
Employing the Generalized Pareto Distribution to Analyze Extreme
Rainfall Events on Consecutive Rainy Days in Thailand’s Chi
Watershed: Implications for Flood Management
Tossapol Phoophiwfa1, Prapawan Chomphuwiset1, Thanawan Prahadchai2, Jeong-Soo Park2,
Arthit Apichottanakul3, Watchara Theppang4, and Piyapatr Busababodhin1,*

1Digital Innovation Research Cluster for Integrated Disaster Management in the Watershed, Mahasarakham University,
Kantharawichai, Maha Sarakham 44150, Thailand.
2Department of Mathematics and Statistics, Chonnam National University, Gwangju 61186, Korea.
3Department of Production Technology, KhonKean University, Khon Kean, 44000 Thailand.
4Buengkan Provincial Agricultural Extension Office, Buengkan 38000, Thailand.

Correspondence: *Piyapatr Busababodhin (piyapatr.b@msu.ac.th)

Abstract. Extreme rainfall events in the Chi watershed of Thailand have significant implications for the safe and economic de-

sign of engineered structures and effective reservoir management. This study investigates the characteristics of extreme rainfall

events in the Chi watershed, Northeast Thailand, and their implications for flood risk management. We apply extreme value

theory to historical maximum cumulative rainfall data for consecutive rainy days from 1984 to 2022. The Generalized Pareto

Distribution (GPD) was used to model the extreme rainfall data, with the parameters estimated using Maximum Likelihood5

Estimator (MLE) and Linear Moment Estimator (L-ME) methods based on specific conditions. The goodness-of-fit tests con-

firm the suitability of the GPD for the data, with p-values exceeding 0.05. Our findings reveal that certain regions, notably

Udon Thani, Chaiyaphum, Maha Sarakham, Tha Phra Agromet, Roi Et, and Sisaket provinces, show the highest return levels

for consecutive 2-day (CONS-2) and 3-day (CONS-3) rainfall. These results underscore the heightened risk of flash flooding

in these regions, even with short periods of continuous rainfall. Based on our findings, we developed 2D return level maps10

using the Q-geographic information system (Q-GIS) program, providing a visual tool to assist with flood risk management.

The study offers valuable insights for designing effective flood management strategies and highlights the need for considering

extreme rainfall events in water management and planning. Future research could extend our findings through spatial correla-

tion analysis and the use of copula functions. Overall, this study emphasizes the importance of preparing for extreme rainfall

events, particularly in the era of climate change, to mitigate potential flood-related damage.15

1 Introduction

The distribution of rainfall and atmospheric fluctuations are directly impacted by changes in climate, which have significant

implications for water resource management and hydrology. The Northeast region of Thailand is particularly susceptible to

frequent flooding, which is often caused by a combination of local conditions, natural variations, and human actions. Unfortu-

nately, this issue shows no signs of abating, and it continues to escalate in severity. The Northeast region of Thailand is home20
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to over 63 million rai (1 rai = 1,600 square meters) of agricultural land, a significant proportion of which still experiences water

shortages, droughts, and flooding. Over the past three decades, water shortages have affected 57 provinces (or 75% of the

country), 525 districts (or 60% of the total districts), 3,321 sub-districts (or 46% of the total), and 24,900 villages (or 33% of

the total villages) in Thailand, causing extensive damage. On average, 9.71 million people are affected each year, representing

about 15% of the total population who suffer from drought annually. Additionally, an average of 2.571 million rai of farmland25

is damaged each year, leading to an average loss of 661 head of livestock. The total cost of damage amounts to 656.62 million

baht (or 17.57 million US dollars) per year. Furthermore, the Northeast region has experienced seven major floods over the

years 1983, 1995, 1996, 2002, 2006, and 2011, which have caused significant damage to both human life and property, making

it difficult to assess the total cost of damage incurred (Gale and Saunders, 2013; Singkran, 2017; Meteorological, 2021). Gale

and Saunders (2013) identified the causes of the major floods that occurred in Thailand in 2011 and presented forecasts for30

future flooding. Their research indicates that unless flood defenses and management practices are improved, there is a high

likelihood of more flooding occurring within the next two to three decades.

According to the Thai Meteorological Department’s report in 2006 (Meteorological, 2021), flood conditions in the Chi

watershed occur 2-3 times a year. Various studies have also indicated that the area is prone to frequent flooding (Kunitiyawichai

et al., 2011; Arunyanart et al., 2017). Flooding in the Chi watershed takes on many different forms, including but not limited35

to overflowing riverbanks in provinces such as Chaiyaphum, Khon Kaen, and Roi Et; wild water flows in Chaiyaphum, Khon

Kaen, and Roi Et; and mudslides in Kalasin and Chaiyaphum Provinces. The watershed has also experienced severe flooding

in various areas, such as Roi Et, Kalasin, and Khon Kaen Provinces. The Chi watershed is susceptible to flooding due to

several factors. First, heavy rainfall resulting from the influence of the southwest and northwest monsoons and depressions

from the South China Sea often occurs in the watershed area. Second, the upstream area of the watershed, where the Chi River40

originates, is characterized by mountainous terrain with high slopes and has experienced significant deforestation. Third, the

lower part of the watershed, particularly in Roi Et and Ubon Ratchathani Provinces, is a plain where multiple rivers converge

and is the point where the Chi River meets the Mun River before flowing into the Mekong River. This creates drainage issues

for the watershed area. Fourth, water management in large reservoirs poses a challenge during the rainy season, as some years

require significant amounts of water to be drained due to the high levels of annual rainfall and water discharge from nearby45

reservoirs (Meteorological, 2021). Given these challenges, effective water management during the flooding and drought seasons

is critical. Numerous studies have applied mathematical and statistical theories to address these issues, such as those conducted

by (Bhakar et al., 2006; Noymanee and Theeramunkong, 2019; Suksawang, 2012; Hung et al., 2009; Dutta et al., 2003).

It is well-known that floods occur on average every several years, as supported by numerous studies. In this context, Coles

(2001) introduced the concept of extreme value theory, which focuses on studying the maximum and minimum occurrences50

in a dataset. These extreme values are typically located at the tail of the distribution and are often disregarded in analysis

or modeling due to their perceived complexity and low number. However, extreme value theory provides a framework to

better understand and model such events. Extreme analysis is a method employed to assess the severity of natural phenomena,

encompassing factors such as maximum-minimum rainfall, temperature extremes, maximum-minimum wind speeds, and more.

In their study, Busababodhin and Kaewmun (2015); Pangaluru et al. (2018); Wang and Xuan (2020) developed an extreme value55
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model to analyze the probability of extreme events using data from Thailand. They also explored methods for selecting the

most suitable extreme value model and determining return periods and return levels. Bhakar et al. (2006) studied the analysis

of the frequency of one day maximum rainfall and two to five days consecutive maximum rainfall at Banswara District in

southern Rajasthan of India. Three distributions, the normal, log-normal and Gumbel distributions, were used in the analysis

for this data and compared with the Chi-square value, the results showed that the Gumbel distribution was the best fit for the60

region and it was taken for the return level associated with return periods varying from 2 to 100 years. Several studies have

investigated the frequency of maximum consecutive days rainfall, and they support the use of extreme value distribution. These

studies employed maximum likelihood estimation (MLE) and verified model suitability using tests such as the Kolmogorov-

Smirnov (KS) test and Anderson-Darling (AD) test. Examples of these studies include (Kwaku and Duke, 2007; Patel et al.,

2011; Manikandan and Kumar, 2015; Sabarish et al., 2017).65

The current study aimed to fill the research gap by examining the consecutive days’ maximum rainfall data in Thailand.

This data set was chosen due to the frequent occurrence of flooding caused by continuous heavy rainfall. To the best of our

knowledge, no previous studies have been conducted on this specific type of data in Thailand. In this study, we aim to identify

critical areas along the Chi watershed and evaluate their severity for use in planning, resolving flooding, and pre-evaluating

damage. To achieve this, we applied the non-stationary Generalized Pareto Distribution (NS GPD) models on the maximum70

cumulative rainfall data observed for consecutive rainy days of 2, 3, 4, 5, 6, and 7 days at 18 stations along the Chi watershed

in the northeastern region of Thailand. Section 2 provides an overview of the data and climatology of the Chi watershed in

Thailand. Section 3 describes the materials and methods used in the study, including the NS GPD modelling, which considers

five models. In Section 4, the results of the study are presented, including isopluvial maps of the return levels and their changes

over time, which were predicted from the best model. Discussions are provided in Section 5, followed by a conclusion in75

Section 6. Technical specifics, tables, and figures are included in the Supplementary Materials.

2 Data

In this study, we analyzed the maximum cumulative rainfall on consecutive rainy days (2, 3, 4, 5, 6, and 7) data observed by

the Thai Meteorological Department (TMD) (Meteorological, 2021) from 1984 to 2022. The rainfall data ranged from 115.0

to 330.0 mm, with an average range of 17.7 to 114.44 mm for all stations. Descriptive statistics for the maximum cumulative80

rainfall on consecutive rainy days (2, 3, 4, 5, 6, and 7) for some stations are presented in Table 1, where N∗ is the number of

consecutive rainfalls between 1984 and 2022. We used the maximum cumulative rainfall for consecutive rainy days to select

the number of consecutive rainy days for analysis as in Eq. (1).

CONS-n =

n∑
i=1

(Xi), (1)

where Xi > 0;Xi is rainfall on consecutive rainy days, such as in the case n= 2 then CONS-2 =X1 +X2 when X1,X2 is85

rainfall on one and two consecutive rainy days, respectively. Figure 3 displays the density curves for cumulative rainfall on
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consecutive rainy days, indicating that all stations are positively skewed and have heavy tails. Further details are provided in

the supplementary material (SM).

Figure 1 displays the locations of the 18 meteorological stations situated along the Chi watershed in the northeastern region

of Thailand, covering 12 provinces. The detailed latitude and longitude of these stations are provided in Table S1 (moved to90

the Supplementary Materials). The Chi watershed falls within the tropical area, spanning between latitudes 13o00′ to 18o00′

and longitudes 101o00′ to 105o00′.

Figure 1. Location of all 18 meteorological stations along the Chi watershed in northeastern region of Thailand.
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Table 1. Descriptive Statistics of Maximum Cumulative Rainfall on Consecutive Rainy Days (2, 3, 4, 5, 6 and 7 days) for Selected Stations

in Northeast Thailand, with Top Three Maximum Values Highlighted. N∗ Represents the Number of Consecutive Rainy Days (mm). Bold

in the rows are the top three maximum rainfall values.

Data Station N* Min Mean Median Max Data Station N* Min Mean Median Max

CONS-2 48353 377 0.20 18.05 10.80 115.00 CONS-5 48353 91 5.50 54.03 45.50 232.40

48381 390 0.11 20.12 13.16 155.80 48381 87 5.02 62.13 53.80 216.60

48384 403 0.02 21.79 14.10 194.00 48384 89 6.60 69.32 61.01 188.80

48382 436 0.02 23.29 15.55 164.80 48382 68 3.60 79.95 68.95 228.00

48390 180 0.02 21.93 14.25 171.40 48390 34 9.20 76.55 62.90 228.40

48403 367 0.02 20.72 12.20 201.60 48403 70 3.60 52.11 37.00 211.00

48405 399 0.02 23.26 15.70 135.10 48405 59 2.20 60.75 62.30 182.10

48404 401 0.21 21.52 14.30 141.80 48404 73 7.90 68.50 60.10 228.30

48407 364 0.11 22.69 13.80 129.40 48407 74 8.00 70.02 70.00 227.60

CONS-3 48353 218 0.21 33.70 23.90 147.80 CONS-6 48353 63 11.20 68.25 51.30 304.20

48381 199 0.80 36.74 28.30 273.60 48381 50 16.60 76.58 68.85 159.30

48384 220 0.80 34.66 27.65 174.70 48384 47 10.30 77.82 62.90 289.80

48382 210 0.60 38.95 29.45 189.10 48382 46 12.00 84.72 70.65 210.40

48390 90 0.32 30.76 22.55 151.30 48390 30 11.50 100.20 73.10 303.00

48403 231 1.00 36.65 28.30 163.40 48403 61 9.00 72.67 73.90 152.20

48405 226 0.82 35.98 26.75 212.80 48405 58 23.40 82.34 69.25 188.80

48404 219 0.51 42.30 33.90 182.10 48404 43 14.43 72.56 65.10 177.90

48407 208 1.70 43.53 33.35 259.40 48407 56 10.30 96.43 81.00 234.40

CONS-4 48353 158 2.50 42.61 31.60 202.20 CONS-7 48353 377 5.40 81.62 73.95 211.50

48381 151 3.00 48.80 44.20 173.30 48381 26 24.00 82.54 68.55 228.50

48384 112 2.40 47.48 37.20 156.90 48384 26 25.60 89.69 79.80 200.20

48382 121 1.61 57.15 51.10 212.10 48382 23 24.30 101.16 88.40 243.60

48390 47 1.12 56.53 44.00 157.20 48390 17 18.80 70.19 73.50 124.10

48403 128 4.50 46.68 38.46 207.90 48403 22 19.40 92.46 70.05 270.10

48405 136 4.00 57.35 49.95 183.30 48405 38 21.40 98.55 107.00 272.60

48404 118 4.40 66.07 52.30 330.00 48404 26 36.40 99.58 82.55 195.90

48407 116 5.00 51.84 41.10 160.70 48407 34 28.80 114.44 112.00 250.50

Table 1 presents descriptive statistics of maximum cumulative rainfall on consecutive rainy days (CONS) for durations of 2,

3, 4, 5, 6, and 7 days. The results indicate that the stations Chaiyaphum (48403), Khon Kean (48381), Roi Et Agromet (48404),

Kalasin (48390), Kalasin (48390), and Roi Et (48405) recorded the highest maximum cumulative rainfall for CONS-2, CONS-95
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3, CONS-4, CONS-5, CONS-6, and CONS-7, respectively. The range of maximum CONS values for 2, 3, 4, 5, 6, and 7 days is

between 115.00 mm and 330.00 mm, while the average of CONS for the same durations ranges between 17.7 mm and 114.44

mm.

Table 2. Comparison of Mann-Kendall Test Results for Consecutive Rainy Days (CONS) of 2, 3, 4, 5, 6, and 7 Days at Each Station. *:

p<0.1, **:p<0.05 in Mann-Kendall Test.

Station ID CONS-2 CONS-3 CONS-4 CONS-5 CONS-6 CONS-7

48353 NT NT NT T** NT NT

48354 NT T** NT NT NT NT

48381 NT NT T* T** NT NT

48383 NT NT T NT NT NT

48390 NT NT T* T** NT NT

48403 T** NT NT NT T** NT

48404 T* NT NT NT NT NT

48408 NT NT T* NT T** NT

48409 T* T* NT NT T** NT

48435 NT NT NT T NT NT

48434 NT T** NT T* T** NT

Note: NT means no trend in data and T mean there is trend in data.
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Figure 2. Scatter and line plot showing the trends for CONS-2 and CONS-3 (unit:mm) at the Chaiyaphum meteorological station in the Chi

watershed, Thailand.
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Table 2 provides a comparison of Mann-Kendall (MK) test results for consecutive (CONS) rainy days of durations 2, 3, 4, 5,

6, and 7 days at some selected stations. Out of 18 stations, nine stations, which represent 50% of the total stations, show a trend100

in the CONS-2 to CONS-3 dataset, except for CONS-7. This trend is more evident in Figure 2, which displays the trends in the

CONS-2 and CONS-3 for the Chaiyaphoom station. Consequently, the functional form of parameters for time-dependent non-

stationary generalized Pareto models is included. Table 3 provides details of the five functional models employed for CONS

rainy days.;

3 Materials and Methods105

3.1 Time Dependent Models for GPD

The block maxima method is limited for analyzing maximum rainfall data each year. Hence, the peak-over-threshold (POT)

method or generalized Pareto distribution (GPD) is commonly employed for this purpose (Coles, 2001). The POT method

involves selecting observations above a specified threshold value (u) from the data variable X , and expressing the exceedances

of X over u as Y =X −u. The GPD function is then defined as in Eq. (2):110

H(y) = 1−
(
1+

ξy

σ̃

)−1/ ξ

, (2)

defined on y > 0, where σ̃ = σ+ ξ(u−µ) is the scale parameter and −∞< ξ <∞ is the shape parameter. In the special

case ξ = 0 , leading to

H(y) = 1− exp(− y

σ̃
), y > 0 (3)

The generalized Pareto distribution (GPD) can take on one of three forms depending on the sign of the shape parameter, ξ.115

Specifically, when ξ > 0, the distribution has no upper limit, while ξ < 0 indicates an upper bounded distribution, and ξ = 0

represents an unbounded exponential distribution (Senapeng and Busababodhin, 2017). This notation for the shape parameter is

commonly used in statistical literature (see more details in (Coles, 2001), (Hosking, 1990) and some refs from Hess recently).

Grouping extreme values based on their independence can be achieved by clustering the values that exceed a certain thresh-

old, which makes the generalized Pareto distribution (GPD) a suitable method for analysis (Coles, 2001). As a result, this120

method was selected to model the maximum cumulative rainfall on consecutive rainy days. In addition, the non-stationary

models considered in this study, consisting of five models for the GPD and presented in Table 3, are of great importance in

predicting the behavior of extreme precipitation. Stationary assumptions can lead to inaccurate results when the underlying con-

ditions are changing over time. Therefore, the use of non-stationary models is crucial for accurately capturing the time-varying

nature of extreme precipitation, especially in the context of climate change. Consequently, the application of non-stationary125

models enables a more robust understanding of extreme precipitation patterns and supports informed decision-making for

engineering structures and reservoir management in the Chi watershed of Thailand.
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(a) CONS-2(unit:mm). (b) CONS-3(unit:mm).

(c) CONS-4(unit:mm). (d) CONS-5(unit:mm).

(e) CONS-6(unit:mm). (f) CONS-7(unit:mm).

Figure 3. Ridge line plots showing the cumulative rainfall on consecutive rainy days (CONS) in mm for seven stations include Khon Kaen,

Tha Phra Agromet., Maha Sarakham, Kalasin, Chaiyaphum, Roi Et, and Roi Et Agromet. in the Chi watershed, Thailand.

Table 3. Functional form of parameters for time dependent non-stationary extreme value models, represented by GPDab where a represents

the scale parameter (σ) and b represents the shape parameter (ξ). The stationary model is represented by GPD00.

Models σ ξ

GPD00 Constant Constant

GPD10 σ = exp(σ0 +σ1 × (Y ear− t0 +1)) Constant

GPD20 σ = exp(σ0 +σ1 × (Y ear− t0 +1)+σ2 × (Y ear− t0 +1)2) Constant

GPD01 Constant ξ = ξ0 + ξ1 × (Y ear− t0 +1))

GPD11 σ = exp(σ0 +σ1 × (Y ear− t0 +1)) ξ = ξ0 + ξ1 × (Y ear− t0 +1))

GPD21 σ = exp(σ0 +σ1 × (Y ear− t0 +1)+σ2 × (Y ear− t0 +1)2) ξ = ξ0 + ξ1 × (Y ear− t0 +1))
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3.2 Mann-Kendall Test for Trend

We considered Mann-Kendall(MK) test of trend, to compare with non-stationary GPD model. It is commonly used to detect

monotonic trends in time-series data. In MK test, the null hypothesis is H0: no monotone trend in hydro logic series Xt versus130

the alternative hypothesis is H1: monotonic trend in Xt without specification of the sign of the trend. This hypothesis test is

two-tailed, and so we reject H0 with α level if |Z|> zα/2, where Z is a normalized MK test statistic calculated from data

(Naghettini, 2017) , and zα/2 is 100× (1− zα/2) percentile of the standard normal distribution (Wilks, 2011). A R package

"trend" (Pohlert et al., 2016) was used to execute the MK test (Prahadchai et al., 2022).

3.3 Threshold Selection Method135

The selection of an appropriate threshold is a crucial factor in statistical inference of rare events. This study compares three

different threshold selection methods and their effectiveness. The first approach involves selecting the threshold based on

meteorological conditions, where rainfall greater than 35 mm is considered indicative of heavy rainfall. The second approach

uses the 90th percentile of the rainfall data set as the threshold. The third approach involves using the mean residual life (MRL)

plot to select a threshold for the GPD or point process models. These approaches are analyzed theoretically and compared to140

existing procedures through an extensive simulation study, and are then applied to a data set of consecutive rainy days (CONS),

where the underlying extreme value index is assumed to vary over time.

3.4 Parameter Estimation and Model Choice

The parameters in the generalized Pareto distribution (GPD) are commonly estimated using either the maximum likelihood

method (Coles, 2001) or the L-moment method (Hosking, 1990). In the present study, the latter method is employed due to its145

higher efficiency in small samples compared to the maximum likelihood estimator (Naghettini, 2017; Papukdee et al., 2022).

Specifically, the "eva"(Bader and Yan, 2016), "extRemes" (Gilleland and Gilleland, 2015), "ismev" (Stephenson, 2011), and

"lmom" (Hosking, 2009) packages in R are utilized for this purpose (Hosking, 2022).

Assuming observations (X1,X2, ...,Xn) follow the GPD, the negative log likelihood function is

ℓ(σ,ξ) =−klogσ−
(
1+

1

ξ

) k∑
i=1

log
(
1+ ξ

yi
σ

)
,150

provided (1+ ξ(yi/σ))> 0 for i= 1,2, ..,k; otherwise, ℓ(σ,ξ) =−∞. In the case ξ = 0 the log-likelihood is obtained from

Eq. (3) as,

ℓ(σ,ξ) =−klogσ− 1

σ

k∑
i=1

yi.

The L-moment estimator (L-ME) is widely used in analyzing skewed data, such as extreme rainfall and flood frequency.155

Although the details of the L-ME are not discussed here, we note that it is considered a standard method in such analyses. To
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calculate the L-ME of the generalized Pareto distribution (GPD), we utilize the R package "lmom" developed by (Hosking,

2009). However, one potential disadvantage of the L-ME is that Newton-Raphson type algorithms used to solve systems of

L-moments equations may sometimes fail to converge (Dupuis and Winchester, 2001; Papukdee et al., 2022).

3.5 Model Diagnostics and Goodness-of-Fit Test160

The performance of the marginal probability is evaluated by conducting goodness-of-fit statistical tests. In this study, two tests

- the Kolmogorov-Smirnov and Anderson-Darling (AD) tests - are used for this purpose. The Kolmogorov-Smirnov (K-S)

test is preferred as it does not make any assumptions about the distribution of data (Glen et al., 2001). This method involves

comparing the maximum gap between the experimental cumulative distribution function and the theoretical cumulative distri-

bution function. The K-S test (Dn,nτ ) is used to determine whether the parameters are acceptable or not, and is given by Glen165

et al. (2001). To perform the goodness-of-fit test, a null hypothesis is applied, which is accepted only when the gap between

the theoretical and observed values is smaller than expected for the given sample. On the other hand, the Anderson-Darling

test assesses whether a sample comes from a specified distribution. It assumes that, when given a hypothesized underlying

distribution and assuming that the data does arise from this distribution, the cumulative distribution function (CDF) of the data

can be assumed to follow a uniform distribution. The data is then tested for uniformity using a distance test (Shapiro, 1990).170

The test statistic can then be compared against the critical values of the theoretical distribution. Notably, no parameters are

estimated in relation to the cumulative distribution function in this case.

3.6 Return Level

Return levels or quantiles are used to interpret extreme values in terms of their probability of return period. Once a suitable

model has been defined, return levels can be calculated as follows:175

ẐT = u+
σ̂

ξ̂

[
(Tnyλ̂u)

ξ̂
]
. (4)

It is a T-year return level, when ny is the number of observations per year and it corresponds to the t-observation return level

t= T ×ny , and when ξ = 0, the return level can be calculated as (Coles, 2001),

ẐT = u+ σ̂log(Tnyλ̂u), (5)

when λ̂u = k/n is the sample proportion of points exceeding u.180

4 Results

In this study, the threshold method was employed to select the appropriate threshold u. To select the appropriate threshold u, we

employed the threshold method in this study. The threshold values were determined based on the meteorological critical value

(Meteorological, 2021), the 90th percentile of the data set, and the mean residual life (MRL) plot. Tables 4 and 5 present the

estimated parameters for these models, which were obtained using both the maximum likelihood and linear moment methods.185
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Table 4. Parameter estimates and standard error (SE) with thresholds (u), number of exceedances nyi>u, and goodness-of-fit test results(p-

values) for the maximum cumulative rainfall of consecutive rainy days (2, 3 and 4) at selected stations.

Data Station ID Model u nyi>u σ(SE) ξ(SE) KS(p-value) AIC BIC

CONS-2 48353 GPD00 42b 36 19.9(6.70) 0.07(0.29) 0.14(0.41) 297 305

48381 GPD00 50b 39 14.3(3.60) 0.24(0.19) 0.11(0.70) 309 317

48384 GPD00 52b 41 21.2(4.52) 0.08(0.14) 0.11(0.61) 343 351

48382 GPD00 55b 44 15.2(3.22) 0.10(0.14) 0.08(0.87) 341 349

48390 GPD00 48b 18 28(9.58) 0.01(0.24) 0.12(0.93) 161 167

48403 GPD00 51b 37 19.6(4.48) 0.11(0.16) 0.09(0.90) 307 314

48405 GPD00 57b 40 30.3(6.66) -0.27(0.15) 0.08(0.93) 335 343

48404 GPD00 50b 40 28(5.94) -0.17(0.14) 0.11(0.63) 337 345

48407 GPD00 53b 37 39.3(8.65) -0.45(0.16) 0.12(0.63) 316 324

CONS-3 48353 GPD00 35a 77 43.3(6.88) -0.29(6.88) 0.05(0.95) 692 699

48381 GPD00 72.5b 20 14.2(6.88) 0.81(6.88) 0.10(0.95) 183 189

48384 GPD00 35a 94 20(3.37) 0.19(3.37) 0.04(0.97) 791 798

48382 GPD00 35a 93 29.2(4.50) 0.05(4.50) 0.06(0.82) 828 835

48390 GPD00 67c 10 27.8(13) -0.10(13) 0.13(0.97) 88 93

48403 GPD00 35a 94 35.2(4.87) -0.15(4.87) 0.05(0.94) 832 839

48405 GPD00 35a 86 35.2(5.09) -0.05(5.09) 0.04(0.99) 779 785

48404 GPD00 35a 106 39.3(5.28) -0.13(5.28) 0.04(0.98) 966 973

48407 GPD00 35a 101 38(5.08) -0.02(5.08) 0.05(0.93) 936 943

CONS-4 48353 GPD00 89.9b 16 15.6(6.32) 0.28(0.32) 0.11(0.97) 133 139

48381 GPD01 35a 89 41.1(6) ξ0 -0.11(0.104), 0.07(0.66) 809 815

ξ1 = -0.01(0.001)

48384 GPD00 35a 58 48(8.87) -0.28(0.13) 0.07(0.89) 536 107

48382 GPD00 106.5b 12 37.5(14.90) -0.18(0.27) 0.16(0.85) 111 116

48390 GPD00 95c 10 74.8(0.001) -1.20(0.001) 0.21(0.74) 78 79

48403 GPD00 35a 70 32.1(5.96) 0.08(0.14) 0.06(0.96) 642 648

48405 GPD00 95c 24 35.1(10) -0.27(0.20) 0.09(0.98) 209 215

48404 GPD00 127.1b 12 51.2(25.6) 0.17(0.41) 0.19(0.74) 127 132

48407 GPD00 116.3b 12 22.1(12.3) -0.35(0.48) 0.18(0.81) 94 99

In the case of nyi>u < 30, parameter estimates obtained using the linear moment method. The threshold values ua, ub, and uc represent the meteorological critical value,

the 90th percentile of the data set, and the mean residual life (MRL) plot, respectively.
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Table 5. Parameter estimates and standard error (SE) with thresholds (u), number of exceedabces nyi>u, and goodness-of-fit test results(p-

values) for the maximum cumulative rainfall of consecutive rainy days (5, 6 and 7) at selected stations.

Data Station ID Model u nyi>u σ(SE) ξ(SE) KS(p-value) AIC BIC

CONS-5 48353 GPD00 35a 57 39(7) -0.02(0.11) 0.10(0.54) 532 537

48381 GPD00 110c 11 38.8(20.2) -0.06(0.42) 0.13(0.98) 105 110

48384 GPD00 35a 65 70.9(10.1) -0.49(0.09) 0.07(0.86) 623 628

48382 GPD00 35a 56 72.5(12.8) -0.27(0.12) 0.05(0.99) 565 570

48390 GPD00 35a 25 81.2(21.9) -0.32(0.19) 0.09(0.97) 258 261

48403 GPD00 90c 11 34.2(16.1) -0.004(0.36) 0.16(0.87) 104 108

48405 GPD00 95c 7 54.1(35.6) -0.52(0.57) 0.17(0.96) 67 71

48404 GPD00 100c 13 43.3(19.4) -0.12(0.35) 0.11(0.98) 125 129

48407 GPD00 110c 12 20.2(10.3) 0.38(0.43) 0.12(0.97) 109 114

CONS-6 48353 GPD00 139.6b 7 20.8(12.8) 0.47(0.51) 0.20(0.86) 67 71

48381 GPD00 35a 43 87.7(17.3) -0.68(0.16) 0.10(0.71) 416 420

48384 GPD00 120c 10 29.2(16.4) 0.05(0.46) 0.15(0.94) 93 96

48382 GPD00 35a 44 69.3(14) -0.3(0.14) 0.07(0.98) 438 441

48390 GPD00 35a 24 93.3(33) -0.09(0.29) 0.11(0.92) 265 268

48403 GPD10 100c 11 σ0 = 3.89(0.001), -1.12(0.001) 0.15(0.96) 84 85

σ1 = 0.002(0.01)

48405 GPD00 35a 53 76.6(14.8) -0.43(0.14) 0.09(0.75) 524 528

48404 GPD00 110b 8 43(24.2) -0.55(0.48) 0.19(0.88) 71 75

48407 GPD00 35a 48 112.8(25.2) -0.49(0.18) 0.11(0.5) 507 511

CONS-7 48353 GPD00 35a 35 66.4(15) -0.26(0.15) 0.07(0.98) 349 352

48381 GPD00 35a 21 77.1(23.6) -0.27(0.22) 0.09(0.98) 217 219

48384 GPD00 35a 20 190.8(0.01) -1.15(0.01) 0.29(0.06) 200 135

48382 GPD00 125c 8 39(21.7) -0.06(0.42) 0.19(0.86) 77 79

48390 GPD00 35a 14 101.4(0.05) -1.13(0.01) 0.15(0.88) 121 124

48403 GPD00 100c 8 99.9(55.8) -0.48(0.46) 0.2(0.82) 86 88

48405 GPD00 115c 11 39.2(17.8) 0.04(0.34) 0.14(0.95) 108 111

48404 GPD00 35a 26 115.5(35.1) -0.68(0.26) 0.16(0.46) 267 270

48407 GPD00 140c 8 57.3(34.8) -0.37(0.51) 0.18(0.90) 79 82

In the case of nyi>u < 30, parameter estimates obtained using the linear moment method. The threshold values ua, ub, and uc represent the meteorological critical value,

the 90th percentile of the data set, and the mean residual life (MRL) plot, respectively.
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Parameter estimation employed both maximum likelihood estimator (MLE) and linear moment estimator (L-ME), depending

on the number of exceedances (nyi>u). The MLE was chosen when nyi>u ≥ 30, while L-ME was used when nyi>u < 30.

Standard errors were calculated using nonparametric bootstrap.

The data suitability for the Generalized Pareto Distribution (GPD) was confirmed via goodness-of-fit tests. Model selection

relied on minimizing Akaike Information Criterion (AIC) or Bayesian Information Criterion (BIC), while ensuring that p-190

values from KS and AD tests were greater than 0.05 (see the details in Tables 4 and 5, p-values: 0.06 to 0.994). The estimated

scale parameter range: (34.92, 124.45) and shape parameter range: (-0.10, 0.16). These findings strongly support the GPD as a

suitable model for analyzing maximum cumulative rainfall on consecutive rainy days.
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Figure 4. Quantile-quantile (QQ) plot for the Chaiyaphum meteorological station in the Chi watershed, Thailand. The x-axis of the QQ plot

represents the theoretical quantiles, while the y-axis represents the observed quantiles.
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Table 6. Estimated return level and standard error (SE) in different years for maximum cumulative rainfall for two consecutive rainy

days(CONS-2). The thick values present the first three stations which have maximum cumulative rainfall return level.

Station ID 2-year (SE) 5-year (SE) 25-year (SE) 50-year (SE) 100-year (SE)

48353 141.52(0.80) 167.48(1.44) 217.64(3.97) 241.18(5.83) 265.97(9.08)

48350 125.34(0.80) 146.76(1.41) 187.25(3.35) 205.88(5.96) 225.28(7.54)

48354 221.46(0.92) 304.59(1.89) 527.72(5.86) 666.84(9.01) 841.66(15.23)

48360 87.68(1.70) 87.82(3.16) 87.88(6.81) 87.89(8.29) 87.89(13.23)

48381 159.21(0.92) 201.85(1.73) 304.67(4.64) 363.23(7.45) 432.75(11.70)

48384 162.49(0.94) 191.47(1.93) 248.09(5.31) 274.93(7.03) 303.37(10.28)

48383 154.03(0.87) 182.71(1.87) 238.82(4.98) 265.46(7.64) 293.71(11.06)

48382 139.06(1.02) 162.56(1.78) 210.01(3.77) 233.16(6.24) 258.14(7.83)

48390 172.74(1.31) 200.58(2.43) 250.53(7.55) 272.45(11.37) 294.64(16.72)

48403 160.35(1.02) 191.47(2.24) 254.82(5.06) 285.96(8.79) 319.7(12.39)

48405 133.59(1.12) 141.28(2.22) 150.93(4.22) 153.95(6.25) 156.45(9.25)

48404 134.4(1.01) 145.68(2.06) 161.62(4.11) 167.23(5.91) 172.20(8.43)

48408 121.32(1.12) 126.09(2.56) 131.31(4.48) 132.74(6.80) 133.83(9.17)

48407 127.24(1.30) 131.43(2.21) 135.65(4.68) 136.71(6.69) 137.49(8.85)

48409 150.81(1.11) 176.01(2.16) 225.72(4.62) 249.48(7.36) 274.79(8.95)

48431 119.09(0.88) 129.82(1.84) 145.85(4.73) 151.79(9.35) 157.21(14.21)

48435 96.95(0.60) 100.02(1.24) 102.99(3.34) 103.70(5.80) 104.21(8.39)

48434 263.25(0.92) 299.85(2.09) 362.16(5.37) 388.25(9.09) 413.9(12.12)
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Table 7. the estimated return level and its standard error (SE) for maximum cumulative rainfall on seven consecutive rainy days (CONS-7)

in different years. The thick values indicate the first three stations with the highest maximum cumulative rainfall return level.

Stations 2-year (SE) 5-year (SE) 25-year (SE) 50-year (SE) 100-year (SE)

48353 239.86(6.95) 249.33(7.45) 261.26(8.11) 265.02(8.32) 268.14(8.50)

48350 151.64(5.12) 152.81(5.34) 153.84(5.59) 154.06(5.65) 154.21(5.70)

48354 588.32(19.59) 708.74(23.78) 956.11(32.03) 1078.72(35.96) 1212.24(40.14)

48360 177.94(6.61) 177.98(6.64) 177.99(6.66) 177.99(6.66) 177.99(6.67)

48381 266.74(10.92) 277.53(12.20) 291(14.21) 295.2(14.98) 298.67(15.71)

48384 200.08(8.27) 200.16(8.77) 200.19(9.38) 200.19(9.56) 200.19(9.70)

48383 276.15(5.21) 290.8(5.32) 311.88(5.41) 319.42(5.43) 326.17(5.44)

48382 306.49(6.76) 330.72(6.98) 369.93(7.20) 385.6(7.26) 400.58(7.29)

48390 124.03(4.03) 124.07(4.04) 124.09(4.05) 124.09(4.05) 124.09(4.05)

48403 290.94(14.48) 295.74(16.78) 300.37(20.90) 301.49(22.69) 302.28(24.49)

48405 349.18(6.32) 394.6(6.61) 478.58(6.92) 516.47(7.00) 555.44(7.07)

48404 202.29(7.33) 203.17(7.75) 203.84(8.25) 203.96(8.40) 204.04(8.51)

48408 432.33(4.74) 504.83(4.81) 650.26(4.87) 720.84(4.88) 796.72(4.89)

48407 269.54(4.73) 275.84(4.77) 282.76(4.8) 284.66(4.8) 286.13(4.80)

48409 657.87(9.17) 837.1(9.98) 1261.05(11.13) 1498.56(11.53) 1777.61(11.89)

48431 217.51(8.56) 220.64(9.46) 223.65(10.84) 224.37(11.34) 224.88(11.81)

48435 167.6(5.92) 168.79(6.21) 169.77(6.53) 169.97(6.61) 170.11(6.67)

48434 183.85(5.40) 185.01(5.57) 185.96(5.74) 186.15(5.78) 186.27(5.80)

The maximum cumulative rainfall return level for CONS-7 was estimated for different years using the equations given in

Eq.(4) - Eq.(5), and the results are presented in Table 7. The first three stations with the highest maximum cumulative rainfall195

return level for CONS-7 are denoted by bold values in the table. For CONS-2, the estimates of the maximum cumulative rain-

fall return level for different return periods are shown in Table 6 for three stations, namely Udon Thani (48354), Loei (48353),

and Kalasin (48390). The 48354 station in Udon Thani province was found to have the highest cumulative rainfall return levels

for all return periods compared to the other stations.
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(c) Return level plot CONS-4

5e−03 5e−02 5e−01 5e+00

0
2
0
0

4
0
0

6
0
0

Return Period

R
e
tu

rn
 L

e
v
e
l

Return Level Plot

(d) Return level plot CONS-5
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(f) Return level plot CONS-7

Figure 5. The return level plot (profile likelihood method) for Chaiyaphum meteorological station in the Chi watershed, Thailand.

The estimates of the maximum cumulative rainfall return level for CONS-7 were calculated using Eq.(4) - Eq.(5) and are

presented in Table 7. The table shows the estimates for three stations, namely Udon Thani (48354), Chaiyaphum (48403) and

Sisaket (48409) for different return periods. The Udon Thani station had the highest cumulative rainfall return levels for all

return periods than the other stations. For CONS-3, CONS-4, CONS-5 and CONS-6, the results of estimates of the maximum

cumulative rainfall return level can be found in the supplementary materials.205

Since Chaiyaphum Station is the origin station of the Chi watershed and a direct station, therefore we present the quantile

and return level plots of this station in Figure 4-5. From Figure 4 shows points falling on or near the diagonal, indicating that

the data follows the assumed distribution. Figure 5 illustrates the return level for return periods ranging from 0.005 to 5 years,

determined using the profile likelihood method at Chaiyaphum Station.
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To enhance the visualization of the results, return level maps were generated using the Q-Geographic Information System210

(Q-GIS) program with the Inverse Distance Weighting (IDW) interpolation method. The IDW interpolation method assigns

weights to the sample points based on their distance from the unknown point being interpolated. Figures 6 and 7 show the

return level maps for CONS-2 and CONS-7, respectively.

Figure 6. Estimated return level of maximum cumulative rainfall for two consecutive rainy days in the Chi watershed for 2, 5, 25 and 50

year periods.
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Figure 7. Estimated return level of maximum cumulative rainfall for seven consecutive rainy days in the Chi watershed for 2, 5, 25 and 50

year periods.

Figures 6 and 7 present the spatial distribution of the estimated return levels of maximum cumulative rainfall for consecutive

rainy days of 2 and 7 days, respectively, for the return periods of 2, 5, 25 and 50 years. The results for the other consecutive215

rainy days (3, 4, 5 and 6) are presented in the supplementary materials. From the figures, it can be observed that Udon Thani

(48354), Chaiyaphum (48430), Maha Sarakham (48382), Tha Phra Agromet (48384), Roi Et (48405) and Sisaket (48409) had

the highest return levels for all return periods of CONS-2 and CONS-7. This information can be useful for decision-making

related to disaster risk management, such as identifying areas that are more vulnerable to extreme rainfall events and designing

appropriate adaptation and mitigation strategies.220

In addition, it can be observed that there is a significant difference in the return level for the 100-year period as compared to

the other return periods in the figures of the maximum cumulative rainfall return level forecast for the seven consecutive days

of rainfall data. The return level increases every year for all stations, indicating the importance of future rainfall management

planning. These findings reveal the risk of flooding areas in the Chi watershed, including provinces such as Udon Thani,

Chaiyaphum, Khonkaen, Maha Sarakham, Roi Et, and Sisaket. The figures were generated using the Q-GIS program, and they225

provide valuable insights into the spatial distribution of extreme rainfall events in the study area.
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5 Discussion

In this study, the Generalized Pareto Distribution (GPD) parameters were estimated using both Maximum Likelihood Estima-

tion (MLE) and L-moment Estimation (L-ME) methods. Our decision to use MLE when the number of nyi>u ≥ 30 and L-ME

otherwise aligns with previous studies (Dupuis and Winchester, 2001; Papukdee et al., 2022), which also demonstrated the230

efficacy of these methods for different sample sizes. The consistency of our p-values from KS and AD tests with these studies

further validates our modeling process.

We selected a threshold based on meteorological conditions, specifically when rainfall exceeded 35 mm, indicating heavy

rainfall (Meteorological, 2021). This threshold, while higher than those used in some earlier studies, was deemed appropriate

for our focus on extreme rainfall events. The scale and shape parameters ranges estimated in our study are consistent with235

previous works in similar climatic zones (Phoophiwfa et al., 2023), supporting the applicability of the GPD for extreme rainfall

in our study area.

Our analysis pinpointed Udon Thani province as having the highest cumulative rainfall return levels across all return periods,

signaling a heightened risk of flooding. This finding holds significant implications for future rainfall management planning,

echoing the importance emphasized in prior research advocating for region-specific flood risk assessment (Prahadchai et al.,240

2022). Expanding on previous work, our study presents estimated maximum cumulative rainfall return levels for 2-day (CONS-

2) and 7-day (CONS-7) events at selected stations. This detailed analysis offers guidance for targeted flood mitigation efforts,

particularly in regions such as Udon Thani, Chaiyaphum, and Sisaket identified as elevated risk areas.

The utilization of Q-Geographic Information System (Q-GIS) to create return level maps via the inverse distance weight

(IDW) interpolation method provides a visually intuitive depiction of flood risk spatial distribution. While common in geo-245

graphic analysis, this application in mapping extreme rainfall return levels is, to our knowledge, one of the pioneering instances

(Flenniken et al., 2020).

Our findings emphasize the necessity for future rainfall management planning specifically within the Chi watershed. This

study can be extended beyond the Chi watershed by examining the potential impact of its findings on policy formulation,

infrastructure planning, and disaster mitigation strategies in regions confronted with analogous challenges. Broadening the250

scope, the research probes the implications of its results for the domains of hydrology, climatology, and environmental science.

Numerous organizations, including prominent bodies like the IPCC (?) and UNFCCC (?), are increasingly acknowledging

the pervasive challenges posed by climate change. This global phenomenon manifests in widespread impacts, affecting tem-

peratures, and altering the frequency and intensity of extreme weather events. Among these organizations (Bridhikitti et al.,

2023).255

Nonetheless, our study acknowledges certain limitations, notably the assumption of stationary in rainfall patterns, which

may be influenced by climate change. Future research could delve into the impact of changing climate conditions on extreme

rainfall events, thereby refining models to accommodate a warming climate.
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6 Conclusion

This study set out to evaluate extreme rainfall events in the Chi watershed in Thailand, with the aim of applying extreme value260

theory to predict future rainfall patterns. We analyzed maximum cumulative rainfall data from 1984 to 2018 and fitted the

Generalized Pareto Distribution (GPD) to the data. This model was determined to be appropriate through goodness-of-fit tests,

providing a robust method for analyzing extreme rainfall events in the region. Our results reveal that Udon Thani, Chaiyaphum,

Maha Sarakham, Tha Phra Agromet, Roi Et, and Sisaket provinces had the highest return levels for CONS-2 and CONS-3,

suggesting these areas are at high risk of flooding.265

These findings underscore the importance of forecasting and planning for extreme rainfall events in the Chi watershed.

We found that even short periods of continuous rainfall could lead to flash flooding, highlighting the need for effective water

management in the region. We also developed 2D maps, which provide a practical tool for visualizing at-risk areas and aiding

in the planning of soil and water conservation measures, dam construction, and irrigation and drainage work.

The implications of this study extend beyond academia. Our findings provide valuable insights for governmental agencies,270

private organizations, and individuals alike, empowering them to design more effective flood management strategies, thereby

reducing the risk and potential impact of flooding in their communities. In the broader context, managing extreme rainfall

events and mitigating flood risks are crucial for safeguarding property, preserving ecosystems, and ultimately saving lives.

Future research should explore spatial analysis to determine interdependencies among different regions and use copula

functions for correlation analysis. Such developments could provide a more nuanced understanding of the region’s flood risk275

and further enhance our ability to predict and prepare for extreme rainfall events.

In conclusion, this study underscores the urgency of focusing on extreme rainfall events in our fight against the increasing

threat of flooding. With climate change intensifying, the tools and strategies we develop today will be instrumental in managing

the water-related challenges of tomorrow.
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