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Abstract. Much of the stochastic analysis of flow field variability in heterogeneous 1 

aquifers in the literature assumes that the parameters in the associated stochastic flow 2 

equation are weakly (second order) stationary. On this basis, the spectral 3 

representation approach can then be used to quantify the variability of the flow fields 4 

given known covariance functions of the input parameters. However, the condition of 5 

second-order stationarity is rarely encountered in nature and is difficult to verify using 6 

the limited experimental data available. The purpose (or novelty) of this work, 7 

therefore, is to develop a new framework for modeling the variability of the flow 8 

fields that generalizes the stochastic theory that applies to stationary second-order 9 

random input parameters to intrinsic (nonstationary) random input parameters. In this 10 

work, the log hydraulic conductivity and log aquifer thickness are assumed to be 11 

intrinsic random functions for flow through heterogeneous confined aquifers of 12 

variable thickness. On this basis, semivariograms of depth-averaged hydraulic head 13 

and integrated specific discharge fields are developed to characterize the variability of 14 

flow fields. The application of the proposed stochastic theory to the case where the 15 

variability of a random input parameter can be characterized by a linear 16 

semivariogram model is provided. 17 

 18 

1 Introduction  19 
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 20 

Much of the literature on solving the stochastic groundwater flow problem 21 

assumes that the covariance functions of the random input parameters in the 22 

corresponding stochastic differential equation for groundwater flow can be 23 

characterized by spatial covariance functions. Based on these known covariance 24 

functions of parameters, the variability of flow fields in heterogeneous aquifers 25 

can then be represented by the covariances of hydraulic head and specific 26 

discharge using the spectral representation approach (e.g., Dagan, 1989; Gelhar, 27 

1993; Zhang, 2002; Rubin, 2003). It is important to recognize that the approach 28 

is built on the assumption that the random processes of the input parameters are 29 

second order stationary, so they can be represented by a covariance function. 30 

The question arises: can the statistics of the flow field be determined if it is not 31 

possible to identify the covariance function of the input parameter from the 32 

available data or if the covariance functions of the parameter do not exist?  33 

In many practical applications, the experimental variance of a random variable 34 

(function) sampled from a field increases with the size of the field (e.g., Desbarats and 35 

Bachu, 1994; Molz et al., 2004; Dell’Oca et al., 2020). This means that the data have an 36 

almost unlimited scattering capacity and cannot be properly described by ascribing a 37 

finite a priori variance to them. This implies that the second-order stationarity 38 
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hypothesis does not appear to be suitable and that the approach assuming spatial 39 

variation of input parameters characterized by a spatial covariance function in the 40 

treatment of stochastic models of groundwater flow is not appropriate.  41 

But even if there is no finite a priori variance, the spatial increments of a random 42 

function may still have a finite variance. Note that the random function that obeys the 43 

intrinsic hypothesis (Matheron, 1965, 1971), i.e., the assumption that the increments of 44 

the random function are weakly stationary, is called the intrinsic (nonstationary) random 45 

function. In this case, the variability of a nonstationary random function can be 46 

characterized by its semivariogram. This implies that it might be possible to determine 47 

the characteristics of the random flow fields based on the known semivariogram of 48 

the random input parameter from the field data for the case of a nonstationary process 49 

of the input parameter. It is clear that the intrinsic hypothesis is weaker than the 50 

second-order stationarity hypothesis.  51 

According to Yaglom (1987) and Christakos (1992), an intrinsic function and 52 

its semivariogram admit a spectral representation. From these spectral 53 

representations, the associated stochastic groundwater flow equation can be 54 

solved in the wavenumber domain. Therefore, a spectral relationship between the 55 

wavenumber spectra of the input parameter fluctuations and the spectra of the 56 

output fluctuations can be obtained based on the solution of the stochastic 57 
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equation. This means that, given intrinsic semivariograms of the input parameters, 58 

the variability of the flow fields can be characterized by the semivariograms of 59 

the hydraulic head and the specific discharge fields using the spectral 60 

representation approach. In other words, it is possible to establish stochastic 61 

theories to characterize the variability of the flow fields without considering the 62 

hypothesis of second-order stationarity for the random input parameters, which is 63 

the goal of this study.  64 

This work develops a general stochastic framework for quantifying the variability 65 

of flow fields by semivariograms of depth-averaged hydraulic head and integrated 66 

specific discharge for essentially horizontal steady groundwater flow through a 67 

heterogeneous confined aquifer of variable thickness. It is assumed that the random 68 

input parameters appearing in the associated stochastic differential equation, such as 69 

the log hydraulic conductivity and the log thickness of the confined aquifer, are 70 

intrinsic random functions and therefore nonstationarity in the depth-averaged head 71 

and integrated discharge. This work shows how to develop a stochastic modeling 72 

framework for quantifying the variability of the flow fields given semivariograms of 73 

the random input parameters, which, to our knowledge, has not been presented in the 74 

literature before. An application of the proposed stochastic theories to the case where 75 

the variability of a random input parameter can be characterized by a linear 76 
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semivariogram model is given. 77 

 78 

2 Statement of the problem 79 

 80 

In many practical situations, a variable measured on small samples over very short 81 

distances may exhibit very large variations over those distances. To get around this 82 

phenomenon, a variable is often measured as an average over a given volume or area 83 

rather than at a point. This means that in reality the field data are never collected at a 84 

single point, but always include support with finite dimensions, so that the 85 

semivariogram over the sample support can no longer be considered a point 86 

semivariogram (the theoretical semivariogram). Note that the theoretical 87 

semivariogram (h) defined at point x associated with a pointwise support can be 88 

defined as  89 

1

2
( ) [ ( ) ( )]Var Z Z   x x  , (1) 90 

In Eq. (1), Z(x) is a random function. 91 

It can be shown that the semivariogram of an intrinsic random function within a 92 

volume  is related to the point-theoretical semivariogram by the formula (e.g., 93 

Matheron, 1971; Journel and Huijbregts, 1978):  94 

2 2

1 1
( ) ( ) ( )d d - d d

    
           x x x x x x x x  , (2) 95 
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where (x) is the transformed semivariogram and (x) is the theoretical semivariogram 96 

defined in Eq. (1). Matheron (1971) points out that Eq. (2) holds for any intrinsic 97 

random function, even if the covariance function does not exist. 98 

This work presents a stochastic analysis of flow through heterogeneous confined 99 

aquifers of variable thickness (see Appendix A). The variability of the flow results 100 

from the variation of the random input parameters, such as the log hudraulic 101 

conductivity and the log thickness of the confined aquifer. In this work, the log 102 

conductivity and log aquifer thickness are considered as spatially intrinsic random 103 

functions whose semivariogram can be represented by Eq. (2). In addition, the 104 

variation of depth-averaged hydraulic head and integrated specific discharge can be 105 

described by the perturbation equations (A3) and (A4), respectively. The spectral 106 

representation approach is used to develop the semivariograms of depth-averaged 107 

hydraulic head and vertically integrated specific discharge to quantify the variability 108 

of the flow fields. 109 

 110 

3 Theoretical developments of semivariograms of flow fields 111 

 112 

Given the assumption that f and  in Eq. (A3) satisfy the intrinsic hypothesis, the intrinsic 113 

random functions f and  each admit a spectral representation of the form (Yaglom, 1987; 114 
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Christakos, 1992),  115 

1 2 2
1 21 2 2 2

1 2

1 1exp[ ( )]
( , ) ( , )Sff Z

i w x w x
x x d w w

i w w

 



 


 , (3a) 116 

1 2 2
1 21 2 2 2

1 2

1 1exp[ ( )]
( , ) ( , )SZ

i w x w x
x x d w w

i w w


 



 


 , (3b) 117 

where the wi are the components of the wavenumber vector w (= (w1,w2) ) and Sf(w1,w2) 118 

and S(w1,w2) are stationary spatial random processes with uncorrelated complex 119 

Fourier increments dZSf(w1,w2) and dZS(w1,w2), respectively. Due to the property of the 120 

linearity of the driving forces in Eq. (A3), the depth-averaged head perturbation can 121 

alternatively be decomposed into two parts as  122 

1 2 1 2 1 2
( , ) ( , ) ( , )

f
h x x h x x h x x  , (4a) 123 

where hf represents the head fluctuation in response to the change in log hydraulic 124 

conductivity, while h represents the head fluctuation in response to the change in log 125 

thickness of the aquifer. Without any restrictions, each component of the depth-averaged 126 

head perturbation in Eq. (4a) can be expressed by Fourier-Stieltjes representations 127 

(Priestley, 1965) as follows:  128 

1 2 1 21 2 1 2
( , ) ( , ; , ) ( , )f Sff Zh x x x x w w d w w

 



  , (4b) 129 
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1 2 1 21 2 1 2
( , ) ( , ; , ) ( , )SZh x x x x w w d w w 

 



  . (4c) 130 

In Eqs. (4b) and (4c), f and  are referred to as oscillatory functions (Priestley, 131 

1965).  132 

Introducing Eqs. (3)-(4) into Eq. (A3), the solution of Eq. (A3) is  133 

1
1 21 2 1 2 2 1 2 23/ 22 2

1 2

1 11( , ) exp ( ) ( ) ( , )
( )

[ ]{ }
f SfZ w w

w w

wJ i ih x x w x w x w x w x d

 



    
 , (5a) 134 

1
1 21 2 1 2 2 1 2 23/ 22 2

1 2

1 12 1( , ) exp ( ) ( ) ( , )
( )

[ ]{ }
SZ w w

w w

wJ i ih x x w x w x w x w x d 

 



    
 . (5b)  135 

That is, 136 

1
1 21 2 1 2 2 1 2 23/ 22 2

1 2

1 11( , ) exp ( ) ( ) ( , )
( )

[ ]{ }
SfZ w w

w w

wh J i ix x w x w x w x w x d

 



    
  137 

1
1 21 2 2 1 2 23/ 22 2

1 2

1 12 1 exp ( ) ( ) ( , )
( )

[ ]{ }
SZ w w

w w

wJ i iw x w x w x w x d 

 



    
 . (5c) 138 

The details of the development of this solution are given in Appendix B.  139 

Furthermore, making use of the spectral representation Eq. (3) and Eq. (5) in Eq. 140 

(A4), the perturbation for the integrated specific discharge in the direction of x1 (mean 141 

flow) is given by  142 

11
1 1 2 1 2 1 2
( , ) ( , ) ( , )

f
q q qx x x x x x


  , (6a) 143 
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where  144 

1

2
11 1 2 2

1 21 2 22 2
1 2

1
1

exp[ ( )]
( , ) ) ( , )(F B

Sff

wJ Z w w
w w

i w x w x
q x x d

wi
e

 





 
 

 , (6b) 145 

1

2
11 1 2 2

1 21 2 22 2
1 2

1
1 2

exp[ ( )]
( , ) ) ( , )(F B

S

w
J Z w w

w w

i w x w x
q x x d

wi
e 

 





 
 

 . (6c) 146 

The semivariograms of depth-averaged head can now be calculated using Eq. (5) 147 

in Eq. (1)  148 

( , ) ( , ) ( , )
f

h h h 

   x y x y x y , (7a) 149 

where x = (x1,x2), y = (y1,y2), and  150 

1 1 2 2 3
( , ) ( ) ( , ) ( , )

fh
r r      x y x y x y x y , (7b)  151 

1 1 2 2 3
4( , ) ( ) ( , ) ( , )[ ]

h
r r



      x y x y x y x y , (7c) 152 

r1 = x1-y1, r2 = x2-y2. The expressions for 1-3 and 1-3 in Eq. (7) are given in the 153 

Appendix C. Note that the random process of the spectral representation according to 154 

Eq. (5) and the semivariogram according to Eq. (7) is called an intrinsic random 155 

function of order 1 (Matheron, 1973). 156 

Similarly, the application of Eq. (6) in Eq. (1) yields the semivariogram of the 157 

integrated specific discharge in the mean flow direction of the form  158 

( , ) ( ) ( )
f

q q q


     x y x y x y , (8a) 159 

where  160 
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2
212( ) 1 21 2

1 2 1 22 2 2 2
1 2 1 2

1
1

cos( ) cos( )
( ) ( , )( )

f

F B

Sfq

w
J w w

w w w w

w wr r
S dw dwe

 






  

 x y , (8b) 161 

2
212( ) 1 21 2

1 2 1 22 2 2 2
1 2 1 2

1
1 2

cos( )cos( )
( ) ( , )( )F B

Sq

wJ w w
w w w w

w wr r
S dw dwe




 






  

 x y . (8c) 162 

From Eqs. (6) and (8), it can be seen that the random process for the integrated 163 

discharge in the mean flow direction is an intrinsic random process (or an intrinsic 164 

random function of order 0, Matheron, 1973). 165 

To evaluate Eqs. (7) and (8), which are used to quantify the variability of flow 166 

fields, the spectral density functions SSf and SS must be determined. It can be shown 167 

that when the intrinsic random function has a spectral representation as in Eq. (3), the 168 

semivariograms of the intrinsic functions f and β are related to the covariance 169 

functions of the stationary processes Sf and Sβ by  170 

2 2

2 2
1 2

( ) ( ) (ff f C
r r
      

 
y y y)x x x , (9a) 171 

2 2

2 2
1 2

( ) ( ) (C
r r

       
 

y y y)x x x , (9b) 172 

where f and  are semivariograms of f and β functions, respectively, and Cf and C are 173 

covariance functions of Sf and Sβ processes, respectively. The spectral density functions of 174 

the fluctuations of f and β are then obtained by the inverse Fourier transform of Cf and 175 

C, respectively, i.e.,  176 
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1 2 12 21 2 1 21 2

1

2
( , ) exp[ ] ( , )

( ) fSf C d dS w w w w     


 



  , (10a) 177 

1 2 12 21 2 1 21 2

1

2
( , ) exp[ ] ( , )

( )S C d dS w w w w      


 



  . (10b) 178 

Equations (7) and (8), together with Eqs. (2), (9), and (10), provide the necessary 179 

framework for quantifying the variability of the flow fields. The results can be 180 

obtained for specific input parameter models. This line of research will be pursued in 181 

the next section.  182 

 183 

4 Application  184 

 185 

4.1 The linear intrinsic semivariogram  186 

 187 

If a volume  is taken as a straight segment of length L and the point-theoretical 188 

semivariogram of an input parameter in Eq. (2) is considered to be described by a 189 

linear model (e.g., Journel and Huijbregts, 1978; Bardossy, 1997; Usowicz and Lipiec, 190 

2021), i.e.,  191 

( )   , (11) 192 

then the transformed semivariogram in Eq. (2) can be written as  193 
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2 2
( )

L

L L L LL L
dx x x dx - dx x x dx

            . (12) 194 

Note that the semivariogram of a second order stationary random function is 195 

necessarily bounded, while the semivariogram of an intrinsic random function is not. 196 

The integration of Eq. (12) can be performed using the Cauchy algorithm (e.g., 197 

Matheron, 1971)  198 

2 2
( ) ( ) ( )

L L

L

L L

L L
L L

x x dx x x dx
  

 

       199 

3
( )L
        L.  (13) 200 

The details of this development are given in Appendix D. This result agrees with that 201 

of Journel and Huijbregts (1978) obtained by a different integrating approach. Note 202 

that L in Eq. (13) reaches -L/3 when  approaches zero, and that this negative value is 203 

called the “pseudo-negative nugget effect” (Journel and Huijbregts, 1978) due to 204 

regularization. 205 

In this study, it is assumed that the variograms of the input parameters depend 206 

only on the magnitude of the distance between the two points and not on its direction. 207 

The spatial variability of the input parameters (such as the log conductivity and log 208 

thickness of the aquifer) can be characterized by the following semivariograms  209 

1 2 3
( , ) ( )

f
f

L

L
          L, (14a) 210 

1 2 3
( , ) ( )

L

L


          L, (14b) 211 

which represent the extension of Eq. (13) to two dimensions. In Eq. (14),  = 212 
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(1
2+2

2)1/2.  213 

The covariance functions of Sf and Sβ processes are determined from substituting Eq. 214 

(14) into Eq. (9), respectively,  215 

2 2

1 1 12 22 2 2 2 2
1 2 1 2

) =( , ( , ) ( , )
f f

f
f

L L
C      

   

   
  

, (15a) 216 

2 2

1 1 12 22 2 2 2 2
1 2 1 2

) =( , ( , ) ( , )
L L

C
 


      

   


   

  
. (15b) 217 

From Eqs. (10) and (15), the corresponding spectral density functions of f and β are 218 

obtained, respectively, as follows:  219 

12 22 2 2 2
1 21 2

1 2 1 21 2

1 1

22
( , ) exp[ ]

( )
f f

Sf d dS w w w w
w w

   
 

 


 



  
 , (16a) 220 

12 22 2 2 2
1 21 2

1 2 1 21 2

1 1

22
( , ) exp[ ]

( )
S d dS w w w w

w w

 
    

 

 


 



  
 . (16b) 221 

The semivariogram of depth-averaged hydraulic head used to quantify the 222 

variability of the head field can then be obtained by substituting Eq. (16) into Eq. (7) 223 

and integrating over the wavenumber range. Note that the first term on the right-hand 224 

side of Eq. (7b) or Eq. (7c), 1(x-y) or 41(x-y), is called the generalized covariance 225 

function by Matheron (1973). Figure 1 shows the numerical integration result for the 226 

generalized covariance function of depth-averaged hydraulic head 1, i.e., the 227 

component of hf
 that reflects the effect of variation in hydraulic conductivity fields, 228 
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using Eq. (16a) in Eq. (C1). The unbounded increase in the generalized covariance 229 

function1with separation distance suggests that there is no finite depth-averaged head 230 

variance. This implies that the variation in depth-averaged hydraulic head does not 231 

satisfy the second-order stationarity hypothesis. Quantifying the variability in 232 

depth-averaged head using the assumption of second-order stationarity for the input 233 

parameter can lead to a significant underestimation of head variability for the case of 234 

intrinsic random log-conductivity fields. It can also be shown that similar conclusions 235 

can be drawn from the term 41(x-y) in Eq. (7c), the component of h
 reflecting the 236 

effect of variation in the log-aquifer thickness fields, for the case of intrinsic random 237 

log-aquifer thickness fields. 238 

 239 

Figure 1. The generalized covariance function of depth-averaged hydraulic head (the 240 

component of hf
 that reflects the effect of variation in the log hydraulic conductivity 241 

fields) as a function of separation distance in the mean flow direction, where r1 = x1-y1. 242 
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Figure 2 depicts the behavior of the generalized covariance function 1 as a 243 

function of parameter αf for a given separation distance r1. A larger αf increases the 244 

variability of the log conductivity fields, resulting in a larger 1 and thus a larger 245 

semivariogram hf
. It can also be shown that the larger the parameter αβ, the larger the 246 

variability of the generalized covariance function 41. It can therefore be concluded 247 

that the variability of the depth-averaged hydraulic head caused by the variation of the 248 

log hydraulic conductivity and log aquifer thickness is larger for larger parameters αf 249 

and αβ.  250 

 251 

Figure 2. The generalized covariance function of depth-averaged hydraulic head (the 252 

component of hf
 that reflects the effect of variation in the log hydraulic conductivity 253 

fields) as a function of parameter αf in the mean flow direction, where r1 = x1-y1. 254 

The numerical integration results for the components of the semivariogram of the 255 

integrated specific discharge in the mean flow direction, qf
 and q 

β
, obtained by 256 
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substituting Eq. (16) into Eq. (8), are shown in Figs. (3a) and (3b). The unlimited 257 

increase of the integrated discharge semivariogram with the separation distance 258 

shown in Fig. 3 indicates that the variation of the integrated discharge process is 259 

nonstationary. This is the result of the nonstationary process of the depth-averaged 260 

hydraulic head caused by the intrinsic random log-conductivity and log-aquifer 261 

thickness fields. The figure also shows that there is an increase in the semivariogram 262 

of the integrated specific discharge in the mean flow direction with parameters αf and 263 

α for a given separation distance. Larger αf and α cause greater variability in the 264 

depth-averaged pressure fields and thus greater variability in the integrated specific 265 

discharge fields. 266 

 267 

4.2 The exponential semivariogram  268 

 269 

It is important to note that the stationary variables always satisfy the intrinsic 270 

hypothesis, while the opposite is not always true, since the intrinsic variable can be 271 

nonstationary. The stochastic theory developed here to quantify the variability of the 272 

flow fields remains valid for any second order stationary random variable. For 273 

example, if the point theoretic semivariogram of an input parameter is chosen as  274 

( ) 1 exp[ ]( )


 


   , (17) 275 
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the transformed semivariogram over a segment of length L can then be calculated 276 

using Eq. (2) and the Cauchy algorithm (e.g., Matheron, 1971) as follows:  277 

2 2
( ) ( ) 1 exp[ ] ( ) 1 exp[ ]( ) ( )

L L

L

L L

x x
L L

L L
x dx x dx

 
 


 


        , (18)  278 

This results in  279 

2

2
2 2( ) exp[ ] exp[ ] exp[ ] 1 exp[ ]( ){ }

L

L L L L

L

  
    


 

             L. (19) 280 

For the development of Eq. (19), the reader is referred to Appendix E.  281 

Extending Eq. (19) to two dimensions and substituting it into Eq. (9), the 282 

covariance functions of the random input parameters (f and β) can then be expressed, 283 

respectively, as 284 

2

2 2 2 2

1 2 1 2

1 2 2 2 2

1 2

exp ] 1

) =

( [ )

( , exp[ ]ff
f f

f

L

L

L
C

     
 


   




, (20a) 285 

2

2 2 2 2

1 2 1 2

1 2 2 2 2

1 2

exp ] 1

) =

( [ )

( , exp[ ]

L

L

L
C


 



     
 


   




. (20b) 286 

Using Eq. (20) in Eq. (10), it follows that the spectral density functions of the 287 

fluctuations of f and β each have the form  288 

2

2 22
1 2

2 22 22
1 2

1 2

exp ] 1

=
2

( [ )
( )

( , )
[1 ( )]

( )

f f f

f

f

Sf

L

L

w w
S w w

w w

  









 
, (21a) 289 

2

2 22
1 2

2 22 22
1 2

1 2

exp ] 1

=
2

( [ )
( )

( , )
[1 ( )]

( )

S

L

L

w w
S w w

w w

  






  









 
. (21b) 290 

 291 
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(a) 292 

 293 

(b) 294 

 295 

Figure 3. The components of the semivariogram of the integrated specific discharge in 296 

the mean flow direction, (a) qf
, reflecting the effect of variation in the log hydraulic 297 

conductivity fields, and (b) q 
β
, reflecting the effect of variation in the log aquifer 298 

thickness fields, as a function of parameters αf and α and separation distance. 299 
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Finally, substituting Eq. (21) into Eqs. (7) and (8), the semivariograms of 300 

depth-averaged head and the semivariogram of integrated specific discharge in the 301 

mean flow direction can now be evaluated.  302 

The practical advantage of using the general stochastic modeling framework 303 

developed here with the intrinsic hypothesis is a wider range of possible 304 

semivariogram models compared to the cases with second-order stationarity. The 305 

condition of second-order stationarity is rarely encountered in nature (e.g., Wu and Hu, 306 

2004) and is difficult to verify using the limited experimental data available. It is 307 

under these conditions that the presented stochastic approach has the greatest utility of 308 

quantification of the flow field variability. 309 

 310 

5 Conclusions 311 

 312 

In this work, a general stochastic methodology is developed for quantifying the 313 

variability of flow fields in heterogeneous confined aquifers of variable thickness. The 314 

stochastic theories developed here, namely the semivariograms of depth-averaged 315 

hydraulic head and integrated specific discharge used to characterize flow field 316 

variability, can address the effects of nonstationarity due to variations in parameters 317 

and output. The proposed stochastic theories generalize existing stochastic theory, 318 
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which applies to second order stationary random input parameters, to nonstationary 319 

random input parameters. Stationarity in the spatial variation of soil properties is very 320 

rarely encountered in nature. The stochastic theories developed here improve the 321 

quantification of flow field variability in natural confined aquifers. 322 

The results show that the introduction of intrinsic random input parameters leads 323 

to a nonstationary process of depth-averaged hydraulic head fluctuations (an intrinsic 324 

random function of order 1) and a nonstationary process of integrated specific 325 

discharge fluctuations (an intrinsic random function of order 0). Application of the 326 

stochastic theories developed here to the case where the variability of a random input 327 

parameter can be characterized by a linear semivariogram model shows that larger 328 

parameters αf and α increase the variability of the depth-averaged head and thus the 329 

variability of the integrated discharge in the mean flow direction. 330 

 331 

Appendix A: A steady flow through a heterogeneous confined aquifer 332 

of variable thickness 333 

 334 

According to Chang et al. (2021), an essentially horizontal, steady groundwater flow 335 

through a heterogeneous confined aquifer of variable thickness can be represented as 336 

follows:  337 
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2

1 2 1 2 1 2 1 22
0( , ) ln ( , ) 2 ln ( , ) ( , )[ ]

i i i i

K bh hx x x x x x x x
x x x x

     
   

     i = 1, 2, (A1) 338 

which is the vertically integrated form of the continuity equation. In Eq. (A1), h (x1,x2) 339 

is the depth-averaged hydraulic head, K(x1,x2) is the hydraulic conductivity and b(x1,x2) 340 

is the aquifer’s thickness. From Eq. (A1), it can be seen that the variations in 341 

hydraulic conductivity and aquifer thickness that occur affect the depth-averaged 342 

hydraulic head. If the log conductivity and log thickness in Eq. (A1) are treated as 343 

stochastic (random) variables, Eq. (A1) can be considered as a stochastic partial 344 

differential equation with a stochastic output h .  345 

Similarly, integrating the equation for specific discharge along the x3-axis and 346 

applying Leibniz's rule leads to the vertically integrated specific discharge in the xi 347 

direction as follows: 348 

1 2 1 2 1 2 1 2( , ) ( , ) ( , ) ( , )
i

i
x

K b hQ x x x x x x x x
x


 


   (A2)  349 

Under the influence of a uniform mean hydraulic gradient, the perturbation 350 

equations for the depth-average hydraulic head and integrated specific discharge 351 

associated with Eqs. (A1) and (A2) are given, respectively, by 352 

2

1 2 1 2 1 22
1 1

2( , ) ( , ) ( , )[ ]
i

fh Jx x x x x x
x x x


   

  
   i =1,2, (A3) 353 

11 2 1 2 1 2 1 2
( , ) ( , ) ( , ) ( , )[ ]{ }F B

ii
i

J f hq x x x x x x x x
x

e   
  


   i =1,2. (A4) 354 

In Eqs. (A3) and (A4), h and qi are the fluctuations of depth-average head and 355 

integrated discharge, respectively, J is the constant mean hydraulic gradient, F and B 356 
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are the mean log conductivity and mean aquifer thickness, respectively, and f and  357 

are the fluctuations of log conductivity and log aquifer thickness, respectively. A 358 

detailed development of Eqs. (A3) and (A4) can be found in Chang et al. (2021). 359 

 360 

Appendix B: Derivation of Eq. (5) 361 

 362 

Since equation (A3) is linear, it can alternatively be divided into two parts as follows:  363 

2 2

1 2 1 2 1 2
2 2

11 2

( , ) ( , ) ( , )
f f

J fh x x h x x x x
xx x

  
 

, (B1a) 364 

2 2

1 2 1 2 1 2
2 2

11 2

2( , ) ( , ) ( , )Jh x x h x x x x
xx x

  
  
 

. (B1b) 365 

Applying Eqs. (3a) and (4b) into Eq. (B1a), it follows that  366 

2 2
1

1 2 1 2 1 2 1 2 1 1 2 2
2 2 2 2
1 2 1 2

( , ; , ) ( , ; , ) exp[ ( )]
f f

J
w ix x w w x x w w w x w x

x x w w
 

   
  

, (B2) 367 

which is known as Poisson's equation and has a particular solution in the form  368 

1 1 1 2 2 1 1 2 2
1 2 1 2

2 22 2
1 21 2

1 exp[ ( )] ( )
( , ; , )

f
J

i iw w x w x w x w x
x x w w

w ww w


   



. (B3) 369 

Similarly, using Eqs. (3b) and (4c), Eq. (B1b) can be written as follows:   370 

2 2
1

1 2 1 2 1 2 1 2 1 1 2 2
2 2 2 2
1 2 1 2

2( , ; , ) ( , ; , ) exp[ ( )]J
w ix x w w x x w w w x w x

x x w w
     

  
, (B4) 371 

and accordingly,  372 
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1 1 1 2 2 1 1 2 2
1 2 1 2

2 22 2
1 21 2

1
2

exp[ ( )] ( )
( , ; , ) J

i iw w x w x w x w x
x x w w

w ww w


   



. (B5) 373 

Finally, substituting Eqs. (B4) and (B5) into Eq. (4), Eq. (5) is obtained. 374 

 375 

Appendix C: Expressions for the functions in Eq. (7) 376 

 377 

2
1 2 22 2 2

1 1 21 2 1 2 121 2 232 2
1 2

1

1
1

2
( ) cos( )cos( ) ( , )

( )
( )[ ]

Sf

w
J w w

w w
w w w w S dw dwr r r r

 


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x y , (C1) 378 

3
12

1 2 12 1 2 2 1 2 23 22 2
1 2
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Sf

w
y yJ w w

w w
w x w x w w S dw dw

 



  
x y , (C2) 379 

2
1 22

1 2 13 1 2 2 1 2 23 22 2
1 2
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w
y yJ w w

w w

w
w x w x w w S dw dw

 
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2
1 2 22 2 2

1 1 21 2 1 2 121 2 232 2
1 2

1
1

1
2

( ) cos( )cos( ) ( , )
( )

( )[ ]
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w
J w w

w w
w w w w S dw dwr r r r 

 



    
x y ,(C4) 381 

3
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1 2 12 1 2 2 1 2 23 22 2
1 2

1 1( , ) sin( )cos( ) sin( )cos( ) ( , )
( )

[ ]
S

w
y yJ w w

w w
w x w x w w S dw dw

 



  
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2
1 22

1 2 13 1 2 2 1 2 23 22 2
1 2

1 1( , ) cos( )sin( ) cos( )sin( ) ( , )
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[ ]
S

w
y yJ w w

w w
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 


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x y , (C6) 383 

r1 = x1-y1, r2 = x2-y2, and SSf and SS are the spectral density functions of the stationary 384 

processes of Sf and S, respectively. 385 
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 386 

Appendix D: Derivation of Eq. (13) 387 

 388 

The condition for Eq. (13) that the absolute value of  is greater than or equal to L ( 389 

 L) means that   L or   -L. For   L, the integrand of the integral Eq. (13) can be 390 

expressed as  391 

0 0

2 2 2 2

0 0

( ) ( )( ) ( )( ) ( )( ) ( )

L L

L

L L

L L L L
L L L L

x x dx x x dx x -x dx x xdx
    

 

            392 

3
( )L
  . (D1) 393 

For   -L, the integrand of the integral Eq. (13) can be expressed as  394 

0 0

2 2 2 2

0 0

( ) ( )( ) ( )( ) ( )( ) ( )

L L

L

L L

L L L L
L L L L

x x dx x x dx x -x dx x xdx
    

 

            395 

3
( )L
  . (D2) 396 

 397 

Appendix E: Derivation of Eq. (19) 398 

 399 

Analogous to Eq. (13), the integral of Eq. (18) under the condition   L can be 400 

evaluated separately as the integration of Eq. (18) under the condition   L and that 401 

under the condition   -L. 402 

For   L, 403 
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0
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For   -L, 407 
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