment with infinite characteristic time) and allows a 278 

quick implementation of the various model structures. The user can easily manage to start the modeling 279 

with one single compartment and gradually move to a more complex model structure with up to four 280 



 11 

compartments, five fluxes connected to the spring, four internal fluxes, and 1 flux running out of the 281 

system. 282 

Considering each model structure, parametric equifinality can be investigated using (i) dotty plots of the 283 

values of the objective function against the parameter values, (ii) dotty plots of the values of the 284 

performance criteria used to define the aggregated objective function, and (iii) the variance-based, first-285 

order 𝑆𝑖 and total 𝑆𝑇𝑖 sensitivity indexes for the model parameters. Details concerning the computation 286 

of sensitivity indexes within KarstMod are given in Mazzilli et al. (2022; 2019). 287 

4 Examples of application 288 

To illustrate the KarstMod application and the use of the above-presented functionalities for the 289 

assessment of karst groundwater resources, we propose two case studies: (i) the Touvre karst system 290 

and (ii) the Lez karst system. Both karst systems consist of strategic freshwater resources for drinking 291 

water supply (DWS), for the city of Angouleme (western France) and Montpellier (southern France) 292 

respectively. 293 

4.1 The Touvre karst system (La Rochefoucauld) 294 

The Touvre is a karst system where the infiltration consists of (i) a delayed infiltration of effective 295 

precipitation on the karstic recharge area and (ii) a direct infiltration of surface water from the Tardoire, 296 

Bandiat, and Bonnieure rivers. The latter are surface streams flowing on metamorphic rocks that partly 297 

infiltrate to subterranean at the contact with carbonate formations, mainly composed of Middle to Upper 298 

Jurassic limestones. The springs of the Touvre, located 7 km east of Angoulême (western France), counts 299 

four outlets, namely the Bouillant, the Dormant, the Font de Lussac, and the Lèche (Labat et al., 2022). 300 

In the following, the Touvre Spring discharge designates the accumulated discharge of the four 301 

mentioned outlets. 302 

The Touvre karst system constitutes a strategic freshwater resource for the DWS of Angoulême, with 303 

around 110,000 inhabitants, but also contributes to the water supply for industry and agriculture. In 304 

2015, there were eighty-four pumping wells over the karstic impluvium of the Touvre karst system, and 305 

around one hundred more in the Tardoire, Bandiat, and Bonnieure rivers catchment. Based on the data 306 

provided by the Adour-Garonne Water Agency, the annual groundwater abstraction for agriculture 307 

represents 4.6 Mm3 whereas annual groundwater abstraction for DWS represents 1.1 Mm3 over the 308 

karstic impluvium of the Touvre karst system. On the three rivers catchment (out of the karstic 309 

impluvium), the annual groundwater abstraction represents 2.5 Mm3 for agriculture and 3.3 Mm3 for 310 

DWS, through river intakes or alluvial groundwater abstraction. The total annual volume of abstracted 311 

groundwater in the area represents around 5 % of the annual volume of transit at the Touvre Spring. 312 

This is quite low compared with karst aquifers in France exploited for their groundwater resources, such 313 

as the Lez spring (Jourde et al., 2014) and the Oeillal’s spring karst catchment (Sivelle et al., 2021), 314 

where the annual groundwater abstraction volume represents respectively 50 % and 15 % of the annual 315 
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volume of transit at the spring. Therefore, the Touvre karst system seems not to be over-exploited at the 316 

moment, but the impact of groundwater abstraction should be addressed in the context of global change 317 

to ensure sustainable management of this strategic freshwater resource. 318 

The area is characterized by an ocean-influenced climate with a mean annual precipitation of around 319 

800 mm year-1 distributed over an average of 255 rainy days. The estimation is performed with Thiessen 320 

polygon methods based on eleven meteorological stations over the area (Labat et al., 2022). The mean 321 

annual potential evapotranspiration is around 770 mm year-1 according to the Penman-Monteith 322 

estimation provided by the French meteorological survey (Météo-France). The Touvre daily spring 323 

discharge shows a significant variability ranging from 3 m3 s-1 to 49 m3 s-1 with a coefficient of variation 324 

around 0.46 (Fig. 5 b). 325 

The surface stream flow rates for the Bonnieure, Bandiat, and Tardoire rivers are concentrated within 326 

the autumn and winter periods. During the summer period, the discharge in the three rivers is very low 327 

(Fig. 5 c). The more significant groundwater abstraction is performed during the summer period, while 328 

the Touvre spring discharge reaches its lowest values within the late summer and early autumn periods 329 

(Fig. 5, c and d). 330 

Fig. 4 shows the model structure for the Touvre karst system that consists of three compartments 331 

organized in two levels (Labat et al., 2022). The upper level corresponds to reservoir E and represents 332 

both the unsaturated part of the system and a temporary aquifer. This reservoir relates to the two 333 

reservoirs of the lower level: C (Conduit) and M (Matrix) representative of quick and slow flow 334 

dynamics, respectively. The upper level of the model structure is affected by 𝑃 and 𝐸𝑇 while the lower 335 

level of the model structure is affected by (i) groundwater abstraction and (ii) sinking river streamflow 336 

from the surface to underground. Fig. 4 shows the various time series required for the hydrological 337 

modeling of the Touvre karst system. The methodology for daily time series preparation given in Labat 338 

et al. (2022) allows us to account for the influence of groundwater abstraction on the transmissive or 339 

capacitive part of the karst aquifer as well as the influence of concentrated and diffuse infiltration of the 340 

surface river streamflow. 341 
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Fig. 4 Screenshot of KarstMod with a focus on the panel "Model structure" for the Touvre karst 

system. The solid lines correspond to the activated fluxes whereas the faded color lines are not 

activated. 𝑸𝒑.
𝑴  and 𝑸𝒑.

𝑪 stand for groundwater abstraction that affects compartments M and C 

respectively while 𝑸𝒔.
𝑴 and 𝑸𝒔.

𝑪 . stand for sinking flow that affects compartments M and C, 

respectively. 

 342 

 

Fig. 5 Daily time series for the Touvre system: a) precipitation (P) and potential evapotranspiration 

(PET), b) observed and simulated karst spring discharge ( 𝑸𝑻𝒐𝒖𝒗𝒓𝒆  obs and 𝑸𝑻𝒐𝒖𝒗𝒓𝒆  sim), c) 
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observed river streamflow discharge (𝑸𝑩𝒐𝒏𝒏𝒊𝒆𝒖𝒓 , 𝑸𝑩𝒂𝒏𝒅𝒊𝒂𝒕 , 𝑸𝑻𝒂𝒓𝒅𝒐𝒊𝒓𝒆), d) and e) groundwater 

abstraction discharge (𝑸𝒑.
𝒂𝒈𝒈𝒓𝒊𝒄𝒖𝒍𝒕𝒖𝒓𝒆

 , 𝑸𝒑.
𝒅𝒐𝒎𝒆𝒔𝒕𝒊𝒄). 

The objective of the hydrological modeling is to assess the impact of groundwater abstraction on spring 343 

discharge, more particularly during low flow periods (Labat et al., 2022). So, the calibration is performed 344 

according to the 𝐾𝐺𝐸𝑁𝑃 that improves the simulations during mean and low-flow conditions using the 345 

Spearman rank correlation due to its insensitivity to extreme values (Pool et al., 2018). The sampling 346 

procedure is set up to find 𝑛𝑜𝑏𝑗 = 5000 simulations with 𝐾𝐺𝐸𝑁𝑃 greater than 0.9. Afterwards, the model 347 

is evaluated using the various features proposed in KarstMod (Fig. 6). The diagnostic efficiency plot 348 

(Fig. 6 a) testifies of several elements: (i) the model seems to slightly overestimate high flow and 349 

underestimate low flow, (ii) the timing error is about 0.9, testifying of suitable flow dynamics in the 350 

model, (iii) low flow periods contribute more to the model errors, and (iv) there is no offset in the 351 

simulated spring hydrograph. The radar chart (Fig. 6 b) shows a good equilibrium between the various 352 

objective functions whose values are greater than 0.8, except for the NSE criteria (NSE = 0.75). It is the 353 

consequence of the design of these criteria that tends to outweigh the errors during floods. Here the NSE 354 

value is still greater than 0.7 and testifies to a "very good" fit according to Moriasi et al. (2007). Finally, 355 

the decomposition of the KGE (Fig. 6 c and d) shows 𝑅𝑝 = 0.91, 𝛼 = 1.15 and 𝛽 = 1.02 testifying of 356 

accurate dynamics and low bias, but slightly too high variability. 357 

 

Fig. 6 Screenshot of KarstMod with a focus on the sub-panel "Model evaluation". Application for 

the model evaluation on the Touvre system: (a) diagnostic efficiency plot (Schwemmle et al., 2021), 

(b) radar chart of the objective functions, (c) bi-plot of the KGE’s (square) and KGENP’s (triangle) 

components, and (d) radar chart of the KGE’s components. 

4.2 The Lez Spring 358 

The Lez Spring (southern France) consists of the main outlet of a karst system encompassed in the North 359 

Montpellieran Garrigue hydrogeological unit delimited to the west by the Herault River, and to the north 360 

and east by the Vidourle River. The geology in the area corresponds to the Upper Jurassic layers 361 

separated by the Corconne-Matelle fault (oriented N30°), leading to two main compartments in the 362 

aquifer (Bérard, 1983; Clauzon et al., 2020). The karst aquifer is unconfined in the western compartment 363 

and is locally confined in the eastern compartment. The Lez Spring is located about 15 km north of 364 

Montpellier. It is of Vauclusian-type with an overflow level at 65 m a.s.l and a maximum daily discharge 365 
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of approximately 15 m3 s-1. The area is characterized by a typical Mediterranean climate with dry 366 

summers and rainy autumns. Over the 2009-2019 period, the mean annual precipitation is around 900 367 

mm year-1 distributed over an average of 133 rainy days (estimation with Thiessen polygon methods 368 

based on four meteorological stations over the area: Prades-le-Lez, Saint-Martin-de-Londres, 369 

Sauteyrargues, and Valflaunès), a mean annual potential evapotranspiration is around 900 mm year-1 370 

according to the estimation based on Oudin’s formula with the temperature measured at Prades le Lez 371 

station while the real annual evapotranspiration is around 450 mm year-1 (eddy covariance flux-station 372 

of Puéchabon). 373 

Since 1854, the Lez Spring supplies the drinking water to Montpellier city and the surroundings. It 374 

currently constitutes the main freshwater resource for around 350,000 people in the area. The present 375 

water management scheme allows pumping at higher rates than the natural spring discharge during low 376 

flow periods, while supplying a minimum discharge rate (around 0.23 m3 s-1) into the Lez River to ensure 377 

ecological flow downstream, and reducing flood hazards via rainfall storage in autumn (Avias, 1995; 378 

Jourde et al., 2014). The pumping plant was built in 1982 with four deep wells drilled to intercept the 379 

karst conduit feeding the spring, 48 m below the overflow level of the spring. Pumping in these wells 380 

allows up to 0.18 m3 s-1 to be withdrawn under low flow periods (with an authorized maximum 381 

drawdown of 30 m), while the average annual pumping flow rate is about 0.10 m3 s-1 (over the 2008-382 

2019 period). Due to the pumping management of the aquifer, which supplies about 30 to 35 Mm3 of 383 

water per year to the metropolitan area of Montpellier, the discharge at the Lez Spring is often low or 384 

nil. Discharge is also measured downstream (Lavalette gauging station) where the measured discharge 385 

corresponds to the Lez Spring discharge and the main tributaries (Lirou and Terrieu streams) which flow 386 

essentially after intense Mediterranean rainfall events. As suggested in Cousquer and Jourde (2022), the 387 

surface water discharge, denoted 𝑄𝑙𝑜𝑠𝑠, can be estimated as the difference between the total discharge 388 

in Lavalette and the Lez spring discharge. 389 

In the present context of global change, Mediterranean karst systems already show significant decrease 390 

in spring discharge (Doummar et al., 2018; Dubois et al., 2020; Fiorillo et al., 2021; Hartmann et al., 391 

2012; Nerantzaki and Nikolaidis, 2020; Smiatek et al., 2013) which could be aggravated with 392 

groundwater abstraction (Sivelle et al., 2021). The Lez spring is strongly exposed to global change 393 

impact: (i) the Mediterranean area is identified as a climate change hot-spot (Diffenbaugh and Giorgi, 394 

2012) where the projected warming spans 1.8–8.4◦C according to CMIP6 and 1.2–6.6◦C according to 395 

CMIP5 during the summer period (Cos et al., 2022), and (ii) the water management scheme will have 396 

to adapt to the future need in drinking water for the growing population in the area as well as changes 397 

in the freshwater consumption practice (e.g. water use restriction order). Therefore, a sustainable water 398 

management plan for the Lez Spring requires a good appreciation of the hydrological functioning as 399 

well as the operational hydrological model to properly address impact studies. In this framework, 400 

KarstMod allows for choosing and calibrating a suitable model structure. This constitutes the first step 401 
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for a global change impact study that requires prediction tools to simulate the aquifer response to various 402 

external forces. 403 

Fig. 7 shows the model structure for the Lez karst catchment (Mazzilli et al., 2011) that consists of three 404 

compartments organized in two levels. The upper level corresponds to compartment E and represents 405 

the unsaturated part of the system, including a soil water holding capacity Emin and a discharge lost 406 

from the compartment 𝑄𝑙𝑜𝑠𝑠. Compartment E is exposed to 𝑃 and 𝐸𝑇 and discharge towards the lower 407 

level of the model structure starts when the water level exceeds Emin. The lower level consists of two 408 

inter-connected compartments M and C allowing to reproduction of the lateral exchanges, denoted 𝑄𝑀𝐶, 409 

between the transmissive function (compartment C) and the capacitive function (compartment M) of the 410 

karst aquifer. Both M and C compartments are considered bottomless, allowing to reproduce periods of 411 

non-overflow at the Lez Spring when the mean water level in the aquifer stands below 65 m a.s.l., mainly 412 

during summer periods due to pumping in the karst conduit. Fig. 8 a and b show the various daily time 413 

series required for the hydrological modeling of the Lez karst system (i.e., 𝑃, 𝐸𝑇 and 𝑄𝑝𝑢𝑚𝑝). 414 

 

Fig. 7 Screenshot of KarstMod with a focus on the panel "Model structure" for the Lez karst 

system. The solid lines correspond to the activated fluxes whereas the faded color lines are not 

activated. 𝑸𝒍𝒐𝒔𝒔 stands for the surface water discharge from the epikarst compartment, 𝑸𝒑.
𝑪 stands 

for groundwater abstraction that affects compartments C while 𝒁𝑪 stands for piezometric head 

measurements considered as representative of compartment C. 

 415 
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Fig. 8 Daily time series for the Lez system: a) precipitations (P) and evapotranspiration (ET), b) 

groundwater abstraction, 𝑸𝒑𝒖𝒎𝒑, c) observed and simulated karst spring discharge (𝑸𝑳𝒆𝒛 obs and 

𝑸𝑳𝒆𝒛 sim), d) observed and simulated piezometric head (𝒁𝑳𝒆𝒛 obs and 𝒁𝑳𝒆𝒛 sim), e) surface water 

discharge (𝑸𝒍𝒐𝒔𝒔) and f) simulated exchanges fluxes between compartment M and C, 𝑸𝑴𝑪. 

The available hydrological observations for model calibration consist of spring discharge 𝑄𝑠 , 416 

piezometric head measurement 𝑍𝑐 at the Lez spring, and surface water discharge from secondary outlets 417 

and intermittent springs 𝑄𝑙𝑜𝑠𝑠 (Fig. 8 c, d, and e). 418 

The surface water discharge is estimated as the difference in discharge measured at the Lavalette station 419 

(15 km downstream of the Lez spring) and the discharge measured at the Lez spring, as proposed by 420 

Cousquer and Jourde (2022). Therefore, 𝑄𝑙𝑜𝑠𝑠 includes all the water loss from the epikarst within several 421 

seasonal overflowing springs (i.e., Lirou spring, Restinclière spring, and Fleurette spring). KarstMod 422 

allows for easy handling of the various parameter estimations depending on the considered hydrological 423 

observations (i.e., spring discharge, piezometric head measurement, and surface discharge from the 424 

epikarst). The sampling procedure is set up to find 𝑛𝑜𝑏𝑗 = 5000 simulations with an aggregated objective 425 

function Φ  greater than 0.6. As suggested by Cousquer and Jourde (2022), using complementary 426 

hydrological observations in addition to the spring discharge allows for to reduce the parametric 427 

uncertainties in the modeling of the Lez spring discharge. Therefore, using a multi-objective calibration 428 

procedure implemented in KarstMod, the objective function is built such as: 429 
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Φ =  
1

3
 × 𝑁𝑆𝐸(𝑄𝑠) + 

1

3
 × 𝑁𝑆𝐸(𝑍𝑐) +  

1

3
 × 𝑁𝑆𝐸(𝑄𝑙𝑜𝑠𝑠) 

Eq. 5 

 

The calibration procedure leads to an optimal 𝛷 = 0.65 decomposed such as 𝜙 𝑄𝑠 = 0.70, 𝜙 𝑍𝑐   = 0.57 430 

and 𝜙 𝑄𝑙𝑜𝑠𝑠  = 0.70 within the calibration period. Model performance evaluation on the validation period 431 

shows suitable model performance for both spring discharge and piezometric with 𝜙 𝑄𝑠 = 0.54 and 𝜙 𝑍𝑐   432 

= 0.79, but poor model performance according to the surface water discharge with 𝜙 𝑄𝑙𝑜𝑠𝑠  = 0.36. 433 

Afterwards, the results can be evaluated using the various features proposed in KarstMod (Fig. 9). The 434 

results show higher model performances for 𝑄𝑠 and 𝑍𝑐 than for 𝑄𝑙𝑜𝑠𝑠. The model performance appears 435 

quite satisfactory concerning the variable of interest to assess the impact of the water management 436 

scheme on the groundwater resources within the Lez aquifer. 437 

The simulated exchange fluxes between compartments M and C (Fig. 8 f) show consistent dynamics 438 

with the observations. Indeed, during periods of high flow, the exchange fluxes are oriented from 439 

compartment C to compartment M (i.e., 𝑄𝑀𝐶 < 0). Significant precipitation events lead to rapid rises in 440 

the piezometric head, saturation of the transmissive part of the aquifer, and finally the establishment of 441 

overflow at the Lez spring (i.e. 𝑄𝑠 > 0) as well as the overflowing springs (i.e. 𝑄𝑙𝑜𝑠𝑠 > 0). Conversely, 442 

during the periods of low piezometric head (i.e., both 𝑄𝑠 and 𝑄𝑙𝑜𝑠𝑠 are nil), the simulated exchange 443 

fluxes are oriented from compartment M to compartment C (i.e. 𝑄𝑀𝐶 > 0). Such flow exchanges between 444 

capacitive and transmissive parts of karst aquifers have been evidenced using KarstMod on other karst 445 

environment (Duran et al., 2020; Frank et al., 2021; Labat et al., 2022; Sivelle et al., 2019). 446 

 

Fig. 9 Screenshot of KarstMod with a focus on the sub-panel "Model evaluation". Application for 

the model evaluation on the Lez system. The panel is composed such as (i) each row corresponds 

to the variable for calibration (QS, Qloss and PiezoC) and (ii) each column corresponds to (a) 

diagnostic efficiency plot, (b) radar plots, one should note that VE and BE are not computed 

according to the piezometric time series, (c) decomposition of KGE (square) and KGENP (triangle) 

and (d) radar plot of the KGE decomposition. 
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5 Conclusion 447 

KarstMod consists of a useful tool for the assessment of karst groundwater variability and sensitivity to 448 

anthropogenic pressures (e.g., groundwater abstraction). This tool is devoted to promoting good 449 

practices in hydrological modeling for learning and occasional users. KarstMod requires no 450 

programming skills and offers a user-friendly interface allowing any user to easily manage hydrological 451 

modeling. As a first step, KarstMod can be used to explore the ability of conceptual representations to 452 

explain observations such as discharge or piezometric heads in karst systems. More advanced use of 453 

KarstMod is also possible as it provides a complete framework for (i) primary analysis of the data, (ii) 454 

comparison of various model structures, (iii) evaluation of the hydrological model performance as well 455 

as (iv) first assessment of parametric uncertainties. The research community increasingly uses KarstMod 456 

to address various challenges in karst hydrology, from understanding hydrological processes to practical 457 

applications such as evaluation of groundwater management plans, or even assessment of the impact of 458 

groundwater abstraction and climate changes on karst groundwater resources. 459 

Future developments of KarstMod might include (i) the consideration of the spatial heterogeneity in 460 

recharge processes which is essential when considering snowmelt as well as land cover (Sivelle et al., 461 

2022a), (ii) the simulation of electrical conductivity (Chang et al., 2021), major ions concentration 462 

(Hartmann et al., 2013) or natural tracer such as air excess (Sivelle et al., 2022a), and (iii) the assessment 463 

of structural uncertainty (Cousquer et al., 2022). KarstMod should tend toward an open source research 464 

software to avoid duplication of efforts in karst hydrological modeling. Also, a Python version is 465 

required for a better connection with an additional framework for sensitivity analysis such as SAFE 466 

toolbox (Pianosi et al., 2015) and for model calibration procedures such as particle swarm optimization 467 

(Eberhart and Kennedy, 1995; Lee, 2014). Finally, the development of the KarstMod modeling platform 468 

will benefit better transparency and repeatability with an open-source approach, as observed on other 469 

numerical tools (Pianosi et al., 2020). 470 

Nomenclature. 471 

𝐴𝐸𝑇 actual evapotranspiration (mm day-1) 

𝐶𝐹𝑅 refreezing coefficient (-) 

𝐶𝑊𝐻 liquid water holding capacity of snow (-) 

DE diagnostic efficiency DE (Schwemmle et al., 2021) 

𝐸𝑇 evapotranspiration (mm day-1) 

KGE Kling-Gupta Efficiency (Gupta et al., 2009) 

KGENP non-parametric Kling-Gupta Efficiency (Pool et al., 2018) 

𝑀𝐹 melt coefficient (mm ºC-1 day-1) 

𝑃 precipitation (mm day-1) 

𝑃𝑒𝑓𝑓 effective precipitation (mm day-1) 
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𝑃𝑠𝑟 precipitation computed with the Snow Routine (mm day-1) 

𝑃𝑠𝑟
∗  precipitation for a single sub-catchment computed with the Snow Routine (mm day-1) 

𝑃𝐸𝑇 potential evapotranspiration (mm day-1) 

𝑅𝑝 Pearson’s correlation coefficient 

𝑅𝑠 Spearman rank correlation coefficient 

NSE Nash-Sutcliffe Efficiency (Nash and Sutcliffe, 1970) 

𝑛𝑜𝑏𝑗 targeted number of parameter sets 

𝑄𝐴 water discharge considered for the flow component A (m3 s-1) 

𝑇 air temperature (°C) 

𝑇𝑎 active temperature for snowmelt (°C) 

𝑇𝑛 active temperature for refreezing (°C) 

𝑡𝑚𝑎𝑥 maximum duration for sampling the parameter space (seconds) 

𝑇𝑠 temperature threshold (°C) 

𝑈 observations considered for parameter estimation 

VE volumetric error (Criss and Winston, 2008) 

𝑍𝐴 water level considered for element A (m a.sl.) 

𝜙 performance criteria 

Φ objective function 

Code availability. The KarstMod modeling platform is developed and made freely accessible within the 472 

framework of the KARST observatory network (SNO KARST) initiative from the INSU/CNRS. The 473 
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