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ABSTRACT 25 

 26 

Numerous data-driven models have been introduced to establish reliable predictions in the 27 

rainfall-runoff relationship. The majority of these models are trained using a supervised 28 

learning (SL) approach, with paired observed samples of climate and streamflow data. 29 

However, in practice, the availability of such paired observations is often constrained due to 30 

sparse data from streamflow gauges worldwide, which typically covers only a few years. This 31 

limited number of paired samples can significantly impede the learning ability of the data-32 

driven model. The semi-supervised learning approach, which is an emerging machine learning 33 

paradigm that additionally incorporates unpaired samples, has the potential to be a highly 34 

effective method for modeling rainfall-runoff relationships. In this study, we present a novel 35 

semi-supervised learning-based framework for rainfall-runoff modeling. Our framework 36 

introduces a unique loss function designed to handle two distinct types of samples, namely 37 

paired and unpaired samples, effectively during the training process. To validate the 38 

effectiveness of the proposed framework, we conducted an extensive set of experiments 39 

employing a diverse range of designs, all of which utilized the LSTM network. The 40 

experiments are based on 531 basins from the freely available CAMELS dataset, which spans 41 

the entire continuous United States. Results indicate that the proposed framework show 42 

significantly enhanced performance compared to the baseline models. Results also show that 43 

the framework can serve as a viable alternative to the previously developed fully supervised 44 

approaches. Lastly, we address potential avenues for enhancing the model and provide an 45 

outline of our future research plans in this domain. 46 

Keywords: Long short-term memory (LSTM); Semi-supervised learning; Data-sparse region; 47 

Rainfall-runoff modeling; Unpaired samples; 48 

https://doi.org/10.5194/hess-2023-148
Preprint. Discussion started: 18 July 2023
c© Author(s) 2023. CC BY 4.0 License.



3 

 

1. Introduction 49 

Rainfall-runoff modeling is an essential tool for urban planning, land use, flood and water 50 

resource management (Nourani et al., 2009). It represents the hydrologic processes involved in 51 

converting rainfall into runoff, making it one of the principal interests in hydrological sciences 52 

(Beven, 2011; Sitterson et al., 2018). Over time, the modeling of the rainfall-runoff process has 53 

evolved from physical-based models such as SHETRAN (Birkinshaw et al., 2010) and 54 

VELMA (Mckane et al., 2014) to conceptual models such as Variable Infiltration Capacity 55 

(VIC; Liang et al., 1994), Hydrologiska Byråns Vattenbalansavdelning (HBV; Seibert and Vis, 56 

2012), and Sacramento Soil Moisture Accounting (SCA-SMA; Burnash et al., 1973). Data-57 

driven models have also been employed to depict the rainfall-runoff process, with recent 58 

studies reporting their ability to outperform traditional models (Hoedt et al., 2021; Lees et al., 59 

2021; Reichstein et al., 2019; Xiang et al., 2020). In this paper, we aim to further improve the 60 

predictive ability of the data-driven model, which is currently regarded as the state-of-the-art 61 

in hydrologic prediction (Nearing et al., 2021; Shen et al., 2021). 62 

 63 

Data-driven models leverage empirical relationships between target and independent variables, 64 

offering the advantages of requiring low input, minimal effort for development and application, 65 

and moderate computational resources (Abbott, 1999; Chen et al., 2018). Prominent data-66 

driven techniques include genetic programming (Chadalawada et al., 2020), support vector 67 

machine (SVM) (Alquraish and Khadr, 2021), random forests (Booker and Woods, 2014), and 68 

fuzzy logic (Bartoletti et al., 2018; Kothari and Gharde, 2015). Deep learning (DL) techniques 69 

have also gained significant traction for their effectiveness (Roy et al., 2021; Taormina and 70 

Chau, 2015; Van et al., 2020; Xie et al., 2021). One standout architecture, the long short-term 71 
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memory (LSTM; Hochreiter and Schmidhuber, 1997) network, has been specifically designed 72 

to simulate time series by incorporating an inductive bias that preserves crucial temporal 73 

information over extended periods (Hoedt et al., 2021). 74 

 75 

LSTMs have been shown to provide a significant advantage over conventional hydrologic 76 

models in rainfall-runoff modeling by a considerable margin (Kratzert et al., 2018; Lees et al., 77 

2021), even at hourly time scales (Gauch et al., 2021a), and for watersheds unseen by the LSTM 78 

(Arsenault et al., 2023; Kratzert et al., 2019a). For instance, Kratzert et al. (2019b) 79 

demonstrated that when using an LSTM to predict streamflow in 531 basins across the United 80 

States (US), it outperformed several different hydrological benchmark models, including SAC-81 

SMA, VIC, and HBV models. In recent years, LSTMs have been utilized to (i) quantify the 82 

predictive uncertainty (Klotz et al., 2022; Li et al., 2021), (ii) evaluate the suitability of 83 

hydrologic projections under climate change (Wi and Steinschneider, 2022), and (iii) improve 84 

the reliability of simulations in hydrologic models as post-processors (Frame et al., 2021; Hunt 85 

et al., 2022). Notably, several studies have demonstrated exceptional LSTM performance, 86 

especially in situations where abundant data are available (Anderson and Radic, 2021; Gauch 87 

et al., 2021b; Lees et al., 2021). 88 

 89 

However, acquiring hydrological records with comprehensive long-term coverage is often 90 

unattainable in reality. Many regions worldwide face the challenge of limited streamflow gauge 91 

networks, resulting in sparse data that typically spans only a few years (Bitew and 92 

Gebremichael, 2011; Do et al., 2017). For example, Lee and Ahn (2022) have utilized a limited 93 

number of only 27 streamflow gauges to investigate a national-scale hydrologic variability 94 
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across South Korea. Similarly, in the Tana River basin in Kenya, which covers an expansive 95 

area of 95,000 km2 and serves as a habitat for diverse wildlife species (TNC, 2015), 96 

hydrological data from only 26 streamflow gauges spanning a five-year period (February 2015 97 

to January 2020) are available (Leisher et al., 2016). The Global Runoff Data Center (GRDC) 98 

provides daily streamflow observations for a significant portion of basins globally, with records 99 

typically spanning less than three years in length. The availability of observed streamflow 100 

records may also be problematic for data-rich regions due to several situations like gauges 101 

installed in recent decades, discontinuation from budgetary constraints, or measuring 102 

malfunctioning over an extended period of time (Ahn, 2021). Consequently, many data-driven 103 

models have been applied in a local modeling context, wherein a model is trained using data 104 

from one or a few basins (e.g., Bowes et al., 2019; Han et al., 2021; Ley et al., 2023; Liang et 105 

al., 2018; Xu et al., 2022). The potential limitations associated with sparse records have been 106 

discussed, and the need for corrective measures has been addressed (Beven, 2020; Shen, 2018). 107 

 108 

In areas where streamflow records are scarce, longer historical climate data records often 109 

remain available. However, current methods for training rainfall-runoff models in data-sparse 110 

regions typically rely solely on paired recorded samples between climate and streamflow data, 111 

known as labeled data in machine learning (ML) terminology. Nonetheless, valuable insights 112 

can be gained by incorporating the remaining climate data, referred to as unlabeled data, to 113 

improve model performance. In the field of ML, semi-supervised and unsupervised learning 114 

are emerging paradigms that utilize unlabeled data to enhance model performance. While semi-115 

supervised learning combines both labeled and unlabeled data to improve performance, 116 

unsupervised learning first pre-tunes with unlabeled data before fine-tuning with labeled data 117 
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(Chen et al., 2022; He et al., 2020). In particular, semi-supervised learning is increasingly 118 

recognized as an effective approach with enhanced learning ability (Du et al., 2020; Levatić et 119 

al., 2017; Zhou and Zhou, 2021). 120 

 121 

While semi-supervised learning has gained popularity in various fields, its formal application 122 

in the field of hydrology is still limited. In this study, we introduce a novel framework based 123 

on semi-supervised learning for rainfall-runoff modeling, aiming to explore its potential 124 

usefulness in structuring hydrological time series modeling problems. Specifically, we present 125 

how LSTM models can enhance their predictive performance in regions with limited data, 126 

thereby addressing the limitations associated with streamflow observations. In literature, we 127 

found two previous studies focusing on improving the modeling performance in data-sparse 128 

regions (Ma et al., 2021; Oruche et al., 2021). The approach we propose is notably distinct 129 

from those studies in that we do not use any source datasets from other regions. Both of these 130 

studies utilize transfer learning, a technique in which a pre-trained model from extensive 131 

labeled data from other continents is used to transfer initial weights to a model. In this study, 132 

we focus on the dataset obtained from the same region, which is more readily accessible. 133 

Summing up, this study seeks to address the following hypotheses using multiple subsets of 134 

the continuous United States (CONUS) dataset: 135 

 136 

1. The availability of additional climate data, i.e. unlabeled data, could potentially enhance 137 

the performance of LSTM models in producing reliable streamflow predictions in 138 

diverse modeling scenarios. Therefore, implementing a semi-supervised learning-139 

based framework will be useful. 140 
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2. It would be beneficial to use a semi-supervised learning-based framework that 141 

leverages both labeled and unlabeled data, but treats them differently instead of treating 142 

them homogeneously. By differentiating between the two datasets and incorporating 143 

them into the training process, the model can potentially achieve better performance 144 

on unseen data. 145 

3. The joint training of both labeled and unlabeled dataset has the potential to improve 146 

model performance in comparison to a separate training approach (i.e., pre-training 147 

followed by fine-tuning), which could also be employed to improve modeling 148 

performance in data-sparse regions. 149 

 150 

Through a series of experiments comparing our proposed semi-supervised learning-based 151 

framework to diverse models, we aim to assess the hypotheses mentioned above and gain 152 

insight into how LSTM models can enhance performance in data-sparse regions. This 153 

exploration will enable us to better understand the benefits of our proposed framework. 154 

 155 

2. Methods and Data  156 

This section begins by introducing the dataset used in this study (section 2.1), followed by an 157 

overview of the LSTM model structure (section 2.2) and the proposed framework based on the 158 

semi-supervised learning (section 2.3). Finally, we outline the specific experimental designs 159 

assessed in this study (section 2.4).  160 

 161 

2.1 Dataset 162 

To investigate the effectiveness of semi-supervised learning in analyzing the streamflow 163 
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network, which covers various geologies and climatic conditions, we use the Catchment 164 

Attributes and MEteorology for Large-sample Studies (CAMELS) dataset (Newman et al., 165 

2015). We utilize the dataset due to their abundance of data, which could potentially strengthen 166 

the validation of our hypotheses (addressed in section 2.4). The dataset includes the basin-167 

averaged hydrometeorological time series, catchment characteristics and daily streamflow 168 

measurements for 671 basins over the CONUS. It is worth noting that the dataset has been 169 

widely utilized to facilitate generalization and application of data-driven models for various 170 

purposes (e.g., Feng et al., 2020; Gauch et al., 2021b; Kratzert et al., 2019b). We have adopted 171 

the same subset of 531 basins as Gauch et al. (2021b) and Kratzert et al. (2019b) (see Figure 1) 172 

while excluding 140 basins that display considerable inconsistencies in their calculated 173 

watershed boundaries from different methodologies. Consistent with the aforementioned 174 

studies, we utilize the Maurer meteorological forcing dataset, which includes daily cumulative 175 

precipitation (𝑃𝑅𝐶𝑃), maximum and minimum air temperature (𝑇𝑚𝑎𝑥 and 𝑇𝑚𝑖𝑛), short-wave 176 

radiation (𝑆𝑅𝐴𝐷), and vapor pressure (𝑉𝑃), spatially averaged for each basin. Furthermore, we 177 

use 27 of the static catchment characteristics, including topography, climate characteristics, 178 

land cover, soil and geology characteristics (Table 1). The spatially aggregated data have been 179 

derived from an original gridded dataset that has a resolution of 1/8°. The meteorological 180 

forcing and streamflow data are normalized so that all variables for each basin has a mean of 181 

zero and unity variance. 182 

 183 

2.2 Long Short-Term Memory network 184 

In this work, we utilize a LSTM architecture for the rainfall-runoff modeling. A LSTM network 185 

is a type of recurrent neural network designed to model long-term dependencies between input 186 

and output data. LSTMs utilize an internal memory state that is updated at each time step by a 187 
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set of activated functions called gates (Hochreiter and Schmidhuber, 1997). The memory cells 188 

are comparable to a state vector in a traditional dynamic system model, which leads to the 189 

suitability of LSTMs for modeling dynamics such as rainfall-runoff relationships. Compared 190 

to vanilla recurrent neural networks, LSTMs are less affected by the vanishing gradient issue 191 

that has prevented effective model learning (Hochreiter and Schmidhuber, 1997). Given a raw 192 

input sequence 𝒙𝟎 = [𝑥0
1, 𝑥0

2, … , 𝑥0
𝑇] with T time steps, where each element 𝒙𝟎

𝒕  is a vector 193 

containing model input at time step t, we specifically employed the following equations for the 194 

forward pass through the LSTM: 195 

 196 

𝒙𝒕 = 𝔇(𝐺𝐸𝐿𝑈(𝑾𝒙𝒙𝟎
𝒕 + 𝒃𝒙))       Eq. (1) 197 

𝒊𝒕 = σ(𝑾𝒊𝒙
𝒕 + 𝑼𝒊𝒉

𝒕−𝟏) + 𝒃𝒊       Eq. (2) 198 

𝒇𝒕 = σ(𝑾𝒇𝒙𝒕 + 𝑼𝒇𝒉𝒕−𝟏) + 𝒃𝒇       Eq. (3) 199 

𝒈𝒕 = tanh(σ(𝑾𝒈𝒙𝒕 + 𝑼𝒈𝒉𝒕−𝟏)) + 𝒃𝒈      Eq. (4) 200 

𝒐𝒕 = σ(𝑾𝒐𝒙𝒕 + 𝑼𝒐𝒉𝒕−𝟏) + 𝒃𝒐       Eq. (5) 201 

𝒄𝒕 = 𝒈𝒕⨀𝒊𝒕 + 𝒄𝒕−𝟏⨀𝒇𝒕        Eq. (6) 202 

𝒉𝒕 = 𝑡𝑎𝑛ℎ(𝒄𝒕)⨀𝒐𝒕        Eq. (7) 203 

�̂�𝑡 = 𝑾𝒚𝔇(𝒉𝒕) + 𝒃𝒚        Eq. (8) 204 

 205 

where 𝒊𝒕, 𝒇𝒕, 𝒐𝒕, and 𝒈𝒕 are the input gate, forget gate, output gate, and cell input, respectively, 206 

at time step t. The cell state and recurrent input are denoted by 𝒄𝒕 and 𝒉𝒕. 𝐺𝐸𝐿𝑈 refers to the 207 

Gaussian Error Linear Units (Hendrycks and Gimpel, 2016). Also, two activation functions, 208 

sigmoid and hyperbolic tangent, are denoted by σ  and tanh . 𝑾 , 𝑼 , and 𝒃  are learnable 209 

parameters for each gate, where subscripts suggest which gate the weight vector is used for, 210 
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and ⨀ represents element-wise multiplication. The dropout operator is denoted by 𝔇, which 211 

randomly sets some nodes along with corresponding of the network connections to zero in 212 

training phase in order to reduce overfitting (Srivastava et al., 2014). 213 

 214 

A linear embedding layer (Eq. 1) is utilized to preprocess the inputs before delivering them to 215 

the LSTM cell, in order to prevent the possibility of critical inputs being dropped out by the 𝔇 216 

operators and thereby reducing the model's performance. 217 

 218 

2.3 Semi-supervised learning-based framework to improve hydrologic prediction 219 

The proposed semi-supervised learning-based framework is an improved version of self-220 

training methods proposed in the ML field (Hinton et al., 2015; Yarowsky, 1995). Self-training 221 

methods utilize unlabeled data by imputing predicted labels (called pseudo labels) to the 222 

unlabeled data. Specifically, our approach is based on knowledge distillation, where the pseudo 223 

labels for unlabeled dataset are generated from a pre-trained teacher model trained on labeled 224 

dataset. Student model is trained in supervised manner on both the labeled and (pseudo label-225 

assigned) unlabeled datasets. In this work, both teacher and student models have the same 226 

structure, as in self-distillation (Zhang et al., 2019). 227 

 228 

Suppose that we are given a set of data 𝔻 including labeled data 𝕃𝑡 = {(𝒙𝟎1
𝑡 , 𝑦1

𝑡), (𝒙𝟎2
𝑡 , 𝑦2

𝑡),229 

… , (𝒙𝟎𝑁
𝑡 , 𝑦𝑁

𝑡 )}  at basin ( 𝑛 = 1, … , 𝑁)  and time ( 𝑡 = 1, … , 𝑇)  and unlabeled data 𝕌𝓉 =230 

{𝒙𝟎1
𝓉 , 𝒙𝟎2

𝓉 , … , 𝒙𝟎𝑁
𝓉 } at time (𝓉 = 1, … , 𝒯). The framework requires two input datasets (𝕃𝑡 and 231 

𝕌𝓉). The labeled data 𝕃𝑡 is employed to train a teacher LSTM model by minimizing a loss 232 

function. The teacher model is then used to estimate streamflow (i.e., pseudo streamflow �̂�𝑛
𝓉) 233 
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on unlabeled data 𝕌𝓉 . Afterwards, we train a student LSTM model by minimizing the 234 

combined loss on both labeled and unlabeled data with pseudo streamflow. Finally, we repeat 235 

the process by reinstating the student as a teacher, which generates new pseudo streamflow, 236 

allowing us to train a new student. A flowchart of the proposed semi-supervised learning-based 237 

framework is presented in Figure 2. The algorithmic procedure for the framework is as follows. 238 

 239 

[1] Train the teacher model 𝑓∗(∙) by minimizing the loss function 𝐿 on labeled data 𝕃𝑡 240 

1

𝑁×𝑇
∑ ∑ 𝐿(𝑦𝑛

𝑡, 𝑓∗(𝒙𝟎𝑛
𝑡 , 𝜽∗))𝑇

𝑡=1
𝑁
𝑛=1       Eq. (9) 241 

 242 

[2] Use the teacher model to generate pseudo streamflow for unlabeled data 𝕌𝓉 243 

�̂�𝑛
𝓉 = 𝑓∗( 𝒙𝟎𝑛

𝓉 , 𝜽∗),  ∀𝓉 = 1, … , 𝒯      Eq. (10) 244 

 245 

[3] Train the student model 𝑓∗∗(∙) by minimizing the below loss function 𝐿 to consider the 246 

training balance between labeled and unlabeled data  247 

1

𝑁×𝑇
∑ ∑ 𝐿(𝑦𝑛

𝑡, 𝑓∗∗(𝒙𝟎𝑛
𝑡 , 𝜽∗∗))𝑇

𝑡=1
𝑁
𝑛=1 + 𝛼(𝕥)

1

𝑁×𝒯
∑ ∑ 𝐿(�̂�𝑛

𝓉 , 𝑓∗∗(𝒙𝟎𝑛
𝓉 , 𝜽∗∗))𝒯

𝓉=1
𝑁
𝑛=1   Eq. (11) 248 

 249 

where 𝛼(𝕥) is a balance coefficient at epoch 𝕥.  250 

 251 

The suitability of 𝛼(𝕥) significantly impacts the performance of the student model. When 𝛼(𝕥) 252 

is high, the loss function is primarily influenced by 𝕌𝓉 , whereas a small value allows the 253 

benefits from 𝕃𝑡 to become more apparent. Consequently, to mitigate the risk of ending up in 254 

poor local optima, we employ an annealing process that incorporates a 𝕥-varying 𝛼(𝕥) as 255 

follows: 256 
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   257 

𝛼(𝕥) = {
𝛼0        𝕥 ≤ ℐ
0         ℐ < 𝕥

        Eq. (12) 258 

 259 

where this study utilizes 𝛼0 = 1 and ℐ = 15 based on the epoch adopted in this study. 260 

 261 

[4] Further train the student model as a teacher model and go back to step [2]. Our experiment 262 

involves two iterations where the student assumes the role of the teacher, but it may be 263 

beneficial to conduct additional iterations.  264 

 265 

2.4 Experiments 266 

To depict the situation in hydrological data-sparse regions, this study considers two dimensions 267 

for each research hypothesis. First, the Ψ  subset of basins, rather than considering all 531 268 

basins, are utilized under two differently defined regions (heterogeneous and homogeneous 269 

regions). The approach is adopted since, in data-scarce regions, the numbers of the streamflow 270 

gauge are also limited in reality. To explore the performance in heterogeneous regions, the Ψ 271 

subset of basins over the CONUS are randomly selected, and the model performance is 272 

investigated. The purpose of this analysis is to emulate the diverse environmental factors that 273 

exist across the subspace of the considered area. This analysis is repeated 3 times to match the 274 

experiment trial conducted in heterogeneous regions. For the analysis of homogeneous areas, 275 

this study employs three regions, namely the North Atlantic, Southwest, and Southern Rockies 276 

regions (Figure 1). The purpose of this analysis is to take into account a broad spectrum of 277 

environmental conditions while reproducing a homogeneous environmental situation within 278 

the target region. The North Atlantic region comprises 84 basins that are moderately affected 279 
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by snow accumulation and melting processes and are predominantly covered by dense forests 280 

(with an average forest coverage of 89%). In contrast, the Southwest region comprises 66 281 

basins with relatively flat topography and lesser snow influence compared to other regions. 282 

Lastly, the Southern Rockies region (50 basins) is significantly influenced by snow process and 283 

consists relatively arid catchments (aridity index 1.71 and average annual precipitation 700 284 

mm/year). The three cases consider scenarios in which Ψ takes on values of 10, 30, and 50, 285 

representing situations where the basin density network is relatively deficient, moderate, and 286 

sufficient, respectively.  287 

 288 

Second, we consider two training scenarios, single and multi-year training scenarios, to 289 

represent the available data in data-scare regions. It is worth mentioning that in the data-scare 290 

regions, streamflow records often have a restricted length. For the single-year training scenario, 291 

all models are trained from October 1, 1988 to September 30, 1989 and validated from October 292 

1, 1989 to September 30, 1990. For unlabeled extended data, we employ data from October 1, 293 

1983 to September 30, 1988. The models are then evaluated over 12 years (October 1, 1996 to 294 

September 30, 2008). For the multi-year training scenario, all models are trained for 3 years 295 

(October 1, 1988 to September 30, 1991) and validated over 2 years (October 1, 1991 to 296 

September 30, 1993). Afterwards, we use the same data in unlabeled and evaluation periods 297 

adopted for the single-year training scenario. 298 

 299 

2.4.1 The effect of semi-supervised learning on individual and regional setting 300 

With the first experiment, this study evaluates our proposed framework if it bolsters the ability 301 

of rainfall-runoff modeling. In particular, we hypothesize that implementing a semi-supervised 302 

learning-based framework would yield benefits in a diverse model setting. To confirm this 303 
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hypothesis, we run this experiment with individual and regional model setting. For the 304 

individual setting, we train one network separately for each basin (hereafter idv-LSTM). On 305 

the other hand, for the regional setting, we train a regional scale single network using all data 306 

across multiple basins while allowing the network to learn more general pattern of the input-307 

to-output relationship (hereafter rgn-LSTM). Although the benefits of the proposed framework 308 

may be expected in idv-LSTM due to increased learning data, it is unclear whether there would 309 

be additional benefits in a rgn-LSTM. Previous studies have shown that LSTM predictions are 310 

reliable when the model is trained over a large set of basins and that regional models already 311 

learn more general patterns from a diverse set of basins (e.g, Gauch et al., 2021b). Therefore, 312 

it remains to be seen whether the proposed framework would offer additional benefits beyond 313 

those already achieved by regional models trained on diverse basin data. In addition, we will 314 

evaluate the performance of a regional model in this experiment by increasing the amount of 315 

training data, specifically by including a larger number of basins in rgn-LSTM. This will allow 316 

us to determine the maximum number of basins for which the proposed framework offers 317 

additional benefits, once its effectiveness in a regional setting is confirmed. To establish a 318 

comparison, we obtain simulation results from a LSTM using a standard train-validation-319 

testing framework. These results are then used as the baseline for evaluating the performance 320 

of our proposed semi-supervised learning-based framework. 321 

 322 

2.4.2 The effect of the annealing process on the student model 323 

The objective of the second set of experiments is to examine the impact of the annealing process 324 

(Eq. 12) adopted in the proposed framework. In simpler terms, we hypothesize that utilizing an 325 

imbalanced-based cost function with both labeled and unlabeled data would enhance the 326 

accuracy of the model. The rationale behind this is that by accounting for pseudo streamflow 327 
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and exploiting their impact, it enables the data-driven model to effectively learn the underlying 328 

hydrologic response to input variables. 329 

 330 

To investigate this, we employ variants of the rgn-LSTM model. Specifically, we additionally 331 

develop five different versions of the rgn-LSTM model within a semi-supervised learning-332 

based framework. The first additional model (rgn-LSTM-vr1) treats the equivalent data for 𝕃𝑡 333 

and 𝕌𝓉 by replacing 𝛼(𝕥) with a value of 1 and does not provide a distinguishing weight. The 334 

remaining four models (rgn-LSTM-vr2, rgn-LSTM-vr3, rgn-LSTM-vr4, and rgn-LSTM-vr5) 335 

use 𝕥-varying weight but adopt different formulations from Eq. 12. They are designed to 336 

amplify, slowly increase, or slowly decrease the influence of 𝕌𝓉 . The specific 𝛼(𝕥) 337 

configurations are presented in the supporting information (see Text S1). Also, Figure S3 338 

shows how the 𝕥-varying weight is changed given increases to the epoch for each rgn-LSTM 339 

model. 340 

 341 

2.4.3 Comparison of our proposed framework to the separate training approaches  342 

Previous studies have suggested the separate training approach as a means of improving neural 343 

network models (Anderson and Radic, 2021; Read et al., 2019). In this approach, a model is 344 

first pre-trained on a specific dataset to learn general patterns and relationships between input 345 

and output data. The model is then fine-tuned on an additional dataset to learn more specific 346 

behaviors and improve its performance on a particular task. This process allows the model to 347 

adapt to the nuances of the task at hand, and has been shown to be effective in the ML field as 348 

well (George et al., 2017; Yosinski et al., 2014).  349 

 350 

For our third experiment, we aim to determine whether our proposed framework, which 351 
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incorporates joint training using both labeled and unlabeled data, can achieve better results 352 

compared to the separate training approaches. To accomplish this, we introduce two additional 353 

rgn-LSTM models: rgn-LSTM-sep and rgn-LSTM-trans. The rgn-LSTM-sep model initially 354 

leverages unlabeled data 𝕌𝓉 to capture the underlying patterns of runoff generating processes. 355 

Subsequently, it undergoes fine-tuning on labeled data 𝕃𝑡 to refine its performance, specifically 356 

considering the delicate input and output relationships within specific basins. On the other hand, 357 

the rgn-LSTM-trans model incorporates the recent technique proposed by Ma et al. (2021), 358 

which utilizes Transfer Learning (Thrun and Pratt, 1998) (see Supplemental information for a 359 

brief description of the method). They adopt a methodology wherein the models are initially 360 

pretrained on a region abundant in data (known as the source region). These pretrained models 361 

are subsequently transferred to data-scarce regions to overcome the limitations of local 362 

observations. For this study, we employ the CAMELS-GB dataset, which is a comprehensive 363 

dataset for Great Britain based on the CAMELS framework (Coxon et al., 2020), as our source 364 

dataset. The dataset is selected because the CAMELS-GB basins exhibit a wide range of 365 

hydrological conditions, analogous to the conditions found in our study basins. To be specific, 366 

the rgn-LSTM-trans model is pretrained using 44 climate and basin attributes from the 367 

CAMELS-GB dataset (as shown in Table S1).  368 

 369 

2.4.4 Evaluation metrics and hyperparameters 370 

To evaluate the modeling performance for each experiment, we run all models with four 371 

random seeds and use the average estimated streamflow obtained from the resulting ensemble 372 

members. The first metric used to assess the performance is the Nash-Sutcliffe efficiency (NSE) 373 

coefficient (Nash and Sutcliffe, 1970), which is calculated for each basin. Also, we utilize two 374 

metrics to evaluate the model's performance for both extreme flows: the modified Nash–375 
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Sutcliffe efficiency (MNSE) and the logged transformed Nash-Sutcliffe efficiency (LNSE). 376 

These metrics specifically focus on the performance of the model for high and low flows, 377 

respectively (Ahn et al., 2016; Muleta, 2011). It is important to note that all of the metrics 378 

reported in the manuscript are calculated based on the evaluation period. 379 

 380 

Hyperparameters including learning rate, hidden states, length of input sequence, dropout rate, 381 

epochs, and numbers of LSTM layer are configurations of LSTM model and thus yield varying 382 

degrees of influence on the model’s performance (Bengio et al., 2017). To avoid potential bias 383 

in performance evaluation that may favor our proposed framework, we choose to adopt the 384 

same hyperparameter configurations used in previous studies (Kratzert et al., 2021, 2019b), 385 

rather than determining new ones for this study. Finally, all model configurations are trained 386 

using the mean squared error (MSE) metric similar to the previous work. 387 

 388 

3. Results  389 

3.1 Evaluating semi-supervised learning in data-scarce regions 390 

In this section, we assess the effectiveness of the proposed semi-supervised learning-based 391 

framework in enhancing streamflow predictions. Figures 3 and 4 illustrate the spatial 392 

distribution of the NSE difference for both idv-LSTM and rgn-LSTM cases, respectively, 393 

during the evaluation period in comparison to the baseline models. Figures S2, S3 and S4 394 

present the differences in other metrics (MNSE and LNSE) for the idv-LSTM and rgn-LSTM 395 

settings. In each figure, the red color indicates that our proposed framework outperforms the 396 

baseline models in terms of prediction accuracy, while the blue color indicates that our 397 

proposed framework underperforms the baseline models. Additionally, Table 2 provides a 398 

summary of the median performance across all experiments, encompassing the three evaluation 399 
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metrics. Notably, our framework exhibits improvements across all three metrics, underscoring 400 

its effectiveness. The single-year training scenario in idv-LSTM stands out by yielding the 401 

most significant benefits, with a notable improvement of 0.390 in median NSE and 0.238 in 402 

MNSE. Similarly, the multi-year training scenario in idv-LSTM exhibits substantial 403 

improvements, where our semi-supervised learning approach yields remarkable improvements 404 

of 0.165 in median NSE and 0.374 in LNSE. The results indicate that our proposed framework 405 

offers greater advantages when addressing regions with limited data availability, particularly 406 

in data-scarce areas where the available data is relatively smaller. 407 

 408 

Moreover, our proposed framework delivers substantial benefits in the context of rgn-LSTM. 409 

When considering the single-year training scenario for the deficient network  (i.e., Ψ = 10) in 410 

rgn-LSTM across all six heterogeneous and homogeneous regions, it demonstrates a 411 

remarkable improvement of 0.371 in median NSE, 0.275 in MNSE, and 0.560 in LNSE. 412 

Similarly, in the case of the sufficient network (i.e., Ψ = 50), the multi-year training scenario 413 

yields an improvement of 0.023 in median NSE, 0.027 in MNSE, and 0.062 in LNSE. The 414 

results reveal several notable insights. Firstly, similar to idv-LSTM, our framework 415 

demonstrates increased effectiveness when dealing with insufficient records. This highlights 416 

its utility in situations where data availability is significantly limited. We also note that, for 417 

some basins particularly in the Southern Rockies region, the baseline model performs better 418 

than the models trained by our framework (see Figure 4). The performance declines may be 419 

related to frequently having zero discharge in observation. Having zero values for a high 420 

percentage of the training samples seems to be a difficult information for the teacher model to 421 

learn and to reproduce this hydrological behavior and affect the performance of the student 422 

model. However, we observe that the median of a metric is still positive, indicating that the 423 
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models trained by our framework performs are effective. Next, the efficacy of our framework 424 

extends to relatively large streamflow networks, as evidenced by our results in a network 425 

comprising 50 basins. Our proposed framework offers additional benefits that surpass those 426 

achieved by regional models trained on diverse basin data, even when rgn-LSTM has already 427 

learned general patterns from a diverse set of basins. This is particularly relevant in data-scarce 428 

regions where some streamflow stations may be available with limited records. Consequently, 429 

the findings from this analysis provide valuable insights that can guide the practical 430 

implementation of our framework in real-world applications, addressing the challenges posed 431 

by data scarcity in streamflow prediction. 432 

  433 

It is important to highlight that the effectiveness of our proposed framework is especially 434 

pronounced when using a separate network for each basin (idv-LSTM). Also, there is an 435 

expectation that rgn-LSTM would still exhibit improvement when utilizing a semi-supervised 436 

learning-based framework. This suggests that employing a single setting for our remaining 437 

assessment is acceptable. Furthermore, as previously mentioned, it is probable that some 438 

streamflow stations are available even in data-scarce regions. This suggests that conducting an 439 

analysis by combining data from those stations with regional models trained on multiple basin 440 

data would offer a more realistic evaluation. Therefore, for the remaining analysis, we will 441 

adopt rgn-LSTM particularly with the moderate density network. 442 

 443 

3.2 Evaluating the selection of the annealing process on the student model  444 

In the first experiment, we confirm the benefits of a semi-supervised learning-based framework 445 

in enhancing streamflow predictions. We now analyze the performance of six rgn-LSTM 446 

models (see Figure S1) to explore the appropriateness of the annealing process (Eq. 12) adopted 447 
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in the proposed framework. Figures 5 and S5 show that results of rgn-LSTM obtained over the 448 

evaluation period with the single and multi-year training scenarios, respectively. 449 

 450 

Those figures present two noteworthy observations. First, the performance of the rgn-LSTM-451 

vr1 model is notably lower compared to the other models. Specifically, significant declines in 452 

performance are observed for the single-year training scenario, while its performance remains 453 

similar to the other models for the multi-year training scenario. However, even in the multi-454 

year training scenario, lower performance is evident in LNSE particularly for the 455 

heterogeneous region. These findings suggest that incorporating an imbalanced-based cost 456 

function between labeled and unlabeled data enhances the model's predictive capabilities. Next, 457 

the models employing structures that diminish the influence of unlabeled data (e.g., rgn-LSTM-458 

vr5 and rgn-LSTM) show better results compared to the models that amplify the role of 459 

unlabeled data (e.g., rgn-LSTM-vr2 and rgn-LSTM-vr4) particularly in the single-year training 460 

scenarios. There could be multiple factors contributing to this disparity, but our inference is 461 

that the outperformance may be attributed to the low quality in learning of the teacher model 462 

due to insufficient data. The low quality for the teacher model potentially affects the quality of 463 

the unlabeled data. By leveraging the expanded training data that includes unlabeled data, the 464 

student model can gain a rough understanding of streamflow modeling. This initial exploration 465 

proves beneficial, allowing the model to converge quickly and reducing the chances of 466 

overfitting. Subsequently, the network undergoes fine-tuning using high-quality labeled data 467 

on the latter part of the epoch progression. Therefore, the models employing structures to 468 

diminish the influence of unlabeled data would be beneficial. Our inference is also supported 469 

by the multi-year training scenario. While rgn-LSTM remains competitive, its superiority 470 

becomes less apparent due to the improved learning of the teacher model resulting from the 471 
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expanded training samples. Summing up, by differentiating between the two unlabeled and 472 

labeled datasets, the model can potentially achieve better performance in a semi-supervised 473 

learning-based framework. 474 

 475 

3.3 Comparing our proposed model with rgn-LSTM-sep and rgn-LSTM-trans 476 

Finally, we compare our semi-supervised learning-based framework with two separate training 477 

approaches, namely rgn-LSTM-sep and rgn-LSTM-trans. Figures 6 and S6 present the spatial 478 

distribution of the NSE, MNSE, and LNSE metric differences for the three regions in the 479 

heterogeneous and homogeneous regions, respectively. The figures illustrate the relative 480 

performance of our framework's models compared to the two fine-tuning models. Here, the 481 

utilization of the red color highlights instances where our proposed framework surpasses a 482 

separate training approach in terms of prediction accuracy in the evaluation period. 483 

 484 

Based on the comparison between rgn-LSTM and rgn-LSTM-sep, the benefits of utilizing a 485 

semi-supervised learning approach over relying solely on weight initialization using unlabeled 486 

data (corresponding to pre-training) are evident. For example, the single-year training scenario 487 

in heterogeneous region yields notable benefits, with an improvement of 0.024 in median NSE 488 

and 0.031 in MNSE. Similarly, the multi-year training scenario also show substantial 489 

improvements, where our semi-supervised learning approach yields remarkable improvements 490 

of 0.020 in median NSE and 0.044 in MNSE. Particularly, the most significant improvement 491 

is observed in mean LNSEs for both scenarios, with our proposed framework achieving a 492 

noteworthy improvement of 0.077 and 0.090 when compared to rgn-LSTM-sep. The results 493 

indicate that the joint training of both labeled and unlabeled datasets leads to better 494 

performance than the separate training approach that utilizes weight initialization only with 495 
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unlabeled data. 496 

 497 

When comparing rgn-LSTM and rgn-LSTM-trans, we observe slight differences in contrast to 498 

the results between rgn-LSTM and rgn-LSTM-sep, suggesting that those approaches (rgn-499 

LSTM and rgn-LSTM-trans) provide reliable predictions in the rainfall-runoff relationship. 500 

However, rgn-LSTM tends to exhibit higher prediction accuracy overall compared to rgn-501 

LSTM-trans. This is especially evident when considering the MNSE and LNSE metrics, 502 

highlighting the effectiveness of a semi-supervised learning-based framework in more 503 

accurately representing local extreme flows. One possible explanation for the performance 504 

difference between rgn-LSTM and rgn-LSTM-trans is that transfer learning can be effective 505 

when the dataset in both the source and target regions are sufficiently similar. However, rgn-506 

LSTM-trans is based on pre-trained knowledge from the source region, utilizing 44 forcing 507 

variables that substantially differ from the attributes employed in this study (refer to Table 1). 508 

It is commonly referred to as negative transfer learning (Torrey and Shavlik, 2010). Our 509 

inference is supported by the outperformance of rgn-LSTM in the Southwest region, which 510 

exhibits conditions fairly different from those of Great Britain (see Figure S6). It is also worth 511 

noting in this comparison that rgn-LSTM may have a disadvantage due to the fact that rgn-512 

LSTM-trans is trained using a 10-year labeled dataset, which is nearly double the additional 513 

data used in the training process for rgn-LSTM. Taken together, we therefore consider a semi-514 

supervised learning-based approach a useful and complementary approach to the transfer 515 

learning approach, but would caution against using it as a replacement for bolstering the ability 516 

of rainfall-runoff modeling in all cases. 517 

 518 

4. Discussion 519 

https://doi.org/10.5194/hess-2023-148
Preprint. Discussion started: 18 July 2023
c© Author(s) 2023. CC BY 4.0 License.



23 

 

4.1 Impact of the performance of teacher model  520 

The predictive capability of the teacher model is vital within the proposed semi-supervised 521 

learning-based framework. This is because the teacher model is employed to generate pseudo 522 

streamflow on unlabeled data. Consequently, an enhanced performance of the teacher model is 523 

anticipated to result in greater improvements within the framework. Figure 7 shows the 524 

accuracy improvements obtained in the semi-supervised learning-based framework relative to 525 

the baselines when they are compared to the performance of the teacher model. The figure 526 

presents results for two model settings, idv-LSTM and rgn-LSTM with the moderate density 527 

network. It is important to note that similar patterns are observed in the other results (not 528 

shown). Interestingly, the impact of the performance of the teacher model is different from our 529 

expectation. While there are slight variations in each plot, the anticipated improvement 530 

(indicated by the red lines) generally follows an upward trend, reaching its peak around a NSE 531 

value of 0.4, and subsequently experiencing a decline in improvement. 532 

 533 

These findings suggest that achieving higher performance in the teacher model does not 534 

necessarily translate into greater improvement within the framework. One potential 535 

explanation is that the involvement of numerous latent processes in the rainfall-runoff process. 536 

These processes include factors such as subsurface interactions (e.g., aquifer dynamics and 537 

transmissivity). Due to the complexity of these confounding factors, it becomes challenging 538 

for the network to further capture the entire runoff generation process especially in the basins 539 

well trained by the student network. Instead, our analysis shows that the proposed framework 540 

exhibits its highest effectiveness in the study basins when the network achieves a moderate 541 

level of accuracy, specifically around an NSE value of approximately 0.4 when the baseline 542 

network is applied. 543 
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 544 

4.2 Applicability of the semi-supervised learning-based framework 545 

While semi-supervised learning holds significant promise, further exploration is encouraged to 546 

assess its applicability, particularly in the context of time series tasks. The successful 547 

application of semi-supervised learning has predominantly been observed in computer vision 548 

tasks (Chen et al., 2021; Yang et al., 2019), but it has also demonstrated success in other 549 

machine learning domains (Wang et al., 2021; Zhu et al., 2021). However, the success has 550 

rarely been extended to time series related tasks (Dai et al., 2023). This scarcity of success in 551 

time series tasks further underscores the significance and value of the present study. 552 

 553 

Furthermore, the improvement of hydrological modeling initiatives has been dependent on both 554 

sufficient data collection and enhancements in the model's algorithm to an equal degree. The 555 

sparsity and inconsistency of the meteorological dataset additionally result in low performance 556 

in the streamflow prediction and create a problematic situation to implement our proposed 557 

framework. In developing countries, the situation arises due to the insufficient availability of 558 

equipment used for monitoring meteorological data, such as precipitation and air temperature. 559 

To be specific, the lack of sufficient data for tracking meteorological information in African 560 

countries contributes to the encountered situation. Although initiatives like The trans-African 561 

hydrometeorological observatory (TAHMO) have been launched (van de Giesen et al., 2014), 562 

there is still a significant gap in data availability and coverage. As a potential solution to 563 

mitigate the situation, we can consider the utilization of reanalysis-based climate data, such as 564 

the global dataset provided by the European Centre for Medium-Range Weather Forecasts 565 

(ECMWF). Additionally, employing approaches like statistical downscaling of these global 566 
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datasets, as demonstrated in the studies by Voropay et al. (2021) and Xie et al. (2022), could 567 

prove effective in mitigating the challenges presented by the limited meteorological data. 568 

 569 

4.3 Future work  570 

This paper utilizes a semi-supervised learning approach to improve the predictive ability in 571 

rainfall-runoff modeling while addressing the limitations associated with streamflow 572 

observations. The proposed framework utilizes predicted streamflow estimated by a teacher 573 

model as pseudo-labels, indicating high-quality pseudo-labels is important for the performance 574 

of the student model. However, this study does not address the issue of uncertainty associated 575 

with these pseudo-labels. One potential solution is to employ Bayesian neural networks (BNNs; 576 

Kendall and Gal, 2017), which effectively handle input data noise, known as aleatoric 577 

uncertainty, by incorporating its impact into the loss function. This utilization of BNNs as a 578 

heteroscedastic modeling technique may be useful to reduce prediction variance and enhance 579 

the quality of pseudo-labels obtained. Our team intends to explore this approach in the near 580 

future as part of our ongoing research efforts. 581 

 582 

5. Conclusions 583 

The science of hydrology has primarily evolved by leveraging established physical and 584 

empirical relationships to comprehend the complex dynamics of rainfall-runoff interactions. 585 

Although significant progress has been made in harnessing data-driven models to enhance 586 

insights and intuition derived from abundant hydrological dataset, a fundamental obstacle 587 

remains due to the scarcity of available data.  588 

 589 
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In this study, we developed a semi-supervised learning-based framework to mitigate the 590 

challenges associated with predicting streamflow in regions with limited data availability. The 591 

framework enables a data-driven model to enhance its training dataset by incorporating 592 

additional climate data, even in scenarios with limited paired records of climate and streamflow 593 

data. This is achieved through the generation of pseudo streamflow data. In particular, we 594 

introduced a novel loss function for the student model, designed to effectively distinguish the 595 

contributions of labeled and unlabeled data to the loss function during the training process. 596 

Through a range of diverse experimental designs, we conducted extensive validation to 597 

demonstrate the substantial efficacy of the proposed framework in comparison to a simple 598 

baseline model. Lastly, we conducted a thorough comparison between our proposed framework 599 

and two separate training approaches, affirming the effectiveness of our framework. We firmly 600 

believe that the value of this framework is immense, as it capitalizes on the availability of 601 

longer historical climate data records, including the utilization of global climate datasets. This 602 

is particularly advantageous in regions where streamflow records are scarce, as it facilitates the 603 

extraction of valuable insights from the wealth of accessible climate data. 604 
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Figure 7 Plots comparing the NSEs achieved by the teacher model during the validation period 986 

and the improved NSEs between the student models and baseline models during the evaluation 987 

period under two model setting: (a) idv-LSTM and (b) rgn-LSTM with the moderate density 988 

network, in multi-year training scenarios. Additionally, the expected improved NSEs 989 

corresponding to the NSE of the teacher model are depicted, along with a Lowess fit 990 

represented by a red line. 991 
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 1000 

 1001 

Table 1 List of the climate and basin attributes used in this study. 1002 

 Variable name Description Unit 

Climate 

forcing 

PRCP Precipitation mm 

Tmax Maximum air temperature ℃ 

Tmin Minimum air temperature ℃ 

SRAD Short-wave radiation W/m2 

VP Vapor pressure Pa 

Basin 

attributes 

p_mean Catchment mean daily precipitation mm 

pet_mean  Catchment mean daily potential evapotranspiration mm 

p_seasonality Seasonality and timing of precipitation - 

frac_snow Fraction of precipitation falling as snow - 

aridity Ratio of catchment mean PET to mean precipitation - 

high_prec_freq Frequency of high precipitation days (≥ 5 × p_mean) Days 

high_prec_dur 
Average duration of high precipitation events (number of 

consecutive days ≥ 5 × p_mean) 
Days 

low_prec_freq Frequency of dry days (< 1 mm/day) Days 

low_prec_dur 
Average duration of dry periods (number of consecutive days <1 

mm/day) 
Days 

soil_depth_pelletier Depth to bedrock (maximum 50m) m 

soil_depth_statsgo Soil depth (maximum 1.5m) m 

soil_porosity Volumetric porosity - 

soil_conductivity Saturated hydraulic conductivity cm/hr 

max_water_content Maximum water content of the soil m 

sand_frac Fraction of sand % 

silt_frac Fraction of silt % 

clay_frac Fraction of clay % 

carbonate_rocks_frac 
Fraction of the catchment area characterized as "Carbonate 

sedimentary rocks" 
% 

geol_permeability Subsurface permeability (log10) - 

elev_mean Catchment mean elevation m 

slope_mean Catchment mean slope m/km 

area_gauges Catchment area km2 

frac_forest Forest fraction % 

lai_max Maximum monthly mean of the leaf area index - 

lai_diff Difference between the maximum and mimumum monthly mean of - 
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the leaf area index 

gvf_max Maximum monthly mean of the green vegetation fraction - 

gvf_diff 
Difference between the maximum and mimumum monthly mean of 

the green vegetation fraction 
- 

Table 2 Median performance of the models trained under our proposed framework (baseline 1003 

models in the parenthesis) for two training scenarios. 1004 

Mod

el 

No. of 

basins 

Train

ing 

scena

rio 

NSEmedian MNSEmedian LNSEmedian 

Heteroge

neous 

region 

Homogen

eous 

region 

Heteroge

neous 

region 

Homogen

eous 

region 

Heteroge

neous 

region 

Homogen

eous 

region 

idv-

LST

M 

531 

basins 

Single

-year 

trainin

g  

0.392 (0.002) 0.314 (0.076) 0.047 (-0.193) 

Multi-

year 

trainin

g 

0.576 (0.411) 0.441 (0.301) 0.418 (0.044) 

rgn-

LST

M 

30 

basins in 

3 

experim

ental 

trials 

Single

-year 

trainin

g  

0.521 

(0.175) 

0.531 

(0.145) 

0.452 

(0.206) 

0.421 

(0.176) 

0.491 (-

0.634) 

0.624 

(0.070) 

Multi-

year 

trainin

g 

0.619 

(0.563) 

0.650 

(0.627) 

0.482 

(0.446) 

0.536 

(0.481) 

0.595 

(0.461) 

0.700 

(0.620) 

rgn-

LST

M 

90 

basins in 

3 

experim

ental 

trials 

Single

-year 

trainin

g  

0.570 

(0.213) 

0.538 

(0.241) 

0.483 

(0.259) 

0.463 

(0.226) 

0.580 (-

0.312) 

0.609 

(0.022) 

Multi-

year 

trainin

g 

0.667 

(0.608) 

0.689 

(0.673) 

0.549 

(0.492) 

0.553 

(0.515) 

0.666 

(0.577) 

0.755 

(0.672) 

rgn-

LST

M 

150 

basins in 

3 

Single

-year 

trainin

g  

0.567 

(0.263) 

0.542 

(0.246) 

0.506 

(0.241) 

0.467 

(0.230) 

0.631 

(0.166) 

0.636 

(0.135) 
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experim

ental 

trials 

Multi-

year 

trainin

g 

0.675 

(0.638) 

0.704 

(0.676) 

0.555 

(0.532) 

0.579 

(0.543) 

0.691 

(0.645) 

0.750 

(0.668) 

 1005 
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