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Abstract. The geostatistical characterization of the subsurface is confronted with the double challenge of large uncertainties

and high exploration costs. Making use of all available data sources is consequently very important. Bayesian inference is

able to mitigate uncertainties in such a data scarce context by drawing on available background information in form of a prior

distribution. To make such a prior distribution transparent and objective, it should be calibrated against a data set containing

estimates of the target variable from available sites. In this study, we provide a collection of covariance/variogram functions of5

the subsurface hydraulic parameters from a large number of sites. We analyze this data set by fitting a number of widely used

variogram model functions and show how they can be used to derive prior distributions of the parameters of said functions. In

addition, we discuss a number of conclusions that can be drawn for our analysis and possible uses for the data set.

Copyright statement. All code examples used in this study are released under the MIT license.

1 Introduction10

Due to high exploration costs, the field of subsurface hydrology is characterized by scarcity of data, leading to high uncertainty

(Heße et al., 2019). Collecting data and making them available to practitioners should therefore be a high priority. In the field

of subsurface hydrology, the largest data bases are the World Wide Hydrogeological Parameters DAtabase (WWHYPDA)

(Comunian and Renard, 2009) for aquifer data as well as the SoilKsatDB for soil data (Gupta et al., 2021). These data bases

were launched in 2006 and 2021 with the aim of creating a collaborative catalog of values and statistical distributions needed15

for subsurface hydrological modeling. The data are stored together with metadata like estimated measurement errors, number

of metadata on the site, the measurement technique, length scale, rock or soil type, etc.

As such, they can serve as a repository for background information, that practitioners can draw on to improve their un-

derstanding and modeling of the subsurface. Bayesian inference is known for being able to incorporate such background

information by virtue of the prior distribution and therefore provide information for free. While the role of priors and their20

choice in statistical inference used to be strongly debated, it is now widely acknowledged that priors that are based on trans-
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parent, impartial and observable base rates provide an objective source of information (Billot et al., 2005; Gilboa et al., 2010;

Gelman and Hennig, 2015). In a data scarce context such a as subsurface hydrology, being able to draw on such a source of

free information is an invaluable asset which has not been fully used so far (Heße et al., 2019). Recently, Cucchi et al. (2019)

developed and introduced a Bayesian hierarchical model that addresses parts of this challenge. Using this model, it is possible25

to derive prior distributions for one-points statistics like mean and variance (Heße et al., 2021). One of the main challenges,

however, is the ongoing lack of data on higher-order statistics which would allow to derive prior distributions for models that

describe spatial correlations like the covariance or (semi-)variogram function. Examples of such statistics are the horizontal and

vertical correlation/integral scales, anisotropy ratios and variogram/covariance models. As a result, no open-access tools which

systematically provide background information on such variables are available. This means that even a simple structural model30

for spatial heterogeneity, like a Gaussian process (Gelfand and Schliep, 2016), is currently lacking objective and informative

prior distributions for its main parameters. To address this, it is necessary to collect and analyze a data set both large enough

and suitable for statistical analysis, that will help to specify prior distributions of such multivariate parameters.

For the collection of these data, different sources are available: primary data in the form of geo-referenced point measure-

ments, secondary data in the form of empirical variogram functions, and tertiary data in the form of statistical estimates of35

subsurface properties. As regards primary data, the SoilKsatDB database provides some geo-referenced measurements, while

the WWHYPDA unfortunately does not. In addition, the research literature provides a substantial yet disorganized repository

on such data (Bjerg et al., 1992; Rehfeldt et al., 1992; Hess et al., 1992; Welhan and Reed, 1997; Vereecken et al., 2000), pri-

marily for conductivity and transmissivity fields. As regards secondary data, a large number of empirical variogram clouds can

be found in the literature. In fact, they provided the majority of estimates on higher-order statistics for our study (see below).40

In addition, some sources provide curated collections of tertiary data in the form of subsurface statistics, which can be used

directly (Jim Yeh, 1992; Gelhar, 1993; Kupfersberger and Deutsch, 1999; Rubin, 2003).

Apart from its above mentioned value for Bayesian inference, a large data set of spatial correlations can be important for

a wide range of applications and investigations. First, geo-statistical subsurface parameters like the characteristic length scale

(Neuman, 1990; Rovey II and Cherkauer, 1995; Sanchez-Vila et al., 1996; Schulze-Makuch et al., 1999; Bromley et al., 2004)45

or the dispersion coefficient (Pickens and Grisak, 1981; Arya et al., 1988; Cirpka and Kitanidis, 2000; Dentz et al., 2011; Ross

et al., 2019) are widely known to show scale effects. This effect is such that their estimated value increases with the observation

scale. This observation is used to argue that the subsurface should be characterized as a fractal medium (Neuman et al., 2008).

Yet so far, this scale dependency has mostly been investigated theoretically or using small data sets (Zech et al., 2015). With a

data set like the one provided here, the community of subsurface geostatistics has an empirical basis to investigate this question50

in more detail.

Furthermore, the data set can be used to compare different established variogram models by, for example, investigating how

they differ in parameter estimation with respect to length scale or nugget effect. Furthermore, some variogram models have

additional shape parameters. A large data set can be used to determine how such added complexity can help to better describe

empirical variogram functions and whether the added complexity is justified by greater accuracy in modeling.55
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Even outside of Bayesian parameter estimation, a data-driven approach like ours can be of use for classic parameter esti-

mation. Virtually all geo-statistical software tools provide the ability to use user-specified initial values. Having good initial

values can be key in any optimization routine and our results can provide such estimates.

Finally, the data set provided here can be used as an empirical basis for a wide range of investigations into the properties

and and characteristics of subsurface quantities like hydraulic conductivity. Such additional studies can, e.g., investigate un-60

der which circumstances any given variogram model function is the best choice, whether there is any connection between a

given property of the experimental variogram and some other property of the underlying medium, it can be used to test the

applicability of a new variogram model, to test new hypotheses regarding subsurface behavior, or to investigate whether cross

correlations between different parameters exist.

To explain how we addressed the above aims, the remainder of this manuscript is organized as follows: In the next section,65

we will begin by presenting the methods used in this study to derive our results. This comprises the sources for our data set and

how we compiled them together, the covariance/variogram model we used to analyse these data, the software tools and work

flow we used as well as the online repositories where all data and software solutions can be accessed. Next comes the results

section, where we present and analyze the statistical properties of the different variogram parameters and how they can be used

to improve sub-surface characterization. In addition, we will critically assess the limits of our study and discuss dangers of70

misuse. In the final conclusions section, we close with a summary of our main findings and how practitioners can benefit from

them.

2 Methods

Let us start by looking at the tools and methods that we used in this study to derive our conclusions. This comprises the data

sets on subsurface variogram data, the variogram models that we used to analyze these data and the numerical tools for the75

analyses.

2.1 Data set

2.1.1 Data sources

To obtain a representative data set of subsurface variogram functions, we conducted a literature search on the ISI Web of Knowl-

edge (https://clarivate.com/webofsciencegroup/solutions/web-of-science/, last accessed on 31 August 2022). We searched for80

these data by using the phrases "hydraulic conductivity", "saturated hydraulic transmissivity", "hydraulic transmissivity", "hy-

draulic permeability", "correlation length", "spatial variability", "variogram", "semivariogram", "Kriging" and "covariance".

We looked at all references that resulted from that search. If it contained subsurface measurements or a geostatistical analy-

sis of them, we added them to the data set. If references were made to available data, we tried to contact the corresponding

author(s) of the study. The acquired data can be classified into three main categories, namely: (i) existing data on hydraulic85

conductivity, transmissivity or permeability (in the form of tables) published in peer-reviewed publications, (ii) processed data
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on variogram functions in the form of empirical variogram functions, and (iii) collections of estimated variogram parameters. It

is clear that the first form of data is the most useful since it contains little additional processing, whereas the last form represents

the least amount of information. Overall, the second form of data were the most common, however.

Figure 1. Overview of the countries from where data sets were available.

Figure 1 shows a world map of countries where data sets could be collected. The color map here indicates how many data90

points are available in each country, while countries without data are shown in gray. As can be seen, the focus is on North

America and Western Europe, as is common with scientific data. However, other world regions are also covered to a reasonable

extent. The data set therefore contains a wide range of climate regions and geographic media.

2.1.2 Preparation of the data

Depending on the type of data, we used a number of different workflows to process them. Raw data of hydraulic conductivity,95

transmissivity and permeability were processed by deriving the empirical variogram cloud, which was subsequently joined

with the ones derived from the literature. The empirical variogram clouds found in the literature were available as scatter plots.

They were digitized using the freely available WebPlotDigitizer version 4.6 (Rohatgi, 2022). All empirical variogram clouds

were then fitted to one of a number of variogram model functions. These model functions and the workflow will be explained

below. The last type of data were processed statistics provided in scientific papers of text books. To avoid any overlap, we made100

sure that these statistics were not derived from sites which were already present in the other data. For all data derived from the
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literature we provide the online sources from where they were taken, by virtue of their digital object identifier in the data file

(see below).

2.1.3 Representation of the data

All the data used for this study are made available online in a number of .csv files. In this section, we are going to describe105

the keywords of these data files.

Table 1. Name, description and units of the key variables used in the results data file

Header description units

site_id unique id for the site –

var estimated sill –

len_scale estimated length scale m

nugget estimated nugget –

nu estimated shape parameter –

r2 goodness of fit measure –

maximum_scale maximum length scale of the data set m

minimum_scale minimum length scale of the data set m

var_type type of data –

direction physical direction of the variogram –

geological_unit specifies possible subunits per site –

data_source DOI of the data source –

ISO 3166 country code of the site –

These keywords are depicted in Table 1. The first one is site_id which provides a unique identifier for the site from

which the data were draw. This name is always based on the name used by the authors which collected the data. The next

keywords all refer to estimated variogram parameters. These are var, len_scale, nugget and nu for the variance, length

scale, nugget and shape parameter, respectively. The shape parameter is not found in all investigated variogram models. In110

those cases, the entry is empty. The keyword r2 is the goodness of fit measure, i.e., a measure describing how well a given

optimum fit of a variogram model function is actually fitting an empirical variogram cloud. The keywords maximum_scale

and minimum_scale describes the maximum and minimum length scale assumed to be present in the data set. In this study,

these length scales are interpreted to represent the largest and smallest distances in the data set. The keyword var_type

describes the type of variable. In this study, the data can refer to hydraulic conductivity, saturated hydraulic conductivity115

(for soil sites), hydraulic transmissivity, hydraulic permeability as well as indicator variograms of hydraulic conductivity. The

keyword direction describes the direction in which the variogram was taken. Direction x is default direction. This means

that it was used in cases where a unidirectional variogram was analyzed, and it was used as the main direction when two
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horizontal directions were present in the collected data. If two horizontal directions are present, the second direction is always

encoded as y. Both x and y have therefore no further physical meaning beyond that. The direction z is always used for the120

vertical direction. The keyword geological_unit is used in those situations where several variograms are presented in a

source for a given site. This situation can represent a number of different situations. In some cases, the authors of the study

separated the data by different geologic strata; in some cases, the separation represented geologic subunits that were subdivided

by the authors according to their expertise; in some cases, the data represented several actually distinct sites that were combined

into a single measurement campaign; and in some cases, it was not clear what criterion was used to make the separation. This125

keyword may, therefore, represent a number of different situations. The keyword data_source contains the digital object

identifier (DOI) to the online resources from which the data were draw. Finally, the keyword ISO 3166 contains the country

code for the country where the data were collected.

2.2 Variogram models

In this study, we used the GSTools Python package (Müller et al., 2022) for the analysis of the empirical data and the covariance130

models implemented in this package. In total, the data were analyzed with five different model functions, namely the Gaussian

function, the Exponential function, the Spherical function, the Matérn function as well as the Stable function. However, in

the vast majority of studies the spatial heterogeneity in the subsurface is expressed using the (semi-)variogram function γ (h),

which is related to the correlation function ρ(h) through the following relationship

γ (h) = n+σ2 (1− ρ(h)) .

Here, σ2 is the variance, h is the lag, i.e., the distance between two observation points, and n being the nugget value.135

Closely related is the also well know covariance function C(h) = σ2ρ(h). Such a transformation is possible for all considered

variogram/covariance models since they all represent weakly stationary (spatial) processes, meaning that their variance is finite.

The first variogram model considered here is the Gaussian model function (Webster and Oliver, 2007). It is defined as

γ(h) = n+σ2

(
1− exp

(
−h

2

`2

))
,

with ` being the characteristic length scale. Next is the Exponential model (Webster and Oliver, 2007), which is defined as

γ(h) = n+σ2

(
1− exp

(
−h
`

))
,

with the parameters having the same definition as above. The next variogram model used is the Spherical model (Webster140

and Oliver, 2007), which is defined as

γ(h) =




n+σ2

(
3
2
h
` − 1

2
h3

`3

)
h≤ `,

n+σ2 h > `.
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These first three model functions are widely used. For example, they represent the vast majority of model functions used

in the literature that we used to collect our data set. They also all contain the same number of parameters having the same

interpretation. In addition, we also examined two other model functions, both of which contain an additional parameter. The145

first one is the Matérn function (Rasmussen and Williams, 2005), which is defined as

γ(h) = n+σ2

(
1− 21−ν

Γ(ν)
·
(√
ν ·h

)ν ·Kν

(√
ν ·h

))
.

Here, Γ is the Gamma function and Kν is the modified Bessel function of the second kind (Abramowitz et al., 1972). The

ν parameter sets the Matérn function apart from the above model functions by introducing an additional degree of freedom

and therefore more flexibility in modelling the variogram behavior. The final variogram model being used is the Stable model

(Wackernagel, 2003), which is defined as150

γ(h) = n+σ2

(
1− exp

(
−h

α

`α

))
.

As can be seen, the Stable model, named after the Stable distribution (Wackernagel, 2003), is a generalization of the afore-

mentioned Gaussian and Exponential model by virtue of turning their fixed exponent into the parameter α. Even though it is

not immediately obvious from its formula, the Matérn function, too, is a generalization of the Gaussian and Exponential model

and the additional parameters ν and α, therefore, share some similarities. This will be explored in more detail in the Section 3

below.155

These different variogram models were used by us for fitting them to every available empirical data set we collected from

the literature. An example is depicted in Figure 2, where four of the five model functions can be seen fitted against an empirical

variogram data set of saturated hydraulic conductivity. The specific example data set was collected at an experimental plot site

of the Tokyo University of Agriculture and Technology (TUAT), Japan during a measurement campaign in summer 2003 (Wi-

jaya et al., 2010). The resulting best-fit parameters resulting from a fitting procedure like this formed the basis of the following160

analysis. It should be noted that not all empirical variogram data could be fitted with all five variogram model functions. In

those cases where comparisons between different model functions were made, we, therefore, restricted our analysis to those

sites for which we could achieve satisfying results for all variogram model functions.

A crucial property of variogram models is the roughness information that is closely related to the mathematical concept of

differentiability. The roughness α of a correlation function ρ(r) can be defined as (Wu and Lim, 2016)165

ρ(r)≈ 1− k · rα as r→ 0 ,

with 0< α≤ 2 and k > 0. Low values of α indicate a Gaussian process (not to be confused with the Gaussian variogram

model) whose fields are very rough, whereas higher values indicate a process whose fields are very smooth.

The Gaussian model has a roughness information of α= 2, the Exponential and Spherical models have α= 1, the shape

parameter of the Matérn model is directly connected to its roughness information with α= min(ν,2), and in case of the Stable

model the shape parameter coincides with its roughness information.170
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Figure 2. Scatter plot of empirical variogram function for saturated hydraulic conductivity presented by Wijaya et al. (2010), jointly with

optimal fits using the Gaussian, the Exponential, the Matérn and the Stable model function.

2.3 Numerical tools

As mentioned above, the data came from a variety of sources with the majority being from scatter plots of empirical var-

iogram functions presented in scientific articles and reports. In a first step, we digitized them using the freely available

WebPlotDigitizer version 4.6. These data were joined into two different .csv files, one for aquifer sites and for soil sites.

These two data files of the extracted data are available online in the associated GitHub repository, which can be found at175

GeoStat-Examples/GeoStat-DB/ and is part of the collections of geostatistical examples of the GeoStat-Framework Python

packages. The repository contains the whole workflow that generated all the results presented in the paper and ensures trans-

parency and reproducability of the work flow. This is particularly important since we consider the availability of the data set

and the prior distribution of certain subsurface parameter to be a key asset of our study. Making all data, results and the work

flow that connects them available is therefore mandatory.180

A schematic depicting the folder structure can be seen in Figure 3. The data_raw/ folders contains raw data files, i.e.,

data on point-referenced measurements of hydraulic conductivity, transmissivity and permeability. Since some of the au-

thors we contacted raised concerns about data ownership, we could not make all raw data available. In those cases, only

the empirical variogram data are made available. The data_prep/ folders contains data on empirical variogram clouds.
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Figure 3. Schematic of the folder structure in the GitHub repository associated with this manuscript.

These are either derived from the aforementioned raw data or by digitizing scatter plots from journal articles and reports.185

The data_proc/ folders contains processed data, where all empirical variogram data are stored in a single file for con-

venience. There are two files, one for data from aquifer sites and one for data from soil sites. They form the basis for all

the analysis presented below. The data_stats/ folder contains the results of the geostatistical analysis, i.e., a number

.csv files that contain the best-fit, geo-statistical estimates. Here, the .csv follow the a naming convention such that the

file aquifer_statistics_gaussian.csv contains statistics from aquifer sites derived using the Gaussian variogram190

model, the file soil_statistics_matern.csv contains statistics from soil sites derived using the Matérn variogram

model, and so on. In addition, this folder contains statistics derived from the literature. The scr/ folder contains the Python

scripts to perform these geostatistical analyses. These files are different depending on whether they are used to analyze aquifer

and soil sites and what variogram model is used for the analysis. The file empirical_aquifer_analysis_gaussian.py

uses data from aquifer sites and the Gaussian variogram model, the file empirical_soil_analysis_matern.py uses195

data from soil sites and the Matérn variogram model, and so on. The folder also contains the subfolder geostat_db_tools/,

where Python subroutines that are shared by all the other scripts are placed. Finally, the paper/ folder contains all data used

in the production of this manuscript. This comprises the paper.tex file for the main text, the paper.bib file for the used

references, the figures, and all the scripts used to generate the figures from the results in the data_stats/ folder. As such,

this repository contains all data and the complete work flow to generate, check on, and improve upon the results present herein.200

3 Results and discussion

In the following, we will present and discuss the results of analyzing the above data set using the tools introduced in the

previous section. To that end, we will focus on the statistical properties of the estimated variogram parameters. These are in

particular the length scale, vertical and horizontal anisotropy, the nugget as well as potential shape parameters of the variogram

model function. In addition, we will investigate and compare how different model functions are able to describe empirical205

variogram data. Since some variogram models have more parameters, i.e., degrees of freedom, we will investigate whether

these additional degrees of freedom result in better fitting performance.

9

https://doi.org/10.5194/hess-2023-15
Preprint. Discussion started: 2 February 2023
c© Author(s) 2023. CC BY 4.0 License.



3.1 Comparison between different variogram model functions

Let us start with a comparison between the different variogram model function using a goodness of fit criterion. The investigated

model functions were the Gaussian model, the Exponential model, the Spherical model, the Matérn model, as well as the210

Stable model function. As the goodness of fit criterion, we chose the (pseudo-)R2 measure, also known as the coefficient of

determination, as implemented in the GSTools Python package. In this context, the (pseudo-)R2 score indicates how much

better a fitted model matches the data compared to a pure nugget model set to the mean value of the empirical variogram cloud.

Figure 4. Scatter plot of empirical variogram function for saturated hydraulic conductivity presented by Wijaya et al. (2010) and Huysmans

and Dassargues (2006).

Since not all model functions could provide a fit for all sites in the collected data set, we only used those sites for the

comparison where the fitting procedure converged for all considered model functions. Generally, results between the different215

model functions varied the most when no clear plateau was reached within the covered spatial range (see right panel in Figure

4). This phenomenon will be also discussed in the following sections where we will look in more detail into the behavior of

different parameters of the model functions.

In general, our results showed comparable goodness of fit measures for all investigated variogram model functions (see

Figure 5). Given that both the Matérn and the Stable model function have one additional degree of freedom and therefore220

more flexibility to match any given point cloud, the use of these model functions is not entirely justified by a moderate gain in

accuracy. However, as will be shown and discussed below, the overall similar accuracy of the Gaussian, the Exponential, and

the Spherical model may be a result of the nugget value compensating for some of their lack in flexibility which is restricted

to the area of the curve near the origin. Given that the nugget value isn’t a pure convenience parameter but has a plausible

physical interpretation, this behavior of the fitting procedure may be a liability depending on the modeling task.225

It is known from the literature that the impact of the specific variogram model function on flow and transport simulations

is mixed (Riva and Willmann, 2009; Jafarpour and Tarrahi, 2011; Heße et al., 2015). Given the overall similar accuracy, these
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Figure 5. Scatter matrix plot for the estimated R2 values using the Gaussian, the Exponential, the Spherical, the Matérn and the Stable model

function.

results can interpreted such that the choice of what model function to use for any given task in subsurface hydrology can be

driven by considerations of practicality and the specific aims of the task at hand.

One notable difference between the model functions was the number of sites for which our fitting procedure converged and230

consequently provided usable results (data not shown). The trend was such that the Stable model showed the best performance

whereas the Matérn model showed the worst, with the other models being in-between (data not shown). However, this study

does not aim to present a thorough analysis of the numerical properties of the different model functions since these often

depend on the specific implementation of the model functions themselves, the used functions provided by other packages as

well as the specific set up of the fitting procedure. Using another software or tweaking the fitting procedure can therefore235

lead to difference in the observed behavior. We would consequently regard these observed differences as tentative and context

specific. Regardless, in the following we will use results derived with the Stable model as the default model, when investigating

the behavior of specific parameters, if not specified otherwise.
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3.2 Scale-dependency

As we already discussed in the introduction, the scale dependency of hydraulic properties like the correlation length is a240

well-know phenomenon from the literature (Neuman and Di Federico, 2003; Neuman, 2008; Colecchio et al., 2020). We

therefore investigated this property empirically, by using our data set and estimating correlation lengths for all sites in the data

set. The resulting set formed the basis for the following analysis. As mentioned above, we will only present results derived

from using the Stable model. This was largely unproblematic since the overall trend for most estimated parameters was the

same regardless of the used model function. Only in cases where some notable changes were observed or where we compare245

differences between them, do we discuss them separately.

Figure 6. Log length scale vs. log maximum length for variogram models fitted to data from aquifers (left) soil (right). The used variogram

model function was the Stable model.

Our results confirmed a monotonous increase in correlation lengths with the maximum length scale both for the case of soil

and aquifer variogram functions (see Figure 6). Using a log-log plot, we can clearly see an excellent linear relationship between

both in the data set. As stated in the methods section, the maximum length scale was defined here as the largest distance in the

data set. In this study, this was identified with the largest distance between two observation points in the data set, typically two250

piezometer stations or observation wells. We also performed the same analysis with respect to the minimum length scale, which

was identified with the smallest distance between two observation points in the data set. As expected, these results showed the

same trend (data not shown).

It is not the purpose of this paper to enter into the longstanding debate about the nature of scaling effects and whether

hydraulic variables represent intrinsic physical properties or whether they are introduced only by the measurement process. It255

can be said, however, that these data, and in particular the striking smoothness of the scaling behavior, provide strong evidence

for the notion that the length scale of variogram functions is not primarily an intrinsic physical property of the medium, but is

rather influenced by truncation effects induced by the measurement process.
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Figure 7. Scatter matrix plot for the estimated log length scales using the Gaussian, the Exponential, the Spherical, the Matérn and the Stable

model function.

To further investigate the behavior of the estimated length scale, we also looked at the different estimates derived using

different variogram models; namely the Gaussian, the Exponential, the Spherical, the Matérn and the Stable model function.260

Results showed an overall strong linear correlation between between the estimates for all investigated variogram models (see

Figure 7). While the slope of the regression plot varied, the overall trend was the same regardless of the used model. This

demonstrates that all models measure the same underlying property of the empirical variogram cloud. Besides this strong

linear correlation, a noticeably number of sites were outliers from this trend, such that they resulted in strongly diverging

estimates depending on the model. We took a closer look at a number of these sites and in all investigated cases we found an265

empirical variogram function which had not yet reached a clear plateau. This resulted in a low sensitivity during the fitting

procedure, since only a portion of the expected full variogram behavior was present in the empirical variogram cloud. The

different variogram models therefore reacted differently when exposed to these data and provided sometimes strongly diverging

estimates for those parameters most sensitivity to the long term behavior of the variogram function, namely the length scale

and the variance. It should be noted that in the literature, we found a tendency to perform the fitting such that the plateau of the270

model function was reached within the given empirical variogram cloud, probably by enforcing additional constraints during
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the estimation procedure. Within this study we did not enforce such conditions resulting in the observed divergence between

the different models.

Figure 8. Histogram and kernel-density estimate of the residuals around the regression line of the data presented in Figure 6 for aquifers

(left) soil (right).

To analyse the behavior of the scale dependency in more detail, we performed a kernel-density estimation for the residuals

around the linear regression line presented in Figure 6. The results showed a similar behavior for both aquifer and soil sites (see275

Figure 8). In both situations, we saw that most estimated length scales were concentrated at around 1/10th of the maximum

length scale with a noticeable uncertainty around that. This value coincides well with an empirical rule of thumb provided by

Neuman et al. (2007). Apart from this center of mass, both aquifer and soil sites show estimated length scales that are larger

than the maximum length scale present in the data set, a finding that is not explainable by a truncating process. These length

scale estimates which exceed the maximum length scale are not only substantially less common, their estimated value is also280

much less certain. This is due to the already mentioned fact that only a portion of the overall empirical behavior could be used

for the fitting process making the fitting procedure less stable.

All the above results present the length scale determined by fitting a Stable variogram function to the empirical variogram

cloud. However as discussed above, the correlation between the estimated length scale was high for all investigated variogram

models. Using another model function consequently resulted in a very similar behavior (data not shown).285

From a Bayesian perspective, the distributions of the residuals presented in Figure 8 represent the uncertainty of a length

scale estimate given a maximum length scale as a predictor. They are therefore a natural choice for the prior distribution of a

14

https://doi.org/10.5194/hess-2023-15
Preprint. Discussion started: 2 February 2023
c© Author(s) 2023. CC BY 4.0 License.



Figure 9. Kernel-density estimate (blue) and fitted parametric model (orange) of the residuals around the regression line of the data presented

in Figure 6 for aquifers.

Bayesian approach to variogram parameter estimation. Let us demonstrate this approach using the following steps. First, one

has to determine the regression for all sites in the data set for the variogram model one wants to use. Let us use aquifer sites

only and the Gaussian model function since this is a widely used model. The regression model for the log correlation length290

given the maximum log length scale then results in

logλ= 0.99722logλmax− 1.355.

Here λmax would be said maximum length scale, i.e., the predictor of λ. This represents the knowledge one has regarding the

expected correlation length. In the next step, one has to estimate the distribution of the residuals. This represents the uncertainty

one has regarding the expected correlation length. In our case, we used a parametric model; namely a mixture model consisting

of two independent Gaussian distributions295

p(logλmax) =
θ

σ2
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√
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e
−
(
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)2
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√
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.

Fitting this parametric model yielded the following estimates: µ1 =−0.211, σ2
1 = 0.918, µ2 = 5.048, σ2

2 = 0.760, and θ =

0.934. The goodness of the fit using these parameters can be seen in Figure 9 indicating an excellent representation of the

estimated density. This model, i.e., the regression and the prior distribution, can be used by a practitioner for a Bayesian

geostatistical modelling of an unknown site.

The above example is, of course, highly contingent on a number of factors. As already mentioned, using a different variogram300

model may lead to somewhat different estimates and maybe another parametric model may represent the inferred distribution

more satisfactorily. Plus, the used data set may change over time or another clustering of the data may lead to different base-

rate data sets. Regardless, the above example is a proof-of-concept on how to make use of the assets provided in this study. Of
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course all the scripts used to derive above results are available jointly with this manuscript. Practitioners are, therefore, free to

redo the analysis, to check its results as well as adapt them to their needs and applications.305

3.3 Anisotropy

After having described the scale dependency of the correlation length, let us look at the ansiotropy of these estimates. As it is

well known, subsurface anisotropy is well pronounced between the vertical and horizontal direction but is often assumed to be

negligible between the two horizontal direction.

Figure 10. Scatter plot of both main horizontal length scales determined for aquifers using a Stable model function (left) a kernel-density

estimate of the residuals around the diagonal.

Let us start with anisotropy in the horizontal direction. Our results showed a strong linear relationship between the estimated310

log length scales in both directions (labeled λx and λy in Figure 10 left). The scatter is centered around the diagonal line, which

is to be expected since the x and y directions are arbitrarily chosen and do not reflect any geological properties that could induce

a meaningful difference between the two. Using the same procedure as above, we can also estimate the distribution around that

center diagonal (see Figure 10 right). In general, this estimate is based on significantly fewer data points (n= 27 in case of the

Stable model) and is therefore less reliable compared to the density estimates presented above. As a result a parametric model315

should be used to estimate the prior uncertainty, by following the above procedure. Given the tailing indicated in Figure 10,

the short-tailed Gaussian distribution, used in above example, may not be an appropriate parametric model for this situation.

Instead, the use of a long-tailed distribution like the t-distribution would be advisable.
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Figure 11. Scatter plot of horizontal and vertical log length scales determined for aquifers using a Stable model function (left) and a kernel-

density estimate of the residuals around the diagonal (right).

Let us now look at the anisotropy between the vertical and horizontal directions. This anisotropy is known to be strongly

pronounced due to the geological processes like sedimentation (Pyrcz and Deutsch, 2014). Our results confirm this anisotropy320

with some notable exceptions (see Figure 11 left). Overall, the number of sites used for this estimation was larger compared

to the above case of horizontal anisotropy(n= 48 for the case of the Stable model). This number represents only sites in

aquifers but could be increased if sites from soil variograms would be included. Since their numbers are overall small n= 4,

we performed no dedicated analysis for this group alone.

One of the most surprising results was the number of cases where the estimated vertical length scale is larger than the325

estimated horizontal length scale (see Figure 11 right). They are almost all caused by sites where the estimated length scale

was larger than the maximum length scale. This indicates that it may be, at least in part, caused by the resulting uncertainty

in the estimation procedure. It is consequently not clear whether these results should be used for the derivation of a prior

distribution. If they were to be included, the resulting distribution shows again a long-tailed bell curve behavior. Like in the

case of the horizontal anisotropy, a parametric fitting procedure using the t-distribution could be a good candidate (see Figure330

11 right).
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3.4 Nugget value

The next variogram parameter we investigated was the nugget parameter. This parameter describes the variance at the lag

value of zero, i.e., how much do measurements differ that are taken at effectively the same location. Such differences are often

interpreted to represent either measurement errors or unresolved variations in the measured variable below the measurement335

scale (Rubin, 2003; Kitanidis, 2008).

To investigate the behavior of the nugget parameter, we estimated its value using the Stable model function and fitted it

against our collected data set. For the analysis, we normalized the value of the nugget against the variance, making sure its

value was between 0 and 1.

Figure 12. Kernel-density estimate of the estimated nugget values for aquifer (left) and soil (right) sites. The used variogram model was the

Stable model.

Results showed a somewhat similar behavior for the estimated distribution of nugget values for both aquifer and soil sites.340

In general, most nugget values were close to 0 in both cases indicating a small or negligible measurement error or sub-scale

variabilities. Regardless, a substantial portion of the estimated nugget values were found above the value of 0.5 meaning that

large uncertainties are present in many data sets. Such higher values for the nugget were more common for data sets from soil

sites leading to an effectively bi-model behavior of the resulting density estimates. It should be noted that our soil data set was

smaller compared to the aquifer data set (n= 71 and n= 215 for soil and aquifer sites, respectively). As regards a suitable345

parametric model for this observed behavior, it is clear that a Gaussian or t-distribution aren’t viable candidates, due to the

potential range of values being bounded between 0 and 1. Any parametric model function that is to be fitted against the sample
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should, therefore, be chosen to honor both these boundaries as well as the general behavior indicated in the kernel-density

estimate. Given the observed behavior in Figure 12, a mixture model using the Beta distribution or a truncated log-normal

distribution may be viable candidates.350

Figure 13. Scatter plot of the estimated nugget values for the Stable model vs. the Matérn model (left) and Gaussian model vs. the Exponential

model (right). All data were drawn from aquifer sites.

To investigate how the nugget value differed between the variogram model functions, we also compared their respective

estimates. Our results showed a strong linear correlation between the estimated nugget of the Stable model and the Matérn

model (see Figure 13 left), which shows the similarity between both model functions. On the other hand, plotting the estimated

nugget of the Gaussian model vs. the Exponential model shows substantially larger differences between the two (see Figure 13

right). This is due to the different behavior of these two models for small lag values. Whereas the Exponential model exhibits355

a steep gradient, the Gaussian model is essentially flat in this region. The different nugget values are therefore an artifact of

the fitting procedure which tries to compensate for this difference through adjusting the nugget value. This demonstrates that

prior distributions for this value should be considered as model specific and should not simply be transferred between different

model functions.

Estimated nugget values of the Spherical model showed the highest correlation with the nugget values of the Exponential360

model but lower correlation with nugget values of all other investigated variogram model functions (data not shown). This is

due to the similar behavior of the Spherical model and Exponential model at small lags showing again the relationship between

this near-origin behavior of the model function and the ability of the nugget to compensate for any possible mismatch between

the empirical variogram and the behavior of the model function. Although all shown results were derived using aquifer sites

only, using data from soil sites supports these statements, too.365
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3.5 Shape parameter

Many common variogram model functions like the Exponential and the Gaussian model are fully defined by specifying the

length scale, the variance and the nugget value. There is, however, a class of variogram model functions that feature an addi-

tional degree of freedom. In the following, we will call this additional parameter the shape parameter.

In case of the well-known Matérn function, this value is known as the roughness parameter ν. This name refers to the fact370

that its value is directly related to the roughness of the resulting spatial random field (Banerjee and Gelfand, 2003; Diggle

and Ribeiro, 2007). This relationship is such that a low value means a high roughness, with the value of ν = 1.0 resulting in

a random field that has no derivatives whatsoever, i.e., infinite roughness. A Matérn model function with such a low value is

mathematically identical to the Exponential model function. On the other end of this spectrum, a very high value of ν→∞
results in a field with an infinite number of derivatives, i.e., infinite smoothness. A Matérn model function with such a high375

value of ν is mathematically identical to the Gaussian model function.

Figure 14. Kernel-density estimate of the estimated roughness parameter ν of the Matérn variogram model function for aquifer (left) and

soil (right) sites.

Our results show a somewhat bi-modal behavior of the resulting frequency distribution of estimated ν values (see Figure

14). This behavior is very similar for both aquifer and soil sites. The first cluster of the estimated shape parameter ν is found

for very small values with most values being at or near ν = 0.5. This indicates that an exponential model function would

perform with similar accuracy in these cases. On the other hand, a second cluster cluster can be found for ν > 20. Although380

the Matérn function only converges to the Gaussian function in the limit of ν→∞, it should be noted that already for values
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of ν > 10, both functions become virtually indistinguishable. The roughness parameter simply loses its sensitivity for higher

values meaning that it barely changes the behavior of the function anymore. This means that a Gaussian model function would

be able to similarly describe cases in this second cluster very well.

These observations support a number of conclusions. First, despite the roughness parameter spanning a significant range,385

most of its values fall into two intervals, both of which can be approximated well with a more common model function, namely

the Exponential and Gaussian function. Second, the number of cases where a Gaussian model function would be a good fit

is larger than expected. Due to its high smoothness, the Gaussian model function is sometimes considered unrealistic (Stein,

1999). This assessment is not supported by our findings at least not from a simple fitting perspective. Finally, the Matérn model

function is still a relevant model function since it may not be clear in advance which classic function, i.e., the Gaussian or the390

Exponential, can provide a better performance.

Figure 15. Kernel-density estimate of the estimated shape parameter α of the Stable variogram model function for aquifer (left) and soil

(right) sites.

In the next step, we analyzed our data set using the Stable variogram model function. The shape parameter of this model

function is noted as α. Our results show again a roughly bi-modal behavior of the resulting frequency distribution of α (see

Figure 15). It should be noted that the shape parameter α is defined between 0 and 2 and many values are found for α= 2.

Still, the overall similarity shows a connection between the two shape parameters of the Matérn and the Stable mode functions.395

To better understand this connection between the shape parameter ν of the Matérn model and the shape parameter α of the

Stable model function, we performed a regression analysis for those sites where both model functions did result in a fit. Our

results showed a very similar behavior for both aquifer and soil sites (see Figure 16). As can be seen, the scatter plot reveals that
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Figure 16. Scatter plot of the estimated shape parameter values for aquifer (left) and soil sites (right).

most points in the plot fall into two distinct correlation regimes between ν and α. First, for smaller values of ν, representing an

exponential-like behavior of the Matérn function, we see a linear correlation between the two with a very flat slope. This flat400

slope is caused by the strong clustering of sites where ν ≈ 0.5 For high values of ν, representing a Gaussian-like behavior of

the Matérn function, we see a nearly vertical behavior, i.e., a larger range of ν values corresponds now to a very small range of

α values. The latter is caused by the truncation behavior of the Stable model which is confined to values between 0 and 2. This

means that the range of ν values, representing a Gaussian-like behavior, gets mapped into a very small interval of α values

close to 2 (see behavior in Figure 16).405

In general, we can draw two conclusions from these observations. First, the shape parameter α of the Stable model is indeed

related to the shape parameter ν of the Matérn model since both are directly connected to their respective roughness information

as described above. Second, the confined parameter range of the Stable model is not a drawback from a practical point of view

since the sensitivity of the Matérn model becomes extremely low for larger values of ν. In fact, from a numerical perspective,

this limitation of the parameter range is an asset since it improves the performance of an optimization algorithm necessary410

for the fitting procedure. Although this study does not aim to investigate this issue in detail, we did indeed observe a much

higher numerical stability of the Stable model compared to the Matérn model. This stability was observed both in terms of the

number of steps necessary to find an acceptable fit between the model function and the empirical variogram function as well as

in terms of the number of sites for which optimal parameters could be found in the first place. Although the name of this model

is derived from the Stable distribution (Wackernagel, 2003), it, therefore, also describes its numerical behavior, a connection415

which is no doubt a coincidence.

One thing that stood out from the data sets being used from the literature was the general lack of data for short lags. Most

of these data sets were generated from observation networks that followed a regular grid layout. This makes sense since most

studies try to maximize the spatial coverage of their measurement campaign but have only a limited number of observation

points due to budgetary constraints. It is, however, problematic from a variogram estimation procedure. A good compromise420

would be to arrange at least some of the observation points in a logarithmic fashion (Müller et al., 2021).
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3.6 Critical assessment of results

In addition to presenting and discussing our results, we would also like to assess our work critically, in the sense of determining

both possible weak points as well as limits to their applicability. This will help practitioners to apply our results and use our

data more appropriately and avoid misuse.425

The first topic that we would like to address concerns the problem, of publication bias or survivor bias (Schmitz et al., 2012).

This is caused by the fact that our data set is based on published data alone, meaning that only data which both the author(s) and

editor(s) deemed suitable for publication could end up in our collection. This notion is for instance substantiated by the fact that

all empirical variogram functions we found produced viable variogram parameters when they were analyzed by the respective

author(s) of the study. However, when we re-analyzed them, a certain number of sites resulted in a fit where the estimated430

length scale was larger than the largest length scale in the study. This indicates that authors choose not to publish results that

they deemed unsatisfactorily for one reason or the other. As a result, our data set is not a random sample of aquifer and soil sites

from all over the world but skewed toward sites where an acceptable variogram analysis was achieved whereas problematic

cases may have been left out. Having a non-random data set is a serious challenge for any statistical investigation. Whether

this is a problem, however, depends on the type of application. For a typical geostatistical characterization of a site, it may435

not be of relevance. After all, practitioners of subsurface geostatisitcs by definition are only going to use these results for sites

which they deem appropriate for a variogram analysis. For such an application, the data sets used for our investigations may,

therefore, not be biased in any relevant way. Still, there are applications where the topic of survivor bias should be considered

carefully. Any situation where our data set is to be used for inferring general properties of aquifer and soil sites, proper care in

the interpretation of one’s results is, therefore, advised.440

The next topic concerns the variable number of data points used for the inference of the different density distributions of

variogram model parameters. While any density estimation improves with the number of samples being used, there are no

widely agreed rules as to how many sample points are necessary for an acceptable estimation procedure (Dell et al., 2002).

In addition, different features of a distribution need different number of sample points, with higher moments or higher dimen-

sions needing more data (Silverman, 1986). This is particularly problematic for densities having uncommon features like long445

tails, being highly skewed or being multi-modal. In general, non-parametric estimators can handle the challenge of uncommon

distributions well but require a large sample size. On the other hand, parametric approaches require much less data but can lead

to model errors if the parametric model is far from the true density (Li and Racine, 2006). In order to account for this problem,

we presented an approach where we started with a non-parametric method, like kernel-density estimation, subsequently inter-

preted the results within the context of a suitable parametric model for the inferred behavior of the underlying distribution and450

then used said parametric model for estimating the density. Of course, this is only one possible approach to addressing these

challenges, and practitioners may find other approaches more appropriate depending on their circumstances. Since all data and

analyses are openly available, they can easily adapt this approach to their needs.

Related to this topic is the problem that any inference based on past observation may miss features that are not represented

in the used data set (Billot et al., 2005; Gilboa et al., 2010). For the results presented here, this is not of primary concern since455
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all investigations were performed with respect to properties which are known to be relevant based on prior experience, i.e., the

parameters of widely-used variogram models. Still, the data set collected for this study can be used to investigate a number of

questions, some of which have been alluded to above. In these cases, this challenge should be kept in mind.

Another topic that needs to be addressed is the fact that some of the variogram data we used for the analysis were provided

in clustered form such that they were labeled as coming from the same site but representing different categories. In the data460

set, we marked these variograms by using the same site_id but distinguished them by the label geological_unit. As

mentioned in the above methods section, the reason why the same site label was used for different data sets differed in each

situation. In some cases, the authors separated the data according to different geological layers; in some cases the separation

represented geological subunits, subdivided by the authors according to their domain knowledge; in some cases it represented

several actually different sites that were combined into a single measurement campaign; and in some cases it was not clear465

according to which criterion the separation was made. The label geological_unit does therefore represent a number of

different and disparate situations. Still, the sheer fact that they may be similar can pose a problem from a statistical point of

view since variograms from the same site, regardless of what that term meant in that particular study, may be correlated to a

certain extent. This problem is known as pseudoreplication in the literature (Hurlbert, 1984). Using only a single data set per

study would avoid this problem but reduce the overall amount of data available. On the other hand, using all the data risks470

giving too much weight to some sites, where several variograms are available. To determine the relevance of this risk, we

looked at variograms derived from different subunits and saw moderate correlations in some cases and none in others. Within

the scope of this study, we did therefore consider these different subunits as independent data points. To properly account for

the possibility of within-site correlations, however, a hierarchical model could be employed (Cucchi et al., 2019). In such a

hierarchical model such within-site correlation could be estimated from the data provided enough data points are available.475

Within the scope of this study, we did not perform such an investigation, but the availability of the data set, where variogram

data from the same site are marked as such, makes it possible for future investigations to address this topic, if necessary.

The last topic we should discuss is the fact that the empirical variogram functions do not represent raw data but are already

processed to a certain degree. This means that these data implicitly contain modelling assumptions that were used when these

empirical variograms were determined and are no longer present. As a result, it makes them somewhat less comparable. From480

a Bayesian point of view this means that the density estimates contain modelling uncertainty, which may, depending on the

need of the practitioner, result in a larger uncertainty. This issue is unproblematic from a cautionary point of view, since the

result is simply an increase in uncertainty. On the other hand, it is unsatisfactory due to said increase in uncertainty, which

means a loss of information, compared to the use of the raw data instead. For instance, for the results presented here, we

did not use tertiary data of site statistics due to the modeling uncertainty associated with them. While primary data have the485

lowest modeling uncertainty, their overall numbers were too small. As a result, secondary data formed the majority of the data

providing a compromise between sample size and accuracy.
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4 Conclusions

In this study, we have presented two different advances for the field of subsurface geostatistics. First, a data set of empirical

variogram functions from a variety of different locations around the world. Second, a series of geostatistical analyses aimed490

at examining some of the statistical properties of such variogram functions and their relationship to a number of widely used

variogram model functions.

The data set collected for this study is freely available at the online repository associated with this manuscript (see below

Section ’Data and code availability’). It can therefore be used by practitioners to replicate our analyses, extend it with additional

data, and adapt them to their needs. They can also use it to explore new questions not covered here. Finally, we explicitly495

encourage practitioners to both expand the data set and extend the range of meta information associated with it. This would

allow to answer additional questions and broaden the scope of the data presented here.

As regards our analyses of said data set, we have derived a set of frequency distributions for the parameters of variogram

models that can be used as prior distributions for Bayesian geostatistical applications. Since these prior distributions already

contain a considerable amount of information, their use will result in a higher information content in the posterior. Given500

the overall dearth of subsurface data and the often high exploration cost, such an additional source of information presents a

valuable asset for a geostatistical characterization of a soil or aquifer site.

In addition, we investigated the viability of different variogram model functions for modelling the empirical variogram cloud.

Our results showed an overall similar accuracy of all investigated variogram model even though some feature one additional

degree of freedom. This overall similar accuracy supports the notion that variogram models can be primarily chosen by the505

practitioner based on other considerations like familiarity, applicability and availability.

Finally, our investigation revealed the distribution of some geostatitical features of subsurface sites. First, the widely-

observed scale effect of many subsurface properties is strongly pronounced for the characteristic length scale of the hetero-

geneities. This observation supports the conceptualization of the subsurface as a fractal medium, where heterogeneities appear

on any scale of observation and their apparently finite length is, at least in part, a finite-size effect caused by the truncation of510

the measurement process. Next, the nugget value, a feature representing measurement errors and sub-scale variability is widely

distribution over its possible range, an observation that is exacerbated by the fact that simpler variogram model may tend to

compensate with the nugget parameter for a mis-matched model behavior at short distances. Finally, that behavior at short

distances is strongly connected to the roughness of said heteroneities. Our results show that most sites fall into two distinct

categories depending on that roughness, i.e., either having very high or very low roughness. If this behavior is to be represented515

correctly, a more flexible model function, e.g., the Matérn or Stable model, is to be used.

To extend the results and data discussed here, a number of options can be considered. First, expanding the number of

sites covered and adding more features could reduce the uncertainty in the prior distributions. Using the above workflow,

the uncertainty in these distributions represents the uncertainty of the entire data set and thus assumes that a particular site

is a random draw from that set. However, it is not mandatory to use such a large and therefore statistically highly variable520

population. In fact, there is no unique population from which any given site needs to be considered to be random draw from;
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a notion that is known in statistics as the reference class problem (Hajek, 2007; Hajek and Hitchcock, 2016). As a result, it is

advantageous to use the most precise reference class for which a large enough sample is still available, thus striking a balance

between precision and accuracy (Wallmann, 2017). In subsurface geostatistics, this would mean to use only sites for the transfer

of information which are similar to the given site based on some criterion of site similarity (Kawa et al., 2022). Yet, being able525

to limit one’s analysis to a smaller, more appropriate, and less variable cluster of similar sites would require a large population

of sites, arguably larger than the current data set.

Another possible venue for further study could be to establish a connection between certain variogram properties and geo-

logical features of the site. This would again necessitate the addition of geological features to the data base itself, a task that

was beyond the scope of the current study. If done, it could, e.g., help practitioners to discern the viability of a given variogram530

model or of a variogram-based modeling approach in the first place.

Code and data availability. In this study, we used a number of software packages for the preparation of the data and the analysis of the

results. To guarantee that others can make use of the data collected in this project and reproduce and adapt our analyses, we provide online

resources to make them available. They are as follows:

– For the variogram/covariance analysis, we used the GSTools Python package (Müller et al., 2022). This software is developed at535

https://github.com/GeoStat-Framework/GSTools. The used software version was 1.3.1 (Müller and Schüler, 2021).

– The data used for the analysis in this manuscript is provided at the https://github.com/GeoStat-Examples/GeoStat-DB GitHub reposi-

tory inside the data_raw/, data_prep/, data_proc/, and data_stats/ folders. Since this online version will be updated

constantly, we also created an Zenodo repository for the data used exclusively for this manuscript (Heße, 2022).

– The workflow to reproduce the analyses from this paper and the figures used herein is provided at again at GeoStat-Examples/540

GeoStat-DB in the src/ folder.
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