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 14 

Introduction  15 

 16 

To support the results and conclusions of the study titled "Semi-supervised Learning 17 

Approach to Enhance Predictability in Data-Driven Rainfall-Runoff Models for 18 

Hydrologically Data-Scarce Regions", this file consists of two texts, two tables, and six 19 

figures. These elements are specifically utilized in the designated section to reinforce the 20 

presented findings: 21 

 22 

Text S1 23 

- 2.4.2 The effect of the annealing process on the student model 24 

Text S2 25 
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- 2.4.3 Comparison of our proposed framework to the fine-tuning approaches 1 

Tables S1-S2 2 

- 4.1 AR climatology and corresponding water availability over South Korea 3 

Figure S1 4 

- 2.4.2 The effect of the annealing process on the student model 5 

Figures S2- S4 6 

- 3.1 Evaluating semi-supervised learning in data-scarce regions 7 

Figure S5 8 

- 3.2 Evaluating the selection of the annealing process on the student model 9 

Figure S6 10 

- 3.3 Comparing our proposed model with rgn-LSTM-sep and rgn-LSTM-trans 11 

 12 

Text S1. 13 

This section offers additional details about the five structures used in 𝛼(𝕥) for the comparison 14 

purpose. The provided annealing process (i.e., Eq. 12) in the main manuscript is used in our 15 

final framework. In addition to this, alternative formulations are developed as variant versions. 16 

Each subsequent formulation is applied to one of the five models (rgn-LSTM-vr1, rgn-LSTM-17 

vr2, rgn-LSTM-vr3, rgn-LSTM-vr4, and rgn-LSTM-vr5), respectively.  18 

 19 

𝛼(𝕥) = 𝛼0         ∀𝕥       Eq. (S1) 20 

𝛼(𝕥) = {
0         𝕥 ≤ ℐ
𝛼0        ℐ < 𝕥

       Eq. (S2) 21 

𝛼(𝕥) = {

0      𝕥 ≤ ℐ′
𝕥−ℐ′

ℐ′′−ℐ′
𝛼0  ℐ′ < 𝕥 ≤ ℐ′′

𝛼0     ℐ′′ < 𝕥

       Eq. (S3) 22 
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𝛼(𝕥) = {

𝛼0          𝕥 ≤ ℐ′

(1 −
𝕥−ℐ′

ℐ′′−ℐ′
)𝛼0  ℐ′ < 𝕥 ≤ ℐ′′

0            ℐ′′ < 𝕥

      Eq. (S4) 1 

𝛼(𝕥) = {
2 × 𝛼0     𝕥 ≤ ℐ
0         ℐ < 𝕥

       Eq. (S5) 2 

 3 

where we utilize 𝛼0 = 1, ℐ = 15, ℐ′ = 5, and ℐ′′ = 25 based on the epoch adopted in this 4 

study. 5 

 6 

The first model, rgn-LSTM-vr1, incorporates a 𝕥 -invariant structure where labeled and 7 

unlabeled data are equally treated. The second model, rgn-LSTM-vr2, highlights the 8 

significance of unlabeled data specifically during the latter half of the epoch progression. For 9 

the third and fourth models, rgn-LSTM-vr3 and rgn-LSTM-vr4, they employ 𝕥 -varying 10 

structures to gradually amplify or reduce the influence of unlabeled data. Lastly, the final model, 11 

rgn-LSTM-vr5, maintains an identical structure to our proposed model while placing further 12 

emphasis on the role of unlabeled data in the initial phase of the epoch progression. 13 

Additionally, Figure S1 provides a visualization of how each of the 𝛼(𝕥) formulations evolves 14 

throughout the epoch progression.  15 

  16 
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 1 
Figure S1. Visualization of how each of the 𝛼(𝕥) formulations evolve corresponding to the 2 

considered six models (denoted in each plot). 3 

 4 

Text S2. 5 

In this section, we present information about the recent technique developed by Ma et al. (2021), 6 

which we considered for comparison in our work. Given the similarity in responses required 7 

for rainfall-runoff modeling, there is a possibility that their representations in a data-driven 8 

model could exhibit similarities. Consequently, training a model with one regional dataset and 9 

transferring it to another region becomes possible. To achieve this, Ma et al. (2021) pretrained 10 

their models on a data-rich region and then transferred them to data-scarce regions as initial 11 

conditions. Following their approach, we also conducted tests using three different 12 

combinations (TL-a, TL-b, and TL-c) of transfer learning by controlling weight initialization 13 

and freezing. However, we only present the results of TL-c, as it outperformed the other tested 14 

models in our analysis (not shown). Our decision to use TL-c aligns with the findings of Ma et 15 

al. (2021), who also concluded it to be one of the best options. For our analysis, the regional 16 
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LSTM model was pretrained using 44 forcing variables across the 631 basins from the 1 

CAMELS-GB dataset (see Table S1). For the pertaining model, we developed the model using 2 

a 10-year dataset spanning from October 1, 1980, to September 30, 1990 (as the training period). 3 

Additionally, we validated the model's performance using a separate 3-year dataset covering 4 

the period from October 1, 1990, to September 30, 1993. 5 

 6 

Table S1 List of the climate and basin attributes from CAMELS-GB dataset. 7 

 Variable name Description Unit 

Climate 

forcing 

precipitation Catchment daily averaged precipitation mm 

temperature Catchment daily averaged temperature ℃ 

humidity Catchment daily averaged specific humidity ℃ 

shortwave_rad Catchment daily averaged downward shortwave radiation W/m2 

longwave_rad Catchment daily averaged long-wave radiation W/m2 

windspeed Catchment daily averaged wind speed m/s 

Basin 

attributes 

p_mean Catchment mean daily precipitation mm 

pet_mean  Catchment mean daily potential evapotranspiration mm 

aridity Ratio of catchment mean PET to mean precipitation - 

p_seasonality Seasonality and timing of precipitation - 

inter_high_perc Significant intergranular flow – high productivity % 

q_mean Mean daily discharges mm 

runoff_ratio Ratio of mean daily discharge to mean daily precipitation - 

stream_elas Streamflow precipitation elasticity - 

baseflow_index Ratio of mean daily base flow to daily discharge - 

Q5 5% flow quantile mm 

Q95 95% flow quantile mm 

dwood_perc percentage cover of deciduous woodland % 

ewood_perc percentage cover of evergreen woodland % 

grass_perc percentage cover of grass and pasture % 

shrub_perc percentage cover of medium-scale vegetation % 

crop_perc percentage cover of crops % 

urban_perc percentage cover of suburban and urban % 

inwater_perc percentage cover of inland water % 

bares_perc percentage cover of bare soil and rocks % 

sand_perc percentage sand % 
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silt_perc percentage silt % 

clay_perc percentage clay % 

organic_perc percentage organic content % 

bulkdens bulk density g/cm3 

tawc total available water content mm 

porosity_cosby 
saturated water content estimated using a pedo-transfer function 

based on sand and clay fractions 
- 

porosity_hypres 
saturated water content estimated using a pedo-transfer function 

based on silt, clay and organic fractions, bulk density, and topsoil 
- 

conductivity_cosby 
estimated using a pedo-transfer function based on sand and clay 

fractions 
cm/h 

conductivity_hypres 
estimated using a pedo-transfer function based on sand and clay 

fractions 
cm/h 

root_depth depth available for roots m 

soil_depth_pelletier depth to bedrock m 

gauge_lat gauge latitude degree 

gauge_lon gauge longitude degree 

gauge_elev gauge elevation ma.s.l. 

area catchmentarea km2 

dpsbar catchment mean drainage path slope m/km 

elev_mean catchment mean elevation ma.s.l. 

elev_min catchment minimum elevation ma.s.l. 

 1 

To ensure the accurate reproduction of the results reported in Ma et al. (2021), we implemented 2 

their regional LSTM model using the CAMELS-GB dataset. For the training scenarios, we 3 

utilized 666 basins for the 1-year scenario and 668 basins for the 5-year scenario, following the 4 

train and test evaluation scheme outlined by Ma et al. (2021). Specifically, in the 1-year (5-5 

year) training scenario, the models were trained from January 1, 2004, to January 1, 2005 6 

(January 1, 2000, to January 1, 2005), and subsequently tested from January 1, 2005, to January 7 

1, 2010 (January 1, 2005, to January 1, 2010). It is worth noting that the basin selection in our 8 

study differs slightly from that of Ma et al. (2021), who employed 667 basins in both scenarios. 9 

However, a significant majority of the basins overlap, and the performance statistics for the test 10 

phase in our study (see Table S2) exhibit similarities with the results reported in Ma et al. (2021) 11 



7 

 

(their Table S3). Based on these outcomes, we employed a regional LSTM model applied to 1 

basins across England for our comparative analysis. 2 

 3 

Table S2 Validating the results in Ma et al. (2021) by developing the regional LSTM models. 4 

Utilized data 
Temporal 

scenario 
NSEmean Ensemble NSEmean 

CAMELS-GB 

1-year training  0.728 0.706 

5-year training 0.830 0.804 

 5 

 6 
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 21 
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 1 

Figure S2. Difference of (a and b) MNSE and (c and d) LMSE results of idv-LSTM compared 2 

to their baseline models for (left column) single and (right column) multi-year training 3 

scenarios. The color maps are limited for enhanced visualization (see each subplot). 4 
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 1 
Figure S3 Difference of MNSE results of rgn-LSTM compared to their baseline models across 2 

experimental factors including three defined regions, two training scenarios, and three basin 3 

densities in network. Here, the median MNSE differences across basins in three defined regions 4 

are presented in each plot. 5 
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 1 
Figure S4 Difference of LNSE results of rgn-LSTM compared to their baseline models across 2 

experimental factors including three defined regions, two training scenarios, and three basin 3 

densities in network. Here, the median LNSE differences across basins in three defined regions 4 

are presented in each plot. 5 

 6 
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 1 
Figure S5 Cumulative density functions of the results of the annealing process on rgn-LSTM 2 

with the multi-year training scenarios obtained for basins across (a), (b), (c) heterogeneous 3 

region; and (d), (e), (f) homogeneous region. Here, three metrics, namely NSE (first column), 4 

MNSE (second column), and LNSE (last column), are utilized. 5 
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 1 
Figure S6 Difference of performance in the three metrics, NSE (first column), MNSE (second 2 

column), and LNSE (third column), of rgn-LSTM compared to the two fine-tuning approaches 3 

(rgn-LSTM-sep and rgn-LSTM-trans) across three basin networks in homogeneous regions. 4 

Here, the median NSE differences across basins in three defined regions are presented in each 5 

plot. 6 


