
Supporting Information for Resolution Enhancement of Flood
Inundation Grids
Bryant Seth1,2, Schumann Guy3, Apel Heiko1, Kreibich Heidi1, and Merz Bruno1,2

1GFZ German Research Centre for Geosciences, Section 4.4. Hydrology, Potsdam, Germany
2Institute of Environmental Science and Geography, University of Potsdam, Potsdam, Germany
3School of Geographical Sciences, University of Bristol, Bristol, TN, UK

Correspondence: Seth Bryant (seth.bryant@gfz-potsdam.de)

S1 Resample Case

WW
DD

WP

DP

(a) 

(b) 

downscale

coarse (s2)
wet dry

fin
e 

(s
1) wet WW

dry DD
partial WP DP

(c) 

upscale

DEMs1

WSE

Legend

DEMs2

Figure S1. Framework for classification of flood hazard resample case. Panel (a) shows conceptual coarse grids and the corresponding

resample case calculated from Eq. 1. Panel (b) shows the corresponding fine grids while Panel (c) shows the case label acronyms. D, W, and

P stand for dry, wet, and partial, respectively.
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S2 Case Study

Figure S2. Study site maps showing: (a) location map; (b) Ahr catchment map; and (c) downscaling domain with main datasets (see Table

S1 for descriptions).
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Table S1. Summary of data used

type metadata ref.

DEM 0.5 m resolution bare earth DEM created from aerial

LiDAR survey from September 22 to October 24, 2021

in twelve sessions with a RIEGL scanner LMS-VQ780i

with 20 points/m2 achieved.

(Milan Geoservice GmbH, 2023)

High water marks 75 high water marks at buildings reported by residents. (Apel et al., 2022)

Inflow hydrograph 30 hour hydrograph at Altenahr gauge with maximum

depth of 10.2 m reconstructed by Environmental Office

of the federal state Rhineland-Palatinate.

(Apel et al., 2022)

Building locations Building footprint polygons downloaded from OSM on

2022-11-14.

(OpenStreetMap contributors, 2022)

Observed inundation Polygon of maximum flood extents compiled from an

aerial survey on July 16th and 20th and a second survey

on July 24th and 29th.

(Landesamt für Umwelt Rheinland-

Pfalz, 2022)

Land cover Gridded land cover inventory reflecting 2017-2018 con-

ditions and updated in 2020.

(Copernicus Land Monitoring Service,

2018)
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S3 Inundation Performance Metrics

Quantitative evaluation of flood inundation grids is commonly accomplished using a diverse set of metrics that communicate

and quantify over- and under-predictions and their proportions. To compute these metrics, simulations for maximum inundation5

are evaluated against some observed binary data grid of wet and dry cells. First, each cell is classified according to Table S2 by

comparing the simulated to the observed data grids to generate a confusion map. From this confusion map, the total counts of

each of the four classifications is computed. These total counts are then used to calculate the domain-wide inundation metrics

commonly used in flood inundation evaluation shown in Table S3.

Table S2. Inundation confusion matrix. For a given simulation, each cell in the domain is compared to the corresponding cell in the observed

grid and classified according to this table. Adapted from Wing et al. (2017).

Simulated

Wet Dry

Observed
Wet True Positive (TP) False Negative (FN)

Dry False Positive (FP) True Negative (TN)

Table S3. Flood inundation performance metrics. See Table S2 for acronyms. Adapted from Wing et al. (2017).

Metric Equation Poor Perfect Description

Critical Success Index TP
TP+FP+FN

0 1
ratio of accurate wet cells to total wet cells and missed wet

cells

Hit Rate TP
TP+FN

0 1 portion of observed wet cells reproduced by the model

False Alarms FP
TP+FP

1 0 portion of modelled wet cells which are erroneous

Error Bias FP
FN

0 or inf 1 ratio of over-predictions to under-predictions
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S4 Hydrodynamic Model Calibration10

To obtain accurate water level grids at coarse (s2 = 32m) and fine (s1 = 4m) resolutions, twin hydrodynamic models are con-

structed in the RIM2D platform and calibrated using a mix of brute force and scipy’s implementation of the Newton-Conjugate

Gradient algorithm (Nocedal and Wright, 2006; Virtanen et al., 2020). Roughness values for built-up and channel/floodplain

are treated as two (independent) free parameters for the optimization. A single performance metric, Critical Success Index

(CSI) defined in Table S3, is calculated against the observed inundation for each iteration and used to optimize with the free15

parameters. Optimization trials were undertaken on a Tesla P100 GPU using python scripts.

Results of the two calibration trials are shown in Fig. S3 and S4. The performance metrics shown in Table S3 are also shown;

however, only CSI was used for optimization. In general, the fine (s1 = 4m) model replicates the target inundation with over-

and under-predictions roughly balancing (Error Bias = 1.2) while the coarse model (s2 = 32m) generally under-predicts when

CSI is optimized (Error Bias = 0.33). Focusing on water surface elevations (which were not part of the optimization), the20

fine (s1 = 4m) model has lower WSE values upstream and higher WSE values downstream when compared to the coarse

(s2 = 32m); likely owing to the difficulties in modelling the narrower channel in this region at the coarser resolutions. Note

the performance metrics reported in the manuscript are computed on a smaller domain.
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Figure S3. Calibration results for 32 m hydrodynamic model showing the four metrics from Table S3. Points denote individual model runs

(at the shown roughness) and contours are computed via interpolation of the metric value at each point. Red ’X’ marks the optimal (using

the maximum CSI) and the parameterization used for downscaling.
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Figure S4. Calibration results for 4 m hydrodynamic model similar to Figure S3.

7



Figure S5. WSE max difference between coarse (s2 = 32m) and fine (s1 = 4m) models at their respective optimum roughnesses clipped to

intersecting inundation region. Red denotes regions where the fine (s1 = 4m) solution yielded higher or larger water depths than the coarse

(s2 = 32m). Domain used for hydrodynamic modelling (13.4 x 6.6 km) and subset used for downscaling analysis (8.9 x 3.5 km) shown in

black for reference.
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