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1 Second reviewer

The paper presents present a data-driven approach to a classical problem in sub-
surface hydrology, the estimation of parameters characterizing the variogram of
subsurface properties. The proposed method advocates the use of Bayesian in-
ference to set up a prior distribution for models that describe spatial correlations
(covariance or variogram). A remarkable data set is examined, and available
data are classifiable into primary (point measurements), secondary (empirical
variogram functions), or tertiary (statistical estimates of subsurface properties)
data. Data were processed to avoid overlaps and over-representation.

The first available result from the manuscript is the comparison between dif-
ferent variogram model functions, that could be improved in my view (see com-
ment #2). The scale dependency of the hydraulic conductivity is examined next,
confirming earlier literature results. An example application of the Bayesian ap-
proach to the estimate of correlation length given the maximum length scale is
then presented. Other variogram parameters examined are anisotropy, nugget
effect, and shape parameter.

The discussion addresses important issues such as the unbiasedness of the
data set employed, among others.

The paper looks as a mature contribution; given the topic and the type of
paper, I see however some room for further improvement. Results are of interest
to the readership of Hydrology and Earth System Sciences. The methods are
adequate, the paper subdivision into sections sound, and the figures illustrative.
I recommend minor revisions for the reason explained below.

We appreciate the reviewers comments and overall supportive feedback on
our study.

The manuscript examines only stationary variograms, I suggest to mention
that nonstationary variograms (see, e.g.,Di Federico and Neuman, 1997) were
excluded from the analysis. Due to some comments of another reviewer, we
revised our analysis and included a truncated power law variogram.

The comparison among variograms having a different numbers of degrees of
freedom (section 3.1) could be rendered more qualitative by model identifica-
tion criteria (AOC, AIC c, KIC, . . . ), incorporating the number of parameters
involved and the principle of parsimony. The same holds probably for other
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comparisons performed. We agree with the reviewer that the use of a model-
selection criterion can formalize the comparison we have done in the manuscript
to far. Models with more degrees of freedom have more flexibility and should
therefore be better able to capture an observed behavior. In case of variogram
model, the Matern and the Stable model should therefore outperform the other
models in terms of goodness-of-fit. In the current version, we only performed
a qualitative analysis by observing the overall similar accuracy and noting how
this would not justify the use of a more sophisticated model like the aforemen-
tioned Matern and Stable model. Using a criterion like AOC, AIC c, KIC, etc.
would make this analysis more quantitative.

How crucial is the assumption of two independent Gaussian distributions in
Section 3.2 ? Could they develop a more general theory without it, maybe sub-
ject to other limitations? The assumption of two different Gaussian distribution
is not crucial to the approach presented there at all. In fact, the parametric
model for the residuals around the regression line was chosen on the spot af-
ter visually inspecting them. As we explain in the discussion section, many
different parametric models may be possible depending on the situation. In
fact, if enough data points are available a completely non-parametric approach
is possible as well. To summarize our approach here again, we would describe
it as follows. First, the residuals around the regression line are representing
the uncertainty one has with respect to the regression model. From a Bayesian
perspective, the can be used to estimate a prior probability. We do this by first
visually inspecting the results of a kernel-density estimation (KDE), ie., a non-
parametric estimation procedure. KDE is a powerful estimator, but it always
produces very smooth densities which may bamboozle practitioners into over
interpreting its results. To avoid overconfidence, we therefore only use KDE
to find a good parametric model that could describe the empirically observed
distribution of the residuals. In our case, a mixture mode using two Gaussian
distributions seemed like a good choice. When we fitted such a model to the
residuals and compared it to the KDE, we saw a excellent overlap. Of course
this agreement has to be interpret with care since the KDE is not the ultimate
benchmark of truth, for the reasons outline above. But having two different
estimation procedure give very similar results certainly adds confidence that
the both express some underlying truth. This single example is explicitly pre-
sented as a proof of concept for how to use the data provided in our study for
the derivation of prior distributions in a Bayesian context. As we state in the
manuscript, using other data and/or other variogram functions may lead to a
somewhat different regression analysis with different residuals. In our opinion,
there is probably no general theory on what parametric model, if any, to use
for the description of the prior distribution. Every case may be different and
practitioners are advised to use their judgement in adapting this approach to
their situations. In the revised manuscript, we now explain this reasoning in
more detail to better convey this important idea.
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