Supplement of

Short high-accuracy tritium data time series for assessing groundwater mean transit times in the vadose and saturated zones of the Luxembourg Sandstone aquifer

Laurent Gourdol¹, Michael K. Stewart², Uwe Morgenstern², Laurent Pfister^{1,3}

¹Luxembourg Institute of Science and Technology (LIST), Belvaux, Luxembourg ²GNS Science, Tritium & Water Dating Laboratory, Lower Hutt, New Zealand ³University of Luxembourg, Faculty of Science, Technology and Communication, Belval, Luxembourg

Correspondence to: Laurent Gourdol (laurent.gourdol@list.lu)

Contents of this file

Tables S1-S3

Figures S1-S35

	P95%	8.1	8.0	8.0	10.1	1.0	1.4	8.4	9.5	9.0	6.6	2.5	8.8	3.9	4.7	4.0	8.9	9.5	8.6	10.6	10.6	10.5	8.7	12.4	11.3	8.6	9.3	9.6	9.1	8.6	8.6	3.0	10.1	6.0	7.1	8.0
ars)	P75%	5.3	4.9	4.4	6.4	0.7	0.8	5.7	6.5	5.7	3.9	2.1	5.6	2.7	3.8	3.3	8.0	8.7	7.0	7.6	6.6	8.8	5.9	6.0	9.6	5.7	8.3	8.0	6.8	5.5	6.4	2.5	7.0	3.9	4.1	5.0
.(1-F), ye	nedian	2.6	2.3	2.8	3.6	0.5	0.5	2.9	4.0	3.5	2.4	1.7	3.1	1.5	3.0	2.7	7.3	8.1	6.2	5.4	5.0	7.1	4.4	3.0	7.1	4.6	7.5	9.9	5.3	4.3	5.4	2.0	4.1	2.8	3.0	3.7
τ _{pf} (τ _m .	P25% n	1.3	1.0	1.2	1.6	0.2	0.3	1.4	2.1	1.9	1.5	1.3	1.3	1.0	2.2	2.0	6.7	7.6	5.6	4.3	3.8	5.8	3.2	2.0	5.1	3.5	6.8	5.2	4.1	3.3	4.3	1.4	2.2	2.1	2.1	2.6
	P5%	0.4	0.4	0.3	0.5	0.0	0.1	0.4	0.9	0.8	0.7	0.9	0.5	0.4	1.3	0.9	6.0	7.1	4.9	3.1	2.7	4.9	2.2	1.1	3.8	2.5	6.3	4.1	2.7	2.3	2.8	0.8	0.8	1.3	1.1	1.6
	P95%	18.0	13.1	15.0	14.3	15.2	17.5	15.1	24.7	13.5	10.9	8.2	12.6	11.0	9.3	10.2	9.0	8.1	8.4	8.9	9.3	8.5	9.3	12.5	8.3	9.2	8.7	8.9	9.0	9.1	8.8	9.8	17.4	9.4	11.7	10.6
()	75%	16.5	12.0	13.9	13.0	14.4	16.2	13.9	21.1	12.2	10.1	7.0	11.5	10.0	8.0	8.9	8.4	7.6	7.5	8.1	8.3	7.5	8.3	10.2	7.1	8.1	8.1	7.9	7.8	8.1	7.6	8.1	15.5	8.4	10.4	9.4
_n .F, years	edian F	15.5	11.2	13.0	11.6	13.6	15.2	13.2	18.9	11.1	8.9	5.7	10.5	8.9	6.4	7.2	7.8	7.1	6.3	7.2	7.2	6.8	7.1	8.3	6.1	6.8	7.3	6.9	6.8	6.8	6.4	5.9	14.3	6.9	8.4	7.3
$\tau_{exp}(\tau_{r})$	25% m	4.8	0.3	2.3	0.5	2.8	4.1	2.4	7.2	9.8	7.8	4.7	9.4	7.7	4.8	4.8	7.1	5.4	5.0	5.9	5.4	5.7	5.8	5.3	4.9	5.4	5.4	5.2	5.9	5.4	5.3	4.2	3.1	5.3	5.6	5.0
	5% P.	4.0 1	.6 1	1.6 1	.2 1	2.0 1	2.9 1	1.8 1	5.4 1	с; С;	.5	.5	ت	. 9.	4.	6.		1	9.	4	2	9	5	.2	5.5	5	5.5	с. Э	<u>.</u>	Ω.	80	80	2.3 1	6.	4	9
	ы Ж	6 1/	6 7	7 1	6 9	8 11	0	2	2 15	6 8	7 6	m m	6	2	3	6 2	6 6	4	3 8	0	3	6 4	8	5 2	1 3	7 4	7 5	1	9 4	8	1 3	0	6 1	э о	3 0	е 0
ars)	P95	22.	19.	20.	21.	15.	18.	21.	27.	20.	16.	9.6	19.	14.	13.	13.	17.	17.	16.	19.	19.	18.	17.	20.	17.	17.	17.	18.	17.	17.	17.	12.	23.	15.	18.	18.
(τ _m , ye	P75%	20.6	16.5	17.9	18.8	15.0	17.0	18.7	25.6	17.5	13.8	8.5	16.8	12.4	10.8	11.3	16.4	16.3	14.2	15.6	14.9	16.4	13.5	16.8	15.2	13.4	16.3	15.9	14.5	12.9	13.5	9.8	21.2	11.6	14.0	13.8
ısit Time	median	19.1	14.1	16.2	15.9	14.1	15.9	16.7	24.0	14.7	11.5	7.4	14.0	10.7	9.1	9.3	15.1	15.1	12.3	12.4	11.5	13.7	11.1	12.5	13.6	10.9	14.7	13.4	11.6	10.7	11.2	7.6	19.3	9.5	10.9	10.4
lean Trar	P25%	17.6	11.6	14.5	13.3	13.2	14.6	14.9	22.1	12.5	9.4	6.4	11.3	8.6	7.8	7.7	14.0	14.1	10.8	10.1	9.4	11.6	9.4	7.4	11.4	9.3	13.3	11.3	9.9	9.2	9.7	6.3	17.0	7.9	8.1	8.3
≥	P5%	15.7	8.1	12.5	10.1	12.3	13.3	12.9	19.5	10.0	7.9	5.4	8.3	6.7	6.3	5.8	12.7	13.1	9.5	8.7	7.9	10.2	7.8	4.7	9.0	7.8	12.2	10.0	8.8	7.8	8.6	5.0	14.6	6.4	6.2	6.7
	P95%	0.97	0.97	0.98	0.95	1.00	1.00	0.97	0.96	0.93	0.93	0.89	0.95	0.95	0.86	0.90	0.56	0.50	0.59	0.69	0.72	0.57	0.77	0.89	0.64	0.74	0.53	0.61	0.70	0.76	0.70	0.90	0.95	0.85	06.0	0.82
flow (F)	P75%	0.92	0.91	0.91	0.88	0.98	0.98	0.91	0.91	0.85	0.84	0.83	0.88	0.89	0.75	0.81	0.53	0.48	0.54	0.60	0.63	0.51	0.67	0.78	0.55	0.65	0.51	0.55	0.62	0.66	0.61	0.83	0.87	0.76	0.79	0.73
l to total	nedian	0.86	0.83	0.83	0.77	0.97	0.97	0.82	0.83	0.75	0.78	0.78	0.78	0.83	0.67	0.72	0.51	0.46	0.49	0.53	0.55	0.47	0.59	0.67	0.48	0.58	0.49	0.51	0.55	0.59	0.53	0.76	0.78	0.69	0.70	0.64
ponentia	P25% r	0.75	0.70	0.75	0.65	0.95	0.95	0.69	0.74	0.67	0.70	0.70	0.66	0.78	0.60	0.62	0.49	0.44	0.45	0.49	0.49	0.44	0.54	0.52	0.36	0.53	0.46	0.48	0.51	0.53	0.48	0.66	0.67	0.62	0.62	0.57
EX	P5%	0.64	0.59	0.61	0.53	0.93	0.92	0.60	0.63	0.55	0.61	0.62	0.56	0.71	0.50	0.48	0.47	0.43	0.37	0.44	0.42	0.41	0.49	0.36	0.25	0.47	0.44	0.46	0.47	0.48	0.40	0.54	0.56	0.54	0.51	0.45
NSE	edian	D.87	0.83	0.86	0.89	0.70	0.68	D.87	D.93	06.C	06.C	0.82	06.C	0.87	0.92	D.89	0.69	0.82	0.89	0.86	0.86	0.83	0.92	0.92	0.86	0.92	0.79	0.81	0.88	0.92	0.91	0.89	0.93	D.91	D.89	0.91 J
	2	908	101	108	356	101	162	908	101	111 () 62(1999	174)62 I	305	1 86	186	103 103	1089	901	908	101	108	901	22	901	180	908	69	92	101	120	1999	908	901	je7
	-	16	16	16	16	16	14	16	16	13	10	16	14	10	16	15	10	16	16	16	16	16	16	16	15	16	15	16	16	16	16	15	16	16	16	16
2 	Bunde	B01	B02	B03	B06	B07	B09	B10	C01	C03	C04	C05	C07	C09	C10	D01	K01	K02	K03	K07	K13	K17	K19	K21	K21A	K22	K24	K26	K28	K31	K32	M01	P01	S01	S02	S03

bû	P95%	23	36	23	23	16	20	17	26	26	24	25	26	28	27	26	24	21	34	22	24	28	24	25	25	22	24	37	29	26	26	15	24
of spring 10nths)	P75%	11	16	10	15	10	∞	14	19	18	18	18	25	24	14	17	12	19	24	19	19	25	20	20	25	17	14	22	24	22	18	10	15
nse time tation (n	median	9	7	6	∞	S	2	∞	12	13	13	14	18	13	8	12	12	13	13	17	15	18	16	16	20	14	13	18	18	18	14	10	13
an respo o precipi	P25% 1	2	7	9	ŝ	4	2	9	11	13	∞	12	11	∞	4	∞	∞	10	12	13	12	15	14	14	15	10	12	14	14	14	13	4	12
Me	P5%	2	ŝ	S	2	4	2	4	2	6	9	6	9	9	ŝ	7	9	∞	6	10	10	∞	10	12	14	7	12	6	12	12	6	ŝ	10
	P95%	47	54	46	46	32	41	35	49	52	49	49	49	56	53	51	49	42	59	4	48	50	47	49	50	43	47	49	55	48	48	31	47
itation inths)	P75%	21	32	20	30	19	15	29	37	36	35	36	48	47	28	32	24	38	46	37	37	48	40	40	50	34	25	44	47	44	36	20	30
/e precip dow (mc	nedian	11	14	17	6	10	4	16	24	25	24	24	36	26	17	23	24	25	25	26	24	35	31	29	37	28	24	35	36	36	25	19	24
ùmulativ time win	P25% r	10	13	10	9	∞	4	12	17	24	15	23	22	16	7	12	12	19	23	24	24	23	24	24	22	19	24	24	24	25	24	8	23
0	P5%	∞	9	6	2	7	ŝ	∞	10	13	11	16	11	11	9	12	11	12	12	12	12	11	16	21	13	12	23	13	23	23	17	9	18
	P95%	1	22	2	2	1	0	1	m	ъ	2	4	4	1	0	9	4	ъ	6	10	10	10	∞	10	14	4	ŝ	25	9	7	4	1	2
nonths)	ation peak (months) t 6 median P75% P95% P5% F 0 0 1 8	0	0	1	0	0	0	0	1	1	0	ŝ	2	1	0	2	1	2	S	0	7	∞	2	1	б	1	2	4	ŝ	ŝ	0	0	1
me lag to n peak (n	nedian	0	0	0	0	0	0	0	0	0	0	1	1	0	0	1	0	1	1	0	0	ŝ	0	0	1	0	0	0	0	0	0	0	0
Tin	P25% I	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	P5%	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	P95%	0.92	0.94	0.91	0.86	0.92	0.91	0.91	0.93	0.98	0.95	0.95	0.97	0.89	0.89	0.96	0.92	0.96	0.96	0.96	0.96	0.96	0.95	0.96	0.97	0.95	0.97	0.96	0.97	0.97	0.95	0.93	0.97
_	P75%	0.90	0.80	0.87	0.80	0.89	0.88	0.85	0.92	0.95	0.91	0.91	0.89	0.82	0.87	0.88	0.89	0.91	0.92	0.91	0.91	0.87	0.90	0.92	0.89	0.89	0.94	0.93	0.92	0.92	0.92	0.91	0.94
rrrelation eak value	median	0.87	0.70	0.83	0.74	0.82	0.85	0.80	0.87	0.85	0.85	0.85	0.84	0.77	0.84	0.83	0.86	0.88	0.83	0.87	0.85	0.82	0.87	0.87	0.82	0.86	06.0	0.85	0.87	0.86	0.87	06.0	06.0
0 g	P25% 1	0.83	0.57	0.79	0.69	0.77	0.78	0.77	0.78	0.80	0.80	0.81	0.79	0.70	0.81	0.77	0.83	0.80	0.71	0.79	0.77	0.76	0.80	0.79	0.74	0.79	0.85	0.72	0.79	0.81	0.81	0.88	0.85
	P5%	0.76	0.42	0.69	0.64	0.71	0.67	0.73	0.70	0.68	0.74	0.73	0.62	0.58	0.78	0.69	0.70	0.74	0.61	0.54	0.66	0.66	0.71	0.69	0.62	0.70	0.68	0.35	0.66	0.74	0.62	0.87	0.75
Spring		B01	B02	B03	B06	B07	B09	B10	C01	C03	C04	CO5	C07	60D	C10	D01	K01	K02	K03	K07	K13	K17	K19	K21	K21A	K22	K24	K26	K28	K31	K32	M01	S

	O ₂	рН	EC ^(25°C)	SiO ₂	Na⁺	K^{+}	Mg ²⁺	Ca ²⁺	Cl	SO4 ²⁻	HCO ₃ ⁻	TDS
Spring	mg/L	pH unit	μS/cm	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
B01	7.57	7.15	994	8.29	33.9	1.46	2.95	171.8	89.3	48.6	374	730
B02	6.25	7.20	1122	8.91	42.9	2.30	3.53	189.8	113.8	105.2	352	818
B03	9.18	7.44	780	8.04	22.9	1.18	1.88	140.5	51.0	33.8	335	594
B06	4.65	7.33	962	7.24	30.9	1.34	10.93	151.6	110.6	87.2	283	682
B07	10.47	7.79	418	6.01	3.3	0.37	1.14	83.9	5.8	31.5	206	339
B09	6.65	7.26	763	8.61	14.3	1.99	4.48	146.0	22.9	66.9	360	625
B10	10.30	7.55	569	6.97	6.9	0.90	1.47	111.7	16.6	22.0	274	440
C01	9.57	7.55	587	6.63	12.3	0.59	1.36	108.8	34.8	37.7	247	449
C03	10.57	7.72	623	6.63	22.7	0.65	1.24	106.8	41.4	37.9	260	477
C04	10.13	7.55	606	6.56	17.4	0.59	1.30	109.4	34.3	39.8	261	470
C05	10.51	7.66	603	6.55	16.7	0.56	1.02	109.2	34.2	39.5	255	463
C07	10.59	7.81	591	6.45	17.7	0.60	0.93	105.0	39.3	37.8	243	451
C09	10.33	7.70	607	6.69	21.8	0.57	1.31	105.9	37.9	28.6	272	475
C10	7.45	7.51	583	6.75	8.8	0.90	6.36	105.9	18.8	48.2	263	459
D01	10.34	7.67	565	6.73	5.8	0.63	1.27	113.3	11.4	50.0	252	441
K01	9.74	7.47	699	7.17	16.2	1.18	2.61	125.3	44.5	54.5	259	511
K02	9.56	7.51	648	6.89	9.6	0.81	2.21	122.4	27.1	48.8	251	469
K03	7.94	7.41	619	6.74	7.7	0.73	2.12	118.7	21.3	46.5	247	451
K07	8.81	7.48	577	6.85	4.5	0.65	1.86	115.2	9.4	48.0	247	433
K13	9.44	7.56	569	6.89	4.5	0.60	1.17	114.1	9.3	46.5	242	426
K17	9.93	7.63	601	6.57	4.8	0.57	0.95	118.2	11.6	46.4	230	419
K19	7.86	7.53	586	6.85	4.7	0.64	1.80	115.6	9.8	49.3	242	431
K21	5.76	7.46	591	6.50	4.5	0.95	7.05	108.1	10.4	58.6	228	424
K21A	10.12	7.61	586	6.45	5.0	0.52	0.87	113.7	11.4	40.0	215	393
K22	10.04	7.55	533	6.69	5.8	0.53	1.35	104.7	12.7	31.5	244	408
K24	9.35	7.56	645	7.11	13.4	0.87	2.68	117.4	30.0	45.5	256	473
K26	9.09	7.51	665	7.15	15.0	0.84	2.13	120.2	33.5	44.4	257	480
K28	9.57	7.58	672	7.42	15.4	0.89	2.05	121.6	33.8	46.1	258	485
K31	8.71	7.56	690	7.31	18.5	1.05	2.10	122.3	38.9	47.1	262	499
K32	9.91	7.61	616	7.51	10.3	0.98	1.97	117.1	20.5	42.5	266	467
M01	6.36	7.46	856	6.58	19.2	1.48	8.85	152.0	47.3	111.9	303	650
P01	7.97	7.55	792	7.81	27.0	1.21	3.90	131.5	69.5	60.5	257	559
S01	9.29	7.58	651	7.39	13.5	0.69	1.90	122.1	32.0	58.4	271	507
S02	9.15	7.56	753	7.35	22.5	1.45	2.02	134.1	42.4	118.9	245	573
S03	8.57	7.57	734	7.58	21.1	1.16	2.36	129.8	44.8	84.7	262	553

Figure S1: Modelling results of spring B01 in the EPM parameter space (a) and associated modelled tritium time-series (b).

(a)

Figure S2: Modelling results of spring B02 in the EPM parameter space (a) and associated modelled tritium time-series (b).

(a)

Figure S3: Modelling results of spring B03 in the EPM parameter space (a) and associated modelled tritium time-series (b).

Figure S4: Modelling results of spring B06 in the EPM parameter space (a) and associated modelled tritium time-series (b).

Figure S5: Modelling results of spring B07 in the EPM parameter space (a) and associated modelled tritium time-series (b).

Figure S6: Modelling results of spring B09 in the EPM parameter space (a) and associated modelled tritium time-series (b).

Figure S7: Modelling results of spring B10 in the EPM parameter space (a) and associated modelled tritium time-series (b).

Figure S8: Modelling results of spring C01 in the EPM parameter space (a) and associated modelled tritium time-series (b).

Figure S9: Modelling results of spring C03 in the EPM parameter space (a) and associated modelled tritium time-series (b).

Figure S10: Modelling results of spring C04 in the EPM parameter space (a) and associated modelled tritium time-series (b).

Figure S11: Modelling results of spring C05 in the EPM parameter space (a) and associated modelled tritium time-series (b).

Figure S12: Modelling results of spring C07 in the EPM parameter space (a) and associated modelled tritium time-series (b).

Figure S13: Modelling results of spring C09 in the EPM parameter space (a) and associated modelled tritium time-series (b).

Figure S14: Modelling results of spring C10 in the EPM parameter space (a) and associated modelled tritium time-series (b).

Figure S15: Modelling results of spring D01 in the EPM parameter space (a) and associated modelled tritium time-series (b).

Figure S16: Modelling results of spring K01 in the EPM parameter space (a) and associated modelled tritium time-series (b).

Figure S17: Modelling results of spring K02 in the EPM parameter space (a) and associated modelled tritium time-series (b).

Figure S18: Modelling results of spring K03 in the EPM parameter space (a) and associated modelled tritium time-series (b).

Figure S19: Modelling results of spring K07 in the EPM parameter space (a) and associated modelled tritium time-series (b).

Figure S20: Modelling results of spring K13 in the EPM parameter space (a) and associated modelled tritium time-series (b).

Figure S21: Modelling results of spring K17 in the EPM parameter space (a) and associated modelled tritium time-series (b).

Figure S22: Modelling results of spring K19 in the EPM parameter space (a) and associated modelled tritium time-series (b).

Figure S23: Modelling results of spring K21 in the EPM parameter space (a) and associated modelled tritium time-series (b).

Figure S24: Modelling results of spring K21A in the EPM parameter space (a) and associated modelled tritium time-series (b).

Figure S25: Modelling results of spring K22 in the EPM parameter space (a) and associated modelled tritium time-series (b).

Figure S26: Modelling results of spring K24 in the EPM parameter space (a) and associated modelled tritium time-series (b).

Figure S27: Modelling results of spring K26 in the EPM parameter space (a) and associated modelled tritium time-series (b).

Figure S28: Modelling results of spring K28 in the EPM parameter space (a) and associated modelled tritium time-series (b).

Figure S29: Modelling results of spring K31 in the EPM parameter space (a) and associated modelled tritium time-series (b).

Figure S30: Modelling results of spring K32 in the EPM parameter space (a) and associated modelled tritium time-series (b).

Figure S31: Modelling results of spring M01 in the EPM parameter space (a) and associated modelled tritium time-series (b).

(a)

Figure S32: Modelling results of spring P01 in the EPM parameter space (a) and associated modelled tritium time-series (b).

Figure S33: Modelling results of spring S01 in the EPM parameter space (a) and associated modelled tritium time-series (b).

Figure S34: Modelling results of spring S02 in the EPM parameter space (a) and associated modelled tritium time-series (b).

Figure S35: Modelling results of spring S03 in the EPM parameter space (a) and associated modelled tritium time-series (b).