

1	Regional difference in runoff regimes and changes in the Yarlung Zangbo river basin
2	He Sun ^{1*} , Tandong Yao ^{1,2} , Fengge Su ^{1,2*} , Wei Yang ^{1,2} , Guifeng Huang ¹ , Deliang Chen ³
3	
4	¹ State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER),
5	Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
6	² University of Chinese Academy of Sciences, Beijing 100101, China
7	³ Regional Climate Group, Department of Earth Sciences, University of Gothenburg,
8	Gothenburg 405 30, Sweden
9	
10	
11	
12	
13	
14	
15	
16	
17	*Corresponding author: He Sun; Fengge Su
18	State Key Laboratory of Tibetan Plateau Earth System, Resources and Environment, Institute
19	of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
20	Email: sunhe@itpcas.ac.cn; fgsu@itpcas.ac.cn

21

22 Abstract

23	An improved understanding of runoff regimes and flow changes in the Yarlung Zangbo (YZ)
24	river basin in the southern Tibetan Plateau (TP) is crucial for water resources management.
25	However, regional characteristics in runoff regimes and changes are not comprehensively
26	investigated in the YZ mostly due to the lack of hydrometeorological observations. Here, we
27	comprehensively investigated runoff regimes and changes across six sub-basins in the YZ for
28	1971–2020 with a particular focus on the comparison between the upstream of the Nuxia (NX)
29	basin and the downstream NX-Pasighat (NX-BXK), based on a newly generated precipitation
30	dataset and a well-validated model with streamflow, glacier mass and snow cover observations.
31	Our results reveal that large regional differences in runoff regimes and changes exist in the YZ
32	basin. Firstly, runoff generation is dominated by rainfall in the entire YZ, and glacier runoff
33	plays more important role in annual total runoff (19%) in the NX-BXK than other sub-basins.
34	Secondly, annual runoff shows an increasing trend in the NX basin but a decreasing trend in the
35	NX-BXK due to rain-induced runoff changes, resulting in a weak increasing trend (3.1
36	mm/10yr) in the YZ basin. Thirdly, total runoff increases of 5%-22% in the NX but decreases
37	of 3%-20% in the NX-BXK in all seasons in 1998-2020 relative to the period 1971-1997.
38	Finally, the NX basin faces a considerably hazard from extreme flood, but the NX-BXK basin
39	faces more severe hydrological droughts. Glacier runoff shows limited roles in mitigating water
40	shortages caused by drought in dry seasons, but it intensifies the flood frequency and severity
41	among the basins in wet season. Our study offers a basic framework for clarifying the runoff

42 regimes and flow changes in the TP basins.

43	
44	Keywords
45	Runoff Regimes, Runoff Changes, VIC-Glacier Hydrological Model, Yarlung Zangbo, Tibetan
46	Plateau
47	
48	Highlights
49	• A basic framework is provided to clarify runoff changes and the attribution in the TP basins.
50	• The NX-BXK makes the largest contribution (52%) to total runoff of the YZ basin.
51	• Annual runoff shows an increasing trend in the NX sub-basin but a decreasing trend in the
52	NX-BXK, due to opposing precipitation changes.
53	• Glacier melt shows limited roles in mitigating water shortages caused by the drought, but
54	it intensifies flood frequency and severity in the YZ.
55 56	
57	
58	
59	
60	
61	

62 1 Introduction

63	The Yarlung Zangbo (YZ, Figure 1) River, also named the upper Brahmaputra, drains the
64	southern Tibetan Plateau (TP) in China. As the largest river basin of the TP, the YZ basin and
65	its two tributary (Lhasa and Nianchu river) basins serve as the main fresh water source of
66	the Tibet autonomous region (TAR), and constitute the main agricultural region in the TAR
67	(Yang et al., 1989; Zhong et al., 2014). Like elsewhere on TP, a rapid ongoing temperature rise
68	$(0.3-0.4^{\circ}C)$ may influence runoff processes and water resources availability in the YZ basin
69	(Yao et al., 2012; Li et al., 2018), and potentially increase the risk of natural hazards from floods
70	or drought in the downstream region. Therefore, a comprehensive understanding of runoff
71	regimes and flow changes in the YZ under the changing climate is crucial for decision making
72	on water resources management.

73

74 The variability of hydrological processes is high within the YZ basin with an area of about 75 250,000 km² due to the differences in climate (e.g., Indian summer monsoon and local terrain effects) and physical characteristics (e.g., uneven distribution of glaciers and snow cover). 76 77 Many studies of runoff regimes and changes were conducted using hydrological models in the 78 YZ basin, but most simply focused on the region upstream of the Nuxia (NX) hydrological 79 station (Figure 1) (Chen et al., 2017; Cuo et al., 2019; Su et al., 2016; Zhang et al., 2013; Zhao et al., 2019). Less attention was paid to the most glacierized downstream region between NX 80 and Pasighat hydrological stations (NX-BXK, Figure 1), which accounts for about 65% of total 81

82	glacier area in the YZ (Table 1). In addition, this region exhibits the largest glacier retreat in the
83	TP, where length has decreased at a rate of 48.2m yr^{-1} and area was reduced at a rate of 0.57%
84	yr^{-1} during the 1970s–2000s (Yang et al., 2013; Yao et al., 2012). Glacier melt can significantly
85	modify streamflow regime, including the quantity, timing, and variability of flows over space
86	and time (Barnett et al., 2005). In addition, ongoing atmospheric warming and water stress
87	makes the TP vulnerable to drought, but glaciers are a uniquely drought-resilient source of
88	water (Pritchard, 2019). Thus far, the very limited hydrological studies from the NX-BXK
89	region show contradictory results due to the use of different hydrological models, forcing data
90	and approaches. For example, Sun and Su (2020) suggested that total runoff was dominated by
91	glacier melt in the NX-BXK, but Wang et al. (2021) suggested that total runoff was dominated
92	by rain-induced runoff. Therefore, runoff regimes and changes and should be further
93	investigated in the downstream region of the YZ.

. .. .

94

Although many hydrological studies focus on the region upstream of the NX hydrological station, regional characteristics are still unclear in the basin. For example, runoff in the region between Yangcun and NX hydrological stations (YC-NX) contributes of 51% to total runoff at the NX hydrological station (Sun and Su, 2020); thus runoff regimes and changes in this subbasin largely affect runoff changes in the entire NX basin. In addition, runoff changes in the Lhasa (LS) and Rikaze (RKZ) sub-basins, which are vital crop centers for the central Tibet Autonomous Region, are crucial to irrigation water resources. Therefore, it is important to

- 102 investigate the runoff regimes and changes in different sub-basins of the NX, which will result
- 103 in improved understanding of the underlying mechanisms of runoff changes.
- 104

105 Existing hydrological studies show large differences in runoff regimes and changes in the NX 106 basin, which may due to variations in forcing inputs for hydrological model simulations. 107 Accurate precipitation inputs are important for reliable hydrological model simulations (Su et 108 al., 2008). However, high mountain precipitation in the YZ is still inadequately represented in 109 either gauge-based precipitation, satellite-based precipitation, reanalysis-based estimates or 110 outputs of regional climate models (Liu et al., 2020; Sun and Su, 2020; Sun et al., 2021). In 111 addition, streamflow and glacier observations are inadequate for model calibration and 112 validation, limiting simulation accuracy in the YZ basin. Most studies only validate hydrological models using streamflow observations, yet realistic runoff simulations at the 113 114 catchment outlet cannot guarantee reasonable simulation results (Duethmann et al., 2014) 115 because of the compensation between precipitation-induced runoff and glacier runoff. To 116 address the above issues, in this study we collected precipitation observations at 280 gauges, 117 streamflow observations at eight hydrological stations, glacier mass balance observations at 118 two sites, and satellite-based glacier and snow cover area estimates in the YZ basin (Figure 1). 119 These constitute a basin-wide observation dataset enabling us to validate hydrological models, 120 and reveal runoff regimes and flow changes in the YZ basin.

121

122	Based on the basin-wide observation dataset, in this study, runoff regimes, changes, and the
123	attributions across six sub-basins in the YZ for 1971-2020 with a particular focus on the
124	comparison between the NX and NX-BXK are comprehensively investigated using the Variable
125	Infiltration Capacity (VIC)-Glacier hydrological model. Our intents are to: (1) use the model
126	framework to identify runoff regimes and changes, and quantify the contributions of three major
127	runoff components (glacier, rain-induced, and snowmelt runoff) to total runoff in the YZ and
128	its subbasins; and (2) investigate responses of runoff and the three components to climate
129	changes at annual, seasonal, and extreme flow scales. We expect these findings will provide a
130	basic framework to study cryospheric basin hydrological cycles in the TP, and provide adopting
131	strategies to water resource managers based on a solid scientific understanding. We introduce
132	several novel components which may advance our understanding of the YZ hydrology:
133	(1) The analysis uncovers spatially varying runoff regimes and changes across six sub-
134	basins of the YZ basin, associated with heterogeneous surface characteristics.
135	(2) A basin-wide observational hydrometeorology network is used to validate glacier-
136	hydrological model to quantify runoff processes under climate-cryosphere changes.
137	(3) A comprehensive long-term precipitation dataset with a high spatiotemporal resolution
138	(Sun et al., 2022) is used to improve hydrological simulations in this high-altitude basin.
139	
140	2 Study Area

141 In this study, the entire YZ basin is divided into six sub-basins based on flow direction and

142	locations of hydrological stations (Figure 1; Table 1). There are five sub-basins in the basin
143	upstream of the Nuxia (NX) hydrological station, also named NX basin, and a sub-basin
144	between Nuxia and Pasighat (NX-BXK) hydrological station. The NX basin includes the
145	upstream sub-basins of Lhatse (LZ), Shigatse (RKZ) and Lhasa (LS) hydrological stations, the
146	sub-basin between Lhatse and Yangcun (LZ-YC) hydrological station, and the sub-basin
147	between Yangcun and Nuxia (YC-NX) hydrological station. The climate of the YZ is
148	characterized by a wet and warm summer and a cool and dry winter, and precipitation is mostly
149	dominated by summer monsoon (Figure S1 in Supporting Information). In addition, mean
150	annual precipitation increases from upstream (283 mm) to downstream (1465 mm), with a mean
151	of about 774 mm in the entire YZ basin (Table 1). All sub-basins show similiar seasonal patterns
152	of temperature, with peaks mostly occurring in July-August (Figure S1). Glacier coverage
153	ranges from 0.9% (LZ-YC) to 10.2% (NX-BXK), with an average of 3.3% in the entire YZ
154	basin. The largest glacier coverage distributes in the YC-NX (2.8%) and NX-BXK (10.2%) sub-
155	basins (Table 1). The snow cover fraction (SCF) ranges from 7% (RKZ) to 32% (NX-BXK),
156	with an average of 19% in the YZ basin.

157

158 **3 Data and Methodology**

159 3.1 VIC-Glacier Hydrological Model

160 The physically based and distributed VIC hydrological model (Liang et al., 1994; Liang et al.,

161 1996) linked with a simple degree-day glacier melt algorithm (Hock, 2003), referred to as VIC-

162	Glacier, is used in this study, which can simulate the physical exchange of water and energy
163	among soil, vegetation, and atmosphere over a grid mesh. The VIC-Glacier model has a two
164	layer energy-balance snow model (Cherkauer and Lettenmaier, 1999) and a frozen
165	soil/permafrost algorithm (Cherkauer and Lettenmaier, 1999; 2003), and has been previously
166	used in runoff simulations for several high-mountainous TP basins (Meng et al., 2019; Su et al.,
167	2016; Sun and Su, 2020; Tong et al., 2016; Zhang et al., 2013; Zhao et al., 2019).
168	
169	Here, the modeling framework at a $1/12^{\circ} \times 1/12^{\circ}$ (approximately 10 km $\times 10$ km) spatial
170	resolution and a three-hourly time step is adopted from Sun and Su (2020). The required forcing
171	input data for the VIC-Glacier model include daily meteorological forcing data (precipitation,
172	maximum and minimum temperatures, and wind speeds) with a spatial resolution of 10×10 km
173	for 1961–2020, which is adopted from Sun et al. (2022). The daily gridded estimates from the
174	newly released fifth-generation reanalysis (ERA5) precipitation of the European Centre for
175	Medium-Range Weather Forecasts was corrected based on 580 rain gauges in the monsoon-
176	dominated TP region and the machine learning algorithm (Sun et al., 2022). The developed
177	precipitation data set was evaluated at a point scale by comparing it with gauge observations,
178	and has been inversely assessed its potential utility in the VIC-Glacier hydrological simulation
179	in the YZ basin (Sun et al., 2022).
100	

180

181 According to the source of runoff generation, total runoff is partitioned into three components

182	in this study: rain-induced runoff, snowmelt runoff, and glacier runoff. In this study, glacier
183	runoff is defined as all water generated in the glacierized area, including rain-induced, snow
184	melt, and ice melt in the glacierized area. The simulated total runoff from each grid cell can be
185	calculated as
186	$R_i = f \times R_{glac} + (1 - f) \times R_{vic} \tag{1}$
187	where, R_i is the total runoff (mm) in grid I, f is the percentage of glacier area, and glacier area
188	is updated every year, R_{glac} is the runoff (mm) from the glacier area, and R_{vic} is the runoff
189	(mm) calculated from the VIC model (the sum of surface runoff and baseflow) in the non-
190	glacierized area, including both rain-induced and seasonal snowmelt runoff.
191	

192 The calculated glacier area and volume are updated every year in the model by the volume-area 193 scaling approach (Bahr et al., 1997). We use an exponential form (equation 2), derived from the 194 glacier observation in the western China (Liu et al., 2003), to convert the glacier area to volume 195 for a basin:

196
$$V = 0.04S^{1.35}$$
 (2)

where V is glacier volume and S is glacier area. The initial glacier volume is determined
using glacier area from the first Glacier Inventory of China (CGI V1.0,
http://westdc.westgis.ac.cn/glacier) dataset, and is updated every year with the snowfall
accumulation and simulated ice melt from all the glacier cells. The updated glacier area is then
validated by the Randolph Glacier Inventory (RGI V6.0) dataset.

202

203

3.2 Model Calibration and Validation Two categories of model parameters need to be calibrated for the VIC-Glacier model: (1) the degree day factor (DDF) related to glacier runoff simulation; and (2) the parameters of the VIC model related to runoff simulation in non-glacierized regions, mostly including the depth of the first and second soil layers (D1 and D2), the infiltration shape parameter (B_inf), and three base flow parameters (Ds, Ws, and Dsmax).

210

The VIC-Glacier hydrological model is calibrated by a systematic two-step approach. Observed streamflow, observed glacier mass balance, satellite-based glacier area and snow cover fraction estimates are applied to calibrate and validate the model in this study (see Table 2 for more details). The Nash-Sutcliffe efficiency (NSE), relative bias (RB, %), and correlation coefficient (CC), are applied to assess the performance of the hydrological model.

216

First, initial values of DDF parameters in the glacier model related to glacier and snowmelt are adopted from Sun and Su (2020). The glacier model is calibrated to match the glacier area observation from RGI V6 for 2000s–2010s, and validated by observed mass balance data from Gurenhekou and Parlung No.94 glacier sites (Table 2). Based on the good performance of glacier area simulation (with RB of mostly < 7%, Figure 2c), the final DDF are adjusted across six sub-basins (Table 1). In addition, the simulated variations in annual glacier mass balance are further validated with observations at Gurenhekou Glacier for 2005–2009 and Parlung

- No.94 Glacier for 2006–2018 in the YZ basin, which satisfactorily track the annual variations
 of the observed glacier mass balances, with CCs of 0.96 and 0.65, and RBs of -15% and -40%
 for the Gurenhekou (Figure 2a) and Parlung No.94 (Figure 2b) glaciers, respectively.
- Second, the VIC-related model parameters (mostly B inf and D2) are calibrated and validated 228 229 with streamflow observations at eight hydrological stations across the six sub-basins. The VIC-230 Glacier model captures well the magnitudes and patterns of observed runoff at daily (Figure 231 3a), monthly (Figure S2) and seasonal (Figure 4) scales, with NSEs of 0.75 to 0.94 and RBs of 232 -8% to 4.0% for the study basins. The closed agreements between the observed and simulated 233 runoff are also seen at the annual scale (Figure 5), with a CC of 0.4–0.9. In order to further 234 evaluate the model performance in simulating extreme streamflow, the flow duration curve (FDC) is used in the probability of daily runoff simulation, which represents the relationship 235 between the magnitude and frequency of the daily streamflow in a particular river basin and 236 237 provides an estimate of the percentage of time during the entire study period (Lutz et al., 2016). 238 Here, the 95% and 5% probability of exceedance is defined as the threshold of flood and 239 hydrological drought events. Simulated runoff can accurately capture the magnitudes of low and moderate daily observation but slightly underestimate flood prediction by less than 5% at 240 241 the NX hydrological station (Figure 3b). After the careful calibration and validation, in this study, the final values of D1, D2 and B_inf for each grid cell are set to 0.1 m, 0.8–1.5 m, and 242 243 0.2 across six sub-basins, respectively.

244	As additional validation of the model, the satellite-based SCF data are compared with the model
245	simulations for 2001–2019 in the YZ basin (Figure 6). The simulated SCF follows the monthly
246	variation of the satellite-based data with a CC of 0.60–0.82 (p $<$ 0.05) and RB within $\pm 12\%$
247	among the basins, suggesting satisfactory performance of the VIC-Glacier model.
248	
249	4 Results
250	4.1 Runoff Composition
251	Figure 7 shows mean monthly simulated rain-induced, snowmelt and glacier runoff, and mean
252	annual contribution of them to total runoff across six sub-basins for 1971–2020. More than 60%
253	of the annual total runoff occurs in June-September and 10%-15% in November-February in
254	the YZ and all its sub-basins for 1971–2020 (Figure 7, Figure S1). The seasonal pattern of rain-
255	induced runoff is consistent with that of total runoff. Due to co-occurrences of peak
256	precipitation and temperature in June-September, the simulated glacier runoff mostly occurs
257	during June-September for all the basins, with the peak in July and August. Snowmelt runoff
258	in the YZ and its sub-basins occurs mostly during April-October, while the peak month of
259	snowmelt differs among the sub-basins. Snowmelt runoff peaks in July-September in the LZ,
260	RKZ, LS, and LZ-YC sub-basins (Figure 7a-d), which may be due to the melting of fresh
261	snowfall in the warm season, thus helping to sustain the irrigation water supply. Snowmelt also
262	shows a peak in the downstream sub-basins (Figure 7e, f), but the peak occurs in May–June.
263	The seasonal pattern of snowmelt in the entire YZ basin is similar to that in downstream sub-

264 basins, with the peak in May–June.

265

266	Large differences in runoff contribution to total runoff at Pasighat outlet exist across six sub-
267	basins of the YZ basin (Figure 7). The NX-BXK contributes 52% to total runoff at the Pasighat
268	outlet of the YZ basin (Figure 1), followed by YC-NX (25%), LS (10%), and other sub-basins,
269	with contributions of 3%-6%. In addition, contributions of three runoff components to total
270	runoff are also different across six sub-basins, mostly due to heterogeneous surface
271	characteristics. Total runoff in the YZ and all its sub-basins is dominated by rain-induced runoff,
272	which contributes 59%-72% to annual total runoff across six sub-basins, with an averaged
273	contribution of 62% in the entire YZ basin. Snowmelt contributes 22% to annual total runoff in
274	the YZ basin, and 14%–36% across six sub-basins, with the largest distributed in the LS sub-
275	basin (36%). Glacier runoff contributes 16% to annual total runoff in the YZ basin, and 5%-
276	19% to annual total runoff across six sub-basins. The largest contribution is in the NX-BXK
277	(19%) and YC-NX (16%) sub-basins, where there is about 78% of the YZ total glacier area.
278	

279 4.2 Runoff Changes and the Attribution

In this section, based on simulated total runoff and its three components, runoff changes and
their attributions in the entire YZ and its sub-basins during 1971–2020 are investigated at annual,
seasonal and extreme flow scales.

283

284 4.2.1 Annual Scales

285	Figure 8 shows annual variations of the simulated total runoff and the three runoff components,
286	and basin precipitation and temperature in the YZ basin during 1971-2020. Annual variations
287	of precipitation, temperature, and simulated runoff in the sub-basins are presented in Figure
288	S3-S7. Divergent annual runoff changes are evident among the sub-basins of the YZ. The
289	simulated annual total runoff shows increasing trends of 8.1–18.8 mm/10yr for 1971–2020 in
290	all sub-basins of the NX, except for the RKZ sub-basin (-1.1 mm/10yr), resulting in a
291	significantly increasing trend of 9.4 mm/10yr (p< 0.05) over the entire NX basin; this is mostly
292	due to increases in rain-induced and glacier runoff, along with significant increases in
293	precipitation and temperature (Figure 8a). In contrast, total runoff in the NX-BXK shows a
294	significantly decreasing trend of 9.4 mm/10yr (p<0.05) for 1971–2020 (Figure 8b), resulting
295	from a large decrease of rainfall-induced runoff (-22 mm/10yr) and seasonal snowmelt (-5.5
296	mm/10yr) from non-glacierized areas. It is worth noting that glacier runoff exhibits a
297	significantly increasing trend (6.0 mm/10yr, p<0.05) in NX-BXK during 1971–2020, which
298	partly compensated for the decreasing trend of total runoff in this sub-basin. As an integrated
299	result of increased total runoff in the NX and decreased runoff in the NX-BXK, the total runoff
300	in the entire YZ basin shows a weakly increasing trend of 3.1 mm/10yr, mostly due to increases
301	of rain-induced and glacier runoff (Figure 8c). There is a strong correlation between annual
302	variation of total runoff and rain-induced runoff in the YZ and all sub-basins (CC of 0.90–0.99,
303	p<0.05), while total runoff shows only weak relationships with temperature and glacier runoff

304 in the YZ and its sub-basins (Figure S8), suggesting a dominant role of rainfall-induced runoff

305 from non-glacierized areas and minor impacts from glacier runoff on annual runoff.

306

307	Besides runoff changes, divergent annual variations of rain-induced, snowmelt and glacier
308	runoff contributions for 1971–2020 are also apparent in the YZ basins (Table 3, Figure S9). The
309	contribution of snowmelt to total runoff shows consistently decreasing trends among the basins,
310	with significantly decreasing trends in the YZ basin (-1.1 %/10yr, p<0.05) and its NX sub-basin
311	(-0.5 %/10yr, p<0.05). The contribution of glacier runoff decreases of -0.1 %/10yr in the NX
312	sub-basin, while it increases in the NX-BXK sub-basin (0.8 $\%$ /10yr), mostly due to an increase
313	in glacier runoff and a decrease of total runoff. In contrast, the contribution of rain-induced to
314	total runoff increases in the NX sub-basin (1.1 $\%$ /10yr), while it decreases in the NX-BXK sub-
315	basin (-0.7 %/10yr), resulting in an increasing trend of 0.2 %/10yr in the entire YZ basin.
316	

Cuo et al. (2019) examined the precipitation and streamflow mutations by the Mann-Kendall analysis in the YZ basin, and suggested that precipitation shows no mutation while streamflow mutates in 1997 at NX hydrological station. Based on long-term runoff observation, this abrupt change is also displayed in this study. Trends in total runoff are opposite before and after the year 1998 in the YZ and its NX and NX-BXK sub-basins, due to opposing trends in precipitation (Table 3). Annual total runoff shows increasing trends (8.9–48.1 mm/10yr) in the basins during 1971–1997, mostly due to an increasing trend of rain-induced runoff, seasonal

324	snowmelt and glacier runoff. However, total runoff shows insignificantly decreasing trends (-
325	0.3 to -3.3 mm/10yr) during 1998–2020. It may be attributed to a decreasing trend of rain-
326	induced by the weakening Indian monsoon after the period 1998-2000 (Liu et al., 2012; Wu
327	and Duan, 2008; Wu and Duan, 2009; Yang et al., 2014a). It is worth noting that, the decreasing
328	trend of precipitation is faster in NX-BXK (-16.0 mm/10yr) than that in NX (-7.0 mm/10yr,
329	Table 3). This difference may result from the different influences of the weakening Indian
330	monsoon during 1998–2000 (Figure S10). The NX-BXK basin is more sensitive than NX to the
331	weakening Indian monsoon during 1998–2000 (Figure S10). However, the decreasing trend of
332	total runoff is slower in NX-BXK (-0.3 mm/10yr) than that in NX (-3.3 mm/10yr, Table 3)
333	during 1998–2000, resulting from different influences of glacier runoff on total runoff between
334	NX and NX-BXK sub-basins. A faster increasing trend of glacier runoff in NX-BXK (16
335	mm/10yr), than that in NX (0.7 mm/10yr, Table 3), partly compensates for the faster decreasing
336	trend of rain-induced runoff, resulting in a slower decreasing trend of total runoff in NX-BXK.
337	Therefore, glacier runoff has been playing an increasing role in runoff changes as a result of
338	accelerated warming in the region.

339

340 4.2.2 Seasonal Scales

Changes in melt water from glaciers and seasonal snow modify total runoff regimes with respect
to both quantity and timing, and thus are of particular importance to water availability in warm
and dry seasons (Barnett et al., 2005). Relative to the period 1971–1997, divergent seasonal

344	changes in total runoff are apparent in the YZ basin during 1998–2020. For the NX basin, total
345	runoff tends to increase by about 5%–22% in all seasons, with the largest increases appearing
346	during May-August (11%-22%), mostly due to increases in rain-induced and glacier runoff.
347	The smallest increases are during December-February (4.8%-5.7%), mostly due to increases
348	in rain-induced runoff in the NX (Figure 9a, d; Table S1). Snowmelt runoff strongly increases
349	during March-May (24%-50%) due to early snow melting (Figure 9d; Table S1), which may
350	be beneficial to agricultural water supplies. On the contrary, total runoff decreases by about
351	3%-20% in all seasons in the NX-BXK sub-basin (Figure 9b; Table S1) due to decreases in
352	rain-induced runoff and seasonal snowmelt. This indicates a trend towards drier conditions,
353	although increased glacier runoff compensates slightly for the loss of total runoff in July-
354	August (Figure 9e). As an integrated result of seasonal changes of runoff in NX and NX-BXK,
355	total runoff in YZ increases by 3.0%–20.0% in June–September, mostly due to increases in rain-
356	induced and glacier runoff, while it decreases in the other months because of decreased rain-
357	induced runoff and seasonal snowmelt (Figure 9c, f).

358

The distinct seasonal changes of rain-induced, snowmelt, and glacier runoff largely determine the seasonal changes of their contributions to total runoff in the entire YZ basin and its NX and NX-BXK sub-basins. Relative to 1971–1997, the rain-induced contribution increases by 5%– &% during May–October in the NX for 1998–2020, but the glacier and snowmelt contribution decreases by -0.3% to -2% and -5% to -7% in these months, respectively (Figure 9g, Table S1).

364	On the contrary, the contributions of rain-induced runoff and snowmelt decrease by -2% to -6%
365	during May-October in the NX-BXK, but glacier contribution increases by 2%-7% in these
366	months (Figure 9h, Table S1), showing increased importance of this season in sustaining
367	summer water supplies in the NX-BXK. As an integrated result, for the entire YZ basin (Figure
368	9i) glacier contribution increases by 0.5%-2% (Table S1) during June-October, and the
369	seasonal changes of rain-induced and snowmelt contributions to total runoff are similar to that
370	in the NX basin.

371

372 4.2.3 Extreme Flow Scales

373 The magnitude and timing of flow extremes tend to be altered under climate change. 374 Contrasting extreme frequency between hydrological drought and flood days for 1971-2020 375 exist in the YZ and its sub-basins (Figure 10). Flood frequency shows a decreasing trend of -1 days/10yr for 1971-2020, but drought frequency shows an increasing trend of 3 days/10yr in 376 the YZ basin (Figure 10c, Table S2), which could lead to the droughts of higher duration and 377 378 severity. This contrast also exist in the NX and NX-BXK sub-basins (Figure 10a,b; Table S2). 379 In addition, opposing trends occur between these two sub-basins, whether drought or flood 380 events. Drought days shows a decreasing trend of -6 days/10yr in the NX, but an increasing 381 trend of 6 days/10yr in the BXK (Figure 10a,b; Table S2), mostly due to opposing trends in 382 precipitation (Figure 8). On the contrary, flood days shows an increasing trend of 6 days/10yr 383 in the NX, but a decreasing trend of -3 days/10yr in the BXK (Figure 10a,b; Table S2). This is

384	similiar to the tendency of annual maximum daily runoff (Figure 10d–f). The annual-maximum
385	daily runoff increases in the NX, but decreases in the NX-BXK. Trends in annual-maximum
386	daily runoff are also opposite before and after the year 1998 in the YZ and its NX and NX-BXK
387	sub-basins, with increasing trends (0.1–0.7 mm/10yr) during 1971–1997 and decreasing trends
388	of -0.1 to -0.5 mm/10yr during 1998–2020 (Figure 10d–f, Table S2).
389	

390 As with the runoff changes described above, extreme frequency changes are mostly influenced by monsoon precipitation in the YZ basin. It is worth noting that glacier runoff plays an 391 392 increasing role during 1971-2020 in both annual and summer water supplies in the YZ (Figure 393 7–9), and it is a uniquely drought-resilient source of water in the high-mountainous regions 394 (Pritchard, 2019). Flow duration curves for simulated daily total runoff, glacier runoff, and 395 precipitation-induced runoff (rain-induced and snowmelt) during 1971-2020 in the YZ and its NX and NX-BXK basins are shown in Figure 10, and we also compare mean annual 396 contribution of glacier runoff to total runoff between the drought years and all years for 1971-397 398 2020, suggesing that mean annual glacier contribution is greater in the drought years than all 399 year. For example, glacier runoff contributes 29% to mean annual total runoff in the drought 400 years in the NX-BXK, which is higher than its contribution (19%) for the period 1971-2020. It 401 suggests that glacier runoff typically make a useful contribution to water supplies in study basin 402 where summers are dry; however, glacier runoff shows limited roles in protecting water 403 shortages from the drought in dry seasons in the YZ basin (Figure 10g-i), mostly due to the

404	limited glacier contribution compared to the water volume generated by rainfall in the
405	monsoon-dominated basins.
406	
407	Glacier melt intensifies the flood frequency and severity among the basins in wet season (Figure
408	10 g-i). The flow duration curves (FDCs) for precipitation-induced runoff are lower than those
409	from total runoff, especially in the flood events (exceedance probability of $> 95\%$), implying

410 increases in both the magnitude and frequency of maximum daily flow. In particular, in the time

411 series of runoff solely induced by precipitation (rainfall and snowmelt), peak flows higher than

412 2-8 mm/day typically have an exceedance frequency of 95%, while this exceedance frequency

is strongly reduced to 85%-90% in the time series of total runoff that is additionally fed by 413

glacier meltwater. In additon, the magnitudes of flood events in total runoff are higher in the 414

NX-BXK (exceedance probability of > 86%) than the NX basin (exceedance probability of >415

90%), due to larger contribution of glacier runoff to total runoff in the NX-BXK sub-basin. 416

417

418 **5** Discussion

419 5.1 Runoff Changes in the Downstream Sub-basin

420 The NX-BXK sub-basin, with the largest glacier area and runoff contribution to total runoff of 421 the YZ basin, is more sensitive to climate and cryosphere changes than the other sub-basins. Therefore, runoff changes in this basin raise considerable concern for downstream life-422 423 supporting water supplies.

424

425	Between existing research and our study, results are contradictory on runoff changes in the NX-
426	BXK. Wang et al. (2021) suggested that total runoff showed an increasing trend of 6.4×10^8
427	m ³ /yr during 1998–2019. However, in our study, simulated total runoff exhibited a decreasing
428	trend of about -0.3 mm/10yr (-7.5×10 ⁸ m ³ /yr) during 1998–2020 in the sub-basin (Figure 8,
429	Table 3). This difference between the two studies is mostly because of the trends in precipitation
430	estimates used for the hydrological model (Figure 11). Precipitation shows increasing trends of
431	90 mm/10yr during 1981-2016 and 19 mm/10yr during 1998-2016 in Wang et al. (2021),
432	compared with decreasing trends of -110.0 mm/10yr during 1981-2016 and -84.0 mm/10yr
433	during 1998–2016 in this study. In addition, a decreasing trend of atmospheric moisture during
434	the monsoon season in the sub-basin also partly confirms the rationality of the reconstructed
435	precipitation used in this study as model input.

436

The varition of precipitation datasets for high mountains may result in large differences in meltwater contribution (Sun and Su, 2020). Less attention about the contribution of glacier runoff in the YZ basin was paid to the NX-BXK (Table 4), and large inconsistencies in glacier contributions also existed in these studies (Table 4), mostly resulting from uncertainties in forcing inputs and parameters for VIC-Glacier models. For example, Sun and Su (2020) suggested that mean annual glacier runoff contributed of about 45% to total runoff in the NX-BXK sub-basin for 1980–2000 using a hydrological model without calibration and validition

444	due to a lack of runoff observation in the sub-basin. Based on newly collected rain gauge data,
445	and runoff, glacier mass balance, and glacier and snow cover observations in the NX-BXK,
446	glacier runoff is simulated by the well-validated VIC-Glacier model forced by a
447	comprehensively reconstructed long-term precipitation dataset in this study. The contribution
448	of glacier runoff to total runoff is updated to 19% during 1971–2020 in the NX-BXK sub-basin.
449	

450 Reliable parameters are crucial for accurate runoff simulation by hydrological models. The DDF is the most sensitive parameter for degree-day glacier model (Hock, 2003). Zhang et al. 451 452 (2013) studied the sensitivity of glacier melt runoff to the parameters of DDFs, suggesting that average annual glacier runoff would decrease/increase about 10% with the decrease/increase of 453 454 each one unit (mm $^{\circ}C^{-1}$ day⁻¹) in DDF. In this work, the DDF parameters used in this study are derived based on observed glacier mass balance data, but intensively validations on glacier melt 455 (e.g. observed glacier mass balance and satellite-based glacier area estimates). In addition, 456 457 monthly runoff observation from eight hydrological stations are collected to further validate 458 parameters, ensuring that the model set-up is suitable for our modelling purposes.

459

460 **5.2 Implications for Water Management**

461 Comprehensive understanding of regional runoff characteristics and changes shows important 462 implications for water management in the river basin. First, runoff regimes and changes are 463 different among the sub-basins of the YZ; thus, our findings of regional runoff changes among

464	sub-basins of the YZ basin are important to make informed policy decisions on local water
465	management. For instance, for the LS and NX basin, increased flows occur in April-September
466	related to increased rainfall and snowmelt peak to earlier spring, which may thus alleviate a
467	shortage of irrigation water in the drought-prone early stages of the growing season (Immerzeel
468	et al., 2010). On the contrary, for the NX-BXK basin, decreased flows are mostly occurred in
469	September-May related to decreased rainfall and snowmelt, which may be paid attention by
470	hydrological government to considerable effects on water security, stress, and availability. In
471	addition, climate changes have resulted in an increase of nature hazards largely associated with
472	cryosphere in recent years, such as glacier lake outburst floods and glacier collapses. On 16 and
473	29 October 2018, a glacier collapse blocked main course of the river and generated a dam-
474	breaching flood in the downstream sub-basin of the YZ, which threatened the living security of
475	more than 20,000 people in the Mainling County and Medog County (Chen et al., 2020; An et
476	al., 2021; Zhao et al., 2022). Therefore, effects of glacier change on hydrological processes
477	need to be further investigated, and early warning of nature hazards associated with cryosphere
478	is suggested to be placed emphasis in the NX-BXK, which accounts for about 65% of total
479	glacier area and about 52% of runoff in the YZ (Table 1).

480

481 Second, the YZ basin are threatened by hazard from both extreme floods and hydrological 482 drought (Figure 10). Therefore, our findings will be benefit to make informed policy decisions 483 on protecting downstream populations from the worst effects of the flood and drought events.

484	The Yarlung-Brahmaputra basin is one of the world's largest and most populated region,
485	providing life-supporting services to about 70 million people from the China, India, Banglasesh
486	and Bhutan countries (Pradhan et al., 2021). Higher flood risks in wet season and drought risks
487	in dry season will be particularly relevant for human safety and agricultural production in both
488	the upper and downstream basins of the YZ (Liu et al., 2018; Gao et al., 2019). Especially for
489	downstream region, vast agriculture areas along the main rivers and in the delta's floodplain
490	will likely experience higher flood water levels from upper regions, thus having higher risks of
491	reduced productivity and crop failure (Hoang et al., 2016). Therefore, some mitigation and
492	adaptation strategies are urgently needed to solve water security problems from flood or drought
493	hazard in this basin. Our study offers a basic framework for clarifying the extreme flood and
494	drought events, and investigating the roles of glacier runoff in extreme events in the monsoon-
495	dominated basin of the TP.

496

497 6 Conclusions

In this study, runoff regimes, flow changes and the attribution are comprehensively investigated across six sub-basins in the YZ for 1971–2020 with a particular focus on the comparison between the NX and NX-BXK based on a newly generated precipitation dataset and the wellvalidated large-scale VIC-Glacier model with observed streamflow at eight hydrological stations, glacier mass balance data at two sites, and satellite-based glacier and snow cover estimates. Large regional differences in runoff regimes and flow changes in the YZ basin were

504 observed. The main features of these differences are summarized below.

505

506	1. Regional differences in runoff regimes are presented in the YZ basin. The NX-BXK
507	contributes 52% to total runoff at the Pasighat outlet of the YZ basin, followed by the YC-NX
508	(25%), LS (10%), and other sub-basins (3%–6%). Although runoff generation in the entire YZ
509	is dominated by rain-induced (59%-72%), glacier runoff plays more important roles in annual
510	total runoff in the downstream sub-basins (16%-19%) than other sub-basins, especially in
511	summer (23%–35%).

512

513 2. Regional differences in annual runoff changes are found in the YZ basin. Annual runoff generally increases during 1971-2020 in all sub-basins of the NX basin (8-19 mm/10yr), except 514 515 for the RKZ sub-basin. The NX-BXK sub-basin (-9.4 mm/10yr, p<0.05) shows a significant decrease, which results in a weak increasing trend of 3.1 mm/10yr in the entire YZ basin. Total 516 runoff trends reverse after 1998 for all the sub-basins of the YZ, with increasing trends during 517 1971-1997 and decreasing trends during 1998-2020. However, the decreasing trend of total 518 519 runoff is slower in the NX-BXK (-0.3 mm/10yr) than the NX (-3.3 mm/10yr) due to the stronger 520 increases of glacier runoff (16.1 mm/10yr) in the NX-BXK. Annual runoff changes in the YZ 521 and its six sub-basins are dominated by precipitation-induced runoff from non-glacierized areas, 522 with only minor impacts from glacier runoff.

523

524	3. Regional differences in seasonal runoff changes are apparent in the YZ basin. Relative to
525	1971-1997, mean monthly total runoff increased by 5%-22% in NX for 1998-2020, mostly
526	due to increases in rain-induced and glacier runoff, while monthly runoff decreased by 3%-20%
527	in NX-BXK because of decreases in precipitation-induced runoff. As an integrated result of
528	seasonal runoff changes in these basins, total runoff in the YZ basin increased by 3% -20%
529	during June-September, primarily due to increases in rain-induced and glacier runoff, while
530	total runoff decreased in the other months because of decreased precipitation-induced runoff.
531	
532	4. Regional differences in extreme frequency of flood and drought are apparent in the YZ basin.
533	The NX basin faces a considerably hazard from extreme flood, with an increasing trend of 6
534	days/10yr. However, more severe hydrological droughts are likely to exacer-bate ongoing water
535	stress in the NX-BXK sub-basin.
536	
537	5. Regional differences in the importance of glacier runoff to water supplies are apparent in the
538	YZ basin. Glacier runoff plays an increasing role in both annual and seasonal water supplies
539	during 1971–2020 in the entire YZ as well as in its NX-BXK sub-basin. This is evidenced by
540	increased glacier runoff and its contribution to total runoff. Glacier runoff shows limited roles
541	in mitigating water shortages caused by the drought in dry seasons in the YZ basin, but it

542 intensifies flood frequency and severity among the basins in wet season.

543

544 Acknowledgments

545	This study was financially supported by the National Natural Science Foundation of China
546	(42201140), project funded by China Postdoctoral Science Foundation (2022M723256), and
547	the Second Tibetan Plateau Scientific Expedition and Research (STEP) Program
548	(2019QZKK0201). We also thank Daqing Yang and Ying Li for their constructive suggestions.
549	
550	Code and data availability
551	The first Chinese Spatial Glacier Inventory is available from http://westdc.westgis.ac.cn/glacier.
552	The Randolph Glacier Inventory 6.0 is available from http://www.glims.org/RGI/. The snow
553	cover area data of the MODIS 10CM are available from https://nsidc.org/data. Observed runoff
554	data are from the Tibetan Hydrological Bureaus. Observed glacier mass balance data at
555	Gurenhekou and Parlung No.94 are collected from the Institute of Tibetan Plateau Research,
556	Chinese Academy of Sciences (http://www.tpdc.ac.cn). All codes used to produce the results
557	are available upon request to the authors.

558

559 Author Contributions

He Sun: Conceptualization, Formal analysis, Investigation, Methodology, Resources,
Visualization, Funding acquisition, Writing draft. Tandong Yao: Conceptualization, Resources,
Visualization, Funding acquisition, Writing (review and editing). Fengge Su: Writing (review
and editing). Wei Yang: Editing and providing glacier mass balance data. Guifeng Huang:

564 Methodology, Resources. Deliang Chen: Writing (review and editing).

565

566 Competing interests

567 The authors declare that they have no known competing financial interests or personal

relationships that could have appeared to influence the work reported in this paper.

569

570 **References**

- 571 An, B., Wang, W., Yang, W., Wu, G., Guo, Y., Zhu, H., Gao, Y., Bai, L., Zhang, F., Zeng, C.,
- 572 Wang, L., Zhou, J., Li, X., Li, J., Zhao, Z., Chen, Y., Liu, J., Li, J., Wang, Z., Chen, W., and Yao,
- 573 T.: Process, mechanisms, and early warning of glacier collapse-induced river blocking disasters
- 574 in the Yarlung Tsangpo Grand Canyon, southeastern Tibetan Plateau, Sci Total Environ, 151652,
- 575 https://doi.org/10.1016/j.scitotenv.2021.151652, 2021.
- 576 Bahr, D. B., Meier, M. F., and Peckham, S. D.: The physical basis of glacier volume area
- scaling, J. Geophys. Res. Solid Earth, 102, 20355-20362, https://doi.org/10.1029/97jb01696,
 1997.
- 579 Barnett, T. P., Adam, J. C., and Lettenmaier, D. P.: Potential impacts of a warming climate on
- 580 water availability in snow-dominated regions, Nature, 438, 303-309,
- 581 https://doi.org/10.1038/nature04141, 2005.
- 582 Chen, C., Zhang, L., Xiao, T., and He, J.: Barrier lake bursting and flood routing in the Yarlung
- 583 Tsangpo Grand Canyon in October 2018, J. Hydrol., 583,
- 584 https://doi.org/10.1016/j.jhydrol.2020.124603, 2020.

- 585 Chen, X., Long, D., Hong, Y., Zeng, C., and Yan, D.: Improved modeling of snow and glacier
- 586 melting by a progressive two-stage calibration strategy with GRACE and multisource data:
- 587 How snow and glacier meltwater contributes to the runoff of the Upper Brahmaputra River
- 588 basin?, Water Resour. Res., 53, 2431–2466, https://doi.org/10.1002/2016WR019656, 2017.
- 589 Cuo, L. and Zhang, Y.: Spatial patterns of wet season precipitation vertical gradients on the
- Tibetan Plateau and the surroundings, Sci. Rep., 7, 5057, https://doi.org/10.1038/s41598-017-
- 591 05345-6, 2017.
- 592 Cuo, L., Li, N., Liu, Z., Ding, J., Liang, L., Zhang, Y., and Gong, T.: Warming and human
- 593 activities induced changes in the Yarlung Tsangpo basin of the Tibetan plateau and their
- influences on streamflow, J. Hydrol-Reg. Stud., 25, https://doi.org/10.1016/j.ejrh.2019.100625,
- 595 2019.
- 596 Duethmann, D., Peters, J., Blume, T., Vorogushyn, S., and Güntner, A.: The value of satellite-
- derived snow cover images for calibrating a hydrological model in snow-dominated catchments
 in Central Asia, Water Resour. Res., 50, 2002-2021, https://doi.org/10.1002/2013wr014382,
- 599 2014.
- 600 Gao, C., Liu, L., Ma, D., He, K., and Xu, Y. P.: Assessing responses of hydrological processes
- 601 to climate change over the southeastern Tibetan Plateau based on resampling of future climate
- scenarios, Sci Total Environ, 664, 737-752, https://doi.org/10.1016/j.scitotenv.2019.02.013,
 2019.
- 604 Hoang, L. P., Lauri, H., Kummu, M., Koponen, J., van Vliet, M. T. H., Supit, I., Leemans, R.,

- 605 Kabat, P., and Ludwig, F.: Mekong River flow and hydrological extremes under climate change,
- 606 Hydrol. Earth Syst. Sci., 20, 3027-3041, 10.5194/hess-20-3027-2016, 2016.
- 607 Hock, R.: Temperature index melt modelling in mountain areas, J. Hydrol., 282, 104-115,
- 608 https://doi.org/10.1016/s0022-1694(03)00257-9, 2003.
- 609 Kan, B., Su, F., Xu, B., Xie, Y., Li, J., and Zhang, H.: Generation of High Mountain Precipitation
- 610 and Temperature Data for a Quantitative Assessment of Flow Regime in the Upper Yarkant
- 611 Basin in the Karakoram, J. Geophys. Res. Atmos., 123, 8462-8486,
 612 https://doi.org/10.1029/2017jd028055, 2018.
- 613 Li, C., Su, F., Yang, D., Tong, K., Meng, F., and Kan, B.: Spatiotemporal variation of snow
- 614 cover over the Tibetan Plateau based on MODIS snow product, 2001-2014, Int. J. Climatol.,
- 615 38, 708-728, https://doi.org/10.1002/joc.5204, 2018.
- 616 Liang, X., Lettenmaier, D. P., and Wood, E. F.: One-dimensional statistical dynamic
- 617 representation of subgrid spatial variability of precipitation in the two-layer variable infiltration
- 618 capacity model, J. Geophys. Res. Atmos., 101, 21403-21422,
- 619 https://doi.org/10.1029/96jd01448, 1996.
- 620 Liang, X., Lettenmaie, D. P., Wood, E. F., and Burges, S. J.: A simple hydrologically based
- 621 model of land-surface water and energy fluxes, J. Geophysical Research, 99:, 14415–14428,
- 622 https://doi.org/10.1029/94jd00483, 1994.
- 623 Liu, L., Pan, S. L., Bai, Z. X., and Xu, Y. P.: Potential application of hydrological ensemble
- 624 prediction in forecasting flood and its components over the Yarlung Zangbo River Basin, China,

- 625 Hydrol. Earth Syst. Sci. Discuss., 1-33, https://doi.org/10.5194/hess-2018-179, 2018.
- 626 Liu, L., Gu, H., Xie, J., and Xu, Y. P.: How well do the ERA Interim, ERA 5, GLDAS 2.1
- 627 and NCEP R2 reanalysis datasets represent daily air temperature over the Tibetan Plateau?,
- 628 Int. J. Climatol., https://doi.org/10.1002/joc.6867, 2020.
- 629 Liu, S., Sun, W., Shen, Y., and Li, G.: Glacier changes since the Little Ice Age maximum in the
- 630 western Qilian Shan, northwest China, and consequences of glacier runoff for water supply, J.
- 631 Glaciol., 49, 117-124, https://doi.org/10.3189/172756503781830926, 2003.
- 632 Liu, Y., Wu, G., Hong, J., Dong, B., Duan, A., Bao, Q., and Zhou, L.: Revisiting Asian monsoon
- 633 formation and change associated with Tibetan Plateau forcing: II. Change, Clim. Dynam., 39,
- 634 1183-1195, https://doi.org/10.1007/s00382-012-1335-y, 2012.
- 635 Lutz, A. F., Immerzeel, W. W., Kraaijenbrink, P. D., Shrestha, A. B., and Bierkens, M. F.:
- 636 Climate Change Impacts on the Upper Indus Hydrology: Sources, Shifts and Extremes, PLoS
- 637 One, 11, e0165630, https://doi.org/10.1371/journal.pone.0165630, 2016.
- 638 Meng, F. C., Su, F. G., Li, Y., and Tong, K.: Changes in Terrestrial Water Storage During 2003-
- 639 2014 and Possible Causes in Tibetan Plateau, J. Geophys. Res. Atmos., 124, 2909-2931,
- 640 https://doi.org/10.1029/2018jd029552, 2019.
- 641 Miao, L., Li, S., Zhang, F., Chen, T., Shan, Y., and Zhang, Y.: Future Drought in the Dry Lands
- 642 of Asia Under the 1.5 and 2.0 °C Warming Scenarios, Earth's Future, 8,
- 643 https://doi.org/10.1029/2019ef001337, 2020.
- 644 Niu, Q., Liu, L., Heng, J., Li, H., and Xu, Z.: A Multi-Index Evaluation of Drought

- 645 Characteristics in the Yarlung Zangbo River Basin of Tibetan Plateau, Southwest China, Front.
- 646 Earth Sc., 8, https://doi.org/10.3389/feart.2020.00213, 2020.
- 647 Pradhan, N. S., Das, P. J., Gupta, N., and Shrestha, A. B.: Sustainable Management Options for
- 648 Healthy Rivers in South Asia: The Case of Brahmaputra, Sustainability, 13,
- 649 https://doi.org/10.3390/su13031087, 2021.
- 650 Pritchard, H. D.: Asia's shrinking glaciers protect large populations from drought stress, Nature,
- 651 569, 649-654, https://doi.org/10.1038/s41586-019-1240-1, 2019.
- 652 Su, F., Hong, Y., and Lettenmaier, D. P.: Evaluation of TRMM Multisatellite Precipitation
- 653 Analysis (TMPA) and Its Utility in Hydrologic Prediction in the La Plata Basin, J.
- 654 Hydrometeorol., 9, 622-640, https://doi.org/10.1175/2007jhm944.1, 2008.
- 55 Su, F., Zhang, L., Ou, T., Chen, D., Yao, T., Tong, K., and Qi, Y.: Hydrological response to
- 656 future climate changes for the major upstream river basins in the Tibetan Plateau, Glob. Planet.
- 657 Change, 136, 82-95, https://doi.org/10.1016/j.gloplacha.2015.10.012, 2016.
- 658 Su, F., Pritchard, H. D., Yao, T., Huang, J., Ou, T., Meng, F., Sun, H., Li, Y., Xu, B., Zhu, M.,
- and Chen, D.: Contrasting Fate of Western Third Pole's Water Resources Under 21st Century
- 660 Climate Change, Earth's Future, 10, https://doi.org/10.1029/2022ef002776, 2022.
- 661 Sun, H. and Su, F.: Precipitation correction and reconstruction for streamflow simulation based
- on 262 rain gauges in the upper Brahmaputra of southern Tibetan Plateau, J. Hydrol., 590,
- 663 https://doi.org/10.1016/j.jhydrol.2020.125484, 2020.
- 664 Sun, H., Su, F., He, Z., Ou, T., Chen, D., Li, Z., and Li, Y.: Hydrological evaluation of high-

- resolution precipitation estimates from the WRF model in the Third Pole river basins, J.
- 666 Hydrometeorol., https://doi.org/10.1175/jhm-d-20-0272.1, 2021.
- 667 Sun, H., Yao, T., Su, F., He, Z., Tang, G., Li, N., Zheng, B., Huang, J., Meng, F., and Ou, T. J.
- 668 J. o. H.: Corrected ERA5 precipitation by machine learning significantly improved flow
- 669 simulations for the Third Pole basins, J. Hydrometeorol., 23, https://doi.org/10.1175/JHM-D-
- 670 22-0015.1, 2022.
- 671 Tong, K., Su, F., and Xu, B.: Quantifying the contribution of glacier meltwater in the expansion
- 672 of the largest lake in Tibet, J. Geophys. Res. Atmos., 121, 11158-11173,
- 673 https://doi.org/10.1002/2016jd025424, 2016.
- 674 Wang, A., Wang, Y., Su, B., Kundzewicz, Z. W., Tao, H., Wen, S., Qin, J., Gong, Y., and Jiang,
- 675 T.: Comparison of Changing Population Exposure to Droughts in River Basins of the Tarim and
- 676 the Indus, Earth's Future, 8, https://doi.org/10.1029/2019ef001448, 2020.
- 677 Wang, Y., Wang, L., Zhou, J., Yao, T., Yang, W., Zhong, X., Liu, R., Hu, Z., Luo, L., Ye, Q.,
- 678 Chen, N., and Ding, H.: Vanishing glaciers at southeast Tibetan Plateau have not offset the
- 679 declining runoff at Yarlung Zangbo, Geophys. Res. Lett., https://doi.org/10.1029/2021gl094651,
- 680 2021.
- 681 Wu, G. and Duan, A.: Weakening Trend in the Atmospheric Heat Source over the Tibetan
- 682 Plateau during Recent Decades. Part I: Observations, J. Clim., 21, 3149-3164,
- 683 https://doi.org/10.1175/2007jcli1912.1, 2008.
- 684 Wu, G. and Duan, A.: Weakening Trend in the Atmospheric Heat Source over the Tibetan

- 685 Plateau during Recent Decades. Part II: Connection with Climate Warming, J. Clim., 22, 4197-
- 686 4212, https://doi.org/10.1175/2009jcli2699.1, 2009.
- 687 Yang, W., Yao, T., Guo, X., Zhu, M., Li, S., and Kattel, D. B.: Mass balance of a maritime
- 688 glacier on the southeast Tibetan Plateau and its climatic sensitivity, J. Geophys. Res. Atmos.,
- 689 118, 9579-9594, https://doi.org/10.1002/jgrd.50760, 2013.
- 690 Yang, W., Guo, X., Yao, T., Yang, K., Zhao, L., Li, S., and Zhu, M.: Summertime surface energy
- 691 budget and ablation modeling in the ablation zone of a maritime Tibetan glacier, J. Geophys.
- 692 Res. Atmos., 116, https://doi.org/10.1029/2010jd015183, 2011.
- 693 Yang, Y., Gao, D., and Li, B.: Study on the moisture passage on the lower reaches of the Yarlung
- 694 Zangbo river, Sci. China (Series B) 32, 580-593, 1989.
- 695 Yang, Z., Zhuo, M., Lu, H., Ma, P., and Zhou, K.: Characteristics of precipitation variation and
- 696 its effects on runoff in the Yarlung Zangbo River basin during 1961-2010, Journal of
- 697 Glaciology and Geocryology, 36, 166-172 (in chinese), 2014b.
- 698 Yao, T.: Recent glacial retreat in High Asia in China and its impact on water resource in
- 699 Northwest China, Sci. China (Series D), 47, 1065, https://doi.org/10.1360/03yd0256, 2004.
- 700 Yao, T., Thompson, L., Yang, W., Yu, W., Gao, Y., Guo, X., Yang, X., Duan, K., Zhao, H., Xu,
- 701 B., Pu, J., Lu, A., Xiang, Y., Kattel, D. B., and Joswiak, D.: Different glacier status with
- atmospheric circulations in Tibetan Plateau and surroundings, Nat. Clim. Chang., 2, 663-667,
- 703 https://doi.org/10.1038/nclimate1580, 2012.
- 704 Zhang, L., Su, F., Yang, D., Hao, Z., and Tong, K.: Discharge regime and simulation for the

- 105 upstream of major rivers over Tibetan Plateau, J. Geophys. Res. Atmos., 118, 8500-8518,
- 706 https://doi.org/10.1002/jgrd.50665, 2013.
- 707 Zhao, C., Yang, W., Westoby, M., An, B., Wu, G., Wang, W., Wang, Z., Wang, Y., and Dunning,
- 708 S.: Brief communication: An approximately 50 Mm<sup>3</sup> ice-rock
- 709 avalanche on 22 March 2021 in the Sedongpu valley, southeastern Tibetan Plateau, The
- 710 Cryosphere, 16, 1333-1340, https://doi.org/10.5194/tc-16-1333-2022, 2022.
- 711 Zhao, Q., Ding, Y., Wang, J., Gao, H., Zhang, S., Zhao, C., Xu, J., Han, H., and Shangguan, D.:
- 712 Projecting climate change impacts on hydrological processes on the Tibetan Plateau with model
- calibration against the Glacier Inventory Data and observed streamflow, J. Hydrol., 573, 60-81,
- 714 https://doi.org/10.1016/j.jhydrol.2019.03.043, 2019.
- 715 Zhong, L., Ma, Y., Fu, Y., Pan, X., Hu, W., Su, Z., Salama, M. S., and Feng, L.: Assessment of
- 516 soil water deficit for the middle reaches of Yarlung-Zangbo River from optical and passive
- 717 microwave images, Remote Sens. Environ., 142, 1-8, https://doi.org/10.1016/j.rse.2013.11.008,
- 718 2014.

Captions:

Figure 1. Location and topography of the Yarlung Zangbo (YZ) river basin. Numbers 1 to 6 show the sub-basins of Lhatse (LZ), Lhatse-Yangcun (LZ-YC), Shigatse (RKZ), Lhasa (LS), Yangcun-Nuxia (YC-NX), and Nuxia-Pasighat (NX-BXK), respectively.

Figure 2. Annual time series of observed and simulated glacier mass balance at (a) Gurenhekou for 2005–2009 and (b) Parlung No.94 for 2006–2018, and (c) mean annual glacier coverage (%) during 2000–2010 from the VIC-Glacier model simulation and satellite-based observation over the entire YZ basin and its sub-basins.

Figure 3. (a) Time series and (b) flow duration curve of observed and simulated daily runoff at Nuxia hydrological station for 1971–1980.

Figure 4. Mean monthly observed and simulated runoff at eight hydrological stations of sub-basins in the YZ for 1971–2015 (1981–2000 for YG and 2004–2013 for BM). Abbreviations LZ, RKZ, LS, LZ-YC, YC-NX, NX, YG and BM represent the upstream basins of Lhatse, Shigatse, Lhasa, the regions between Lhatse and Yangcun, between Yangcun and Nuxia, Nuxia, Yigong and Bomi, respectively.

Figure 5. Annual time series of observed and simulated runoff at nine hydrological stations in sub-basins of the YZ for 1971–2015 (1981–2000 for YG, 2004–2013 for BM and 2015–2019 for MT). Abbreviations LZ, RKZ, LS, LZ-YC, YC-NX, NX, YG, BM and MT represent the upstream basins of Lhatse, Shigatse, Lhasa, the regions between Lhatse and Yangcun, between Yangcun and Nuxia, Nuxia, Yigong, Bomi and Motuo, respectively. The asterisk indicates 95% significance confidence level.

Figure 6. Monthly time series of snow cover fraction (%) from the VIC-Glacier model simulation and satellitebased observations over the entire YZ basin and its four sub-basins for 2001–2019. The asterisk indicates 95% significance confidence level.

Figure 7. Mean monthly simulated rainfall, snowmelt, and glacier runoff, and their contribution to total annual runoff in the YZ and its sub-basins for 1971–2020.

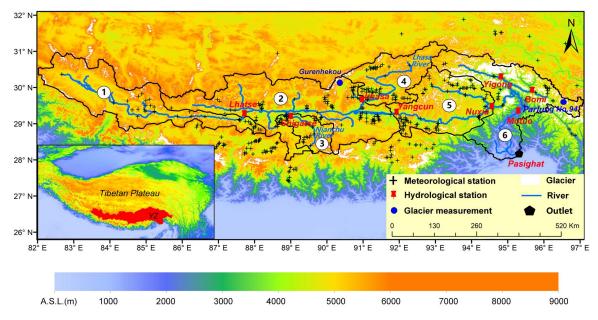
Figure 8. Annual variations of precipitation, temperature, total runoff and three runoff components (rainfall, glacier and snowmelt runoff) in the YZ and its sub-basins for 1971–2020, respectively. Linear trends are indicated by dashed lines, and corresponding values are also indicated. Asterisks indicate the 95% significance level **Figure 9.** Changes in (a–c) mean monthly total runoff, (d–f) three components, and (g–i) their contributions to total runoff for the period 1998–2020 relative to the period 1971–1997 in the entire YZ basin and its NX and NX-BXK sub-basins.

Figure 10. (a–c) Extreme flood and drought days, (d–f) annual maximum daily runoff, and (g–i) flow duration curves for simulated daily runoff during 1971–2020 in the YZ and its NX and NX-BXK basins.

Figure 11. Time series of annual precipitation estimates from different datasets in the NX-BXK sub-basin. Asterisks indicate the 95% significance level.

 Table 1. Characteristics of the six sub-basins in the Yarlung Zangbo River.

Table 2. List of data used in this study for the VIC-Glacier model validation.


 Table 3. Trends in precipitation, temperature, total runoff, and three runoff components and their contributions

 to total runoff in the YZ basins for different periods. Asterisks indicate the 95% confidence level.

Table 4. Summary of relevant studies on simulated runoff component contributions in the YZ basin.

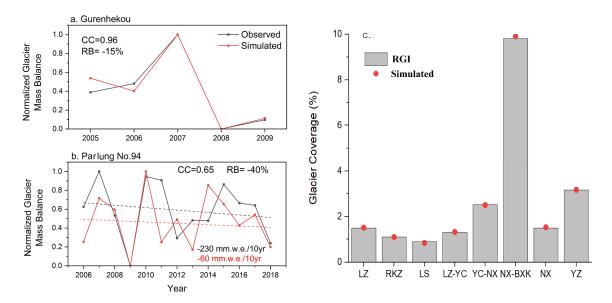


Figure 1. Location and topography of the Yarlung Zangbo (YZ) river basin. Numbers 1 to 6 show the sub-basins of Lhatse (LZ), Lhatse-Yangcun (LZ-YC), Shigatse (RKZ), Lhasa (LS), Yangcun-Nuxia (YC-NX), and Nuxia-Pasighat (NX-BXK), respectively.

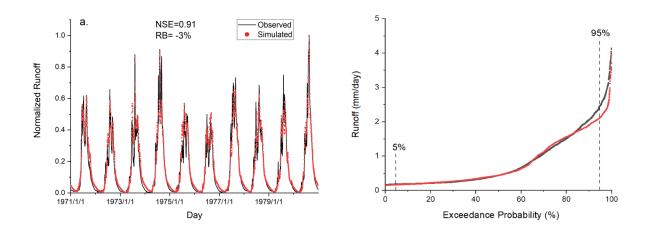


Figure 2. Annual time series of observed and simulated glacier mass balance at (a) Gurenhekou for 2005–2009 and (b) Parlung No.94 for 2006–2018, and (c) mean annual glacier coverage (%) during 2000–2010 from the VIC-Glacier model simulation and satellite-based observations over the entire YZ basin and its sub-basins. The number of each figure are calculated with actual magnitudes.

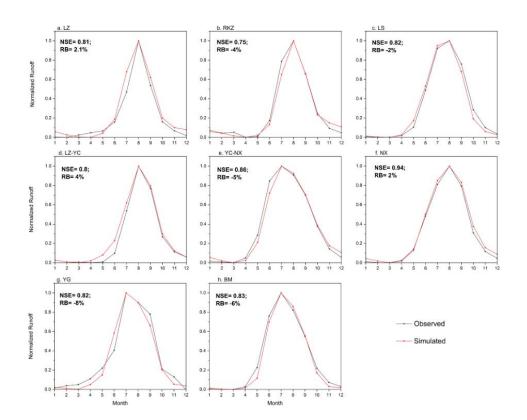


Figure 3. (a) Time series and (b) flow duration curve of observed and simulated daily runoff at Nuxia hydrological station for 1971–1980.



Figure 4. Mean monthly observed and simulated runoff at eight hydrological stations of sub-basins in the YZ for 1971–2015 (1981–2000 for YG and 2004–2013 for BM). Abbreviations LZ, RKZ, LS, LZ-YC, YC-NX, NX, YG and BM represent the upstream basins of Lhatse, Shigatse, Lhasa, the regions between Lhatse and Yangcun, between Yangcun and Nuxia, Nuxia, Yigong and Bomi, respectively. The number of each figure are calculated with actual magnitudes.

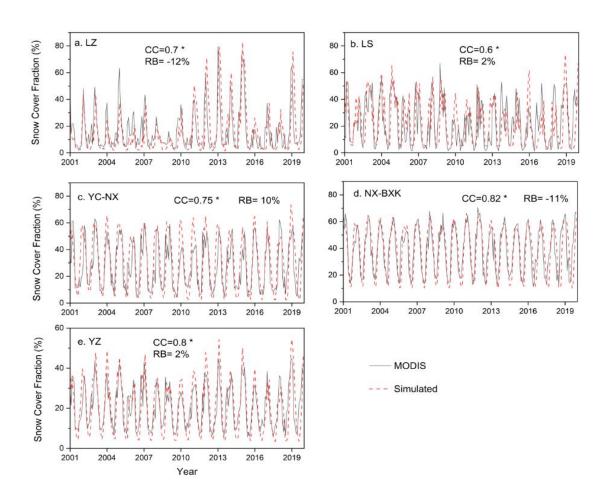


Figure 5. Annual time series of observed and simulated runoff at nine hydrological stations in sub-basins of the YZ for 1971–2015 (1981–2000 for YG, 2004–2013 for BM and 2015–2019 for MT). Abbreviations LZ, RKZ, LS, LZ-YC, YC-NX, NX, YG, BM and MT represent the upstream basins of Lhatse, Shigatse, Lhasa, the regions between Lhatse and Yangcun, between Yangcun and Nuxia, Nuxia, Yigong, Bomi and Motuo, respectively. The asterisk indicates 95% significance confidence level. The number of each figure are calculated with actual magnitudes.

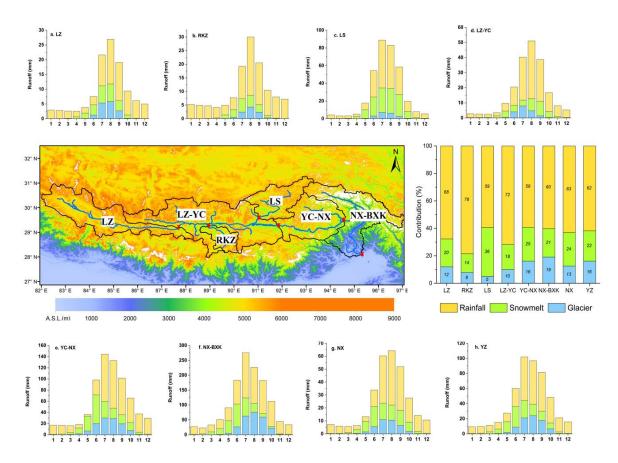


Figure 6. Monthly time series of snow cover fraction (%) from the VIC-Glacier model simulation and satellitebased observations over the entire YZ basin and its four sub-basins for 2001–2019. The asterisk indicates 95% significance confidence level.

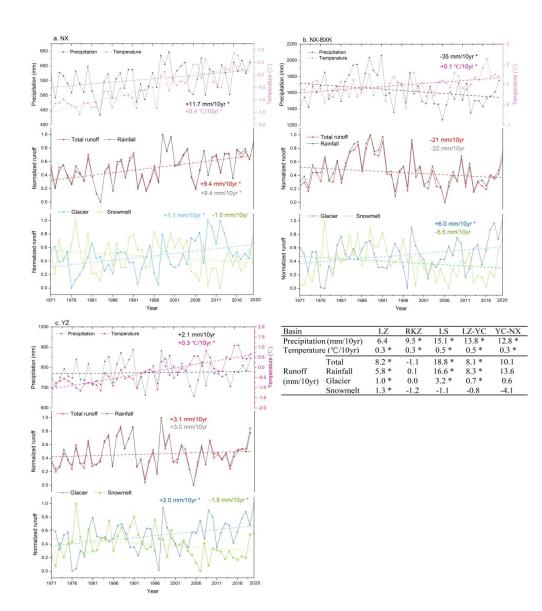


Figure 7. Mean monthly simulated rainfall, snowmelt, and glacier runoff, and their contribution to total annual runoff in the YZ and its sub-basins for 1971–2020.

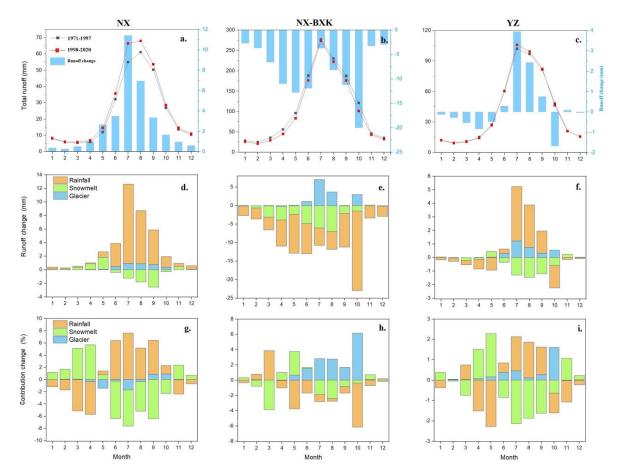


Figure 8. Annual variations of precipitation, temperature, total runoff, and three runoff components (rainfall, glacier, and snowmelt runoff) in the YZ and its sub-basins for 1971–2020, respectively. Linear trends are indicated by dashed lines, and corresponding values are also indicated. Tendency results for sub-basins are shown in the inset table. The number of each figure are calculated with actual magnitudes. Asterisks indicate the 95% significance level.

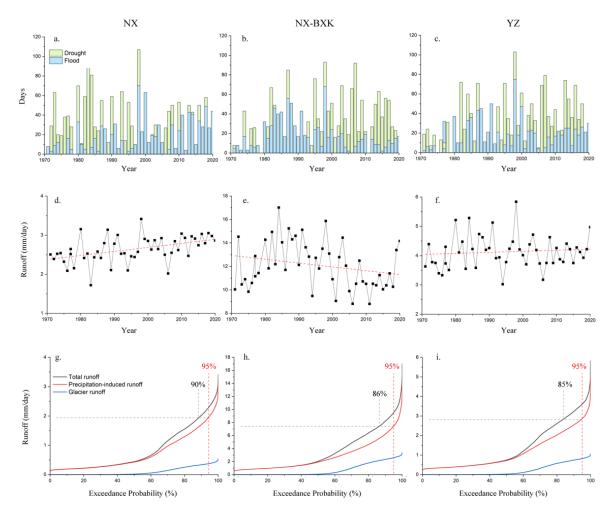


Figure 9. Changes in (a–c) mean monthly total runoff, (d–f) three components, and (g–i) their contributions to total runoff for the period 1998–2020 relative to the period 1971–1997 in the entire YZ basin and its NX and NX-BXK sub-basins.

Figure 10. (a–c) Extreme flood and drought days, (d–f) annual maximum daily runoff, and (g–i) flow duration curves for simulated daily runoff during 1971–2020 in the YZ and its NX and NX-BXK basins.

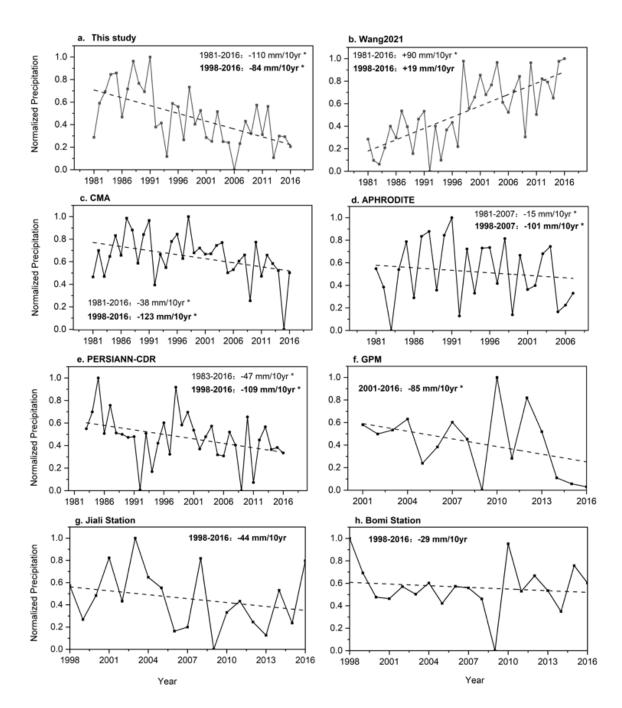


Figure 11. Time series of annual precipitation estimates from different datasets in the NX-BXK sub-basin. Asterisks indicate the 95% significance level.

		LZ	LZ-YC	RKZ	LS	YC-NX	NX-BXK	YZ
Outlet		Lhatse	Yangcun	Shigatse	Lhasa	Nuxia	Pasighat	Pasighat
Hydrological	Name	Lhatse	Yangcun	Shigatse	Lhasa	Nuxia	Motuo	—
station	Latitude (°N)	29.05	29.28	29.25	29.63	29.47	29.32	_
	Longitude (°E)	87.38	91.88	88.88	91.15	94.57	95.29	_
Drainage area (km²)	50553	71926	11064	26235	41770	51507	253,055
Basin average e	elevation (m)	5370	4767	5353	5272	4937	3711	4901
Mean annual pr	recipitation (mm) *	283	417	361	564	939	1465	774
Mean annual te	emperature (°C) *	-2.91	0.24	1.73	-1.28	0.97	1.21	-0.2
Glacier area (ki	m ²)	809	640	134	257	1174	5259	8273
Glacier coverag	ge (%) **	1.60	0.89	1.21	0.98	2.81	10.21	3.27
Degree day fac	tor (mm $^{\circ}C^{-1}$ day ⁻¹)	10.97	10.97	10.97	9.2	6.8	6.5	_
Snow cover are	ea (km ²)	7876	7344	772	6055	10129	16467	48643
Snow cover fra	ction (%)	15.58	10.21	6.98	23.08	24.25	31.97	19.22

Table 1. Characteristics of the six sub-basins in the Yarlung Zangbo River

*The periods of precipitation and temperature data are from 1961 to 2020.

**Glacier data are from the first China Glacier Inventory, http://westdc.westgis.ac.cn/glacier.

Data	Source	Resolution	Station name	Period
		Site, Monthly	Lhatse (LZ)	1971–2015
		Site, Monthly	Shigatse (RKZ)	1971–2015
		Site, Monthly	Lhasa (LS)	1971–2015
Observed	Tibetan Hydrological Bureaus	Site, Monthly	Yangcun (YC)	1971–2015
runoff	Tibetan Hydrological Bureaus	Site, Monthly	Nuxia (NX)	1971–2015
		Site, Monthly	Yigong (YG)	1981–2000
		Site, Monthly	Bomi (BM)	2004–2013
		Site, Annual	Motuo (MT)	2015–2019
Glacier mass	Institute of Tibetan Plateau Research,	Site, Annual	Gurenhekou	2005–2009
balance	Chinese Academy of Sciences	Site, Annual	Parlung No.94	2006–2018
balance	(http://www.tpdc.ac.cn)	Site, Annual	Tanung 10.94	2000-2018
	The first Glacier Inventory of China	_	_	1970s-1990s
Glacier	(http://westdc.westgis.ac.cn/glacier)			17703 17703
Inventory	Randolph Glacier Inventory (RGI	_	_	2000s-2010s
	V6.0) (http://www.glims.org/RGI/)			20005 20105
Snow cover	the Moderate Resolution Imaging	$0.05^{\circ} \times 0.05^{\circ},$		
fraction	Spectroradiometer (MODIS)10CM	Monthly		2001–2019
naction	(https://nsidc.org/data)	wonuny		

Table 2. List of data used in this study for the VIC-Glacier model validation.

Basin			NX			NX-BXK	Σ.		YZ	
Period		1971–	1971–	1998–	1971–	1971–	1998–	1971–	1971–	1998–
		2020	1997	2020	2020	1997	2020	2020	1997	2020
Precipitation (mm/10yr)	11.7 *	2.9	-6.9	-35.0 *	52	-16.4	2.1	8.3	-8.8
Temperature (°C/10yr)	0.4 *	0.2 *	0.3 *	0.1 *	0.1	0.3 *	0.3 *	0.2 *	0.3 *
	Total	9.4 *	1.1	-3.3	-21	48.1	-0.3	3.1	8.9	-2.7
Runoff	Glacier	1.1 *	0.6	0.7	6.0 *	0.1	16.1	2.0 *	0.1	3.9
(mm/10yr)	Snowmelt	-1	0.5	-3.4	-6	20.6 *	5.7	-1.9 *	4.6 *	-1.5
	Rainfall	9.4 *	0.9	-0.6	-22	27.6	-22.1	3.0	4.9	-5.0
Contribution	Glacier	-0.1	-0.2	0.3	0.8 *	-0.7	1.2	0.3	-0.4	0.8
(%/10yr)	Snowmelt	-1.1 *	0.3	-0.8	-0.1	0.9	0.3	-0.5 *	0.6	-0.3
	Rainfall	1.1 *	-0.1	0.6	-0.7 *	-0.3	-1.6 *	0.2	-0.2	-0.5

 Table 3. Trends in precipitation, temperature, total runoff, and three runoff components and their contributions

 to total runoff in the YZ basins for different periods. Asterisks indicate the 95% confidence level.

	R	Runoff contribution (%)	(%) u	Lo inc C	Mada	Dara 21 44 41 24 2	Dafamana
Dasin	Glacier	Snowmelt	Rainfall	renou	Meniou	Frecipitation Data	Kelerences
	11.6	23	65.4	1961–1999	VIC+DD	Corrected CMA data	Zhang et al. (2013)
	16	6	59	1998–2007	SPHY+DD	APHRODITE	Lutz et al. 2014
	15	27.3	57.7	1971 - 2000	VIC+DD	Corrected CMA data	Su et al. (2016)
	9.9	10.6	79.5	2003–2014	CREST	CGDPA, TMPA	Chen et al. (2017)
	5.5	23.1	71.4	1971 - 2010	VIC+DD	Interpolated CMA data	Zhao et al. (2019)
INUXIA	13.9	23.8	62.3	1980 - 2000	VIC+DD	Reconstructed data	Sun and Su (2020)
	1.8	13.2	62.1	1985 - 2014	SPHY+DD	ERA5	Khanal et al. (2021)
	18.4	22	69.6	2001 - 2010	isoGSM	CMFD	Nan et al. (2021)
	3.5-7.2	16.6–22.3		1981 - 2019	WEB-DHM	Reconstructed data	Wang et al. (2021)
	13	24	63	1971–2020	VIC+DD	Corrected ERA5	This Study
-	45.3	15.1	39.6	1980-2000	VIC+DD	Reconstructed data	Sun and Su (2020)
VV	5.7 - 8.2	7.2–7.8		1981–2019	WEB-DHM	Reconstructed data	Wang et al. (2021)
NA-BAN	61	21	60	1971–2020	VIC+DD	Corrected ERA5	This Study
	32.7	18.4	48.9	1980-2000	VIC+DD	Reconstructed data	Sun and Su (2020)
	5.5	17.2	73.3	1981–2019	WEB-DHM	Reconstructed data	Wang et al. (2021)
71	16	22	62	1971–2020	VIC+DD	Corrected ERA5	This Study

Table 4. Summary of relevant studies on simulated runoff component contributions in the YZ basin.

incorporated; WEB-DHM= Water and energy budget-based distributed hydrological model; CMFD= China Meteorological Forcing Dataset.

linked with a degree-day glacier melting model; CREST=Coupled Routing and Excess Storage model; isoGSM=Scripps global spectral model with water isotopes

53