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Abstract: Real-time accurate prediction of daily reference evapotranspiration (ETo) is critical for 1 

real-time irrigation decisions and water resource management. Although many public weather 2 

forecast-based machine learning models have been successfully used for daily ETo prediction, these 3 

models are developed with long-term historical daily observed meteorological data. The use of 4 

training and testing samples from different data sources can lead to the selection of the best model, 5 

and the performance of the best model for predicting daily ETo is not ideal. In this study, based on 6 

Food and Agriculture Organization (FAO) 56 Penman–Monteith (PM) equations, four machine 7 

learning models (multilayer perceptron (MLPo), extreme gradient boosting (XGBoosto), light 8 

gradient boosting machine (LightGBMo), and gradient boosting with categorical features support 9 

(CatBoost1o)) were trained and validated with daily observed meteorological data from 1995-2015 10 

and 2016-2019, respectively, and five machine learning models (MLPp, XGBoostp, LightGBMp, 11 

CatBoost1p, and CatBoost2) were trained and validated with daily public weather forecast data with 12 

a 1-day lead time (2014-2018 and 2019, respectively). Based on public weather forecast and daily 13 

observed meteorological data (2020-2021), the predicted daily ETo performance of nine machine 14 

learning models (MLPo, XGBoosto, LightGBMo, CatBoost1o, MLPp, XGBoostp, LightGBMp, 15 

CatBoost1p, and CatBoost2) was compared. The results show that for all three studied climate zones, 16 

the performance of the four models developed based on public weather forecast data with a 1-day 17 

advance is better than that of the four models developed based on daily observed meteorological 18 

data with corresponding input combinations, and the mean MAE and RMSE ranges for the four 19 

models (MLP, XGBoost, LightGBM, and CatBoost1) in the three studied climate zones were 20 

reduced by 2.93%-11.67% and 2.20%-9.46%, respectively, and the mean R range was improved by 21 

1.31%-5.31%. The top three models for the AR climate zone were XGBoostp, LightGBMp, and 22 
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MLPp, the top three models for the SAR climate zone were MLPp, XGBoostp, and LightGBMp, and 23 

the top three models for the SHZ climate zone were XGBoostp, MLPp, and LightGBMp. In addition, 24 

the prediction performance for daily ETo is found to be highest in winter and lowest in summer in 25 

all three climate zones. Wspd from public weather forecasts was the most important source of daily 26 

ETo error in model predictions for the AR climate zone, followed by SDun, Tmax, and Tmin, while 27 

SDun from public weather forecasts was the most important source of daily ETo error in model 28 

predictions for the SAR (SHZ) climate zone, followed by Wspd, Tmax, and Tmin (Tmax, Wspd, and 29 

Tmin). 30 

 31 

Keywords: Forecasting, Reference evapotranspiration, Public weather forecast, Tree-based 32 

assembly algorithms, Irrigation season 33 

 34 

1. Introduction 35 

Crop water demand is the most important part of water transfer and energy conversion in the 36 

soil‒plant–atmosphere continuum (SPAC), and it is an important process in the field water cycle. 37 

Accurately estimating crop water demand is the basis for designing crop irrigation systems, 38 

determining regional irrigation water use, and facilitating effective basin planning, regional water 39 

planning, and drainage and irrigation project planning, design, and management. However, directly 40 

measuring crop water demand is time-consuming and expensive, significantly limiting practical 41 

applications (Irmak et al., 2003; Martınez-Cob et al., 2015; Silva et al. 2019a; Fan et al., 2021a). 42 

Thus, crop water demand is usually measured using an indirect method, i.e., reference 43 

evapotranspiration (ETo) multiplied by the crop coefficient. Predicting ETo is more valuable than 44 

estimating ETo (Yang et al., 2016; Yang et al., 2019a), and accurate ETo prediction is the key to crop 45 
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water demand prediction and the prerequisite for real-time irrigation forecasting, which has 46 

important reference value and significance for real-time irrigation decisions (Luo et al., 2014; Perera 47 

et al. 2014; Ballesteros et al., 2016). 48 

Depending on the method and input data, ETo prediction methods can be divided into direct and 49 

indirect methods (Perera et al., 2014). Since daily ETo data mainly vary with weather and are only 50 

influenced by future weather variables, direct methods that use long-term historical weather data to 51 

predict ETo are not applicable to short-term daily ETo prediction. For indirect ETo prediction 52 

methods that use weather forecast data, numerical weather forecasts that provide all the variables of 53 

the Food and Agriculture Organization 56 Penman–Monteith (FAO 56 PM) equation have been used 54 

in predicting daily ETo (Silva et al., 2010; Pelosi et al., 2016), and used in predicting daily ETo with 55 

a 1-10 day lead time (Perera et al. 2014; Medina et al., 2018; Vanella et al., 2020). However, 56 

numerical forecast products in China are only available to professionals (e.g., registered users in 57 

academia and research) and are not accessible to nonprofessionals. In addition, these products 58 

require preprocessing (Fan et al., 2021b) or postprocessing (Medina et al., 2020) by professionals 59 

to improve the reliability of the output data. 60 

In China, the China Weather Network, hosted by the Public Meteorological Service Center of 61 

the China Meteorological Administration, is a public service-based meteorological portal for society 62 

and the public. The China Weather Network covers more than 100,000 sites in provinces, cities, 63 

towns, and tourist attractions across the country and provides real-time meteorological services, 64 

including weather forecasts, current conditions, indices, air quality information, and many other 65 

elements, with a minimum time resolution of 5 minutes and a maximum forecast time of 40 days. It 66 

also provides user location-based forecasting services on mobile sites. Public weather forecasts 67 
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include four variables: maximum temperature, minimum temperature, wind scale and weather type. 68 

In recent years, public weather forecasts have been widely used in ETo forecasting. For example, 69 

information from public weather forecasts has been converted into variables required to calculate 70 

ETo using the FAO-56 PM equation, and then used to forecast in daily ETo (Cai et al., 2007; Cai et 71 

al., 2009), used to forecast daily ETo with a lead time of 1-3 days (Liu et al., 2020), and used to 72 

forecast daily ETo with a lead time of 1-7 days (Yang et al., 2016). The results of these studies 73 

indicate that the errors in daily ETo predicted with the variables transformed with information from 74 

public weather forecasts and the FAO 56 PM equation are mainly caused by errors arising from the 75 

process of converting qualitative wind scale and weather type information in public weather 76 

forecasts into wind speed and sunshine hour information, respectively. 77 

Thus, some studies have included measured or precalculated variable data and public weather 78 

forecast data as inputs for their models to predict daily ETo. An example of such studies include 79 

using temperature data from weather forecasts and actual incident net solar radiation (Rs) values 80 

occurring in each advance period and four artificial neural network (ANN) learning algorithms 81 

(generalized feedforward (GFF), linear regression (LR), multilayer perceptron (MLP) and 82 

probabilistic neural network (PNN)) to forecast ETo in Dallas, Texas, USA, 1-15 days in advance 83 

(Traore et al., 2016). Additionally, temperature data from public weather forecasts, measured 84 

sunshine hours, precalculated weather type correction factors (Wt, only four weather type correction 85 

factors, i.e., sunny, cloudy, overcast and rainy, are defined) and a combined model of bi-directional 86 

long short-term memory (Bi-LSTM) and ANN were used to predict daily ETo 1-7 days ahead for 87 

three stations in Ningxia, China (Yin et al., 2020). However, since short-term daily ETo is mainly 88 

governed by weather conditions, introducing additional measured or precalculated variable data as 89 
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input to predict daily ETo may not be applicable for real-time irrigation decisions. In addition, in 90 

these studies, machine learning models were trained and validated with long-term historical 91 

meteorological data and tested with public weather forecast data (with a maximum data duration of 92 

2 years). Thus, the data sources in these studies were different (e.g., in China, the source of historical 93 

meteorological data is the National Meteorological Information Center of China, while the source 94 

of public weather forecasts is the Public Weather Service Center of the China Meteorological 95 

Administration). Moreover, there have been no comparison studies between training and validating 96 

machine learning models with historical meteorological data and public weather forecast data. 97 

However, the use of samples from different data sources may affect the daily ETo performance of 98 

machine learning models. 99 

In recent years, three integrated learning models, extreme gradient boosting (XGBoost), light 100 

gradient boosting machine (LightGBM) and gradient boosting with categorical features support 101 

(CatBoost), based on a boosting algorithm with a decision tree as the base learner and greedy ideas 102 

for decision tree growth, have been widely used to estimate daily ETo. Among them, CatBoost can 103 

directly handle categorical data, such as public weather forecasts of wind scale and weather type. 104 

Fan et al. (2018) recommended using the XGBoost and GBDT models with limited climate data to 105 

predict daily ETo under different climatic conditions in China. Fan et al. (2019) showed that 106 

LightGBM generally outperformed the other two soft computing models and four empirical models 107 

in estimating daily ETo with data from 49 weather stations in humid subtropical China using local 108 

meteorological data and cross-station meteorological data. Zhou et al. (2020) strongly recommended 109 

the use of CatBoost and LightGBM models for estimating daily ETo under different climatic 110 

conditions in China. Huang et al. (2019) showed that the CatBoost algorithm has great potential for 111 

https://doi.org/10.5194/hess-2023-158
Preprint. Discussion started: 31 July 2023
c© Author(s) 2023. CC BY 4.0 License.



7 

 

daily ETo estimation in humid regions of China. Zhang et al. (2020) also showed that CatBoost is 112 

considered the best choice for estimating ETo in arid and semiarid regions of northern China. These 113 

studies showed that all three models estimated daily ETo with better accuracy and stability than 114 

those of other models. However, studies on the prediction of daily ETo with these three models have 115 

not been reported. The objectives of this study are as follows: (1) to first develop four machine 116 

learning models using daily observed meteorological data and public weather forecast data with a 117 

1-day lead time, respectively, and then to test and compare the performance of the developed models 118 

in both cases using public weather forecast data with a 1-7 day lead time; (2) to explore the use of 119 

categorical data (public weather forecasts of wind scale and weather type) as direct input into 120 

CatBoost for daily ETo prediction; and (3) to compare the seasonal variation in predicted daily ETo 121 

performance of the five machine learning models and recommend the best daily ETo prediction 122 

model for all four seasons at nine stations in three different climates. 123 

2. Materials and methodology 124 

2.1. Study area and data collection 125 

Ningxia is located between 35°25′-39°25′ N latitude and 104°10′-107°30′ E longitude and has a 126 

temperate continental climate. According to the Köppen classification (Kottek et al., 2006), the 127 

climate of Ningxia is divided into three climatic zones, a mid-temperate arid zone in the north 128 

(Northern Yellow Irrigation Zone), a mid-temperate semiarid zone in the middle (Central Arid Zone) 129 

and a mid-temperate semihumid zone in the south (Southern Mountainous Zone). A total of nine 130 

meteorological stations were selected from these three different climatic zones. The geographical 131 

distribution of the study sites is shown in Fig. 1, and the characteristics of the study sites are shown 132 

in Table 1. 133 
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Table 1  134 

Characteristics of the nine weather stations used in this study. 135 

No.  Station No.  Station      Climate zone  Latitude   Longitude  Elevation     Tmax      Tmin    SDun    u2    RHmean    ETo  

                                         (°N)       (°E)       (m)        (℃)      (℃)     (h)    (m s-1)    (%)    (mm d-1) 

1    53519   Huinong(HN)    AR      39.22   106.77   1092.2   17.63     4.78     8.27    1.63    44.15     3.23 

2  53614   Yinchuan(YC)  AR      38.47   106.20   1111.6   17.66     5.23     7.53    1.54    48.31     2.94 

3  53704   Zhongwei(ZW)    AR      37.53   105.18   1226.7   18.06     4.14     7.87    1.79    51.60     3.19 

4  53705   Zhongning(ZN)    AR      37.48   105.68   1181.3   18.53     5.88     7.70    1.49    48.25     3.18 

5  53723   Yanchi(YAC)    SAR     37.80   107.23   1350.9   16.73     3.14     7.64    2.37    50.39     2.97 

6  53806   Haiyuan(HY)  SAR     36.57   105.65   1855.6   14.51     3.48     6.92    1.83    50.64     2.88 

7  53810   Tongxin(TX)     SAR     36.97   105.90   1336.4   17.89     4.96     7.71    2.28    51.57     3.45 

8  53817   Guyuan(GY)     SHZ     36.03   106.23   1835.5   14.16     3.26     6.65    1.87    56.96     2.68 

9  53903   Xiji(XJ)      SHZ     35.97   105.72   1916.5   13.82     1.08     6.01    1.17    63.73     2.33 

 136 
Fig. 1. Locations of the weather stations used in this study 137 

The daily observed meteorological data, including the daily maximum temperature (Tmax), 138 

daily minimum temperature (Tmin), average temperature, average relative humidity, sunshine hours 139 

(SDun), and average wind speed (Wspd), were obtained from the China Meteorological Data 140 

Network (http://data.cma.cn/) for the nine meteorological stations during the period from January 1, 141 

1995, to December 31, 2021. Public weather forecast data during 1-7 days ahead from January 1, 142 

2014, to December 31, 2021, including the daily maximum temperature (Tmax), daily minimum 143 
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temperature (Tmin), wind scale (WS), and weather type (WT), were collected from the China Weather 144 

Network (http://www.weather.com.cn) for the same stations. 145 

Daily observed weather data from 1995-2015 and 2016-2019 were used for the training and 146 

validation of four machine learning models, respectively. Public weather forecast data with 1-day 147 

lead times from 2014-2018 and 2019 were used for the training and validation of five machine 148 

learning models, respectively. The performance of the 9 developed machine learning models was 149 

tested with public weather forecast data with a 1-7 day lead time from 2020-2021 and compared 150 

with the daily ETo calculated by the FAO-56 PM equation and daily observed meteorological data 151 

from 2020-2021. 152 

2.2 Methodology 153 

2.2.1 Food and Agriculture Organization 56 Penman‒Monteith equation 154 

The FAO 56 PM equation (Allen et al., 1998), recommended by the United Nations Food and 155 

Agriculture Organization, is given as follows to assess the performance of machine learning models 156 

in terms of predicting ETo. 157 

ETo =
0.408∆(𝑅𝑛 − 𝐺) + 𝛾

900
𝑇 + 273 𝑢2(𝑒𝑠 − 𝑒𝑎)

∆ + 𝛾(1 + 0.34𝑢2)
(1) 158 

where ETo is the daily reference evapotranspiration [mm day -1]; Rn is the net radiation at the crop 159 

surface [MJ m-2 day-1]; G is the soil heat flux density [MJ m-2 day-1], and G may be ignored for day 160 

periods; T is the mean daily air temperature at 2 m height [°C]; u2 is the wind speed at 2 m height 161 

[m s-1]; es is the saturation vapour pressure [kPa]; ea is the actual vapour pressure [kPa]; es -ea is the 162 

saturation vapour pressure deficit [kPa]; ∆ is the slope vapour pressure curve [kPa °C-1]; γis the 163 

psychrometric constant [kPa °C-1]. 164 

2.2.2. Machine learning models 165 
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The two main types of integrated learning algorithms are bagging-based algorithms and 166 

boosting-based algorithms. XGBoost, LightGBM and CatBoost are improved implementations of 167 

the GBDT algorithm and belong to the boosting algorithm family. Among them, XGBoost was 168 

proposed by Chen et al. (2016), and its official open source documentation is available at 169 

http://xgboost.readthedocs.io. LightGBM was proposed by Ke et al. (2017), and its official open 170 

source documentation is available at http://lightgbm.readthedocs.io. CatBoost was proposed by 171 

Prokhorenkova et al. (2017), and its official open source documentation is available at 172 

https://catboost.ai/en/docs/. The base learners of all three algorithms are decision trees, but the tree 173 

features and the process of generation differ in many ways. For example, XGBoost uses a levelwise 174 

decision tree growth strategy, LightGBM uses a leafwise decision tree growth strategy with depth 175 

restrictions, and CatBoost uses a fully symmetric decision tree as the base learner. 176 

For categorical features, CatBoost only needs to declare the categorical signs to enable direct 177 

feature processing (Prokhorenkova et al. 2017; Dorogush et al. 2018). LightGBM associates each 178 

categorical feature fetch with a bucket (bin) and thus automatically processes the features without 179 

preprocessing using one-hot encoding. XGBoost cannot process the categorical features directly. 180 

This model is used after preprocessing the categorical features by various encoding methods such 181 

as tag encoding, mean encoding, or one-hot encoding. 182 

The concept of deep learning was introduced by Hinton et al. (2006). A multilayer perceptron 183 

(MLP) with multiple hidden layers is a deep learning structure. MLP with one or two hidden layers 184 

has been successfully used for ETo estimation or prediction. Landeras et al. (2008) used an artificial 185 

neural network (ANN) with 1 hidden layer to estimate the daily ETo for Alava, Basque Country in 186 

northern Spain and obtained better results than those from 10 locally calibrated empirical and 187 
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semiempirical ETo equations and their variants. Ferreira et al. (2019) estimated daily ETo for all of 188 

Brazil using the first four days of data, and an ANN (model structure 16-50-50-1) was the best 189 

choice among temperature- and relative humidity-based models. The ANN with two hidden layers 190 

used by Elbeltagi et al. (2022) is a suitable alternative to estimate the daily ETo for the 191 

meteorological station in Debrecen, Hungary, based on limited meteorological data. Luo et al. (2015) 192 

used an MLP with two hidden layers and public weather forecast data with a 1-7 day lead time to 193 

predict the daily ETo for Gaoyou station in Jiangsu Province, China, with acceptable prediction 194 

performance. Traore et al. (2016) showed that an MLP model with two hidden layers and a 195 

combination of Tmax, Tmin, and Rs inputs had the best ETo prediction performance for Dallas, Texas, 196 

USA. These studies used trial-and-error methods to determine the numbers of hidden layers and 197 

neurons per hidden layer. These methods are time-consuming and may not always yield the best 198 

hyperparameters. In this study, an MLP with multiple hidden layers is compared with three machine 199 

learning models, XGBoost, LightGBM and CatBoost. The MLP with multiple hidden layers is 200 

implemented using Google's TensorFlow deep learning framework. See Figure 2 for details. 201 

2.2.3. Input combinations and hyperparameter tuning methods for the machine learning models 202 

The wind scale (WS) data in public weather forecast information are converted to wind speed 203 

data (Wspd), as shown in Table 2, and the weather type information is converted using the analytical 204 

method proposed by Cai et al. (2007). First, the weather type information is converted to the 205 

sunshine hour coefficient, as shown in Table 3, and then the predicted sunshine hour (SDun) is 206 

obtained by combining with Equation (3) (Allen et al., 1998, Cai et al., 2007, Yang et al., 2016, Yang 207 

et al., 2019b). 208 

N =
24

𝜋
𝜔𝑠 (2)             209 

https://doi.org/10.5194/hess-2023-158
Preprint. Discussion started: 31 July 2023
c© Author(s) 2023. CC BY 4.0 License.



12 

 

SDun = αN (3) 210 

where N is the daylight hours [h]; ωs is the sunset hour angle [rad]; n is the predicted duration of 211 

sunshine [h]; α is the coefficient of sunshine duration. 212 

Table 2 213 

Beaufort wind scale (GB/T 35227—2017, 2017). 214 

 215 

 216 

 217 

 218 

 219 

 220 

 221 

 222 

 223 

 224 

 225 

 226 

 227 

 228 

 229 

 230 

Table 3  231 

Conversion relationship between weather type and sunshine duration coefficient. 232 

Weathertype (WT1)   Sunny  Clear to overcast   Cloudy     Overcast    Rainy  Snow     Dust  Haze 

Weathertype (WT2)   Sunny  Clear to overcast   Cloudy     Overcast    Rainya  Snowb     Dust  Haze 

 

 

Coeffient (α)     0.9    0.7     0.5      0.3    0.1   0.1   0.2    0.2 

 Note: Raina (including light rain, moderate rain, heavy rain, showers, rainstorms, thunderstorms, and sleet); 233 

Snowb (including light snow, moderate snow, heavy snow, and snow showers). 234 

Given the results of previous studies (Traore et al., 2013; Feng et al., 2017; Feng et al., 2018; 235 

Mattar et al., 2018; Fan et al., 2018; Fan et al., 2019; Jiang et al., 2019) and considering the 236 

correlation between meteorological variables and ETo (Landeras et al., 2008; Antonopoulos et al., 237 

2017; Yin et al., 2020; Liu et al., 2022), public weather forecasts include four variables: daily 238 

maximum temperature (Tmax), daily minimum temperature (Tmin), wind scale (WS) and weather type 239 

(WT). The CatBoost model can directly process feature data. Four different combinations of inputs, 240 

C1 (Tmax, Tmin, SDun, and Wspd), C2 (Tmax, Tmin, and SDun), C3 (Tmax, Tmin, and Wspd) and C4 241 

Wind scale(WS)   Designation u10(ms-1) 

Range    Average(Wspd) 

0        Calm       0.0－0.2       0.0 

1        Light       0.3－1.5       1.0 

2        Slight      1.6－3.3       2.0 

3        Gentle      3.4－5.4       4.0 

4        Moderate     5.5－7.9       7.0 

5        Fresh      8.0－10.7       9.0 

6        Strong wind     10.8－13.8    12.0 

7        High wind     13.9－17.1    16.0 

8        Gale       17.2－20.7    19.0 

9        Strong gale     20.8－24.4    23.0 

10       Whole gale     24.5－28.4    26.0 

11       Storm      28.5－32.6    31.0 

12       Hurricane     32.7－36.9    35.0 
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(Tmax and Tmin), were selected for the four machine learning algorithms, i.e., MLP, XGBoost, 242 

LightGBM and CatBoost1. Five different combinations of inputs, C5 (Tmax, Tmin, WT1, and WS), 243 

C6 (Tmax, Tmin, WT2, and WS), C7 (Tmax, Tmin, and WT1), C8 (Tmax, Tmin, and WS) and C9 (Tmax, 244 

Tmin, and WT2), were selected for the CatBoost2 machine learning algorithm. 245 

The daily observed meteorological data from 1995-2019, public weather forecast data with a 1-246 

day lead time from 2014-2019 and public weather forecast data with a 7-day lead time from 2020-247 

2021 in this study need to be normalized according to Equation (4) before being input into the model 248 

(parsing of weather forecast information before data normalization). 249 

𝑥∗ =
𝑥 − 𝜇

𝜎
(4) 250 

where x* is the x-standardized variable, x is the observed or predicted value of the weather 251 

variable, μ is the mean of the sample data, and σ is the variance of the sample data. 252 

It is well known that the performance of machine learning models is directly related to the 253 

hyperparameters. The common hyperparameter tuning methods for machine learning models are 254 

traditional manual search, grid search (GridSearchCV), randomized search (RandomizedSearchCV) 255 

and Bayesian search (BayesSearchCV). In recent years, some new tuning methods have emerged, 256 

such as Optuna and Hyperopt, which are two of the more popular hyperparameter tuning tools for 257 

machine learning models. Optuna is an automatic hyperparameter optimization framework for 258 

automated hyperparameter search that can be used with any machine learning or deep learning 259 

framework. Hyperopt is a Python "distributed asynchronous algorithm configuration/ 260 

hyperparameter optimization" class library, which is a tool for tuning parameters by Bayesian 261 

optimization to perform intelligent searches for optimal parameters of machine learning models. In 262 

this study, XGBoost and LightGBM use the Hyperopt method with 5-fold cross-validation in the 263 
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tuning process, CatBoost uses the Optuna method, and MLP uses RandomizedSearchCV with 3-264 

fold cross-validation in the tuning process. Each input combination for each machine learning model 265 

was debugged at least three times for comparison to obtain the best hyperparameter combination. 266 

The development environment used was Jupyter Notebook 6.0.3, and the following libraries and 267 

version information were used: Python 3.7.6, TensorFlow 2.8.0, Scikit-learn 0.22.1, Hyperopt 0.2.7,  268 
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               269 

Five models with the best parameters 

Performance evaluation of daily ETo with 1-7 day lead time forecasted by four models 

Model performance comparison for three climate zones 

Recommend the best performing model for each climate zone 
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  Fig. 2. Flow of five machine learning methods to predict ETo in this study 270 

XGBoost 1.5.2, LightGBM 3.3.2, CatBoost 1.0.4, Optuna 2.10.0, NumPy 1.21.5, Pandas 1.0.1, and 271 

keras.api._v2.keras 2.8.0. The machine learning models were trained and tested on an Intel(R) 272 

Core(TM) i7-10750H CPU with 2.60 GHz-5.0 GHz, 16.0 GB RAM, and an NVIDIA Quadro® 273 

P620 graphics card on a graphics workstation. The five machine learning algorithms used to predict 274 

ETo and the parameter tuning process are shown in Figure 2. 275 

2.3 Statistical analysis 276 

To evaluate the performance of public weather forecast data and the performance of nine 277 

machine learning algorithms for predicting ETo, four statistical indicators, the mean absolute error 278 

(MAE), root mean square error (RMSE), the ratio of means(RM), and correlation coefficient (R), 279 

were selected. The MAE is the mean of the absolute error and reflects the actual error between the 280 

predicted and observed values, the RMSE measures the deviation between the predicted and 281 

observed values, and R reflects the degree of correlation between the predicted and observed values. 282 

The smaller the values of the MAE and RMSE are, the better, and the closer to 1 the value of R is, 283 

the better. The RM is expressed as the ratio of the mean of the predicted value to the mean of the 284 

observed value. The RM value can be greater than or less than 1, reflecting the 285 

overestimation/underestimation of the predicted value to the observed value, respectively (Tomas-286 

Burguera et al., 2017; Yang et al., 2019a and 2019b). The four statistical indicators are calculated as 287 

follows (Mallikarjuna et al. 2014; Kisi and Zounemat-Kermani 2014; Luo et al. 2014; Despotovic 288 

et al. 2015; Tomas-Burguera et al. 2017; Yang et al., 2019a and 2019b; Wu et al., 2019b; Zhang et 289 

al., 2020): 290 

MAE =
∑ |𝑃𝑖 − 𝑂𝑖|𝑛

𝑖=1

𝑛
(5) 291 
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RMSE = √
∑ (𝑃𝑖 − 𝑂𝑖)2𝑛

𝑖=1

𝑛
(6) 292 

RM =
𝑃̅

𝑂̅
(7) 293 

R =
∑ (𝑃𝑖 − 𝑃)(𝑂𝑖 − 𝑂)𝑛

𝑖=1

√∑ (𝑃𝑖 − 𝑃)
2

𝑛
𝑖=1 ∑ (𝑂𝑖 − 𝑂)

2
𝑛
𝑖=1

(8)
 294 

where P𝑖 is the predicted value; O𝑖 is the observed value; i is the sample number, i=1,2,…n; nis 295 

the number of samples; P̅ is the mean of the predicted value when the number of samples is n; 𝑂̅ 296 

is the mean of the observed value when the number of samples is n; 297 

3. Results and discussion 298 

3.1. Forecast performance evaluation of weather variables in public weather forecasts 299 

3.1.1. Forecast performance with a single public weather forecast parameter (2014-2021) 300 

The performance statistics of the daily scale forecast weather variables for the three study 301 

climate zones (nine stations) obtained from the 1-day ahead public weather forecasts for 2014-2019 302 

are shown in Table 4 and those for 2020-2021 are shown in Figure 3. 303 

For the three climate zones, during the model training period (2014-2018), the mean MAE, 304 

RMSE, and R values for Tmax with a 1-day lead time ranged from 2.53-2.81°C, 3.24-3.58°C, and 305 

0.94-0.96, respectively, and those for Tmin ranged from 2.09-2.21°C, 2.70-2.83°C, and 0.96-0.97, 306 

respectively. The accuracies of the Tmin forecasts for all three climate zones were higher than those 307 

of the Tmax forecasts. In addition, the mean RM values of Tmax and Tmin varied in the ranges of 0.99-308 

1.00 and 0.99-1.11, respectively, indicating that Tmax was slightly underestimated in all three climate 309 

zones, Tmin was slightly underestimated in both the AR and SAR climate zones and overestimated 310 

by 11.39% in the SHZ climate zone (this is mainly due to the poor forecast of Tmin at the XJ station, 311 

resulting in an overestimation of Tmin by 20.64% at this station). During the model validation period 312 
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(2019), the mean MAE, RMSE, and R values of Tmax in the three climate zones with a 1-day lead 313 

time ranged from 2.59-2.92°C, 3.27-3.83°C, and 0.93-0.95, respectively, and those for Tmin were 314 

2.18-2.35°C, 2.76-2.97°C, and 0.955-0.962, respectively. The accuracies of the Tmin forecasts for all 315 

three climate zones were higher than those of the Tmax forecasts. In addition, the mean RM values 316 

of Tmax and Tmin varied in the ranges of 0.98-0.99 and 1.009-1.014, respectively, indicating that Tmax 317 

was slightly underestimated and Tmin was slightly overestimated for all three climate zones. 318 

During the model testing period (2020-2021), the mean MAE, RMSE, and R values for Tmax 319 

with a 1-7 day lead time for the three climate zones ranged from 3.78-4.05°C, 4.87-5.18°C, and 320 

0.87-0.91, respectively, and those for Tmin ranged from 3.05-3.26°C, 3.87-4.09°C and 0.91-0.93, 321 

respectively. The accuracies of the Tmin forecasts for the three climate zones were higher than those 322 

of the Tmax forecasts. The forecast performance of Tmin and Tmax decreased with increasing 323 

forecasting period. This result is consistent with results from most previous studies in China (Luo 324 

et al., 2014 and 2015; Xiong et al., 2016; Yang et al., 2016; Traore et al., 2016; Li et al., 2018; Yang 325 

et al. al., 2019a, 2019b; Yin et al., 2020; Liu et al., 2020). In addition, the mean RM values of Tmax 326 

and Tmin varied in the ranges of 0.98-0.99 and 1.01-1.05, respectively, indicating that Tmax was 327 

slightly underestimated and Tmin was slightly overestimated at all three sites. 328 

For SDun in the three climate zones, during the model training period (2014-2018), the mean 329 

MAE, RMSE, R, and RM values for the 1-day ahead predictions ranged from 2.24-2.38 h, 3.01-3.11 330 

h, 0.68-0.70 and 0.84-0.88, respectively, and SDun was underestimated by 15.61% (AR), 12.51% 331 

(SAR), and 11.7% (SHZ). During the model validation period (2019), the mean MAE, RMSE, R, 332 

and RM values for the 1-day ahead predictions ranged from 2.09-2.21 h, 2.72-2.92 h, 0.70-0.71 and 333 

0.94-1.03, respectively, and SDun was underestimated by 5.65% and 4.02% for AR and SAR, 334 
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respectively, and overestimated by 2.82% for SHZ (this is mainly due to the poor forecasts of 335 

weather types at the XJ station, resulting in an overestimation of 9.45% for this station). Finally, 336 

during the model testing period (2020-2021), the mean MAE, RMSE, R, and RM values for the 1-337 

7 day lead time predictions ranged from 3.36-3.79 h, 4.13-4.62 h, 0.13-0.17, and 0.85-0.96, 338 

respectively, and SDun was underestimated by 12.77% (AR), 14.87% (SAR), and 3.86% (SHZ). 339 

The SDun forecast performance decreased with increasing forecasting period. This result is 340 

consistent with results of previous studies in China (Yang et al., 2016; Yang et al., 2019b; Liu et al., 341 

2020). The poor SDun prediction performance compared with that of the temperature forecast may 342 

be due to the large errors in the conversion of weather types from public weather forecasts to SDun 343 

(Cai et al., 2007; Yang et al., 2016; Traore et al., 2016; Yang et al., 2019b; Liu et al. et al., 2020). 344 

For the three climate zones, the mean MAE, RMSE, R, and RM values of the 1-day ahead Wspd 345 

during the model training period (2014-2018) ranged from 3.57-3.62 m s-1, 4.02-4.19 m s-1, 0.18-346 

0.24, and 1.51-1.89, respectively, and Wspd was overestimated by 81.56% (AR), 50.69% (SAR) 347 

and 89.01% (SHZ). During the model validation period (2019), the mean MAE, RMSE, R and RM 348 

values of the 1-day ahead Wspd ranged from 2.77-2.84 m s-1, 3.51-3.75 m s-1, 0.13-0.15 and 1.65-349 

2.39, respectively, and Wspd was overestimated by 92.81% (AR), 65.38% (SAR) and 138.51% 350 

(SHZ). The mean MAE, RMSE, R, and RM values of Wspd with a 1-7 day lead time ranged from 351 

1.28-1.41 m s-1, 2.02-2.10 m s-1, 0.03-0.06, and 1.18-1.48, respectively, for the three climate zones 352 

during the model testing period (2020-2021), and Wspd was overestimated by 47.53% (AR), 17.82% 353 

(SAR), and 36.86% (SHZ). It can be seen that the worst predictions among the four variables of the 354 

public weather forecasts were those for Wspd, which may be caused by the poor forecasting of wind 355 

scale in the public weather forecast and the error in converting wind scale to wind speed (Cai et al., 356 
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2007; Yang et al., 2016; Yang et al., 2019a; Liu et al. 2020). 357 

Table 4 358 

Statistics for the Tmax, Tmin, Wspd and SDun forecast performance at nine sites in three climate zones for a 1-day lead time during the model 359 

training period (2014-2018) and validation period (2019). 360 

Stage    Station 

 

Tmax 

 

Tmin 

 

Wspd 

 

SDun 

 MAE  RMSE  R  RM 

(℃)    (℃) 

MAE  RMSE  R  RM 

(℃)    (℃) 

MAE  RMSE  R  RM 

(ms-1)  (ms-1) 

MAE  RMSE  R  RM 

(h)    (h) 

Training AR/HN  2.36 3.04 0.97 0.99    2.33   3.03 0.97  0.95      3.63  4.17   0.17  1.68     2.33  3.15  0.68  0.81 

      AR/YC  2.39 3.03 0.97 1.00    2.03   2.60 0.97  1.00      3.68  4.39   0.13  2.22     2.13  2.79  0.70  0.92 

      AR/ZW  2.65 3.39 0.95 0.99    2.28   2.91 0.96  1.03      3.56  4.03    0.24  1.55     2.27  3.04  0.70  0.82 

      AR/ZN  2.73 3.49 0.95 1.00    2.17   2.77 0.97  0.97      3.63  4.17    0.17  1.68     2.33  3.15  0.68  0.81 

      Average 2.53 3.24 0.96 1.00    2.20   2.83 0.97  0.99      3.62  4.19   0.19  1.82     2.27  3.01  0.69  0.84 

      SAR/YAC 2.71 3.46 0.95 0.99    2.55   3.26 0.96  1.00      3.63  4.18   0.22  1.81     2.15  2.89  0.71  0.88 

      SAR/HY 2.81 3.60 0.94 0.99    1.76   2.25 0.97  1.02      3.56  4.02   0.25  1.55     2.22  2.98  0.70  0.92 

      SAR/TX 2.90 3.68 0.94 0.99    1.98   2.58 0.97  0.93      3.51  3.87   0.25  1.17     2.35  3.18  0.69  0.83 

      Average 2.81 3.58 0.94 0.99    2.09   2.70 0.97  0.99      3.57  4.02   0.24  1.51     2.24 3.01  0.70  0.88 

      SHZ/GY 2.68 3.44 0.94 0.99    1.93   2.42 0.97  1.02      3.57  4.05   0.20  1.62     2.40 3.13  0.83  0.69 

      SHZ/XJ  2.44 3.13 0.95 0.99    2.49   3.10 0.95  1.21      3.58  4.29   0.17  2.16     2.36 3.09  0.67  0.93 

      Average 2.56 3.28 0.94 0.99    2.21   2.76 0.96  1.11      3.58  4.17   0.18  1.89     2.38 3.11  0.68  0.88 

Validation AR/HN  2.59 3.34 0.96 0.99    2.58   3.21 0.96  1.01      2.75  3.57   0.13  1.82     2.02 2.63  0.73  0.90 

      AR/YC  2.56 3.34 0.96 0.99    2.11   2.75 0.97  1.00      2.81  3.71   0.08  2.23     2.01 2.67  0.71  0.99 

      AR/ZW  2.80 3.69 0.94 1.00    2.37   2.99 0.96  1.03      2.76  3.52   0.19  1.73     2.02 2.67  0.72  0.94 

      AR/ZN  2.83 3.71 0.94 0.99    2.33   2.94 0.96  1.00      2.78  3.59   0.16  1.93     2.30 2.90  0.65  0.95 

      Average 2.69 3.52 0.95 0.99    2.35   2.97 0.96  1.01      2.77  3.60   0.14  1.93     2.09 2.72  0.71  0.94 

      SAR/YAC 2.81 3.67 0.94 0.99    2.73   3.38 1.05  0.95      2.90  3.73   0.13  2.03     1.99 2.58  0.75  1.01 

      SAR/HY 2.94 3.88 0.92 0.98    1.83   2.37 0.97  0.99      2.71  3.48   0.12  1.63     2.19 2.98  0.67  0.95 

      SAR/TX 3.00 3.94 0.93 0.98    1.99   2.55 0.97  0.98      2.71  3.33   0.14  1.31     2.10 2.74  0.92  0.92 

      Average 2.92 3.83 0.93 0.98    2.18   2.77 0.96  1.01      2.78  3.51   0.13  1.65     2.10 2.77  0.72  0.96 

      SHZ/GY 2.66 3.37 0.94 0.99    2.04   2.54 0.96  1.05      2.78  3.65   0.16  2.05     2.27 2.99  0.69  0.96 

      SHZ/XJ  2.52 3.17 0.94 0.97    2.38   2.98 0.95  0.98      2.89  3.84   0.14  2.72     2.16 2.85  0.72  1.09 

       Average 2.59 3.27 0.94 0.98    2.21   2.76 0.96  1.01      2.84  3.75   0.15  2.39     2.21 2.92  0.70  1.03 
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 361 

Fig. 3. Statistics of the forecast performance indices for daily scale forecasts of Tmax, Tmin, SDun and Wspd obtained from public weather 362 

forecasts with 1-7 day lead times in three climate regions (AR, SAR and SHZ) in 2020-2021. ((a) MAE, (b) RMSE, (c) RM, and (d) R). 363 

3.1.2. Seasonality of the weather variable forecast performance metrics with public weather 364 

forecasts (2020-2021) 365 

The mean predicted performance metrics of weather variables for each season using public 366 

weather forecasts 1-7 days ahead for the three study sites in 2020-2021 are shown in Tables 5-7. 367 

The average performance metrics for Tmax in the AR (SAR) climate zone all decreased sequentially 368 

in the following order: summer, fall, winter, and spring. The mean MAE, RMSE, and R values for 369 

Tmax ranged from 3.373-4.610°C, 4.244-5.733°C, and 0.399-0.777 (3.532-4.841°C, 4.505-5.977°C, 370 

and 0.387-0.743), respectively. The average performance metrics for Tmax in the SHZ climate zone 371 

all decreased in the following order: fall, summer, winter, and spring. The mean MAE, RMSE, and 372 

R values for Tmax varied in the ranges of 3.526-4.592°C, 4.464-5.657°C, and 0.253-0.755, 373 
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respectively. The Tmax values for the three climate zones were overestimated by 2.93%-4.65% 374 

(1.10%-1.38%) for spring (summer) (except for the SAR climate zone, where Tmax was 375 

underestimated by 0.24% for summer) and underestimated by 4.30%-6.33% (31.18%-53.20%) for 376 

fall (winter). 377 

The mean performance metrics for Tmin in the AR (SAR) climate zone all decreased sequentially 378 

in the following order: fall, summer, winter, and spring. The mean MAE, RMSE, and R values for 379 

Tmin ranged from 2.952-3.717°C, 3.672-4.630°C, 0.610-0.846 (2.792-3.674°C, 3.513-4.520 ℃, 380 

0.617-0.849), respectively. The average performance metrics for Tmin in the SHZ climate zone all 381 

decreased in the following order: summer, fall, winter, and spring, and the mean MAE, RMSE, and 382 

R values of Tmin varied in the ranges of 2.588-3.445 ℃, 3.357-4.320 ℃, and 0.596-0.811, 383 

respectively. The Tmin values were overestimated by 4.08%-54.4% (4.43%-5.68% and 0.40%-3.25%) 384 

in spring (summer and winter, respectively) for the three climate zones (except for the Tmin value in 385 

winter in the AR climate zone, which was underestimated by 0.05%) and underestimated by 6.65%-386 

10.10% in fall. 387 

The mean performance metrics for SDun in all three climate zones decreased in the following 388 

order: winter, spring, fall, and summer, and the mean MAE, RMSE and R values in the AR and SAR 389 

(SHZ) climate zones varied in the ranges of 2.348-3.866 h, 2.822-4.715 h, 0.058-0.272 and 2.585-390 

4.260 h, 3.077-5.126 h and 0.040-0.213 (2.683-4.279 h, 3.160-5.208 h, and 0.033-0.323), 391 

respectively. SDun was underestimated by 11.45%-16.43%, 1.70%-14.97%, 10.07%-10.8% and 392 

7.65%-9.93% in spring, summer, fall and winter for the three climatic zones, respectively, except in 393 

the SHZ climatic zone, where SDun was overestimated by 12.80% in fall. 394 

The mean performance metrics for Wspd in the AR (SAR) climate zone all decreased in the 395 
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following order: fall, summer, spring, and winter, and the mean MAE, RMSE, and R values of Wspd 396 

varied in the ranges of 1.180-1.467 m s-1, 1.818-2.345 m s-1, and 0.017-0.044 (1.267-1.629 m s-1, 397 

1.885-2.501 m s-1, 0.030-0.063), respectively. The mean performance metrics for Wspd in the SHZ 398 

climate zone decreased in the following order: summer, fall, spring, and winter, and the mean MAE, 399 

RMSE, and R values varied in the ranges of 1.255-1.571 m s-1, 1.829-2.371 m s-1, 0.040-0.062 400 

0.040-0.062. Wspd was overestimated by 17.30%-40.63%, 2.43%-25.78%, 24.37%-50.23%, and 401 

40.50%-60.30% in spring, summer, fall, and winter for the three climatic zones, respectively. 402 

In conclusion, when considering all the metrics, the prediction performance for Tmax and Tmin 403 

were best in fall and summer, followed by winter and spring. In contrast, the prediction performance 404 

for SDun was consistent across all three climate zones, with the best prediction performance 405 

occurring in winter and spring, followed by fall and summer. The prediction performance for Wspd 406 

showed great variation depending on the climate zone. 407 

Table 5  408 

Seasonal average statistics of performance indicators for 1-7 day lead time weather variables (Tmax, Tmin, Wspd and SDun) predicted by 409 

public weather forecasts at 4 stations in the AR climate zone in 2020-2021 410 

Stations/Seasons  Tmax  Tmin  Wspd  SDun 

MAE  RMSE  RM  R 

(℃)    (℃) 

MAE  RMSE  RM  R 

(℃)    (℃) 

MAE  RMSE  RM  R 

(m s-1)  (m s-1) 

MAE  RMSE  RM    R 

(h)     (h) 

AR/Huinong 

Spring       4.399  5.462  1.031  0.581  3.808  4.722  0.462  0.710   1.541  2.319  1.317  0.008   3.447  4.053  0.797  0.174 

Summer      3.291  4.114  1.008  0.438    2.763  3.480  1.038  0.689   1.214  1.863  1.108  0.006 3.908  4.769  0.817  0.040 

Fall          3.254  4.257  0.953  0.817  3.076  3.829  0.936  0.853   1.112  1.749  1.277  0.025 3.860  4.620  0.812  0.052 

Winter       3.791  4.898  0.603  0.696  3.817  4.628  1.004  0.696   1.618  2.413  1.444  0.040 2.446  2.773  0.792  0.351 

AR/Yinchuan 

Spring       4.412  5.501  1.038  0.569  3.627  4.520  1.857  0.708   1.263  2.115  1.620  0.022 3.350  3.982  0.855  0.173 

Summer      3.304  4.135  1.013  0.441  2.827  3.602  1.056  0.664   1.078  1.754  1.596  0.003 3.674  4.505  0.848  0.074 

Fall          3.300  4.339  0.955  0.807  2.680  3.361  0.959  0.872   1.284  1.899  1.988  -0.02  3.662  4.419  0.910  0.056 

Winter       3.681  4.817  0.647  0.700  3.527  4.346  0.995  0.704   1.457  2.340  1.973  -0.02  2.391  2.904  0.953  0.332 

AR/Zhongwei 

Spring       4.804  5.971  1.038  0.497  3.831  4.793  0.608  0.709   1.511  2.255  1.211  0.062 3.333  3.976  0.883  0.162 

Summer      3.394  4.282  1.021  0.350  3.278  4.154  1.073  0.546   1.285  1.809  1.014  0.037 3.987  4.813  0.905  0.080 

Fall          3.619  4.727  0.955  0.741  3.071  3.780  0.918  0.825   1.110  1.744  1.182  0.073 3.730  4.528  0.901  0.054 
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Winter       4.200  5.365  0.699  0.645  3.414  4.277  0.988  0.713   1.410  2.299  1.429  0.047 2.362  2.881  0.936  0.218 

AR/Zhongning 

Spring       4.823  5.998  1.041  0.494  3.603  4.484  1.236  0.699   1.446  2.301  1.477  0.026 3.108  3.782  0.895  0.155 

Summer      3.503  4.444  1.013  0.366  3.309  4.182  1.060  0.541   1.183  1.859  1.313  0.022 3.894  4.773  0.892  0.064 

Fall          3.702  4.873  0.952  0.743  2.982  3.716  0.921  0.832   1.212  1.880  1.562  0.097 3.630  4.440  0.945  0.068 

Winter       4.033  5.275  0.804  0.647  3.244  4.007  1.011  0.715   1.383  2.327  1.566  0.015 2.194  2.728  0.932  0.187 

AR/Average 

Spring       4.610  5.733  1.037  0.535  3.717  4.630  1.041  0.707   1.440  2.248  1.406  0.030 3.310  3.948  0.858  0.166 

Summer      3.373  4.244  1.014  0.399  3.044  3.855  1.057  0.610   1.190  1.821  1.258  0.017 3.866  4.715  0.866  0.065 

Fall          3.469  4.549  0.954  0.777  2.952  3.672  0.934  0.846   1.180  1.818  1.502  0.044 3.721  4.502  0.892  0.058 

Winter       3.926  5.089  0.688  0.672  3.501  4.315  1.000  0.707   1.467  2.345  1.603  0.021 2.348  2.822  0.903  0.272 

Note: The best statistical indicators of each weather variable predicted by public weather forecasts in each climate zone in the four seasons 411 

are highlighted in blue, and the better statistical indicators are highlighted in grey. 412 

Table 6  413 

Seasonal average statistics of performance indicators for 1-7 day lead time weather variables (Tmax, Tmin, Wspd and SDun) predicted by 414 

public weather forecasts at 4 stations in the SAR climate zone in 2020-2021 415 

Stations/Seasons  Tmax  Tmin  Wspd  SDun 

MAE  RMSE  RM  R 

(℃)    (℃) 

MAE  RMSE  RM  R 

(℃)    (℃) 

MAE  RMSE  RM  R 

(m s-1)  (m s-1) 

MAE  RMSE  RM    R 

(h)     (h) 

SAR/Yanchi 

Spring       4.778  5.918  1.014  0.496  3.988  4.997  1.092  0.664   1.538  2.390  1.398  0.002 3.716  4.357  0.777  0.122 

Summer      3.454  4.379  0.990  0.415  3.313  4.183  1.035  0.607   1.070  1.680  1.131  0.024 4.384  5.181  0.726  0.044 

Fall          3.544  4.662  0.930  0.779  3.305  4.124  0.879  0.825   1.121  1.797  1.496  0.060 3.909  4.694  0.789  0.036 

Winter       4.188  5.447  0.052  0.680  4.476  5.420  1.023  0.650   1.759  2.722  1.706  0.095 2.542  3.014  0.890  0.275 

SAR/Haiyuan 

Spring       4.853  5.971  1.040  0.437  3.397  4.211  2.216  0.645   1.541  2.227  1.070  0.046 3.790  4.528  0.849  0.109 

Summer      3.573  4.553  1.002  0.368  2.579  3.371  1.055  0.594   1.312  1.865  1.006  0.050 4.167  5.063  0.937  0.030 

Fall          3.752  4.831  0.936  0.717  2.409  3.068  0.909  0.864   1.080  1.762  1.194  0.052 4.166  4.955  0.999  0.034 

Winter       4.494  5.652  0.614  0.567  3.371  4.149  1.002  0.672   1.538  2.438  1.361  0.065 2.703  3.194  0.937  0.168 

SAR/Tongxin 

Spring       4.891  6.043  1.034  0.477  3.524  4.352  1.324  0.751   1.748  2.377  1.051  0.042 3.476  4.178  0.881  0.151 

Summer      3.569  4.582  1.001  0.377  2.572  3.303  1.043  0.650   1.686  2.120  0.936  0.066 4.230  5.134  0.888  0.078 

Fall          3.783  4.913  0.944  0.733  2.663  3.347  0.909  0.857   1.600  2.095  1.041  0.049 4.169  4.954  0.910  0.051 

Winter       4.498  5.713  0.738  0.609  3.174  3.917  0.987  0.757   1.590  2.344  1.148  0.028 2.511  3.022  0.875  0.195 

SAR/Average 

Sping       4.841  5.977  1.029  0.470  3.636  4.520  1.544  0.687   1.609  2.331  1.173  0.030 3.661  4.354  0.836  0.127 

Summer      3.532  4.505  0.998  0.387  2.821  3.619  1.044  0.617   1.356  1.888  1.024  0.047 4.260  5.126  0.850  0.051 

Fall          3.693  4.802  0.937  0.743  2.792  3.513  0.899  0.849   1.267  1.885  1.244  0.054 4.081  4.868  0.899  0.040 

Winter       4.393  5.604  0.468  0.619  3.674  4.495  1.004  0.693   1.629  2.501  1.405  0.063 2.585  3.077  0.901  0.213 

Note: The best statistical indicators of each weather variable predicted by public weather forecasts in each climate zone in the four seasons 416 

are highlighted in blue, and the better statistical indicators are highlighted in grey. 417 

Table 7  418 

Seasonal average statistics of performance indicators for 1-7 day lead time weather variables (Tmax, Tmin, Wspd and SDun) predicted by 419 

public weather forecasts at 4 stations in the SHZ climate zone in 2020-2021 420 
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Stations/Seasons  Tmax  Tmin  Wspd  SDun 

MAE  RMSE  RM  R 

(℃)    (℃) 

MAE  RMSE  RM  R 

(℃)    (℃) 

MAE  RMSE  RM  R 

(m s-1)  (m s-1) 

MAE  RMSE  RM    R 

(h)     (h) 

SHZ/Guyuan 

Spring       4.854  5.922  1.063  0.432  3.149  3.958  1.331  0.652   1.700  2.262  0.889  0.044 3.895  4.635  0.819  0.101 

Summer      3.783  4.733  1.029  0.308  2.318  3.054  1.058  0.607   1.428  1.886  0.890  0.058 4.287  5.207  0.965  0.055 

Fall          3.661  4.618  0.970  0.730  2.397  3.037  0.916  0.854   1.329  1.864  0.960  0.049 4.265  5.055  1.038  0.065 

Winter       4.381  5.506  0.428  0.557  3.295  4.058  1.040  0.674   1.638  2.285  0.962  0.083 2.582  3.034  0.833  0.378 

SHZ/Xiji 

Spring       4.330  5.392  1.030  0.467  3.741  4.681  0.781  0.663   1.421  2.288  1.852  0.042 3.624  4.398  0.952  0.145 

Summer      3.457  4.411  0.993  0.198  2.857  3.659  1.055  0.585   1.081  1.771  1.578  0.032 4.270  5.208  1.001  0.010 

Fall          3.390  4.309  0.944  0.779  3.186  3.889  0.893  0.767   1.262  1.943  1.870  0.075 4.110  4.919  1.218  0.077 

Winter       3.668  4.641  0.537  0.577  3.507  4.363  1.025  0.714   1.503  2.457  2.036  -0.004 2.784  3.285  1.014  0.268 

SHZ/Average 

Sping       4.592  5.657  1.047  0.450  3.445  4.320  1.056  0.658   1.561  2.275  1.371  0.043 3.760  4.517  0.886  0.123 

Summer      3.620  4.572  1.011  0.253  2.588  3.357  1.057  0.596   1.255  1.829  1.234  0.045 4.279  5.208  0.983  0.033 

Fall          3.526  4.464  0.957  0.755  2.792  3.463  0.905  0.811   1.296  1.904  1.415  0.062 4.188  4.987  1.128  0.071 

Winter       4.025  5.074  0.483  0.567  3.401  4.211  1.033  0.694   1.571  2.371  1.499  0.040 2.683  3.160  0.924  0.323 

Note: The best statistical indicators of each weather variable predicted by public weather forecasts in each climate zone in the four seasons 421 

are highlighted in blue, and the better statistical indicators are highlighted in grey. 422 

3.2. Performance comparison of four machine learning models trained and validated based on daily 423 

observed meteorological data to predict ETo with various input combinations 424 

The predicted daily ETo performance statistics of the four machine learning models based on 425 

daily observed meteorological data trained (1995-2015) and validated (2016-2019) with different 426 

input combinations for the three climate zones, AR, SAR and SHZ, are shown in Tables 8-10, 427 

respectively. The predicted daily ETo performance was dependent on the machine learning model 428 

type, input combination and climate zone and significantly differed. 429 

For the AR climate zone, MLPo and XGBoosto had the best prediction performance with input 430 

combination C1, and XGBoosto and LightGBMo had the best prediction performance with input 431 

combinations C2, C3 and C4 during the training and validation periods. During the testing period, 432 

the performance of MLPo, XGBoosto and CatBoost1o in predicting ETo decreased, with the use of 433 

input combination C2 yielding the largest decrease, followed by combinations C4, C1, and C3, and 434 
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for LightGBMo the order of decreasing performance was as follows: C4, C2, C1, and C3. 435 

LightGBMo was the best model for predicting ETo with input combination C3 (MAE = 0.837 mm 436 

d-1, RMSE = 1.113 mm d-1, and R = 0.826), and CatBoost1o was the best model in terms of prediction 437 

performance with input combinations C1, C2, and C4 (MAE range: 0.770-0.824 mm d-1, RMSE 438 

range: 1.042-1.084 mm d-1, and R range: 0.826-0.849). When using input combination C2, 439 

CatBoost1o was the best performing machine learning model in the AR climate zone testing period 440 

(MAE=0.770 mm d-1, RMSE=1.042 mm d-1, and R=0.843). 441 

For the SAR climate zone, XGBoosto and LightGBMo had the best prediction performance with 442 

various input combinations during the training and validation periods. During the testing period, the 443 

performance of MLPo and CatBoost1o in predicting ETo with different input combinations decreased. 444 

The use of input combination C4 yielded the largest decrease, followed by combinations C3, C2, 445 

and C1, and for XGBoosto and LightGBMo, the order of decreasing performance was C4, C2, C3, 446 

and C1. LightGBMo was the best performing model in terms of prediction performance 447 

(MAE=0.935 mm d-1, RMSE=1.261 mm d-1, and R=0.787) with the C1 input combination, 448 

XGBoosto was the best performing model in terms of prediction performance (MAE=0.923 mm d-449 

1, RMSE=1.267 mm d-1, and R=0.791) with the C2 input combination, and CatBoost1o was the best 450 

performing model with both the C3 and C4 input combinations (MAE range: 0.886-0.904 mm d-1, 451 

RMSE range: 1.204-1.208 mm d-1, and R range: 0.796-0.798). CatBoost1o with the C4 input 452 

combination was the best performing model for the SAR climate zone and the best performing 453 

machine learning model in the testing period (MAE=0.886 mm d-1, RMSE=1.208 mm d-1, and 454 

R=0.798). 455 

For the SHZ climate zone, XGBoosto and LightGBMo had the best prediction performance with 456 
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various input combinations during the training and validation periods. During the testing period, the 457 

performance of MLPo and XGBoosto in predicting ETo with different input combinations decreased. 458 

The use of input combination C2 yielded the largest performance decrease, followed by 459 

combinations C4, C1, and C3. For LightGBMo the order of decreasing performance was C4, C2, 460 

C1, and C3 and that for CatBoost1o was C1, C2, C4, and C3. The prediction performance of 461 

CatBoost1o with the C1, C2, C3, and C4 input combinations (MAE range: 0.772-0.820 mm d-1, 462 

RMSE range: 1.044-1.088 mm d-1, and R range: 0.741-0.750) was the best. CatBoost1o with the C1 463 

input combination was the best performing machine learning model in the SAR climate zone testing 464 

period (MAE = 0.786 mm d-1, RMSE = 1.044 mm d-1, and R = 0.750). 465 

Table 8  466 

Average statistics of the predictions with a lead time of 1-7 days by the MLPo, XGBoosto, LightGBMo and CatBoost1o models for the AR 467 

climate zone with different input combinations during training, validation and testing. 468 

Inputs/model  training  validation  testing 

MAE   RMSE  RM    R  

(mm/d)  (mm/d) 

MAE   RMSE   RM    R  

(mm/d)  (mm/d) 

MAE   RMSE  RM     R  

(mm/d)  (mm/d) 

Tmax，Tmin，SDun，Wspd 

MLPo            0.349   0.460   0.993  0.974     0.345 0.457   0.968  0.971     0.884   1.208   0.991   0.793 

XGBoosto      0.309   0.407   1.003  0.979     0.288 0.385   0.986  0.979     0.817   1.100   0.995   0.815 

LightGBMo   0.386   0.500   1.002  0.970     0.357 0.467   0.991  0.968     0.840 1.115   0.986   0.820 

CatBoost1o    0.421   0.549   1.001  0.963     0.393 0.517   0.992  0.961     0.824 1.084   0.969   0.826 

Tmax，Tmin，SDun 

MLPo       0.509   0.685   0.988  0.940     0.478 0.639   1.014  0.943     0.792 1.081   0.944   0.837 

XGBoosto      0.493   0.671   0.975  0.945     0.440 0.588   1.005  0.949     0.777 1.052   0.949   0.838 

LightGBMo   0.510   0.677   0.995  0.941     0.472 0.615   1.024  0.945     0.793 1.058   0.959   0.837 

CatBoost1o    0.522   0.697   0.995  0.937     0.486 0.636   1.028  0.942     0.770 1.042   0.956   0.843 

Tmax，Tmin，Wspd 

MLPo       0.501   0.673   0.982  0.946     0.491 0.665   0.988  0.944     0.931 1.260   1.106   0.799 

XGBoosto      0.485   0.651   0.986  0.947     0.445 0.593   1.010  0.950     0.837 1.113   1.068   0.826 

LightGBMo   0.497   0.652   0.999  0.946     0.468 0.618   1.007  0.944     0.872 1.168   1.100   0.823 

CatBoost1o    0.558   0.721   0.998  0.934     0.522 0.679   1.010  0.932     0.862 1.147   1.101   0.830 

Tmax，Tmin 

MLPo       0.658   0.862   1.012  0.904     0.652 0.850   1.075  0.904     0.837 1.127   1.092   0.838 

XGBoosto      0.664   0.867   0.977  0.905     0.614 0.799   1.035  0.908     0.791 1.057   1.056   0.844 

LightGBMo   0.699   0.892   0.991  0.902     0.646 0.818   1.050  0.904     0.805 1.046   1.063   0.844 

CatBoost1o    0.681   0.883   0.990  0.899     0.640 0.826   1.052  0.902     0.782 1.051   1.063   0.849 
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Note: The statistical indicators of the best performing machine learning models with different input combinations for this climate zone are 469 

highlighted in blue, and the statistical indicators of the best performing machine learning models with the same input combination for this 470 

climate zone are highlighted in grey. 471 

Table 9  472 

Average statistics of the predictions with a lead time of 1-7 days by the MLPo, XGBoosto, LightGBMo and CatBoost1o models for the SAR 473 

climate zone with different input combinations during training, validation and testing. 474 

Inputs/model  training  validation  testing 

MAE   RMSE   RM    R  

(mm/d)  (mm/d) 

MAE   RMSE   RM    R  

(mm/d)  (mm/d) 

MAE   RMSE   RM     R  

(mm/d)  (mm/d) 

Tmax，Tmin，SDun，Wspd 

MLPo       0.406   0.527   1.011  0.963     0.562   0.737   0.978  0.921     0.944  1.287   0.918   0.780 

XGBoosto      0.321   0.421   1.001  0.976     0.321   0.426   0.993  0.973     0.933  1.265   0.924   0.785 

LightGBMo   0.360   0.472   1.001  0.969     0.361   0.473   0.995  0.966     0.935  1.261   0.923   0.787 

CatBoost1o   0.392   0.507   1.002  0.965     0.401   0.519   0.987  0.960     0.942  1.264   0.916   0.787 

Tmax，Tmin，SDun 

MLPo       0.474   0.621   0.996  0.947     0.591   0.789   0.968  0.906     0.932  1.284   0.894   0.786 

XGBoosto      0.457   0.600   0.998  0.950     0.459   0.605   0.986  0.945     0.923  1.267   0.894   0.791 

LightGBMo   0.442   0.579   1.001  0.954     0.446   0.581   0.992  0.950     0.928  1.274   0.895   0.786 

CatBoost1o   0.487   0.636   1.002  0.943     0.484   0.641   0.987  0.937     0.928  1.269   0.889   0.792 

Tmax，Tmin，Wspd 

MLPo       0.537   0.705   0.988  0.930     0.635   0.840   1.004  0.895     0.929  1.263   0.960   0.778 

XGBoosto      0.464   0.612   0.999  0.948     0.450   0.603   1.007  0.946     0.928  1.263   0.989   0.779 

LightGBMo   0.478   0.631   0.999  0.944     0.458   0.606   1.009  0.944     0.929  1.252   0.995   0.784 

CatBoost1o   0.560   0.727   0.999  0.927     0.552   0.721   1.010  0.922     0.904  1.204   0.984   0.796 

Tmax，Tmin 

MLPo       0.635   0.840   1.039  0.911     0.728   0.970   1.047  0.878     0.922  1.268   0.994   0.785 

XGBoosto      0.592   0.774   1.000  0.915     0.584   0.765   1.003  0.911     0.900  1.232   0.960   0.792 

LightGBMo   0.600   0.783   1.000  0.914     0.582   0.767   1.001  0.909     0.918  1.254   0.953   0.786 

CatBoost1o   0.623   0.808   1.000  0.907     0.613   0.806   1.002  0.900     0.886  1.208   0.956   0.798 

Note: The statistical indicators of the best performing machine learning models with different input combinations for this climate zone are 475 

highlighted in blue, and the statistical indicators of the best performing machine learning models with the same input combination for this 476 

climate zone are highlighted in grey. 477 

Table 10  478 

Average statistics of the predictions with a lead time of 1-7 days by the MLPo, XGBoosto, LightGBMo and CatBoost1o models for the SHZ 479 

climate zone with different input combinations during training, validation and testing. 480 

Inputs/model  training  validation  testing 

MAE   RMSE  RM    R  

(mm/d)  (mm/d) 

MAE   RMSE   RM    R  

(mm/d)  (mm/d) 

MAE   RMSE  RM     R  

(mm/d)  (mm/d) 

Tmax，Tmin，SDun，Wspd 

MLPo       0.290   0.380   0.993  0.971     0.293   0.383   0.959  0.969     0.890  1.208   1.051   0.695 

XGBoosto      0.261   0.340   1.004  0.977     0.257   0.340   0.979  0.974     0.807  1.084   0.957   0.736 

LightGBMo   0.277   0.364   1.004  0.974     0.276   0.360   0.976  0.971     0.804  1.080   1.024   0.738 

CatBoost1o   0.338   0.439   1.003  0.962     0.337   0.435   0.985  0.957     0.786  1.044   0.986   0.750 

Tmax，Tmin，SDun 
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MLPo       0.349   0.465   0.968  0.959     0.333   0.434   0.974  0.958     0.793  1.085   0.928   0.734 

XGBoosto      0.339   0.449   0.986  0.961     0.316   0.418   0.995  0.961     0.776  1.069   0.986   0.743 

LightGBMo   0.344   0.459   0.998  0.958     0.329   0.436   1.010  0.957     0.780  1.067   0.960   0.739 

CatBoost1o   0.371   0.495   0.998  0.950     0.365   0.477   1.011  0.948     0.775  1.054   0.946   0.748 

Tmax，Tmin，Wspd 

MLPo       0.393   0.530   1.004  0.946     0.386   0.514   0.990  0.943     0.944  1.281   1.117   0.697 

XGBoosto      0.376   0.497   1.002  0.950     0.351   0.467   0.991  0.950     0.824  1.118   1.047   0.736 

LightGBMo   0.399   0.524   1.001  0.945     0.371   0.493   0.996  0.944     0.818  1.095   1.037   0.739 

CatBoost1o   0.431   0.563   1.000  0.936     0.397   0.520   1.001  0.937     0.820  1.088   1.043   0.741 

Tmax，Tmin 

MLPo       0.449   0.601   1.013  0.927      0.441   0.585   1.049  0.925     0.806  1.116   1.012   0.732 

XGBoosto      0.458   0.605   0.994  0.925      0.432   0.563   1.033  0.928     0.776  1.069   0.986   0.743 

LightGBMo   0.472   0.618   0.994  0.923      0.444   0.575   1.030  0.926     0.772  1.059   0.991   0.746 

CatBoost1o   0.473   0.621   0.994  0.921      0.446   0.579   1.030  0.924     0.772  1.059   0.993   0.748 

Note: The statistical indicators of the best performing machine learning models with different input combinations for this climate zone are 481 

highlighted in blue, and the statistical indicators of the best performing machine learning models with the same input combination for this 482 

climate zone are highlighted in grey. 483 

3.3. Performance comparison of five machine learning models trained and validated with 1-day 484 

ahead public weather forecast data for predicting ETo with various input combinations 485 

The predicted daily ETo performance statistics of the five machine learning models trained and 486 

validated with daily public weather forecast data with a 1-day lead time from 2014-2018 and 2019, 487 

respectively, using various input combinations for the three climate zones, AR, SAR and SHZ, are 488 

shown in Tables 11-14. The predicted daily ETo performance varied significantly depending on the 489 

machine learning model type, input combination, and climate zone. 490 

For the AR climate zone, the ETo prediction performance of XGBoostp and LightGBMp was the 491 

best in the training and validation periods with the C1, C2, and C3 input combinations, and 492 

CatBoost1p was the best for the C4 input combination. In the testing period, the ETo prediction 493 

performance of MLPp, XGBoostp, LightGBMp, and CatBoost1p decreased across input 494 

combinations C4, C1, C2, and C3, C2, C1, C4, and C3, C1, C2, C3, and C4, and C1, C3, C2 and 495 

C4, respectively. CatBoost1p was the best performing model in terms of prediction performance 496 

(MAE=0.735 mm d-1, RMSE=1.004 mm d-1, and R=0.855) with the C3 input combination, and 497 
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XGBoostp had the best prediction performance (MAE range: 0.700-0.743 mm d-1, RMSE range: 498 

0.976-0.991 mm d-1, and R range: 0.856-0.867) with the C1, C2, and C4 input combinations. 499 

XGBoostp with the C2 input combination was the best performing machine learning model in the 500 

AR climate zone testing period (MAE=0.703 mm d-1, RMSE=0.976 mm d-1, and R= 0.867). 501 

For the SAR climate zone, in the training and validation periods, XGBoostp and LightGBMp 502 

were the best in terms of prediction performance with the C1, C2, and C3 input combinations, and 503 

CatBoost1p performed best with the C4 input combination. In the testing period, the ETo prediction 504 

performance of MLPp, XGBoostp, LightGBMp, and CatBoost1p decreased across input 505 

combinations C4, C3, C2, and C1, C1, C2, C4, and C3, C2, C1, C4, and C3, and C3, C4, C1 and 506 

C2, respectively. XGBoostp had the best prediction performance (MAE range: 0.847-0.851 mm d-1, 507 

RMSE range: 1.150-1.156 mm d-1, and R range: 0.817-0.824) with both the C1 and C2 input 508 

combinations. CatBoost1p had the best prediction performance (MAE=0.860 mm d-1, RMSE=1.177 509 

mm d-1, and R=0.813) with the C3 input combination. MLPp with the C4 input combination was the 510 

best performing machine learning model in the SAR climate zone testing period (MAE=0.850 mm 511 

d-1, RMSE=1.148 mm d-1, and R=0.818). 512 

For the SHZ climate zone, in the training and validation periods, XGBoostp had the best 513 

prediction performance with the C2 and C3 input combinations, LightGBMp had the best prediction 514 

performance with the C1, C2 and C3 input combinations, and CatBoost1p had the best prediction 515 

performance with the C4 input combination. In the testing period, the ETo prediction performance 516 

of MLPp, XGBoostp, LightGBMp, and CatBoost1p decreased across input combinations C4, C3, C2, 517 

and C1, C4, C1, C2, and C3, C1, C2, C4, and C3, and C3, C1, C4, and C2, respectively. The 518 

prediction performance of XGBoostp with the C1, C2, C3, and C4 input combinations (MAE range: 519 
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0.741-0.756 mm d-1, RMSE range: 0.991-1.022 mm d-1, and R range: 0.765-0.774) was the best, 520 

and XGBoostp with the C4 input combination was the best performing machine learning model in 521 

the SHZ climate zone testing period (MAE=0.756 mm d-1, RMSE=0.991 mm d-1, and R=0.774). 522 

Table 14 shows the average statistics of the CatBoost2 model in predicting daily ETo 1-7 days 523 

ahead with different input combinations and the addition of wind scale (WS) and weather type (WT1 524 

and WT2) category data. First, for the AR climate zone, the CatBoost2 model performed best with 525 

the C5 and C6 input combinations during the training and validation periods, and the performance 526 

decreased across input combinations C8, C5, C6, C7, and C9 during the testing period. The 527 

CatBoost2 model with the C8 input combination had the best performance in the testing period for 528 

the AR climate zone (MAE = 0.773 mm d-1, RMSE = 1.059 mm d-1, and R = 0.841). For the SAR 529 

climate zone, the CatBoost2 model in the training and validation periods had the best prediction 530 

performance with the C5 and C6 input combinations. In the testing period, the performance of the 531 

CatBoost2 model decreased across input combinations C8, C9, C7, C6, and C5. The CatBoost2 532 

model with the C8 input combination had the best performance in the testing period for the SAR 533 

climate zone (MAE=0.904 mm d-1, RMSE=1.241 mm d-1, and R=0.798). For the SHZ climate zone, 534 

during the training and validation periods, the CatBoost2 model with the C5 and C6 input 535 

combinations had the best prediction performance, and during the testing period, the performance 536 

of the CatBoost2 model decreased across input combinations C8, C9, C6, C7, and C5. The 537 

CatBoost2 model with the C8 input combination had the best performance in the testing period for 538 

the SAR climate zone (MAE=0.793 mm d-1, RMSE=1.057 mm d-1, and R= 0.754). For the AR 539 

climate zone, CatBoost1p with the C2 input combination outperformed CatBoost2 with the C7 and 540 

C9 input combinations, and CatBoost2 with the C5, C6, and C8 input combinations outperformed 541 
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CatBoost1p with the C1 and C3 input combinations in the training and validation periods. In the 542 

testing period, CatBoost1p with the C1, C3, and C2 input combinations outperformed CatBoost2 543 

with the C5, C6, C8, C7, and C9 input combinations. For the SAR climate region, CatBoost1p with 544 

the C2 input combination outperformed CatBoost2 with the C7 input combination, and CatBoost2 545 

with the C5, C6, C8 and C9 input combinations outperformed CatBoost1p with the C1, C3 and C2 546 

input combinations in both the training and validation periods. In the testing period, CatBoost1p 547 

with the C1, C3 and C2 input combinations outperformed CatBoost2 performance with the C5, C6, 548 

C8, C7 and C9 input combinations. For the SHZ climate zone, CatBoost1p with the C1 and C2 input 549 

combinations outperformed CatBoost2 with the C5, C7 and C9 input combinations, and CatBoost2 550 

with the C6 and C8 input combinations outperformed CatBoost1p with the C1 and C3 input 551 

combinations in the training and validation periods. In the testing period, CatBoost1p with the C1, 552 

C3 and C2 input combinations outperformed CatBoost2 with the C5, C6, C8, C7, and C9 input 553 

combinations. These results show that although the CatBoost2 model outperformed the CatBoost1p 554 

model with some input combinations in the training and validation periods, the CatBoost1p model 555 

outperformed the CatBoost2 model with all input combinations in the testing period. Thus, adding 556 

category data such as wind scale (WS) and weather type (WT1 and WT2) directly to the input 557 

combinations of the CatBoost2 model did not improve the performance of the model in terms of 558 

predicting daily ETo in the testing period. This may be due to the poor stability of the CatBoost2 559 

model and the poor performance of wind scale and weather type predictions in the public weather 560 

forecasts for the 1-7 days ahead period. 561 

The optimal input combinations for four machine learning models (MLPo, XGBoosto, 562 

LightGBMo, and CatBoost1o) trained and validated with daily observed weather data and five 563 
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machine learning models (MLPp, XGBoostp, LightGBMp, CatBoost1p, and CatBoost2) trained and 564 

validated with 1-day ahead public weather forecast data for the three climate zones are shown in 565 

Table 15. In all climate zones except for SAR and SHZ, where the best input combination for 566 

CatBoost1p was C3 (8.33%), the best input combination for each of the eight machine learning 567 

models (MLPo, XGBoosto, LightGBMo, CatBoost1o, MLPp, XGBoostp, LightGBMp, and 568 

CatBoost1p) were either C1 (20.83%), C2 (29.17%), or C4 (41.67%). Consistent with previous 569 

findings (Yang et al., 2019a), the results indicate that the inclusion of SDun in the input 570 

combinations improves the performance of machine learning models in predicting daily ETo (Perera 571 

et al., 2014; Traore et al., 2016; Yang et al., 2016; Yang et al., 2019b; Yin et al., 2020; Zhou et al., 572 

2020; Dong et al., 2021; Zhao et al., 2022), while the inclusion of Wspd leads to a decrease in the 573 

performance. Therefore, SDun and Wspd should be included in the input combinations of machine 574 

learning models cautiously. In addition, the model information obtained using the optimal input 575 

combination for each of the machine learning models (MLPp, XGBoostp, LightGBMp, CatBoost1p, 576 

and CatBoost2) trained and validated with 1-day ahead public weather forecast data is shown in 577 

Table 16. It is shown that the daily ETo performance predicted by MLP models with 2-3 hidden 578 

layers is better than that with 1 hidden layer (Luo et al., 2015; Traore et al., 2016; Ferreira et al., 579 

2019). 580 

Table 11  581 

Mean statistics of 1-7 day lead time predictions using the MLPp, XGBoostp, LightGBMp and CatBoost1p models for the AR climate zone 582 

with the different input combinations during training, validation and testing. 583 

Inputs/model  training  validation  testing 

MAE   RMSE  RM    R  

(mm/d)  (mm/d) 

MAE   RMSE   RM    R  

(mm/d)  (mm/d) 

MAE   RMSE  RM     R  

(mm/d)  (mm/d) 

Tmax，Tmin，SDun，Wspd 

MLPp       0.637   0.844   0.977  0.911      0.631   0.848   0.995  0.892     0.772   1.058   0.932   0.843 

XGBoostp      0.410   0.559   0.982  0.963     0.404 0.553   0.990  0.953     0.700   0.976   0.961   0.865 

LightGBMp   0.423   0.575   0.999  0.957     0.422 0.574   1.002  0.948     0.711 0.991   0.962   0.859 
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CatBoost1p   0.550   0.730   0.997  0.929     0.551 0.736   1.014  0.915     0.729 0.999   0.967   0.854 

Tmax，Tmin，SDun 

MLPp       0.646   0.854   1.005  0.903     0.676 0.885   1.056  0.883     0.787 1.050   1.046   0.843 

XGBoostp      0.420   0.569   0.987  0.960     0.425 0.573   1.020  0.950     0.703 0.976   1.034   0.867 

LightGBMp   0.434   0.593   0.994  0.954     0.444 0.606   1.028  0.944     0.716 0.996   1.040   0.863 

CatBoost1p   0.572   0.766   0.993  0.922     0.588 0.781   1.036  0.906     0.748 1.006   1.036   0.854 

Tmax，Tmin，Wspd 

MLPp       0.725   0.959   1.059  0.889     0.756 1.004   1.081  0.861     0.794 1.081   1.032   0.849 

XGBoostp      0.670   0.889   0.985  0.897     0.651 0.876   0.984  0.877     0.756 1.032   0.950   0.848 

LightGBMp   0.663   0.879   0.998  0.897     0.668 0.883   1.008  0.875     0.743 1.009   0.973   0.851 

CatBoost1p   0.686   0.909   0.997  0.889     0.706 0.931   1.016  0.861     0.735 1.004   0.982   0.855 

Tmax，Tmin 

MLPp       0.709   0.947   0.992  0.878     0.740 0.977   1.036  0.849     0.743 0.998   1.034   0.855 

XGBoostp      0.731   0.966   0.950  0.882     0.710 0.939   0.986  0.857     0.743 0.991   0.995   0.856 

LightGBMp   0.700   0.932   0.993  0.883     0.718 0.952   1.034  0.856     0.760 1.014   1.043   0.852 

CatBoost1p   0.668   0.892   0.995  0.893     0.686 0.910   1.028  0.868     0.761 1.021   1.047   0.851 

Note: The statistical indicators of the best performing machine learning models with different input combinations for this climate zone are 584 

highlighted in blue, and the statistical indicators of the best performing machine learning models for the same input combination for this 585 

climate zone are highlighted in grey. 586 

Table 12  587 

Mean statistics of 1-7 day lead time predictions using the MLPp, XGBoostp, LightGBMp and CatBoost1p models for the SAR climate zone 588 

with the different input combinations during training, validation and testing. 589 

Inputs/model  training  validation  testing 

MAE   RMSE   RM    R  

(mm/d)  (mm/d) 

MAE   RMSE   RM    R  

(mm/d)  (mm/d) 

MAE   RMSE   RM     R  

(mm/d)  (mm/d) 

Tmax，Tmin，SDun，Wspd 

MLPp       0.641   0.850   1.014  0.900     0.639   0.860   1.012  0.887     0.910  1.245   0.909   0.801 

XGBoostp      0.465   0.631   0.984  0.947     0.448   0.599   0.987  0.943     0.851  1.150   0.935   0.824 

LightGBMp   0.468   0.639   0.998  0.945     0.453   0.613   1.004  0.940     0.866  1.182   0.945   0.816 

CatBoost1p   0.583   0.778   0.998  0.914     0.575   0.769   1.009  0.904     0.876  1.191   0.938   0.810 

Tmax，Tmin，SDun 

MLPp       0.667   0.891   1.004  0.888     0.670   0.880   1.032  0.877     0.893  1.210   0.996   0.802 

XGBoostp      0.467   0.636   0.991  0.944     0.459   0.617   1.007  0.939     0.847  1.156   0.976   0.817 

LightGBMp   0.493   0.675   0.996  0.937     0.491   0.662   1.018  0.930     0.857  1.173   0.995   0.816 

CatBoost1p   0.613   0.821   0.995  0.906     0.613   0.804   1.023  0.897     0.888  1.191   0.982   0.806 

Tmax，Tmin，WSspd 

MLPp       0.734   0.974   1.048  0.874     0.739   0.999   1.006  0.845     0.887  1.213   0.958   0.808 

XGBoostp      0.673   0.900   1.001  0.885     0.656   0.897   0.996  0.867     0.894  1.216   0.921   0.806 

LightGBMp   0.647   0.865   1.001  0.893     0.629   0.855   0.995  0.878     0.887  1.209   0.930   0.805 

CatBoost1p   0.715   0.944   0.998  0.873     0.731   0.964   1.012  0.846     0.860  1.177   0.948   0.813 

Tmax，Tmin 

MLPp       0.746   1.003   1.018  0.857     0.761   1.010   1.031  0.835     0.850  1.148   0.995   0.818 

XGBoostp      0.758   1.011   0.969  0.858     0.732   0.972   0.989  0.842     0.866  1.159   0.956   0.820 

LightGBMp   0.749   0.996   0.997  0.858     0.740   0.984   1.016  0.839     0.877  1.174   0.979   0.811 
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CatBoost1p   0.702   0.942   0.998  0.874     0.710   0.941   1.011  0.854     0.871  1.176   0.983   0.809 

Note: The statistical indicators of the best performing machine learning models with different input combinations for this climate zone are 590 

highlighted in blue, and the statistical indicators of the best performing machine learning models for the same input combination for this 591 

climate zone are highlighted in grey. 592 

Table 13  593 

Mean statistics of 1-7 day lead time predictions using the MLPp, XGBoostp, LightGBMp and CatBoost1p models for the SHZ climate zone 594 

with the different input combinations during training, validation and testing. 595 

Inputs/model  training  validation  testing 

MAE   RMSE  RM    R  

(mm/d)  (mm/d) 

MAE   RMSE   RM    R  

(mm/d)  (mm/d) 

MAE   RMSE  RM     R  

(mm/d)  (mm/d) 

Tmax，Tmin，SDun，Wspd 

MLPp       0.511   0.675   1.033  0.905     0.498   0.680   1.069  0.895     0.778  1.066   0.976   0.761 

XGBoostp      0.407   0.551   0.965  0.942     0.360   0.500   0.996  0.940     0.748  1.006   0.939   0.773 

LightGBMp   0.359   0.492   0.995  0.950     0.331   0.468   1.020  0.946     0.742  1.016   0.961   0.770 

CatBoost1p   0.399   0.536   0.997  0.938     0.377   0.521   1.018  0.930     0.756  1.027   0.956   0.769 

Tmax，Tmin，SDun 

MLPp       0.527   0.701   1.000  0.894     0.521   0.695   1.064  0.885     0.772  1.054   1.029   0.758 

XGBoostp      0.410   0.560   0.962  0.939     0.370   0.518   1.011  0.933     0.741  1.010   0.996   0.772 

LightGBMp   0.402   0.553   0.991  0.936     0.371   0.526   1.041  0.934     0.748  1.026   1.029   0.770 

CatBoost1p   0.505   0.671   0.991  0.903     0.489   0.659   1.048  0.895     0.767  1.033   1.020   0.760 

Tmax，Tmin，Wspd 

MLPp       0.575   0.763   0.952  0.879     0.553   0.768   0.961  0.850     0.775  1.046   0.882   0.770 

XGBoostp      0.557   0.737   0.995  0.882     0.535   0.736   1.019  0.860     0.753  1.022   0.962   0.765 

LightGBMp   0.555   0.729   0.999  0.885     0.531   0.727   1.008  0.864     0.755  1.025   0.934   0.767 

CatBoost1p   0.577   0.755   0.997  0.876     0.566   0.763   1.017  0.849     0.759  1.021   0.938   0.773 

Tmax，Tmin 

MLPp       0.590   0.781   0.999  0.867      0.610   0.803   1.046  0.836     0.745  1.005   1.008   0.773 

XGBoostp      0.629   0.822   0.949  0.859      0.596   0.773   0.999  0.844     0.756  0.991   0.967   0.774 

LightGBMp   0.582   0.771   0.994  0.870      0.582   0.770   1.038  0.849     0.755  1.013   1.011   0.768 

CatBoost1p   0.534   0.712   0.995  0.890      0.537   0.711   1.027  0.871     0.763  1.031   1.013   0.762 

Note: The statistical indicators of the best performing machine learning models with different input combinations for this climate zone are 596 

highlighted in blue, and the statistical indicators of the best performing machine learning models for the same input combination for this 597 

climate zone are highlighted in grey. 598 

Table 14  599 

Mean statistics of 1-7 day lead time predictions using the CatBoost2 model for the AR, SAR and SHZ climate zones with different input 600 

combinations during training, validation and testing. 601 

Inputs/model  training  validation  testing 

MAE   RMSE  RM    R  

(mm/d)  (mm/d) 

MAE   RMSE   RM    R  

(mm/d)  (mm/d) 

MAE   RMSE  RM     R  

(mm/d)  (mm/d) 

Tmax，Tmin，WT1，WS 

AR/CatBoost2  0.524   0.695   1.001  0.936     0.487   0.661   0.993  0.931     0.781  1.069   0.951   0.837 

SAR/CatBoost2  0.502   0.671   1.007  0.936     0.464   0.625   0.989  0.937     0.929  1.280   0.942   0.783 

SHZ/CatBoost2  0.441   0.593   0.997  0.925     0.385   0.534   0.987  0.929     0.832  1.124   0.965   0.721 

Tmax，Tmin，WT2，WS 
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AR/CatBoost2  0.522   0.695   1.002  0.936     0.492   0.661   0.990  0.931     0.785  1.078   0.952   0.835 

SAR/CatBoost2  0.535   0.719   0.999  0.930     0.498   0.671   0.983  0.929     0.934  1.277   0.928   0.785 

SHZ/CatBoost2  0.382   0.510   1.000  0.944     0.333   0.461   0.993  0.946     0.800  1.083   0.940   0.741 

Tmax，Tmin，WT1 

AR/CatBoost2  0.603   0.805   0.992  0.914     0.608   0.805   1.029  0.899     0.814  1.092   1.070   0.837 

SAR/CatBoost2  0.664   0.888   0.995  0.889     0.669   0.880   1.017  0.874     0.914  1.236   1.010   0.794 

SHZ/CatBoost2  0.495   0.668   0.993  0.904     0.491   0.654   1.038  0.894     0.802  1.098   1.042   0.743 

Tmax，Tmin，WS  

AR/CatBoost2  0.564   0.754   1.004  0.925     0.520   0.705   0.987  0.921     0.773  1.059   0.933   0.841 

SAR/CatBoost2  0.594   0.795   1.002  0.911     0.544   0.738   0.979  0.912     0.904  1.241   0.909   0.798 

SHZ/CatBoost2  0.489   0.656   1.000  0.908     0.445   0.613   0.981  0.905     0.793  1.057   0.912   0.754 

Tmax，Tmin，WT2 

AR/CatBoost2  0.561   0.751   0.996  0.925     0.567   0.748   1.023  0.913     0.822  1.104   1.076   0.835 

SAR/CatBoost2  0.624   0.837   0.998  0.903     0.636   0.833   1.022  0.890     0.915  1.233   1.006   0.791 

SHZ/CatBoost2  0.510   0.681   0.998  0.900     0.525   0.696   1.050  0.882     0.784  1.070   1.036   0.751 

Note: 1. The prediction performance of the input combinations Tmax, Tmin, SDun, and WS (category data), Tmax, Tmin, SDun, and WS 602 

(numerical data) and Tmax, Tmin, SDun, and Wspd is consistent, and the prediction performance of the input combinations Tmax, Tmin, 603 

and WS (numerical data) and Tmax, Tmin, and Wspd is consistent. Therefore, they are not listed separately in Table 14. 604 

2. The statistical indicators of the best performing CatBoost2 model for this climate region at different input combinations are 605 

highlighted in blue, and the statistical indicators of better performing CatBoost2 models for this climate region with different input 606 

combinations are highlighted in grey. 607 

Table 15  608 

Optimal input combinations of nine machine learning methods at nine sites in the three climate zones 609 

Climate  

zone 

MLPo / MLPp  XGBoosto / XGBoostp  LightGBMo / LightGBMp  CatBoost1o / CatBoost1p  CatBoost2 

Inputs/ Inputs Inputs/ Inputs Inputs/ Inputs Inputs/ Inputs Inputs 

AR           C2 / C4              C2 / C2                    C4 / C1                 C2 / C1                 C8 

SAR          C4 / C4              C4 / C1                    C4 / C2                 C4 / C3                 C8 

SHZ          C2 / C4              C2 / C4                    C4 / C1                 C1 / C3                 C8 

Table 16  610 

Optimal input combinations and model tuning information of five models (MLPp, XGBoostp, LightGBMp, CatBoost1p, and CatBoost2) 611 

at nine sites in the three climate zones. 612 

Models  Climate zone  Station  Inputs               Model information  

MLPp      AR      HN    C4   learning_rate=0.0023, layer_size=66, hidden_layers=2, model structure: 2-66-66-1 

YC    C4   learning_rate=0.0055, layer_size=93, hidden_layers=2, model structure: 2-93-93-1 

ZW    C4   learning_rate=0.0035, layer_size=94, hidden_layers=3, model structure: 2-94-94-94-1 

ZN    C4   learning_rate=0.0075, layer_size=73, hidden_layers=2, model structure: 2-73-73-1 

SAR   YAC    C4   learning_rate=0.0021, layer_size=79, hidden_layers=3, model structure: 2-79-79-79-1 

HY    C4   learning_rate=0.0023, layer_size=66, hidden_layers=2, model structure: 2-66-66-1 

TX    C4   learning_rate=0.0024, layer_size=88, hidden_layers=3, model structure: 2-88-88-88-1 

SHZ   GY    C4   learning_rate=0.0059, layer_size=100, hidden_layers=3, model structure: 2-100-100-100-1 

XJ    C4   learning_rate=0.0017, layer_size=90, hidden_layers=3, model structure: 2-90-90-90-1 

XGBoostp AR      HN    C2   colsample_bytree=0.98, eta=0.33, gamma=1.06, max_depth=14, min_child_weight=8,  

                     n_estimators=132, reg_alpha=2.65, reg_lambda=14.6 

YC    C1  colsample_bytree=0.64, eta=0.16, gamma=1.00, max_depth=9, min_child_weight=7,  
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                     n_estimators=279, reg_alpha=1.23, reg_lambda=1.97 

ZW    C2  colsample_bytree=0.85, eta=0.06, gamma=1.60, max_depth=15, min_child_weight=4,  

                     n_estimators=52, reg_alpha=0.03, reg_lambda=0.71 

ZN    C1  colsample_bytree=0.51, eta=0.17, gamma=1.00, max_depth=5, min_child_weight=0,  

                     n_estimators=267, reg_alpha=4.00, reg_lambda=0.52 

SAR   YAC    C2  colsample_bytree=0.85, eta=0.17, gamma=1.02, max_depth=10, min_child_weight=4,  

                     n_estimators=277, reg_alpha=0.04, reg_lambda=8.55 

HY    C1  colsample_bytree=0.58, eta=0.02, gamma=1.48, max_depth=12, min_child_weight=4,  

                     n_estimators=278, reg_alpha=0.55, reg_lambda=18.26 

TX    C4   colsample_bytree=0.62, eta=0.04, gamma=4.21, max_depth=17, min_child_weight=1,  

                     n_estimators=94, reg_alpha=22.63, reg_lambda=20.36 

SHZ   GY    C4   colsample_bytree=0.64, eta=0.04, gamma=1.90, max_depth=17, min_child_weight=9,  

                     n_estimators=82, reg_alpha=22.99, reg_lambda=0.62 

XJ    C1   colsample_bytree=0.64, eta=0.11, gamma=1.51, max_depth=4, min_child_weight=0,  

                     n_estimators=97, reg_alpha=0.02, reg_lambda=0.64 

LightGBMp  AR   HN    C2   colsample_bytree=0.99, lr=0.14, max_depth=8, min_child_weight=1.94, n_estimators=57,  

                     min_data_in_leaf=10, num_leaves=75, reg_alpha=1.26, reg_lambda=54.38, subsample=0.44 

YC    C1   colsample_bytree=0.39, lr=0.41, max_depth=10,min_child_weight=38.46, n_estimators=270,  

                     min_data_in_leaf=54, num_leaves=43, reg_alpha=1.75, reg_lambda=12.02, subsample=0.33 

ZW    C1   colsample_bytree=0.78, lr=0.06, max_depth=4, min_child_weight=23.26, n_estimators=190,  

                     min_data_in_leaf=22, num_leaves=157, reg_alpha=3.57, reg_lambda=3.52, subsample=0.08 

ZN    C1   colsample_bytree=0.99, lr=0.23, max_depth=5, min_child_weight=27.40, n_estimators=209,  

                     min_data_in_leaf=53, num_leaves=150, reg_alpha=4.87, reg_lambda=21.22, subsample=0.26 

          SAR   YAC    C2   colsample_bytree=0.86, lr=0.04, max_depth=8, min_child_weight=4.72, n_estimators=286,  

                     min_data_in_leaf=2, num_leaves=145, reg_alpha=0.06, reg_lambda=42.54, subsample=0.91 

               HY    C1   colsample_bytree=0.81, lr=0.22, max_depth=10, min_child_weight=20.85, n_estimators=54,  

                     min_data_in_leaf=26, num_leaves=127, reg_alpha=3.23, reg_lambda=58.77, subsample=0.29 

               TX    C1   colsample_bytree=0.78, lr=0.02, max_depth=9, min_child_weight=17.27, n_estimators=201,  

                     min_data_in_leaf=5, num_leaves=110, reg_alpha=0.02, reg_lambda=7.749, subsample=0.69 

          SHZ   GY    C1  colsample_bytree=0.99, lr=0.57, max_depth=10, min_child_weight=27.72, n_estimators=252,  

                     min_data_in_leaf=30, num_leaves=72, reg_alpha=5.49, reg_lambda=55.88, subsample=0.14 

               XJ    C1   colsample_bytree=0.65, lr=0.02, max_depth=9, min_child_weight=0.16, n_estimators=166,  

                     min_data_in_leaf=5, num_leaves=109, reg_alpha=1.05, reg_lambda=6.31, subsample=0.65 

CatBoost1p   AR   HN    C2   lr=0.01, l2_leaf_reg=1.96, depth=3, boosting_type='Plain' 

              YC    C1   lr=0.01, l2_leaf_reg=4.01, depth=3, boosting_type='Plain' 

              ZW    C1   lr=0.01, l2_leaf_reg=1.94, depth=7, boosting_type='Ordered' 

              ZN    C3   lr=0.02, l2_leaf_reg=7.47, depth=1, boosting_type='Plain', rs=1.88, od_pval=0.009 

          SAR   YAC    C2   lr=0.01, l2_leaf_reg=4.16, depth=3, boosting_type='Plain' 

              HY    C3   lr=0.09, l2_leaf_reg=6.68, depth=1, boosting_type='Ordered', rs=3.77, od_pval=0.004 

              TX    C4   lr=0.02, l2_leaf_reg=13.43, depth=1, boosting_type='Ordered', rs=1.88, od_pval=0.003 

          SHZ   GY    C4   lr=0.07, l2_leaf_reg=16.70, depth=2, boosting_type='Ordered', rs=7.51, od_pval=0.003 

              XJ    C3   lr=0.03, l2_leaf_reg=10.48, depth=1, boosting_type='Ordered', rs=3.51, od_pval=0.002 

CatBoost2  AR   HN    C5   lr=0.03, l2_leaf_reg=6.07, depth=3, boosting_type='Plain', max_ctr_complexity=6 

              YC    C5   lr=0.03, l2_leaf_reg=6.39, depth=8, boosting_type='Plain', max_ctr_complexity=7 
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              ZW    C8   lr=0.06, l2_leaf_reg=2.08, depth=7, boosting_type='Ordered', max_ctr_complexity=4 

              ZN    C8   lr=0.07, l2_leaf_reg=4.26, depth=5, boosting_type='Plain', max_ctr_complexity=5 

          SAR   YAC    C7   lr=0.01, l2_leaf_reg=7.17, depth=3, boosting_type='Ordered', max_ctr_complexity=0 

              HY    C8   lr=0.09, l2_leaf_reg=5.33, depth=8, boosting_type='Ordered', max_ctr_complexity=6 

              TX    C9   lr=0.01, l2_leaf_reg=7.17, depth=3, boosting_type='Ordered', max_ctr_complexity=0 

          SHZ   GY    C9   lr=0.01, l2_leaf_reg=7.17, depth=3, boosting_type='Ordered', max_ctr_complexity=0 

            XJ    C8   lr=0.06, l2_leaf_reg=2.56, depth=10, boosting_type='Ordered', max_ctr_complexity=7 

Note: lr: learning_rate and rs: random_strength. 613 

3.4. Performance evaluation of ETo predicted by models based on public weather forecasts 614 

3.4.1. Performance of daily ETo predicted by nine models 615 

The performance metrics of four models developed based on daily observed meteorological data 616 

and five models developed based on public weather forecast data with a 1-day lead time to predict 617 

daily ETo with a 1-7 day lead time for the three climate zones are shown in Figures 4 and 5. First, 618 

the daily ETo prediction performance of the nine models for the three climate zones, AR, SAR, and 619 

SHZ, decreased with increasing lead time, which is due to the decrease in forecast performance of 620 

public weather forecasting variables with increasing lead time, which is consistent with previous 621 

studies (Perera et al., 2014; Luo et al., 2014 and 2015; Traore et al., 2016; Yang et al., 2016, 2019a, 622 

2019b; Traore et al., 2017; Li et al., 2018; Yin et al., 2020). In addition, for all three climate zones, 623 

the four models developed based on public weather forecast data with a 1-day lead time to predict 624 

daily ETo 1-7 days ahead outperformed the four models developed based on daily observed 625 

meteorological data with corresponding input combinations (except for the 1-day ahead prediction 626 

performance of MLPp, XGBoostp, and CatBoost1p for the SHZ climate zone). Second, the RM 627 

values of the nine models for the AR climate zone varied in the range of 0.92-1.07. Three models, 628 

MLPp, XGBoostp and LightGBMo, slightly overestimated (2.90%-6.58%) the daily ETo, while 629 

LightGBMp, CatBoost1p, CatBoost2, MLPo, XGBoosto and CatBoost1o slightly underestimated 630 

(2.69%-7.71%) the daily ETo. The RM values for the nine models varied in the range of 0.90-1.00 631 

https://doi.org/10.5194/hess-2023-158
Preprint. Discussion started: 31 July 2023
c© Author(s) 2023. CC BY 4.0 License.



39 

 

for the SAR climate zone, and all models slightly underestimated (0.18%-9.56%) the daily ETo 632 

(except LightGBMp, which slightly overestimated (0.12%) the daily ETo 6-days ahead, and MLPo, 633 

which slightly overestimated (0.02%) the daily ETo 7-days ahead. The RM values for the 9 models 634 

varied in the range of 0.90-1.02 for the SHZ climate zone. MLPp slightly overestimated (0.13%-635 

1.64%) the daily ETo, and all other models slightly underestimated (0.02%-9.94%) the daily ETo. 636 

Table 17 shows the 1-7 day ahead ETo prediction performance comparison utilizing the best 637 

input combinations in the testing period for the four models developed based on daily observed 638 

meteorological data and the five models developed based on public weather forecast data with a 1-639 

day lead time for the three climate zones. Overall, for all three climate zones, the four models 640 

developed based on 1-day ahead public weather forecast data generally outperformed the four 641 

models developed based on daily observed meteorological data with corresponding input 642 

combinations for all metrics. In addition, the prediction performance of all models exhibited a 643 

decrease in the following order for the three climate zones: AR, SHZ, and SAR. This result is mainly 644 

because the prediction performance of models developed based on public weather forecasts for the 645 

AR climate zone is better than that for the SAR and SHZ climate zones. For the AR climate zone, 646 

the mean MAE and RMSE ranges of the four models (MLP, XGBoost, LightGBM, and CatBoost1) 647 

were 0.770-0.805 mm d-1 and 1.042-1.081 mm d-1 (performance of models trained and validated 648 

based on daily observed meteorological data) to 0.703-0.743 mm d-1 and 0.976-0.999 mm d-1 649 

(performance of models trained and validated based on public weather forecast data with a 1-day 650 

lead time), respectively, a decrease of 5.32%-11.67% and 4.13%-7.68%, respectively. The mean R 651 

value range increased from 0.837-0.844 to 0.854-0.867, an improvement of 1.31%-3.46%. For the 652 

SAR climate zone, the mean MAE and RMSE ranges for the four models (MLP, XGBoost, 653 
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LightGBM, and CatBoost1) decreased from 0.886-0.922 mm d-1 and 1.208-1.268 mm d-1 654 

(performance of the models trained and validated based on daily observed meteorological data) to 655 

0.850-0.860 mm d-1 and 1.148-1.177 mm d-1 (performance of models trained and validated based 656 

on public weather forecast data with 1-day lead time), respectively, a reduction of 2.93%-7.81% and 657 

2.57%-9.46%, respectively. The mean R range increased from 0.785-0.798 to 0.813-0.824, an 658 

improvement of 1.88%-4.20%. For the SHZ climate zone, the mean MAE and RMSE ranges for the 659 

four models (MLP, XGBoost, LightGBM, and CatBoost1) decreased from 0.772-0.793 mm d-1 and 660 

1.044-1.085 mm d-1 (performance of models trained and validated based on daily observed 661 

meteorological data) to 0.742-0.759 mm d-1 and 0.991-1.021 mm d-1 (performance of models trained 662 

and validated based on 1-day ahead public weather forecast data), respectively, a reduction of 663 

3.89%-6.05% and 2.20%-7.37%, respectively. The mean R ranged increased from 0.734-0.750 to 664 

0.770-0.774, an improvement of 3.07%-5.31%. Finally, when considering all metrics, the top three 665 

models in the AR climate zone were XGBoostp, LightGBMp, and MLPp, while MLPo was the worst 666 

performing model; the top three models in the SAR climate zone were MLPp, XGBoostp, and 667 

LightGBMp, while MLPo was the worst performing model; and the top three models in the SHZ 668 

climate zone were XGBoostp, MLPp and LightGBMp, while MLPo was the worst performing model. 669 
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Figure. 4. The MAE and RMSE statistics for predicting ETo with a lead time of 1-7 days using four models trained and validated based on 671 

daily observed meteorological data and five models trained and validated based on 1-day ahead public weather forecast data for the three 672 

climate zones. 673 
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Figure. 5. The RM and R statistics for predicting ETo with a lead time of 1-7 days using four models trained and validated based on daily 675 

observed meteorological data and five models trained and validated based on 1-day ahead public weather forecast data for the three climate 676 

zones. 677 

Table 17  678 

Mean statistics of the performance indicators for ETo prediction with a lead time of 1–7 days using four models trained and validated based 679 

on daily observed meteorological data and five models trained and validated based on 1-day ahead public weather forecast data for three 680 

climate zones. 681 

方法 AR  SAR  SHZ 

MAE   RMSE   RM    R 

(mm/d)  (mm/d) 

MAE   RMSE  RM    R 

(mm/d)  (mm/d) 

MAE   RMSE  RM     R 

(mm/d)  (mm/d) 

MLPo       0.792  1.081   0.944   0.837    0.922   1.268  0.994   0.785  0.793   1.085  0.928   0.734 

MLPp       0.743  0.998   1.034   0.855    0.850   1.148  0.995   0.818  0.745   1.005  1.008   0.773 

XGBoosto      0.777  1.052   0.949   0.838    0.900   1.232  0.960   0.792  0.776   1.069  0.986  0.743 

XGBoostp      0.703  0.976    1.034   0.867    0.851   1.150  0.935   0.824  0.756   0.991  0.967   0.774 

LightGBMo     0.805   1.046   1.063   0.844    0.918   1.254  0.953   0.786  0.772   1.059  0.991  0.746 
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LightGBMp     0.711   0.991    0.962   0.859    0.857   1.173  0.995   0.816  0.742   1.016  0.961  0.770 

CatBoost1o     0.770  1.042   0.956   0.843    0.886   1.208  0.956   0.798  0.786   1.044  0.986  0.750 

CatBoost1p     0.729  0.999   0.967   0.854    0.860   1.177  0.948   0.813  0.759   1.021  0.938   0.773 

CatBoost2     0.773  1.059   0.933   0.841    0.904   1.241  0.909   0.798  0.793   1.057  0.912   0.754 

Note: The statistical indicators of the best performance model for each climate zone are highlighted in blue, and the statistical indicators of 682 

the better performance model are highlighted in grey. 683 

3.4.2. Seasonality of the performance of the five models developed based on public weather forecast 684 

data with a 1-day lead time to predict daily ETo 685 

Irrigated areas in the studied sites have different field irrigation seasons according to crop type 686 

and location (Perera et al., 2014). In addition, the sensitivity of weather variables varies with season 687 

and the microclimate of the studied site location (Vanella et al., 2020). Therefore, there is a strong 688 

need to evaluate the seasonality of the ETo forecast performance. Tables 18-20 show the mean 689 

statistics of the performance indicators for the 1-7 day lead time ETo forecasts using the five models 690 

developed based on public weather forecast data with a 1-day lead time for the three climatic zones 691 

for all seasons of 2020-2021. First, during all four seasons, the daily ETo prediction performance of 692 

all five models was better in the AR climate zone than in the SAR and SHZ climate zones (excluding 693 

CatBoost2 in the spring and MLP in the fall in the SHZ climate zone, and all five models in the 694 

winter in the SHZ climate zone). This is mainly because the prediction performance of models using 695 

the public weather forecast variables in the AR climate zone outperform those in the SAR and SHZ 696 

climate zones overall. 697 

Second, the order of the seasonal MAE and RMSE values for daily ETo prediction using the five 698 

models in the AR climate zone are as follows: winter, spring, fall, and summer. In addition, the 699 

seasonal MAE and RMSE values during winter are lower than the annual average, except for the 700 

MLPp and LightGBMp models for station TX in the SAR climate zone and the MLPp and XGBoost 701 

models for station XJ in the SHZ climate zone. The order of the seasonal MAE and RMSE values 702 
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using the other three models in the SAR and SHZ climate zones are as follows: winter, fall, spring, 703 

and summer. The seasonal MAE and RMSE values during winter and fall in the SAR climate zone 704 

are lower than the annual average, and the seasonal MAE and RMSE values during winter in the 705 

SHZ climate zone are lower than the annual average. These results are consistent with results in 706 

previous studies (Perera et al., 2014; Yang et al., 2016; Fan et al., 2021b). The seasonal R values of 707 

ETo for all model prediction days in all three climate zones were lower than the annual average, 708 

with the smallest R values observed during summer. The maximum seasonal R values in the AR 709 

climate zone occurred in spring (XGBoostp, LightGBMp, and CatBoost1p) and fall (MLPp and 710 

CatBoost2), those in the SAR climate zone occurred in spring (XGBoostp and LightGBMp) and fall 711 

(MLPp, CatBoost1p, and CatBoost2), and those for the SHZ climate zone occurred in spring 712 

(XGBoostp) and fall (MLPp, LightGBMp, CatBoost1p, and CatBoost2). The seasonal RM values 713 

of daily ETo prediction using the five machine learning models in the three climate zones were less 714 

than 1 in spring and summer and greater than 1 in fall and winter, indicating that daily ETo was 715 

underestimated in spring and summer (except for XGBoostp in summer in the AR climate zone, 716 

which was overestimated by 2.93%) and overestimated in fall and winter (except for CatBoost1p in 717 

winter in the SHZ climate zone and CatBoost2, which were underestimated by 7.75% and 2.05%, 718 

respectively). 719 

Finally, when considering all the metrics, for the AR climate zone, XGBoostp, MLPp, CatBoost2, 720 

and LightGBMp showed the best performance in predicting 1-7 day ahead seasonal ET values 721 

during spring, summer, fall, and winter, respectively, with MLPp (spring), XGBoostp (summer), 722 

LightGBMp (fall), and CatBoost2 (winter) being the second best performers. For the SAR climate 723 

zone, LightGBMp, MLPp, CatBoost1p and CatBoost2 showed the best performance in predicting 724 

https://doi.org/10.5194/hess-2023-158
Preprint. Discussion started: 31 July 2023
c© Author(s) 2023. CC BY 4.0 License.



45 

 

1-7 day ahead seasonal ET values during spring, summer, fall and winter, respectively, with MLPp 725 

(spring), XGBoostp (summer and fall) and CatBoost1p (winter) being the next best performers. For 726 

the SHZ climate zone, XGBoostp, CatBoost1p, and LightGBMp showed the best performance in 727 

predicting 1-7 day ahead seasonal ET values during spring, summer, fall, and winter, respectively, 728 

with MLPp (spring, summer, and winter) and XGBoostp (fall) being the next best performers. 729 

Table 18  730 

The mean statistics of the performance indicators for 1-7 days lead time ETo prediction using 5 methods at 4 stations in the AR climate 731 

region during the four seasons of 2020-2021. 732 

Stations/Methods  Spring  Summer  Fall  Winter 

MAE  RMSE  RM  R 

(℃)    (℃) 

MAE  RMSE  RM  R 

(℃)    (℃) 

MAE  RMSE  RM  R 

(℃)    (℃) 

MAE  RMSE  RM    R 

(℃)    (℃) 

AR/Huinong 

MLPp       0.717  0.933  0.879  0.744    0.980  1.225  0.945  0.092   0.885  1.117  1.185  0.726   0.406  0.500  1.260  0.490 

XGBoostp      0.675  0.894  0.952  0.739    0.955  1.209  1.013  0.125   0.819  1.086  1.061  0.678   0.386  0.483  1.113  0.353 

LightGBMp      0.734  0.987  0.859  0.728    1.004  1.270  0.949  0.130   0.819  1.067  0.965  0.670 0.347  0.483  1.018  0.367 

CatBoost1p      0.747  0.972  0.853  0.742    1.023  1.258  0.913  0.110   0.836  1.071  1.125  0.695 0.430  0.516  1.292  0.448 

CatBoost2      0.914  1.164  0.771  0.696    1.184  1.475  0.894  0.114   0.787  1.019  1.008  0.693 0.354  0.479  1.023  0.400 

AR/Yinchuan 

MLPp       0.683  0.904  0.874  0.701    0.841  1.081  0.982  0.199   0.815  1.043  1.234  0.773 0.347  0.443  1.295  0.517 

XGBoostp      0.613  0.837  0.942  0.709    0.852  1.111  1.027  0.186   0.728  0.976  1.135  0.736 0.308  0.393  1.208  0.473 

LightGBMp      0.671  0.909  0.894  0.682    0.868  1.136  0.989  0.200   0.698  0.933  1.039  0.721 0.255  0.397  1.040  0.418 

CatBoost1p      0.737  0.966  0.817  0.708    0.875  1.127  0.965  0.195   0.723  0.950  1.111  0.723 0.299  0.396  1.201  0.507 

CatBoost2      0.812  1.055  0.799  0.658    0.954  1.210  0.935  0.190   0.708  0.929  1.100  0.739 0.255  0.386  1.066  0.489 

AR/Zhongwei 

MLPp       0.862  1.108  0.846  0.655    1.070  1.349  1.002  0.078   0.882  1.143  1.232  0.715 0.373  0.491  1.234  0.471 

XGBoostp      0.789  1.037  0.907  0.664    1.082  1.369  1.008  0.101   0.780  1.050  1.098  0.657 0.341  0.466  1.151  0.402 

LightGBMp      0.883  1.147  0.817  0.660    1.093  1.378  0.970  0.123   0.774  1.033  1.040  0.639 0.331  0.445  1.149  0.444 

CatBoost1p      0.890  1.146  0.815  0.671    1.089  1.372  0.966  0.122   0.781  1.052  1.050  0.639 0.322  0.436  1.097  0.433 

CatBoost2      1.016  1.277  0.749  0.657    1.158  1.421  0.936  0.091   0.777  1.020  1.114  0.693 0.331  0.455  1.097  0.425 

AR/Zhongning 

MLPp       0.702  0.912  0.885  0.681    1.026  1.318  1.015  0.145   0.885  1.145  1.226  0.716 0.394  0.495  1.307  0.539 

XGBoostp      0.672  0.885  0.974  0.673    1.119  1.416  1.069  0.162   0.799  1.082  1.118  0.673 0.328  0.446  1.187  0.475 

LightGBMp      0.743  0.971  0.864  0.662    1.090  1.373  1.001  0.170   0.762  1.025  1.013  0.661 0.279  0.402  1.075  0.507 

CatBoost1p      0.811  1.036  0.805  0.679    1.087  1.378  0.984  0.165   0.746  1.014  1.036  0.668 0.291  0.391  1.113  0.519 

CatBoost2      0.879  1.110  0.777  0.665    1.197  1.478  0.948  0.174   0.727  0.974  1.069  0.696 0.287  0.408  1.036  0.524 

AR/Average 

MLPp       0.741  0.964  0.871  0.695    0.979  1.243  0.986  0.129   0.867  1.112  1.219  0.733 0.380  0.482  1.274  0.504 

XGBoostp      0.687  0.913  0.944  0.696    1.002  1.276  1.029  0.144   0.782  1.049  1.103  0.686 0.341  0.447  1.165  0.426 

LightGBMp      0.758  1.004  0.859  0.683    1.014  1.289  0.977  0.156   0.763  1.015  1.014  0.673 0.303  0.432  1.071  0.434 
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CatBoost1p      0.796  1.030  0.823  0.700    1.019  1.284  0.957  0.148   0.772  1.022  1.081  0.681 0.336  0.435  1.176  0.477 

CatBoost2      0.905  1.152  0.774  0.669    1.123  1.396  0.928  0.142   0.750  0.986  1.073  0.705 0.307  0.432  1.056  0.460 

Note: 1. The statistical indicators of the best performing machine learning model of this climate zone in each season are highlighted in 733 

colour, and the statistical indicators of the better performing machine learning models are highlighted in grey. 734 

2. The statistical indicators of the best performing machine learning models for each site in each season are highlighted in grey, and 735 

the statistical indicators of the better performing machine learning models are shown in bold. 736 
Table 19  737 

The mean statistics of the performance indicators for 1-7 days lead time ETo prediction using 5 methods at 4 stations in the SAR climate 738 

region during the four seasons of 2020-2021. 739 

Stations/Methods  Spring  Summer  Fall  Winter 

MAE  RMSE  RM  R 

(℃)    (℃) 

MAE  RMSE  RM  R 

(℃)    (℃) 

MAE  RMSE  RM  R 

(℃)    (℃) 

MAE  RMSE  RM    R 

(℃)    (℃) 

SAR/Yanchi 

MLPp       0.797  1.015  0.841  0.679    1.017  1.270  0.927  0.210   0.755  0.991  1.157  0.761 0.380  0.469  1.271  0.557 

XGBoostp      0.805  1.042  0.828  0.680    1.114  1.368  0.878  0.203   0.714  0.959  0.937  0.699 0.303  0.420  1.087  0.518 

LightGBMp      0.770  0.999  0.875  0.664    1.012  1.281  0.929  0.195   0.749  1.001  1.029  0.684 0.351  0.459  1.201  0.513 

CatBoost1p      0.869  1.093  0.790  0.678    1.153  1.403  0.875  0.209   0.680  0.903  1.065  0.749 0.327  0.433  1.150  0.556 

CatBoost2      0.977  1.220  0.747  0.620    1.250  1.522  0.864  0.175   0.702  0.925  1.013  0.736 0.307  0.430  1.086  0.527 

SAR/Haiyuan 

MLPp       0.971  1.285  0.810  0.575    1.225  1.516  0.968  0.114   0.899  1.164  1.199  0.634 0.360  0.486  1.118  0.528 

XGBoostp      0.980  1.286  0.811  0.577    1.225  1.509  0.964  0.121   0.881  1.132  1.058  0.562 0.362  0.492  1.114  0.518 

LightGBMp      0.953  1.257  0.865  0.539    1.243  1.537  0.975  0.112   0.929  1.191  1.106  0.545 0.381  0.515  1.157  0.501 

CatBoost1p      1.004  1.332  0.786  0.562    1.295  1.589  0.931  0.110   0.856  1.092  1.142  0.626 0.350  0.492  1.005  0.530 

CatBoost2      1.077  1.397  0.747  0.571    1.320  1.647  0.927  0.094   0.870  1.123  1.117  0.619 0.366  0.484  1.105  0.484 

SAR/Tongxin 

MLPp       0.916  1.201  0.854  0.639    1.333  1.639  0.975  0.163   1.038  1.355  1.194  0.629 0.400  0.494  1.197  0.611 

XGBoostp      0.966  1.250  0.834  0.629    1.353  1.658  0.950  0.188   0.929  1.207  1.009  0.597 0.491  0.584  1.267  0.460 

LightGBMp      0.907  1.181  0.915  0.629    1.389  1.770  1.046  0.177   1.084  1.443  1.129  0.562 0.401  0.507  1.151  0.537 

CatBoost1p      0.955  1.252  0.831  0.630    1.410  1.739  0.967  0.160   0.983  1.276  1.136  0.620 0.358  0.492  1.066  0.595 

CatBoost2      1.097  1.401  0.746  0.630    1.492  1.828  0.902  0.171   0.938  1.240  1.046  0.611 0.358  0.481  1.052  0.562 

SAR/Average 

MLPp       0.895  1.167  0.835  0.631    1.192  1.475  0.957  0.162   0.897  1.170  1.183  0.675 0.380  0.483  1.195  0.565 

XGBoostp      0.917  1.193  0.824  0.629    1.231  1.512  0.931  0.171   0.841  1.099  1.001  0.619 0.385  0.499  1.156  0.499 

LightGBMp      0.877  1.146  0.885  0.611    1.215  1.529  0.983  0.161   0.921  1.212  1.088  0.597 0.378  0.494  1.170  0.517 

CatBoost1p      0.943  1.226  0.802  0.623    1.286  1.577  0.924  0.160   0.840  1.090  1.114  0.665 0.345  0.472  1.074  0.560 

CatBoost2      1.050  1.339  0.747  0.607    1.354  1.666  0.898  0.147   0.837  1.096  1.059  0.665 0.344  0.465  1.081  0.524 

Note: 1. The statistical indicators of the best performing machine learning model of this climate zone in each season are highlighted in 740 

colour, and the statistical indicators of the better performing machine learning models are highlighted in grey. 741 

2. The statistical indicators of the best performing machine learning models for each site in each season are highlighted in grey, and 742 

the statistical indicators of the better performing machine learning models are shown in bold. 743 
Table 20  744 

The mean statistics of the performance indicators for 1-7 days lead time ETo prediction using 5 methods at 4 stations in the SHZ climate 745 

region during the four seasons of 2020-2021. 746 

Stations/Methods  Spring  Summer  Fall  Winter 

https://doi.org/10.5194/hess-2023-158
Preprint. Discussion started: 31 July 2023
c© Author(s) 2023. CC BY 4.0 License.



47 

 

MAE  RMSE  RM  R 

(℃)    (℃) 

MAE  RMSE  RM  R 

(℃)    (℃) 

MAE  RMSE  RM  R 

(℃)    (℃) 

MAE  RMSE  RM    R 

(℃)    (℃) 

SHZ/Guyuan 

MLPp       0.997  1.270  0.773  0.531    1.239  1.491  0.975  0.112   0.934  1.191  1.201  0.567 0.369  0.492  1.042  0.490 

XGBoostp      1.022  1.278  0.758  0.567    1.245  1.480  0.918  0.134   0.927  1.142  1.200  0.584 0.374  0.508  1.028  0.461 

LightGBMp      1.024  1.301  0.790  0.479    1.247  1.536  0.991  0.133   0.913  1.159  1.052  0.522 0.353  0.496  0.962  0.454 

CatBoost1p      1.134  1.413  0.681  0.543    1.270  1.535  0.930  0.118   0.872  1.101  1.100  0.575 0.397  0.552  0.802  0.473 

CatBoost2      1.147  1.440  0.711  0.514    1.297  1.571  0.911  0.127   0.956  1.189  1.110  0.528 0.454  0.597  1.077  0.311 

SHZ/Xiji 

MLPp       0.574  0.764  0.871  0.648    0.913  1.116  1.007  0.057   0.713  0.935  1.204  0.690 0.203  0.252  1.199  0.638 

XGBoostp      0.590  0.754  0.842  0.703    0.947  1.107  0.913  0.080   0.706  0.882  1.130  0.661 0.207  0.281  1.158  0.551 

LightGBMp      0.580  0.767  0.886  0.638    0.964  1.168  0.962  0.038   0.677  0.901  1.064  0.633 0.150  0.201  1.039  0.613 

CatBoost1p      0.601  0.783  0.829  0.674    0.927  1.133  0.968  0.069   0.692  0.883  1.162  0.676 0.175  0.243  1.043  0.621 

CatBoost2      0.693  0.890  0.768  0.632    0.958  1.154  0.911  0.093   0.654  0.852  1.062  0.666 0.181  0.242  0.882  0.583 

SHZ/Average 

MLPp       0.786  1.017  0.822  0.590    1.076  1.304  0.991  0.085   0.824  1.063  1.203  0.629 0.286  0.372  1.121  0.564 

XGBoostp      0.806  1.016  0.800  0.635    1.096  1.294  0.916  0.107   0.817  1.012  1.165  0.623 0.291  0.395  1.093  0.506 

LightGBMp      0.802  1.034  0.838  0.559    1.106  1.352  0.977  0.086   0.795  1.030  1.058  0.578 0.252  0.349  1.001  0.534 

CatBoost1p      0.868  1.098  0.755  0.609    1.099  1.334  0.949  0.094   0.782  0.992  1.131  0.626 0.286  0.398  0.923  0.547 

CatBoost2      0.920  1.165  0.740  0.573    1.128  1.363  0.911  0.110   0.805  1.021  1.086  0.597 0.318  0.420  0.980  0.447 

Note: 1. The statistical indicators of the best performing machine learning model of this climate zone in each season are highlighted in 747 

colour, and the statistical indicators of the better performing machine learning models are highlighted in grey. 748 

2. The statistical indicators of the best performing machine learning models for each site in each season are highlighted in grey, and 749 

the statistical indicators of the better performing machine learning models are shown in bold. 750 

3.5. Impact of weather variable forecasts from public weather forecasts on daily ETo forecasts 751 

For all three climate zones, the performance of the four models developed based on public 752 

weather forecast data with a 1-day lead time was better than the performance of the four models 753 

developed based on daily observed meteorological data. To reliably and accurately analyse the 754 

weather forecast variables that cause daily ETo forecast errors, the models developed based on daily 755 

observed meteorological data were chosen to evaluate the impact of weather variables from public 756 

weather forecasts on the daily ETo forecasting performance. In this study, each of the four observed 757 

weather variables (Tmax, Tmin, SDun, and Wspd) was replaced in sequence with their corresponding 758 

forecast values with a 1-7 day lead time. This allowed for the identification of cases where a large 759 

change in the forecasted daily ETo indicates an error in the prediction resulting from the forecasted 760 
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weather variable (Perera et al., 2014; Yang et al., 2016; Pelosi et al., 2016; Medina et al., 2018; Fan 761 

et al., 2021b). Tmax, Tmin, SDun, and Wspd were replaced by Tmax, Tmin, SDun, and Wspd in the public 762 

weather forecast 1-7 days ahead in turn to form the following new combinations: SC1 (Tmax, Tmin, 763 

SDun, and Wspd), SC2 (Tmax, Tmin, SDun, and Wspd), SC3 (Tmax, Tmin, SDun, and Wspd), and SC4 764 

(Tmax, Tmin, SDun, and Wspd), all of which were composed of day-by-day observations for the 765 

combination denoted SC (Tmax, Tmin, SDun, and Wspd). The statistics of the mean values for the 1-766 

7 day lead time ETo performance metrics using four models (MLPo, XGBoosto, LightGBMo, and 767 

CatBoost1o) for the three climate zones with the SC-SC4 input combination are shown in Tables 21-768 

23. 769 

First, for all models (except the LightGBM model at station ZW and the CatBoost1 model at 770 

station HN), the contribution of the public weather forecast variables to the error in the predicted 771 

daily ETo decreased in the order of Wspd, SDun, Tmax, and Tmin for the AR (arid zone) climate zone,  772 

which is consistent with previous findings (Yang et al. 2016). Second, for all models (except the 773 

MLP model at station YAC, the CatBoost1 model at station TX, the MLP model at station XJ, the 774 

XGBoost model, and the LightGBM model), the contributions of the public weather forecast 775 

variables to the errors in the predicted daily ETo decreased in the order of SDun, Wspd, Tmax, and 776 

Tmin and SDun, Tmax, Wspd, and Tmin for the SAR (semiarid) and SHZ (semihumid zone) climate 777 

zones, which is consistent with the results of previous studies (Pelosi et al., 2016; Yang et al., 2016; 778 

Medina et al., 2018; Fan et al., 2021b). 779 

These results indicate that for the study sites in the AR climate zone (arid zone), the main source 780 

of error in daily ETo prediction is Wspd transformed from the wind scale in public weather forecasts. 781 

For the study sites in the SAR (semiarid zone) and SHZ (semihumid zone) climate zones, SDun 782 
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converted from the weather type of public weather forecasts contributes the most to the predicted 783 

daily ETo errors. First, the spatial variability of Wspd and DSun (Rs) due to the topography, elevation, 784 

distance, and cloudiness of the location of the study site (Yuan et al., 2015; Fick and Hijmasn, 2017; 785 

Li and Zha, 2018; Fan et al., 2021b) makes Wspd and DSun (Rs) the most difficult parameters to 786 

forecast accurately (Yang et al., 2016, Ballesteros et al., 2016); second, according to Cai et al. (2007), 787 

it is appropriate to estimate Wspd from wind scale predicted by public weather forecasts, but this 788 

estimation error is larger for arid regions with a high range of wind speed values. George et al. (1985) 789 

reported that the largest difference between predicted and measured reference crop 790 

evapotranspiration came from erroneous predictions of mean wind speed. Li and Beswick (2005) 791 

also reported that wind speed is a more serious source of error than solar radiation in estimating ETo. 792 

In a study by Popova et al. (2005), it was noted that the effect of wind speed on ETo results was 793 

relatively small except in arid and windy areas. 794 

As shown in Table 3, SDun was estimated using the sunshine hour coefficients derived from the 795 

2004 measured solar radiation data from Daxing District, Beijing, using Equation (3). It was found 796 

that applying the sunshine hour coefficients derived from one region to other regions with different 797 

climate types will result in different degrees of error due to the climatic differences between regions. 798 

Perera et al. (2014) found that the largest source of error between predicted and observed ETo is the 799 

predictive performance of daily incoming solar radiation, followed by air temperature, dew point 800 

temperature, and wind speed for all advanced periods. Pelosi et al. (2016) indicated that the solar 801 

radiation forecast error has the greatest impact on the ETo forecast performance, followed by relative 802 

humidity and wind speed. The results of Medina et al. (2018) also indicated that the errors in solar 803 

radiation forecasts have the greatest impact on ETo forecasts, followed by errors in wind forecasts. 804 
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Fan et al. (2021b) also showed that the contribution of predicted weather variables to the daily ETo 805 

error in all studied climate zones, such as the temperate continental zone (TCZ)/temperate monsoon 806 

zone (TMZ), was determined by Rs (solar radiation), Ws (wind speed), Tmax, RH (relative humidity), 807 

Tmin/Rs (solar radiation), RH (relative humidity), Ws (wind speed), Tmax, and Tmin in decreasing 808 

order. 809 

Table 21  810 

Mean statistics of the ETo performance index for 1-7 days of lead time predicted by five models for the AR climate zone with five input 811 

combinations when replacing observed weather variables with weather variables predicted by public weather forecasts one by one. 812 

Stations/Methods  SC  SC1  SC2  SC3  SC4 

MAE  RMSE  RM  R 

(mm d-1) (mm d-1) 

MAE  RMSE  RM  R 

(mm d-1) (mm d-1) 

MAE  RMSE  RM  R 

(mm d-1) (mm d-1) 

MAE  RMSE  RM  R 

(mm d-1) (mm d-1) 

MAE  RMSE  RM   R 

(mm d-1) (mm d-1) 

HN/MLP    0.39 0.51 0.95 0.97   0.43   0.58   0.95   0.96  0.40  0.53  0.95  0.97   0.77  1.02  0.84  0.90   0.76 1.07 1.02 0.86 

YC/MLP    0.31 0.41 0.95 0.98   0.37   0.51   0.95   0.96  0.29  0.40  0.96  0.98   0.59   0.80   0.89  0.92   0.68 1.04 1.14 0.87 

ZW/MLP    0.41 0.55 0.97 0.96   0.48  0.64   0.97   0.94  0.41  0.55  0.98  0.96   0.65   0.88   0.91   0.90   0.74 1.07 1.03 0.84 

ZN/MLP    0.35 0.49 0.93 0.97   0.43  0.60   0.94   0.95  0.34  0.48  0.95  0.97   0.62   0.85   0.90   0.90   0.66 0.96 1.06 0.88 

AR/MLP    0.37 0.49 0.95 0.97   0.43   0.59  0.95  0.95  0.36  0.49  0.96  0.97   0.65  0.89   0.89  0.91   0.71 1.04 1.06 0.86 

HN/XGBoost     0.35 0.47 0.98 0.97   0.42  0.57   0.98  0.96  0.36  0.48  0.98  0.97   0.65   0.88  0.90  0.92   0.66 0.89 1.03 0.90 

YC/XGBoost     0.30 0.40 0.97 0.98   0.35   0.49   0.96  0.97  0.29  0.40  0.97  0.98   0.58   0.79  0.90  0.92   0.63 0.91 1.11 0.91 

ZW/XGBoost  0.42 0.56 0.97 0.96   0.46   0.63   0.97   0.94  0.42  0.57  0.98  0.96   0.66   0.88  0.92  0.89   0.63  0.84 0.99  0.90 

ZN/XGBoost     0.34 0.47 0.95 0.97   0.43  0.60   0.95   0.95  0.33  0.46  0.96  0.97   0.59  0.81  0.92   0.91   0.64 0.91 1.06 0.89 

AR/XGBoost  0.35 0.47 0.97 0.97   0.42   0.57  0.97  0.95  0.35  0.48  0.97  0.97   0.62   0.84   0.91   0.91   0.64 0.89 1.05 0.90 

HN/LightGBM  0.44 0.58 0.98 0.96   0.51  0.68   0.97   0.94  0.44  0.59  0.98  0.96   0.67   0.89   0.90  0.92   0.68 0.87 1.02 0.90 

YC/LightGBM  0.32 0.42 0.96 0.98   0.37   0.52   0.96   0.96  0.33  0.43  0.97  0.97   0.59   0.79  0.89  0.92   0.64 0.91 1.11 0.89 

ZW/LightGBM  0.50 0.65 0.98 0.94   0.58   0.78   0.98  0.91  0.50  0.66  0.98  0.94   0.67   0.88   0.93  0.91   0.64 0.84 0.99 0.90 

ZN/LightGBM  0.35 0.47 0.95 0.97   0.44   0.60   0.95   0.55  0.34  0.46  0.96  0.97   0.59   0.81   0.92   0.91   0.66 0.96 1.06 0.88 

AR/LightGBM  0.40 0.53 0.97 0.96   0.48   0.65   0.97   0.94  0.40  0.53  0.97  0.96   0.63  0.84   0.91  0.92   0.66 0.89 1.05 0.89 

HN/CatBoost1    0.44 0.57 0.97 0.96   0.50   0.67   0.97   0.95  0.45  0.60  0.97  0.96   0.70   0.93   0.89  0.92   0.66 0.86 1.01 0.91 

YC/CatBoost1  0.37 0.49 0.98 0.96   0.45   0.61  0.98   0.94  0.38  0.50  0.98  0.96   0.57   0.76   0.91  0.93   0.62 0.81 1.10 0.91 

ZW/CatBoost1  0.47 0.62 0.97 0.95   0.54  0.74   0.97  0.92  0.47  0.62  0.97  0.95   0.66   0.86   0.92  0.91   0.65 0.87 0.99 0.89 

ZN/CatBoost1  0.39 0.52 0.97 0.96   0.51   0.72   0.97   0.92  0.39  0.53  0.97  0.96   0.58   0.78   0.93  0.92   0.61 0.82 1.05 0.90 

AR/CatBoost1  0.42 0.56 0.97 0.96   0.50   0.68   0.97   0.93    0.42  0.56  0.97  0.96   0.63   0.83   0.91  0.92   0.64 0.84 1.04 0.90 

Note: The statistical indicators with the largest error contribution to the predicted daily ETo of each site (climate zone) are highlighted in 813 

blue, and the statistical indicators with the second largest error contribution to the predicted daily ETo of each site (climate zone) are 814 

highlighted in grey. 815 

Table 22  816 

Mean statistics of the ETo performance index for 1-7 days of lead time predicted by five models for the SAR climate zone with five input 817 

combinations when replacing observed weather variables with weather variables predicted by public weather forecasts one by one. 818 

Stations/Methods  SC  SC1  SC2  SC3  SC4 

MAE  RMSE  RM  R MAE  RMSE  RM  R MAE  RMSE  RM  R MAE  RMSE  RM  R MAE  RMSE  RM   R 
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(mm d-1) (mm d-1) (mm d-1) (mm d-1) (mm d-1) (mm d-1) (mm d-1) (mm d-1) (mm d-1) (mm d-1) 

YAC/MLP   0.45 0.56 1.03 0.96   0.50   0.63   1.02   0.95  0.50  0.62  1.04  0.95   0.75   1.00  0.90  0.89   0.45 0.56 1.03 0.96 

HY/MLP    0.36 0.47 1.00 0.97   0.47   0.63   0.99   0.94  0.36  0.48  1.01  0.97   0.65   0.90   0.94   0.88   0.63 0.91 1.03 0.88 

TX/MLP    0.45 0.63 0.96 0.96   0.61  0.84   0.95   0.93  0.45  0.62  0.97  0.96   0.68  0.94   0.93   0.91   0.66 0.92 0.96 0.91 

SAR/MLP   0.42 0.55 1.00 0.96   0.53   0.70   0.99  0.94  0.44  0.57  1.00  0.96   0.69   0.95   0.92   0.89   0.58 0.79 1.01 0.92 

YAC/XGBoost  0.32 0.41 1.00 0.98   0.44  0.60   0.98   0.96  0.33  0.42  1.00  0.98   0.67  0.94  0.88   0.92   0.52 0.66 1.04 0.94 

HY/XGBoost     0.37 0.50 0.98 0.96   0.46   0.63  0.98  0.94  0.37  0.50  0.99  0.96   0.69  0.94   0.93  0.87   0.55 0.75 1.01 0.91 

TX/XGBoost     0.45 0.63 0.97 0.96   0.60   0.83   0.96   0.93  0.46  0.63  0.97  0.96   0.68  0.93   0.94  0.91   0.65  0.90 0.97  0.91 

SAR/XGBoost  0.38 0.51 0.99 0.97   0.50   0.69   0.97   0.94  0.38  0.52  0.99  0.97   0.68   0.93   0.92   0.90   0.57 0.77 1.01 0.92 

YAC/LightGBM  0.37 0.48 0.99 0.97   0.50  0.67   0.97  0.94  0.37  0.49  0.99  0.97   0.66  0.89  0.88  0.93   0.54 0.68 1.03 0.94 

HY/LightGBM  0.35 0.48 0.99 0.97   0.47   0.65   0.97   0.94  0.36  0.49  0.99  0.97   0.67   0.93   0.93  0.87   0.54 0.75 1.00 0.91 

TX/LightGBM  0.46 0.64 0.97 0.96   0.62   0.85   0.96  0.92  0.46  0.64  0.97  0.96   0.68   0.93  0.93  0.92   0.66 0.90 0.98 0.91 

SAR/LightGBM 0.40 0.53 0.98 0.97   0.53  0.72   0.97   0.93  0.40  0.54  0.98  0.96   0.67  0.91   0.91  0.91   0.58 0.78 1.00 0.92 

YAC/CatBoost1    0.35 0.45 0.99 0.97   0.43  0.57   0.98  0.96  0.37  0.47  0.99  0.97   0.71   0.95  0.86  0.91   0.54 0.67 1.04 0.94 

HY/CatBoost1  0.35 0.47 0.98 0.97   0.49  0.68   0.97   0.93  0.36  0.47  0.98  0.97   0.63   0.87   0.93  0.89   0.58 0.80 1.00 0.90 

TX/CatBoost1  0.51 0.68 0.97 0.95   0.68  0.94  0.96  0.90    0.51  0.68  0.97  0.95   0.70  0.94  0.92  0.92   0.68 0.90 0.97 0.91 

SAR/CatBoost1  0.41 0.53 0.98 0.97   0.54   0.73   0.97   0.93  0.41  0.54  0.98  0.96   0.68  0.92   0.90  0.91   0.60 0.79 1.00 0.92 

Note: The statistical indicators with the largest error contribution to the predicted daily ETo of each site (climate zone) are highlighted in 819 

blue, and the statistical indicators with the second largest error contribution to the predicted daily ETo of each site (climate zone) are 820 

highlighted in grey. 821 

Table 23  822 

Mean statistics of the ETo performance index for 1-7 days of lead time predicted by five models for the SHZ climate zone with five input 823 

combinations when replacing observed weather variables with weather variables predicted by public weather forecasts one by one. 824 

Stations/Methods  SC  SC1  SC2  SC3  SC4 

MAE  RMSE  RM  R 

(mm d-1) (mm d-1) 

MAE  RMSE  RM  R 

(mm d-1) (mm d-1) 

MAE  RMSE  RM  R 

(mm d-1) (mm d-1) 

MAE  RMSE  RM  R 

(mm d-1) (mm d-1) 

MAE  RMSE  RM   R 

(mm d-1) (mm d-1) 

GY/MLP    0.39 0.51 1.00 0.95   0.58   0.78   1.01   0.89  0.39  0.51  1.00  0.95   0.67   0.90   0.96  0.85   0.54 0.77 0.99 0.89 

XJ/MLP    0.25 0.33 0.98 0.97   0.32   0.44   0.97   0.95  0.26  0.35  1.00  0.97   0.51   0.71   0.97   0.87   0.57 0.92 1.19 0.85 

SHZ/MLP     0.32 0.42 0.99 0.96   0.45   0.61  0.99   0.92  0.32  0.43  1.00  0.96   0.59   0.80   0.96   0.86   0.55 0.85 1.09 0.87 

GY/XGBoost     0.39 0.52 1.03 0.95   0.57   0.77  1.03  0.89  0.40  0.53  1.03  0.95   0.67   0.89  1.00  0.85   0.52 0.72 1.00 0.91 

XJ/XGBoost     0.27 0.34 1.00 0.97   0.33  0.45   0.97   0.95  0.27  0.36  1.01  0.97   0.50   0.68  0.98   0.88   0.37  0.47 1.10  0.96 

SHZ/XGBoost  0.33 0.43 1.02 0.96   0.45  0.61  1.00  0.92  0.34  0.44  1.02  0.96   0.59   0.79   0.99  0.86   0.45 0.60 1.05 0.93 

GY/LightGBM  0.41 0.54 1.03 0.95   0.57  0.76  1.03  0.89  0.42  0.54  1.03  0.95   0.69   0.91   0.99  0.84   0.52 0.71 0.99 0.91 

XJ/LightGBM  0.27 0.35 1.00 0.97   0.34   0.47   0.98  0.95  0.27  0.36  1.01  0.97   0.49   0.68   0.97  0.88   0.38 0.49 1.11 0.96 

SHZ/LightGBM 0.34 0.44 1.01 0.96   0.46   0.62   1.00   0.92  0.34  0.45  1.02  0.96   0.59  0.79   0.98  0.86   0.45 0.60 1.05 0.93 

GY/CatBoost1  0.47 0.60 1.01 0.94   0.64  0.86   1.02   0.86  0.48  0.61  1.01  0.94   0.69   0.89   0.96  0.86   0.51 0.68 0.96 0.92 

XJ/CatBoost1  0.30 0.38 1.01 0.96   0.42   0.57   0.99  0.92  0.31  0.39  1.00  0.96   0.45   0.60   0.97  0.91   0.40 0.48 1.10 0.95 

SHZ/CatBoost1  0.39 0.49 1.01 0.95   0.53   0.72   1.00   0.89  0.39  0.50  1.01  0.95   0.57  0.74   0.97  0.89   0.45 0.58 1.03 0.94 

Note: The statistical indicators with the largest error contribution to the predicted daily ETo of each site (climate zone) are highlighted in 825 

blue, and the statistical indicators with the second largest error contribution to the predicted daily ETo of each site (climate zone) are 826 

highlighted in grey. 827 

4. Conclusions 828 
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In this study, public weather forecasts with a 1-7 day lead time were used to compare the 829 

performance of five models developed based on public weather forecast data with a 1-day lead time 830 

and four models developed based on daily observed meteorological data in predicting daily ETo at 831 

nine stations in three climatic regions of Ningxia, China. The forecast performance of weather 832 

variables in public weather forecasting (2014-2021) and daily ETo predicted by these nine models 833 

were analysed and evaluated on a daily scale, and the forecast performance of the weather variables 834 

in the public weather forecast (2020-2021) and daily ETo predicted by the five models developed 835 

based on the public weather forecast with a 1-day lead time were analysed and evaluated in terms 836 

of seasonality. The optimal input combination for each machine learning model was determined, 837 

and the weather forecast variables contributing to the error in the model predicted daily ETo were 838 

identified. The main conclusions of this study are as follows: 839 

First, for the three climate zones, the performance of the four models developed based on public 840 

weather forecast data with a 1-day lead time was better than that of the four models developed based 841 

on daily observation meteorological data with corresponding input combinations. When category 842 

data such as wind scale (WS) and weather type (WT1 and WT2) were added directly to the input 843 

combinations of the CatBoost2 model, the performance of this model in predicting daily ETo was 844 

lower than that of the CatBoost1p model in the testing period; that is, the performance of the 845 

CatBoost2 model in terms of predicting daily ETo did not improve during the testing period. 846 

Second, the performance of the five models, MLPp, XGBoostp, LightGBMp, CatBoost1p and 847 

CatBoost2, in terms of daily ETo prediction, was highest in winter and the lowest in summer for all 848 

three climate zones. In terms of predicting daily ETo with a 1-7 day lead time in all seasons, 849 

XGBoostp with C2 as input, MLPp with C4 as input, CatBoost2 with C8 as input and LightGBMp 850 
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with C1 as input are recommended as the best models for spring, summer, fall and winter in the AR 851 

climate zone, respectively. LightGBMp with C2 as input, MLPp with C4 as input, CatBoost1p with 852 

C3 as input and CatBoost2 with C8 as input are recommended as the best models for spring, summer, 853 

fall and winter in the SAR climate zone, respectively. XGBoostp with C4 as input, CatBoost1p with 854 

C3 as input and LightGBMp with C1 as input are recommended as the best models for spring and 855 

summer, fall and winter in the SHZ climate zone, respectively. 856 

Finally, for the AR climate zone (arid zone), the contribution of the weather variables in the 857 

public weather forecast to the error in the predicted daily ETo decreased in the order of Wspd, SDun, 858 

Tmax, and Tmin; for the SAR climate zone (semiarid zone), the contribution of the weather variables 859 

in the public weather forecast to the error in the predicted daily ETo decreased in the order of SDun, 860 

Wspd, Tmax, and Tmin; and for the SHZ climate zone (semihumid zone), the contribution of the 861 

weather variables in the public weather forecast to the predicted daily ETo decreased in the order of 862 

SDun, Tmax, Wspd, and Tmin. 863 

In addition, in terms of the daily scale performance of weather variables in public weather 864 

forecasts, the forecast performance follows a decreasing order of Tmin>Tmax>SDun>Wspd. In the 865 

seasonal analysis (2020-2021) of the weather variable forecast performance for three climate zones, 866 

the average performance for Tmax is in the order of summer (fall) > fall (summer) > winter > spring. 867 

For Tmin, the order is fall (summer) > summer (fall) > winter (spring) > spring (winter), and for 868 

SDun, the order is winter > spring > fall > summer. Thus, the average performance of the forecasts 869 

decreases sequentially. 870 
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