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Abstract. In recent years, extreme drought events in the United States have seen increases
:::::::
increased

:
in frequency and severity

underlining a need to improve our understanding of vegetation resilience and adaptation. Flash droughts are extreme events

marked by rapid dry down of soils due to lack of precipitation, high temperatures, and dry air. These events are also associ-

ated with reduced preparation, response, and management time windows before and during drought which exacerbate their

detrimental impacts on people and food systems. Improvements in actionable information for flash drought management are5

informed by atmospheric and land surface processes, including responses and feedbacks from vegetation. Phenologic state, or

growth stage, is an important metric for modeling how vegetation interacts with the atmosphere.
::::::::
modulates

::::::::::::::
land-atmosphere

::::::::::
interactions.

:::::::
Reduced

::::::::
stomatal

::::::::::
conductance

::::::
during

:::::::
drought

::::
leads

::
to
:::::::::
cascading

::::::
effects

::
on

::::::
carbon

:::
and

:::::
water

::::::
fluxes.

:
We investi-

gate how uncertainty in vegetation phenology
:::
and

:::::::
stomatal

:::::::::
regulation propagates through vegetation responses during drought

and non-drought periods by coupling a land-surface hydrology model to a predictive phenology model. We identify plant10

processes that influence vegetation responses to drought and
:::
also

:
assess the role of vegetation in the partitioning of carbon,

water, and energy fluxes
:::::
during

:::::
flash

:::::::
drought

:::
and

::::::::
compare

::::::
against

:::::::
drought

:::
and

::::::::::
non-drought

:::::::
periods. We selected study sites

in Kansas, USA where extreme drought events have been observed, in particular
:::
that

:::::
were

::::::::
impacted

::
by

:
the flash drought of

2012, and where AmeriFlux eddy covariance towers provide data which can be used to evaluate water movement between the

land (surface and subsurface) and the atmosphere. We evaluate the evolution of plant phenology, water use, and productivity15

using different water stress events. Results show that phenological
::::::
ground

:::::::::::
observations

::
to

::::::
validate

::::
and

:::::::
compare

::::::
against

::::::
model

::::::::
estimates.

::::::
Results

:::::
show

:::
the

:::::::::::
compounding

::::::
effects

::
of

:::::::
reduced

:::::::::::
precipitation

:::
and

::::
high

:::::
vapor

:::::::
pressure

::::::
deficit

:::::
(VPD)

:::
on

:::::::::
vegetation

:::::::::
distinguish

::::
flash

:::::::
drought

:::::
from

::::
other

:::::::
drought

::::
and

::::::::::
non-drought

:::::::
periods.

:::::
High

::::
VPD

::::::
during

:::::
flash

:::::::
drought

::::
shuts

:::::
down

::::::::
stomatal

::::::::::
conductance

::::::::
resulting

::
in

::::
rates

::
of

::::::::::::::::
evapotranspiration

::::
(ET),

:::::
gross

:::::::
primary

::::::::::
productivity

::::::
(GPP),

::::
and

:::::
water

:::
use

::::::::
efficiency

:::::::
(WUE)

:::::
falling

::::::
below

::::::
average

:::::::
drought

:::::::::
conditions.

:::::::::::
Phenological

:
responses using model parameters generated from periods of average20

precipitation show slower responses to drought as compared to parameters generated to reflect isohydric or anisohydric tenden-

cies. Evapotranspiration (ET) and gross primary productivity (GPP) show similarly timed responses to water stress. We find

plants alter water use strategies under extreme drought, with plants nearly halting atmospheric water and carbon exchanges
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when under stress. Decreases in uncertainty from ensemble estimates of GPP and ET during the flash drought period reduce

to winter levels implying variability in plant life stage and functionality during drought periods are similar to those of dormant25

months. These results have implications for improving predictions of drought impacts on vegetation.

1 Introduction

Frequency and severity of extreme droughts are predicted to increase within the next century (Dai, 2013). Flash droughts are a

particular type of extreme drought characterized by their rapid intensification (Svoboda et al., 2002; Ford and Labosier, 2017;

Otkin et al., 2018, 2022). The flash drought of 2012 that impacted the Central United States amplified the need to understand30

and predict flash droughts because of its estimated $30 billion of impacts to agriculture (Otkin et al., 2018). Work over the last

decade has improved methods for identifying flash droughts based on development time and concurrent meteorological condi-

tions (see Lisonbee et al., 2021, for a summary of flash drought definitions and indicators). Many studies have examined the

drivers (e.g., lack of precipitation, greater atmospheric demand for water, above average temperatures) and impacts (e.g., soil

moisture deficits and damages to agriculture) of flash drought (e.g., ?Christian et al., 2023, 2022; Jin et al., 2019; Otkin et al., 2018)35

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(e.g., Lowman et al., 2023; Christian et al., 2023, 2022; Jin et al., 2019; Otkin et al., 2018) while others have examined vegetation-

atmosphere interactions (Chen et al., 2021; Zhang and Yuan, 2020; Gerken et al., 2018; Otkin et al., 2016; Novick et al., 2016)

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Hosseini et al., 2022; Chen et al., 2021; Zhang and Yuan, 2020; Gerken et al., 2018; Otkin et al., 2016)

:::
and

:::::::
stomatal

::::::::::
functioning

:::::::::::::::::::::::::::::::::
(Novick et al., 2016; Roman et al., 2015).

Further assessment of vegetation-atmosphere feedback mechanisms may help improve identification of flash drought onset40

(Qing et al., 2022). Gross primary productivity (GPP), or carbon assimilation by plants during photosynthesis, is one such

vegetation-atmospheric interaction
::::::::
impacted

::
by

:::::::
drought

:::::::::::::::
(Zeng et al., 2023). Large reductions in GPP due to soil moisture and

temperature anomalies can be used to mark the beginning and duration of flash drought events (Zhang and Yuan, 2020; Poonia et al., 2022)

:::::::::::::::::::::::::::::::::::
(Poonia et al., 2022; Zhang and Yuan, 2020), as seen in the 2012 flash drought (Jin et al., 2019). Flash droughts can intensify

through land-atmosphere feedbacks (Basara et al., 2019); for example, vegetation expediting water stress by pulling water from45

deeper soil layers and further drying soils (Qing et al., 2022). Otkin et al. (2016) studied the evolution of soil moisture and

vegetation conditions during the 2012 event, finding that changes in soil moisture and evaporative stress indicators preceded

rapid drought intensification in the US Drought Monitor (USDM, Svoboda et al. (2002)). Chen et al. (2019) found declines in

evapotranspiration (ET), another interaction between the vegetation and the atmosphere, to be a major sign of flash drought

intensification.50

Interactions between vegetation and the atmosphere are altered during flash drought events, thus it is necessary to con-

sider vegetation state when studying the effects of flash drought (Chen et al., 2021). Additionally, capturing differences

across plant types is essential for modeling vegetation response to drought. Failure to account for differential responses

across plant function
::::::::
functional types (PFTs) could result in underestimating the plant’s ability to maintain its function un-

der water stress (Zhou et al., 2013). Roman et al. (2015) showed that tree species in a forested region behaved differently55

during drought, with some species exhibiting isohydric tendencies, whereas others were more anisohydric. Isohydric plants
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are more conservative with their water use strategies when under stress and tend to regulate their stomatal conductance

making them less susceptible to hydraulic failure (Konings and Gentine, 2017). These tendencies dictate how much photo-

synthesis occurs and thus how much carbon is exchanged (Roman et al., 2015). However, Garcia-Forner et al. (2017) cau-

tions against making links between carbon assimilation and water potential regulation by showing similar rates of carbon60

assimilation under controlled drought simulations between two species of Mediterranean trees with opposing drought re-

sponses (one isohydric and one anisohydric). For some species, hydraulic
:::::::
stomatal regulation exists on a spectrum and can

shift between isohydric and anisohydric in response to atmospheric and water conditions (Guo et al., 2020; Wu et al., 2021)

::::::::::::::::::::::::::::
(Wu et al., 2021; Guo et al., 2020) leading to variation and uncertainties in water use strategies (Kannenberg et al., 2022).

Ecosystem scale modeling may be able to incorporate the plant level spatial and temporal variability in water use strategies65

(Kannenberg et al., 2022)
:::::::::::::::::::::::::::::::::::::::::
(Giardina et al., 2023; Konings and Gentine, 2017) by taking into account concurrent meteorologi-

cal and environmental conditions that influence plant water use tendencies beyond the species
::::::
specie’s physiological charac-

teristics (Hochberg et al., 2018).

Vegetation state parameterization in ecohydrological models could also dictate whether an area experiences carbon uptake

changes during a flash drought due to the linkage between ET and GPP that couples the carbon and water cycles (Hosseini70

et al., 2022). There is evidence connecting vegetation changes in response to flash drought to lower plant production (Zhang

et al., 2020; Jin et al., 2019; He et al., 2018; Otkin et al., 2016; Hunt et al., 2014). Jin et al. (2019) and He et al. (2018) found

that croplands, grasslands, and shrublands experienced the majority of loss to carbon uptake rates during the droughts of 2011

and 2012 across the central US and similar rates of ET were found in croplands in the US northern plain flash drought of

2017 (He et al., 2019; Kimball et al., 2019). Chen et al. (2021) showed increases in LAI led to increased ET and that in a low75

moisture regime the amount of latent heat released due to ET was sensitive to changes in LAI. Hunt et al. (2014) showed that

maize experienced decreases in stomatal conductance, which led to declines in GPP and ET, during a flash drought. Multiple

studies showed crop yield losses following flash drought (e.g., Otkin et al., 2016; Hunt et al., 2014)
:::::::::::::::::
Roman et al. (2015)

::::
show

:::
that

:::::::
species

::::::
specific

::::::::
stomatal

::::::
control

::::
can

::::
lead

::
to
::::::::

different
:::::::
drought

::::::::
responses

::::::::
implying

::::
that

:::::
some

::::::
plants

::::
that

::::::
exhibit

:::::
more

::::::
drought

:::::::
tolerant

:::::::
behavior

:::::
might

:::
be

::::::::
accessing

::::::
deeper

:::::
stores

::
of

:::::
water

::::::::::::::::::
(Giardina et al., 2023).80

Previous studies have used remotely sensed or ground measurements and indicators to study vegetation responses to flash

drought (e.g., Christian et al., 2022; Zhang et al., 2020; Basara et al., 2019)
:::::::::::::::::::::::::::::::::::::::::::::::::::::
(e.g., Christian et al., 2022; Zhang et al., 2020; Basara et al., 2019)

. In contrast, Chen et al. (2021) used an earth system model to gauge plant behavior during flash drought while Hosseini et al.

(2022) used models with different phenological forcing to investigate impacts on the water and carbon cycles during drought.

Remotely sensed and eddy covariance data provide snapshots of the state of the system at point or preset spatial resolutions, and85

fixed temporal resolutions, while models can scale in space and time. Inherently simplified due to the complexity of systems,

numerical models incorporate physical and biological processes and statistical techniques to make predictions based on current

states and their uncertainties (Dietze, 2017). Data assimilation procedures and Bayesian inference allow modelers to incorpo-

rate observations while also identifying sources of uncertainty in both processes and scale (Dietze et al., 2013; Dietze, 2017)

:::::::::::::::::::::::::::
(Dietze, 2017; Dietze et al., 2013).90
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Capturing phenology has implications for photosynthetic activity (Lowman and Barros, 2018; Stöckli et al., 2008; Jolly et al., 2005)

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Lowman and Barros, 2018, 2016; Stöckli et al., 2008; Jolly et al., 2005) which will influence the water, carbon, and energy

fluxes coupled between the land and atmosphere. We use two versions of the Duke Coupled Land-Surface Hydrology Model

(DCHM) that incorporate physically parameterized routines for photosynthesis (Garcia-Quijano and Barros, 2005; Gebremichael

and Barros, 2006) and predictive phenology, or plant life stage (Lowman and Barros, 2016, 2018)
::::::::::::::::::::::::::::
(Lowman and Barros, 2018, 2016)95

to more closely investigate if and how vegetation water use strategies accelerate or decelerate dry down before and during flash

drought. Data assimilation techniques allow us to capture model uncertainty around processes controlling vegetation activity,

and in particular, assimilating vegetation phenology can improve the detection of drought (Mocko et al., 2021). We investigate

whether plants exhibit anisohydric tendencies thereby exacerbating the dry down, or whether they regulate their water intake to

preserve soil moisture to mitigate the effects of flash drought. In turn, we also investigate if plant behavior can be altered during100

periods of water stress by predicting phenology model parameters from hydrologic model outputs in dry and wet periods. We

hypothesize that simulated transpiration and carbon uptake rates will taper during flash drought due to limited soil water avail-

ability and
::::::::
increased

::::::::::
atmospheric

:::::::
demand

::::
and that the phenological changes are directly related to changes in transpiration

rates and GPP (Figure 1
:
1). Our specific hypotheses are:

H1 Evaporation initially increases before completely shutting down due to lack of precipitation and increased atmospheric105

demand for water. Water will also evaporate shortly after precipitation events leaving little to no chance of infiltration

::::::
During

::::
flash

::::::::
drought,

:::::
there

::
is

::
an

::::::::
increase

::
in

::::
days

::::::::
between

:::::::::::
precipitation

::::::
events

::::::
leading

:::
to

:::::
larger

:::::::::
reductions

::
in
:::::

total

::::::::::
precipitation

:::
and

:::::::::
infiltration

:::
as

::::::::
compared

::
to

::::::::
non-flash

:::::::
drought

:::::
events.

H2 Infiltration and root-uptake slow
:::::
Lower

:::::
total

:::::::::
infiltration

:::
and

::::::
higher

::::::::::
atmospheric

:::::::
demand

:::
for

:::::
water

::::::::
observed during flash

drought causing declines in
::::::
reduces

::::
soil

:::::
water

::::::::
available

:::
for

::::
root

:::::
water

::::::
uptake.

:::::
This

::::::::
decreases

::::::::
stomatal

:::::::::::
conductance,110

::::::::::
subsequently

:::::::
leading

::
to
:::::::

reduced
:

rates of transpirationand carbon uptake
:
,
::::::
carbon

:::::::
uptake,

:::
and

:::::
water

::::
use

::::::::
efficiency

:::
as

::::::::
compared

::
to

::::::::
non-flash

:::::::
drought

:::::
within

::
a

::::::::::
subseasonal

::::
time

:::::
frame.

H3 In response to decreases in water availability
::::::::
decreased

:::::
water

:::::::::
availability

::::::
during

::::
flash

:::::::
drought, vegetation phenological

states will diminish
::
be

:::::::::
diminished

::
as

::::::::
compared

::
to

::::::::
non-flash

:::::::
drought

::::
years

:
exacerbating the reduction in plant-atmosphere

interactions
::
of

:::::::::::
transpiration

:::
and

::::::
carbon

::::::
uptake.115

Here we use phenological responses , (i.e., FPAR,
:
of

:::::::
fraction

::
of

::::::::::::::::
photosynthetically

:::::
active

::::::::
radiation

:::::::
(FPAR)

:::
and

::::
leaf

::::
area

::::
index

::
(LAI) to examine how flash droughts affect vegetation state and ultimately impact the surface fluxes governing the

movement of water and carbon between the land and atmosphere. We use the well-studied flash drought of 2012 to compare

vegetation growth state and water use strategies during flash drought and non-drought periods to better understand how plants

modulate water and interact with the atmosphere when under stress. We compare our model results with eddy covariance120

and remotely sensed values of vegetation state and atmospheric interactions. Discrepancies between observations and models

with predictive versus forced phenology illuminate physical processes dictating plant water use strategies , for example,
::::
(e.g.,

suppressing transpiration by closing stomata and limiting carbon intake
:
). This study extends previous research on the water
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and carbon movement between plants and the atmosphere during flash drought by simulating the propagation of uncertainty

after implementing a predictive phenology routine to understand how variability in the representation of vegetation state within125

a modeling framework impacts land-atmosphere exchanges during extreme drought events.

Figure 1. Schematic of water, carbon, and energy fluxes with hypotheses about ecological responses
::::::
response

:
to flash drought indicated

with orange arrows. Evaporation initially increases before completely shutting down due to lack
:::::::
Decreased

::::::::
frequency of precipitation and

increased atmospheric demand for water. Water will also evaporate shortly after precipitation events leaving little
:::
leads

:
to no chance of

:::::::
decreased

:
infiltration . Infiltration and root-uptake slow

:::
less

::::
water

:::::::
available

:::
for

::::
plant

:::
use during flash drought causing declines in rates of

transpiration and carbon uptake. In response
::
as

:::::::
compared

:
to decreases in

::::::
non-flash

::::::
drought

:::::::
periods.

::::::
During

::::
flash

::::::
drought,

:::
the

::::::::
cascading

:::::
effects

::
of

:::::::
decreased

:
water availability, vegetation

:::::::::
exacerbated

::
by

:::
the

::::::
reduced

:
phenological states will diminish exacerbating the reduction

:::
and

::::::
stomatal

::::::::::
conductance,

::::::
include

::::
rapid

:::::::::
reductions in plant-atmosphere interactions

:::::::::
transpiration

:::
and

:::::::::
atmospheric

::::::
carbon

:::::
uptake

::
to

:::::
levels

::::
below

:::::
other

::::::
drought

:::::
periods.

2 Methods and Data

2.1 Overview of Modeling Approach

Remotely sensed or ground observations of land and atmospheric responses to flash drought are useful in identifying changes

in plant phenology, soil moisture,
:::
and evaporation rates, etc.

:::::
among

::::::
others, but observations alone are unable to fully explain130

the mechanisms driving the ecological responses and water use strategy adaptations
:::::::
strategies. Physically-based models can

help fill the gaps in understanding what drives these changes by identifying key processes in the land-atmosphere interactions.

For example, decreases in ground-based or satellite-derived GPP do not illuminate what processes caused the change, whereas

a process based model might be able to signal that changes in root water uptake lead to decreased transpiration rates, which

ultimately lead to decreased photosynthesis and carbon assimilation.135

5



Within physical models, changes in state
::::::::::
land-surface

:
variables (e.g., soil moisture, root uptake, evaporation rates, etc.)

are dependent upon forced meteorological conditions
::::::::::::
meteorological

::::::::::
conditions,

:::::
either

:::::
forced

::
or

::::::::
dynamic

::::::::::::::::
(Sellers et al., 1997).

Water use strategies are dictated by vegetation phenological states (Hu et al., 2008) and
::::::
stomatal

:::::::::
regulation

:::::::::::::::::
(Novick et al., 2016)

:::
and strongly influence GPP and ET (Beer et al., 2009). Therefore, physical, process-based models are able to adapt to chang-

ing meteorological conditions and capture mechanistic changes in vegetation-atmosphere interactions. Our goal is to identify140

vegetation responses that occur as a result of flash drought and associate those changes with the physical parameterizations

used
::::::::
processes

::::::::::
represented in a land-surface hydrology model.

In order to
::
To identify physical mechanisms driving plant responses to flash drought intensification, we use

:::
two

::::::::::::
configurations

::
of the physically based Duke Coupled surface-subsurface Hydrology Model with dynamic vegetation

:::::::
(DCHM)

::::
with

::::::::
dynamic

:::::::::
Vegetation (DCHM-V) . We provide the

:::
and

::::::::
Predictive

::::::::::
Vegetation

:::::::::::
(DCHM-PV).

::::
The DCHM-V with plant life stage updates145

from Moderate Resolution Imaging Spectroradiometer (MODIS)fraction photosynthetically active radiation (FPAR) and LAI

products in order to establish baseline outputs of
:::::::
provides

:::::::
baseline

::::::::
estimates

:
soil moisture (SM), root uptake (RU), ET,

and GPP from the DCHM-V. We then implement an ensemble Kalman filter (EnKF) data assimilation procedure following

Lowman and Barros (2018) to establish ensembles of parameters to use in a dynamic canopy biophysical properties (DCBP)

model within the DCHM-V yielding the DCHM with prognostic vegetation (
::::
using

::::::
forced

:::::::::
phenology

::::
from

:::
the

:::::
from

::::::::
Moderate150

:::::::::
Resolution

:::::::
Imaging

:::::::::::::::
Spectroradiometer

::::::::
(MODIS)

:::::::
fraction

:::::::::::::::
photosynthetically

:::::
active

:::::::
radiation

:::::::
(FPAR)

:::
and

::::
LAI

::::::::
products.

::::::
Instead

::
of

::::
using

::::::
forced

:::::::::
phenology,

:::
the DCHM-PV ). The

:::
uses

::
a prognostic vegetation (i.e. phenological) model uses seasonal parameters

::
to

::::::
predict

:::
the

:::::::::
vegetation

::::::
states

::
of

::::::
FPAR

:::
and

::::
LAI

::::::
using

:::::::::
parameters

::::
that

::::::::::
correspond

::
to

::::::::::
seasonality

:
(e.g.

:
, temperature and

photoperiod)as well as meteorological parameters ,
:::::
water

::::::::::
availability (e.g., soil and atmospheric water availability)to predict

vegetation state and functionality (e.g., Lowman and Barros, 2018; Kim et al., 2015; Caldararu et al., 2014; Stöckli et al., 2008; Moradkhani et al., 2005)155

. In addition to recomputing the same outputs of interest from the DCHM-V, we run
:::::
vapor

:::::::
pressure

::::::
deficit),

::::
and

::::
local

:::::::::
vegetation

:::::::::::
characteristics

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Lowman and Barros, 2018; Kim et al., 2015; Caldararu et al., 2014; Stöckli et al., 2008; Moradkhani et al., 2005)

:
.
:::
An

::::::::
ensemble

:::::::
Kalman

:::::
filter

::::::
(EnKF)

::::
data

:::::::::::
assimilation

:::::::::
procedure

::::::::
following

:::::::::::::::::::::::
Lowman and Barros (2018)

::
is

::::
used

::
to

::::::::
estimate

::::::::
ensembles

:::
of

:::::::::
parameters

:::
for

::::
use

::
in

:::
the

:::::::::
predictive

:::::::::
phenology

::::::
model.

:
Monte Carlo simulations of the DCHM-PV with the

ensemble
:::::::::
ensembles

::
of

::::::::
predictive

:::::::::
phenology

:
parameters from the EnKF in order to predict FPAR and LAI from the DCBP160

rather than forcing phenology with MODIS
:::
data

::::::::::
assimilation

::::
step

:::
are

::::
used

::
to

:::::::
explore

:::
the

::::::::::
propagation

::
of

::::
error

::::
and

:::::::::
uncertainty.

We validate model simulations against ground
::::::::::
observations,

::::::::
remotely

:::::::
sensing

::::
data, remotely sensed, and other modeled

observations. The data sets
:::::::
products.

::
A
::::::::
summary

:::
of

:::
the

::::
data

::::
sets

::::
used

:
to force or validate all versions

::::
both

::::::::::::
configurations

of the DCHM are summarized
:
is
::::::::
provided in Table 1and described in the following subsections.

2.2 Forcing Data Sets
:::
for

::::::
DCHM165

2.2.1 Meteorological

The 1-D DCHM (-V
::::::::
DCHM-V

:
and -PV ) spatial and temporal resolution is set to the scale of the available

::::
same

::::
scale

:::
as

::
the

:::::::
highest

::::::
quality

:
precipitation forcing data

:::::::
available. For this study, we use the

:::
the

::::::
model

::::
uses

:::
the

:
native resolution of

6



Table 1. Summary of data products and uses

Dataset Variable(s)
Spatial Reso-

lution

Temporal

Resolution
Use Reference

StageIV

::::::
Stage-IV

:

Precipitation 4 km hourly Forcing

Baldwin and

Mitchell (1998)

Du (2011)

NLDAS-2

Forcing File

A

Atmospheric 0.125◦ hourly
Forcing/Data

Assimilation
Mitchell et al. (2004)

NLDAS-2

Mosaic

Vegetation

Fraction/

Albedo

0.125◦ hourly
Forcing/Data

Assimilation
Xia et al. (2012)

MODIS

MOD15A2H
LAI/FPAR 500 m 8 day

Forcing/Data

Assimilation
Myneni et al. (2015)

MODIS

MOD12Q1
Land Cover 500 m yearly Forcing

Friedl and Sulla-

Menashe (2015)

STATSGO
Soil Texture

and Porosity
30 arcsec fixed forcing

Miller and White

(1998)

AmeriFlux
GPP, latent

heat, SM
point 30 min. Validation

Baldocchi et al.

(2001)

MODIS

MOD17A2H
GPP 500 m 8 day Validation Running et al. (2015)

Noah-LSM

:::::::
NLDAS-2

:

SM 0.125◦ hourly Validation Xia et al. (2012)

SMERGE SM 0.125◦ hourly Validation Tobin et al. (2019)
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the Stage-IV precipitation forcing from the National Oceanic and Atmospheric Administration (NOAA) National Centers for

Environmental Prediction (NCEP) (Baldwin and Mitchell, 1998; Du, 2011). The Stage-IV dataset has 4 km spatial resolution170

and 1 h temporal resolution and is available beginning from
:::
with

::
a
::::::
record

:::::::::
beginning

::
in

:
2002.

:::
All

::::::
forcing

::::
data

::::
sets

:::::
were

::::::::::
interpolated

::
to

:::
the

:::::::
Stage-IV

:::::::::
resolution

:::
for

:::
the

:::::
entire

::::::::::
continental

:::
US

::::::::
(CONUS)

::::::
before

:::::
study

:::
site

:::::::
specific

::::
data

::::
were

:::::::::
extracted.

Atmospheric forcing data
:::::::::
(downward

::::
short

::::
and

::::
long

::::
wave

:::::::::
radiation,

::
air

:::::::::::
temperature,

::::::
specific

::::::::
humidity,

:::::::
surface

:::::::
pressure,

:::::
wind

:::::::
velocity)

:
used in the DCHM are from the North America Land Data Assimilation System Phase 2 (NLDAS-2) Forcing File

A. NLDAS-2 is a combination of observational and reanalysis data sets (Mitchell et al., 2004) intended for use in land surface175

models like the DCHM. The data are available at 0.125 degree spatial resolution and
:
1
::
h

:::::::
temporal

:::::::::
resolution.

:::::
They

:::
are

:::::::
spatially

interpolated to the 4 km Stage-IV grid. No temporal interpolation was necessary.

2.2.2 Land Cover

The land surface albedo and fraction of vegetation cover come from
::::
used

::
in

:::
the

:::::::::
DCHM-V

:::
and

::::
-PV

:::::
come

::::
from

:::
the NLDAS-2

Mosaic Land Surface Model L4 dataset
:
at

:::::
0.125

::::::
degree

:::::
spatial

:::::::::
resolution

:::
and

:
1
::
h
:::::::
temporal

:::::::::
resolution (Xia et al., 2012; Mitchell180

et al., 2004). NASA’s Moderate Resolution Imaging Spectroradiometer (MODIS )
::::::
MODIS

:::::
Land

:::::
Cover

:
(MCD12Q1

:
)
:
remotely

sensed satellite data
:::
land

:::::
cover

:::::::::::
classification

:
product is used to inform the model of land cover classification

::::::::
determine

::::
land

::::
cover

:::::
type

:::::
within

::::
the

::::::
DCHM. In particular, we use the University of Maryland classification scheme (Sulla-Menashe and

Friedl, 2018). Within the model, the classification
:::
land

:::::
cover

::::
type

:
is updated yearly. The native spatial resolution of this data

set is 500 m and we
:
it
::
is interpolated to the 4 km size for model implementation using a most frequent

::::::::
resolution

::::
using

::
a

::::::
nearest185

:::::::
neighbor

:
approach.

2.2.3 Soil Texture and Porosity

Soil texture and porosity data was acquired from Soil Information for Environmental Modeling and Ecosystem Management

CONUS-Soil (Miller and White, 1998). The CONUS-Soil spatial resolution is 1 km with 11 layers. We upscaled the raw soil

texture and porosity data to the 4-km Stage-IV grid . For each pixel, we
::::
using

::::
two

:::::::
different

::::::::
methods.

:::
By

:::::::::
averaging

::::
over

:::
the190

:::
top

:::
100

::::
cm,

:::
we

::::
avoid

:::::::::
averaging

:::::
layers

::::::::::
interpolated

:::
as

:::::::
bedrock,

:::
and

::::
thus

::::
near

::::
zero

::::::::
porosity.

:::
We

:
approximate soil porosity by

averaging the top eight layers (100 cm) and we represent texture using the most frequent texture . By averaging over the top

100 cm, we avoid averaging layers interpolated as bedrock, and thus near zero porosity
:::::
texture

:::::
mode

::::::
across

::::
each

::::
grid

:::
cell

::::
and

::::
layer.

2.2.4 Vegetation195

MODIS LAI and FPAR data were downloaded
::::::
obtained

:
for all of CONUS at the native 500-m spatial and 8 day

::::
8-day

:
tem-

poral resolution. Before scaling to the DCHM grid and time scale
::::::
linearly

:::::::::::
interpolating

:::
the

:::::
data

::
to

:::
the

::::::::
Stage-IV

::::
grid

::::
and

:::::::
timestep, the data for each pixel were smoothed using a Savitsky-Golay

::::
filter (Savitzky and Golay, 1964) algorithm follow-

ing Chen et al. (2004) in order to preserve seasonality and reduce noise associated with cloud cover
::
in

:::
the

::::
data

:::::
from

:::::
cloud
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:::::::::::
contamination

:
and other atmospheric effects

::::::::::
disturbances

::::
that

::::
may

::::
alter

::::::
surface

::::::::::
reflectance

::::::::::
observations

:
(Cihlar et al., 1997;200

Tanré et al., 1997). We use the m=6 scaling window and d=4 degree of
::
for

:
the interpolating polynomial as in Chen et al. (2004)

and Lowman and Barros (2016). After the smoothing filter is applied, the data is up-scaled from 500 m to 4 km resolution and

linearly interpolated to a 1 h temporal resolution.
:::::::::::::::::::::::::::::::::::::
(Chen et al., 2004; Lowman and Barros, 2016).

:

2.3 Validation Data Sets
:::::
Used

:::
for

::::::
Model

:::::::::::
Comparison

We use the
:::::
assess

::::::::
vegetation

:::::::::
responses

::
to

:::
the

:::::::
Kansas flash drought of 2012 to compare model results

::
by

:::::::::
comparing

::::::
model205

:::::
results

:::
of

::::
land

:::::::
surface,

::::::::::
sub-surface

:::
and

:::::::::::
atmospheric

::::::
carbon

::::
and

:::::
water

:::::
fluxes

:::::
(e.g.,

::::
SM,

:::::
GPP,

::::
ET)

:
to multiple ground and

remotely sensed observations. Modeled soil moisture (SM ) fluxes
:::
SM

:::::
fluxes

:::::
from

:::
the

:::::::::
DCHM-V

::::
and

::::
-PV

:
are compared

to SoilMERGE (SMERGE),
::::::::
NLDAS-2

::::::
NOAH

::::::
model

::::::
output,

::::
and

:::::::::
AmeriFlux

:::::
eddy

:::::::::
covariance.

:::::::::
SMERGE

::
is

:
a 0.125 degree

root-zone (0-40 cm) SM product obtained from ‘merging’ NLDAS-2 outputs with European Space Agency Climate Change

Initiative surface satellite data which
:::
that can predict vegetation health anomalies (Tobin et al., 2019).

:::::::
Because

:::::::::
SMERGE

::::
only210

:::::::
provides

::::::::
root-zone

::::
SM,

:::
we

::::
only

::::::::
compare

::
it

::
to

:::
the

:::::::
DCHM

::::::
middle

:::::
layer

:::
SM

:::::::
output. We also validate SM estimates against

simulated SM from
::::::::
NLDAS-2

::::::::
estimates

:
Noah land-surface model (LSM) for all three root zones

:::
soil

:::::
layers used in DCHM .

Noah-LSM is a physically based model forced with NLDAS-2 Forcing File A (Xia et al., 2012)). When AmeriFlux SM data

is available, we compare with modeled soil moisture from the top layer since most AmeriFlux SM sensors are in the top few

centimeters of soil. Computed outputs
::::::::
DCHM-V

::::
and

::::
-PV

::::::::
estimates

:
of GPP are compared to MODIS (MOD17A2H) GPP215

product and AmeriFlux eddy covariance outputs of GPP. We computed ET from
:::
also

::::::::
compare

:::::::
DCHM

::::::::
estimates

::
of

:::
ET

:::
to

AmeriFlux eddy covariance flux tower values by dividing
:::::::
estimates

:::
by

:::::::
dividing

::::::::
observed latent heat flux by the latent heat of

vaporization of water and use the results to validate model outputs of ET
::::::::::::::::::::::::::::::
(λw = 2.5 MJ kg−1, Dingman, 2015)

:
).

2.4 Model Site Locations
::::::::::
Description

:::
of

:::::
Study

:::::
Sites

This study employs eddy covariance data from
::::::
focuses

::
on

:
three AmeriFlux sites in Kansas (US-KFS, US-KLS, US-Kon,220

Figure 2 and Table 2). Each site was ,
:

chosen because of the availability of GPP and latent heat (converted to ET) data

during the flash drought year of 2012 and at least one wet year after 2012.
:::::
When

::::::::
available,

:::
we

:::::
used

::::::::
gap-filled

::::::::::
FLUXNET

:::::::::
FULLSET

:::
data

:::
for

::::::::
US-KFS

:::
and

:::::::
US-Kon

::::::::::::::::::::
(Pastorello et al., 2020).

:::
All

:::::
three

::::
sites

:::
are

::::::::
classified

::
as

:::::::::
grasslands

:::::::::
according

::
to

:::
the

::::::::::
International

::::::::::::::::::
Geosphere-Biosphere

::::::::::
Programme

:::::::
(IGBP)

::::
land

:::::
cover

:::
and

:::
all

:::::
three

::::
sites

::::
have

::::
Cfa

:::::::
(humid,

::::::::::
subtropical)

:::::::
Köppen

::::::
Climate

::::::::::::
Classifications

::::::::::::::::::::::::::
(Brunsell, 2020a, 2021, 2020b).

::::::::
US-KFS

::
is

::::::
located

::::::
within

:
a
:::::::::::::::::
grassland-deciduous

:::::
forest

::::::::
boundary

::::
area225

:::
and

:::::::
receives

:::::
1014

:::
mm

:::
of

:::::::::::
precipitation

:::::::
annually

:::::::::::::::
(Brunsell, 2020a).

::::::::
US-KLS

::
is

:
a
:::::::::

perennial
:::::::::
agricultural

:::::
study

:::::
sties

::::::::
receiving

:::
812

::::
mm

::
of

::::::
rainfall

::::
each

:::::
year

:::::::::::::
(Brunsell, 2021)

:
.
:::::::
US-Kon

::
is

:::
part

:::
of

:::
the

:::::
Konza

::::::
Prairie

:::::::::
Long-term

::::::::::
Ecological

::::::::
Research

:::::::
(LTER),

::::::
recieves

::::
867

:::
mm

::
of
::::::::::::
precipitation,

:::
and

::
is

:::::
burned

::::::::
annually.

:
Static characteristics of PFT, soil texture and porosity, and geographic

information for the study sites are shown in Table 2. According to the MODIS land cover classification product (MCD12Q1),

each site had a unique vegetation cover type (savanna, grassland, cropland, Table 2). The PFT is a result of interpolating230

MODIS MCD12Q1 Land Cover Type 2 to the 4-km grid and does not necessarily align with the land cover from AmeriFlux.

The soil texture and porosity are interpolated CONUS-Soil (Miller and White, 1998) values.

9



Figure 2. Maps
:::::::
Evolution of the U.S.

::::
2012

::::
flash

::::::
drought

::::
from

::::
May

:
-
:::
Aug

::
in

:::
the

::
US

:
Drought Monitor with the three AmeriFlux tower

::::
study

sites (US-KFS, US-KLS, and US-Kon)showing the evolution of the U.S. flash drought of 2012.

Table 2. AmeriFlux study sites contained within StageIV
::::::
Stage-IV

:
pixels.

Site Latitude Longitude PFT
:::
Soil Texture

:::
Soil Porosity

Reference
::::
Mean

:::::::::
Precipitation

:::
[
:::
mm

:::
yr−1]

AmeriFlux

mean StageIV

2012 StageIV

2019
:::::::
Reference

US-KFS 39.0561 -95.1907 SAV silty clay loam 0.4225
Brunsell (2020a)

1012

597 1373

:::::::::::::
Brunsell (2020a)

US-KLS 38.7754 -97.5684 CRO silt loam 0.4812 Brunsell (2021) 812

558

1425
:::::::::::
Brunsell (2021)

US-Kon 39.0824 -96.5603 GRA silty clay loam 0.4588
Brunsell (2020b)

867

490

1346
::::::::::::
Brunsell (2020b)

Plant functional type (PFT), soil texture, and soil porosity determined after interpolation to the Stage-IV grid. Abbreviations: SAV = Savanna, CRO = Cropland, GRA =

grassland. Precipitation totals listed as AmeriFlux annual mean.
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2.5 Model Description
:
of
:::::::::
Modeling

:::::
Work

2.5.1
::::::::::::
Land-Surface

:::::::::
Hydrology

::::::
Model

We employ two 1-D versions of the DCHM coupled land-surface hydrology model that accounts for mass (water ) and energy235

transfers
:::::
water

:::
and

::::::
energy

:::::::::
exchanges

:
between three soil layers, the surface, and the atmosphere (Devonec and Barros, 2002))

applied on a
:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Lowman and Barros, 2018, 2016; Tao and Barros, 2014, 2013; Yildiz et al., 2009; Yildiz and Barros, 2007, 2005; Gebremichael and Barros, 2006; Garcia-Quijano and Barros, 2005; Devonec and Barros, 2002; Barros, 1995)

:
.
::
A 4-km grid. The 4-km grid was chosen since it is the

::::::::
resolution

:::
and

::::
1-hr

:::::::
timestep

:::::
were

::::::
chosen

::
to

:::
run

::::
the

:::::
model

::
to

::::::
match

::
the

:
native spatial resolution of the Stage-IV

::::::::::
precipitation data, as precipitation is the main source of uncertainty when model-

ing drought (Trenberth et al., 2014). The soil depths we use best match the USDA Kansas soil profile (Soil Survey Staff). We240

maintain 8 cm
::
We

:::
use

:::
80

:::
mm

:
for the top soil layer for

::::
layer

::::
soil

:::::
depth

::
to

:::::
ensure

:
model stability, but use 35 in. (approx 89 cm) for

root zone depth and 72 in (89-183 cm) for the impermeable layer. This yields the
::::::
middle

:::
and

::::
deep

::::::
layers

::::
were

:::::::
selected

::
to

::::
best

:::::
match

:::
the

::::::
USDA

::::::
Kansas

:::
soil

::::::
profile

::::::::::::::::
(Soil Survey Staff).

::::
The

:::
this

::::::
yields three soil layers: top (0-8 cm

::::
0-80

::::
mm), middle (8-89

cm) ,
::::::
80-890

::::
mm)

:
and bottom (89-183 cm). Each PFT has its own root distribution function dictating root water uptake through

the three layers (Lowman and Barros, 2016; Zeng, 2001; Lai and Katul, 2000; Clausnitzer and Hopmans, 1994).
:::::::
890-1830

:::::
mm).245

::::::
Rooting

:::::
depth

::::
and

::::::
density,

:::::
which

:::
are

::::
used

::
to
:::::::::
determine

:::
the

::::
total

:::
root

:::::
water

::::::
uptake

::
in

:::
the

:::::::
DCHM,

::
are

:::::::::
calculated

:::::
using

::::::::
empirical

:::::::::
exponential

::::
root

:::::::::
distribution

::::::::
functions

::::
that

::::
vary

::
by

::::
PFT.

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Lowman and Barros, 2016; Zeng, 2001; Lai and Katul, 2000; Jackson et al., 1996; Clausnitzer and Hopmans, 1994)

:
.
:::
Soil

::::
layer

::::
and

::::::
rooting

::::::
depths

::::
align

::::
with

:::
the

:::::::
different

:::::::::::
combinations

::
of

:::
soil

:::::::
textures

:::
and

:::::
PFTs

:::::
found

::
in

:::::::::::::::::::::::::::
Thornthwaite and Mather (1957)

:
.

The
::::::
DCHM water balance includes subroutines for evaporation from the different land surfaces (

:::::::::
components

:::
of

:::
the

::::
land250

::::::
surface

::::
(i.e.,

:
bare soil,

:::
and

:
vegetation), ponding and groundwater runoff, snow hydrology

:::::::::::
accumulation

:::
and

:::::
melt, and root

water uptake while energy balance routines solve for net radiative fluxes, sensible and latent heat transfers
::::::::
radiation,

::::
and

:::::::
sensible,

:::::
latent

::::
heat, and ground heat fluxes (Lowman and Barros, 2018, 2016; Tao and Barros, 2014, 2013; Yildiz and Barros,

2007, 2005; Garcia-Quijano and Barros, 2005; Devonec and Barros, 2002; Barros, 1995). The water and energy balances are

linked through parameterized routines for photosynthesisfollowing
::::
both

::::::::
influence

:::::::::::::
photosynthesis,

:::::
which

::
is
:::::::::
simulated

:::::
using255

the Farquhar model (Lowman and Barros, 2016; Garcia-Quijano and Barros, 2005; Farquhar and Caemmerer, 1982; Farquhar

et al., 1980).

The main

2.5.2
:::::::::
Predictive

:::::::::
Phenology

:::
The

::::
key

:
difference between the DCHM-V and DCHM-PV is that

:::
two

:::::::
versions

::
of

::::
the

::::::
DCHM

:::::
used

:::
for

::::
this

:::::
study

::
is

::::
that260

:::::
within

:
the DCHM-V has vegetative phenology forced with updates from

::::::::
vegetative

::::::::::
phenology

::
is

:::::
forced

:::::
using

::::
the MODIS

MOD15A2H FPAR and LAI productsand
:
,
:::::
while the DCHM-PV implements a subroutine for predicting phenology (DCBP).

The DCHM-PV is run using an ensemble of parameters (Table 4) generated using an EnKF from outputs from the DCHM-V

following Lowman and Barros (2018) with a separate simulation for each ensemble member.
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::::::
predicts

:::::::::
phenology

:::
for

:::
the

::::
next

:::
day

:::::
based

::
on

:::
the

::::::
current

:::
day

::::::::::
conditions. Establishing differences in the outputs from DCHM-265

V and -PV illuminate
:::::::::
illuminates

:
changes in plant behavior

:::::
growth

::::::::
strategies. MODIS is a passive sensor and observes

::::
uses

only the red (648 nm) and near-infrared (NIR, 858 nm) spectral bands to estimate values of LAI (Myneni et al., 2015). The

DCBP
::::::
Within

:::
the

::::::::::
DCHM-PV,

:::
the

::::::::
dynamic

::::::
canopy

::::::::::
biophysical

:::::::::
properties

:::::::
(DCBP)

:
model predicts plant life stage based on

climatological properties of water availability, air temperature, and evaporative demand (Lowman and Barros, 2018). We

updated FPAR and LAI instead of forcing them with
::
are

:::::::::::
dynamically

::::::::
estimated

:::::::
instead

::
of

::::::
forced

:::::
using

:
MODIS observa-270

tions to evaluate impacts on estimates of ET and GPP (Lowman and Barros, 2018; Kim et al., 2015; Caldararu et al., 2014).

Predicting phenological state variables also provides updates on daily time scales rather than through interpolation from the 8

day measurements of MODIS. We compare model outputs for a wet year and a dry year to illuminate the vegetation responses

to flash drought.

The data assimilation procedure within the275

:::
The

::::::
DCBP

::
is

:::
the

:::::::::
predictive

:::::::::
phenology

::::::
model

:::
that

::::::::::
determines

:::::
future

:::::
plant

::::::
growth

::::::
based

::
on

::::::::::
differences

:::::::
between

:::::::
current

:::
and

::::::::
potential

::::::::::
phenological

::::::
states.

::::
The

:::::::
growing

::::::
season

:::::
index

:::::
(GSI)

::::::::::
determines

:::::::
potential

:::::::::::
phenological

:::::
state

:::::
based

::
on

:::::::
current

::::::
climate

:::::::::
conditions

:::::::::::::::::::::::::::::::
(Jolly et al., 2005; Stöckli et al., 2008)

:
.
::::::::::
Specifically

:
it
::
is

::
a

:::::::
function

::
of

:::::::::::
temperature,

::::::::::
photoperiod,

::::
soil

:::::
water

:::::::
potential,

::::
and

:::::
VPD

::::::::::::::::::::::::::::::::::::::::
(Lowman et al., 2023; Lowman and Barros, 2018)

:
.
:::::::::::::::::::::::
Lowman and Barros (2018)

::::::
adapted

:::
the

::::::::::
framework

::
to

:::::::::
incorporate

:::
soil

:::::
water

:::::::::
parameters

::::
that

:::::
affect

:::::::::
predictions

::
of

::::
plant

::::::
growth

:::::
stage.

::::
The

:::::
DCBP

::
is

:::::::::::
implemented

:::::
within

:::
the

::::::::::
DCHM-PV280

::
to

:::::::
estimate

:::::::::
phenologic

:::::
state

::::
with

:::
the

:::
the

::::::::::
land-surface

:::::::::
hydrology

::::::
model.

:::::::::
However,

::
in

:::::
order

::
to

:::::::::
implement

:::
the

:
predictive phe-

nology model jointly estimates the current phenological state (FPAR, LAI) along with eleven parameters (Table 4) required to

calculate the next phenological state (Lowman and Barros, 2018)
:::::
within

:::
the

::::::::::
DCHM-PV,

:::
we

:::
first

:::::
must

:::::::
estimate

:::::::::
parameters

::::
that

::::::::
determine

::::
plant

:::::::
growth

::::
rates

:::
and

:::::::::
sensitivity

::
to

:::::::::::::
meteorological

:::
and

:::
soil

::::::::::
conditions.

:
A
:::::::::

Bayesian
::::::::::
hierarchical

::::::::
approach

::
is

::::
used

:::
to

:::::::
estimate

:::
the

::::::::::
parameters

:::
for

:::
the

::::::
DCBP.

:::::::::::
Specifically,

:
a
:::::

dual
:::::::::::::
state-parameter285

::::::::
ensemble

:::::::
Kalman

::::
filter

:::::::
(EnKF)

::
is
:::::

used
::
to

::::::
jointly

::::::::
estimate

:::
the

::::::::::
phenologic

:::::
states

::
of

::::::
FPAR

::::
and

::::
LAI

::::
and

:::
the

::::::
eleven

:::::
other

:::::::::
parameters

::::::
within

:::
the

::::::
DCBP

::::::::::::::::::::::::::::::::::::::::::::::::
(Table 4 Lowman et al., 2023; Lowman and Barros, 2018). This method was first introduced

::::::::
described by Moradkhani et al. (2005) as a way of simultaneously predicting states and parameters in hydrology

:::::::::
hydrologic

models, and it was later implemented by Stöckli et al. (2008) specifically for assimilating remotely sensed data in phenological

models. Lowman and Barros (2018)) added additional soil water parameters to the data assimilation system to improve phenological290

state predictions. Using outputs from the DCHM-V and updating phenological states from MODIS FPAR and LAI in the DCBP,

we generate ensembles of phenology parameters representing different precipitation regimes (above average, below average,

and mixed conditions). We run Monte-Carlo simulations of the DCHM-PV with
:
to

:::::::::
assimilate

:::::::
remotely

::::::
sensed

:::::::::::
observations

::
of

:::
LAI

::::
and

:::::
FPAR

::::
into

:
a
::::::::
predictive

:::::::::
phenology

::::::
model.

:

:::
The

:::::::::
parameter

::::::::
estimation

:::::::::
procedure

:::
first

:::::::
consists

::
of

:::::::
creating

:
a
::::
prior

::::::::::
distribution

:::
by

:::::::
sampling

::::
each

::::
state

::::
and

::::::::
parameter

::::
from

::
a295

:::::::
Gaussian

::::::::::
distribution.

:::::
This

::::::::
generates N=2000 ensembles of the DCBP model parameters. Ensembles were generated using the

final mean and standard deviations of the parameters from each inference period
::::::::
ensemble

::::::::
members.

:::::::::::
Phenological

:::::
states

::::
and

::::
input

:::::::::
parameters

:::
are

:::::::
updated

::
at
:::::
every

:::::::
timestep

:::
for

:::
the

::::::::
duration

::
of

:::
the

::::
data

::::::::::
assimilation

:::::
period

:::::
using

:::
the

::::::
EnKF.

:::
We

:::::::::
assimilate
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::::::
MODIS

::::
LAI

::::
and

:::::
FPAR

:::::
every

::
8
::::
days

::::
(the

::::::
native

:::::::
MODIS

::::::::
temporal

:::::::::
resolution)

::
to

::::::
reduce

:::::
error

:::
and

::::::
ensure

::::
that

:::::::::::
phenological

::::
state

:::::::::
predictions

:::
do

:::
not

::::
stray

:::
too

:::
far

::::
from

:::::::::::
observations

::::::::::::::::::::::::::::::::::::::::
(Lowman et al., 2023; Lowman and Barros, 2018).300

2.6 Model Simulations

We begin by running
::
run

:::::
both

:
the DCHM-V

:::
and

::::
-PV

:
from 2002-2019 (

:
at

::
a
::
1

::
h

:::::::
timestep

::::
and

::
4
:::
km

::::::
spatial

::::::::::
resolution,

spinning-up 2002 three times to allow for model stabilization , Lowman and Barros (2016, 2018)) for all three sites. Using

the
::::::::::::::::::::::::::::
(Lowman and Barros, 2016, 2018).

::::
The DCHM-V outputs from 2003-2005 along with the DCBP, we generate ensembles

(N=2000) of
::::::::::
simulations

::::::
provide

::
a
::::::::

baseline
:::
for

:::::::
changes

:::
in

:::::
water,

:::::::
energy,

::::
and

::::::
carbon

::::::::
exchange

:::::
using

::::::
forced

::::::::::
phenology305

::::
from

:::::::
MODIS

:::::
while

:::
the

::::::::::
DCHM-PV

:::::::::
simulations

::::::::::
implements

::
a
::::::::
predictive

:::::::::
phenology

:::::::
scheme

:::
that

::::::
allows

:::
us

::
to

:::::::::
investigate

::::
how

:::::::
dynamic

:::::::
changes

::
in

::::
plant

:::::::
growth

::::::
strategy

::::::
impact

:::
the

:::::::::::::
aforementioned

::::::
fluxes.

::
In

:::::
order

::
to

:::
run

:::
the

::::::::::
DCHM-PV,

:::
we

::::
first

:::::::
generate

:
phenology model parameters for three meteorological scenarios for each

site (Table 3)yielding a total of twelve simulations (one DCHM-V and three
:::
the

::::::::
predictive

:::::::::
phenology

:::::::
routine.

::::::::::
Specifically,

:::
we

:::
use

::::
2003

::::::
(DRY),

:::::
2005

:::::::
(WET),

:::
and

:::::::::
2003-2005

::::::
(3YR),

::
as

:::
the

::::
data

::::::::::
assimilation

::::::
periods

::
in

:::
the

::::::
DCBP

::
to

:::::::
generate

:::::::::
parameters

::::
that310

:::::::::
correspond

::
to

::::
wet,

:::
dry,

::
or

:::::::
average

::::::::::
precipitation

:::::::
regimes

:::::
(Table

:::
3).

:::
We

:::
use

::::
three

::::::::
different

::::::::::
assimilation

::::::
periods

::
in

::::
order

::
to
:::::::
capture

::
the

:::::::::
sensitivity

::
of

:::::::::
phenology

::::::
model

:::::::::
parameters

::
to

:::
the

::::::::::::
meteorological

::::::::::
conditions.

:
It
:::
has

:::::
been

:::::
shown

:::::
under

::::::
varied

::::::::::::
climatological

::::::::
conditions

::::::
plants

:::
can

:::
be

::::::
highly

:::::::::
adaptable,

::::::::::
transitioning

:::::
from

::::::::
isohydric

::
to
::::::::::

anisohydric
:::

in
:
a
::::::

single
::::::
season

:::::::::::::::
(Guo et al., 2020)

:
.
:::::::::::::::::::::::
Lowman and Barros (2018)

::::::
showed

::::
that

::::::::::
assimilation

::::::
period

::::
can

:::::::::
determine

:::
the

:::::
water

::::::
stress

::::::::::
adaptations

:::
for

:::
the

::::::::
modeled

::::::::
vegetation

:::::
state.

:::::::
Broadly

:::::::
speaking

:::::::::
vegetation

:::::
model

::::::::::
parameters

:::::::
predicted

:::::
using

::::
data

::::
from

:::::
years

::::
with

:::::::
minimal

::::::
rainfall

::::::::
represent315

:::::
plants

:::
that

:::
are

::::::::::
accustomed

::
to

::::
drier

:::::::::
conditions

:::
and

:::::::
therefore

::::::
exhibit

:::::
more

::::::::
regulation

::
in

::::
their

:::::
water

:::
use

:::::::::
tendencies

:::::::::::::::::::::::::::::::::::::
(Lowman and Barros, 2018; Sade et al., 2012)

:
.

::
To

::::::::::
incorporate

:::::::::
uncertainty

:::::
from

:::
the

:::::::::
phenology

:::::::::
parameter

:::::::::
estimation

:::
step

::::
into

:::
the

:
DCHM-PV for each of the three sites).

Each of the nine phenology ensembles consist of
:::::::::
simulation,

:::
we

:::
run

:::
the

:::::
model

:::
as

:::::
Monte

:::::
Carlo

::::::::::
simulations

::::
with

:::
N=2000 sets

of parameters so each of the nine DCHM-PV simulations consist of 2000 Monte Carlo experiments. We chose the
::::::::
members.320

::::
Each

::::::::
ensemble

:::::::
member

::
is

:::::::
sampled

:::::
from

:
a
::::::::
Gaussian

::::::::::
distribution

::::
using

:::
the

:::::
final

::::
mean

::::
and

:::::::
standard

::::::::
deviation

::
of

:::
the

:::::::::
parameter

:::::::
estimates

:::::
from

::::
each

::
of

:::
the

:::::::::::
assimilations

:::::::
period.

::
In

:::
our

:::::::
results,

::
we

:::::
focus

:::
on

::::::::
analyzing

::::::
model

::::::
output

::::
from

:::::::::
2006-2019

::
to
:::::

omit

::::
from

:::
our

:::::::
analysis

:::
the

:
2003-2005 period because it allows us to establish ensembles of phenology parameters associated with

dry, wet, and mixed condition periods. The parameters used in
:::::
period

::::
used

::
in the DCHM-PV simulations are from the one-year

periods of 2003 (DRY) and 2005 (WET), and from the three-year period2003-2005 (3YR). The chosen assimilation period is325

prior to the case studies described in Section 2.7, thereby preventing the use of over fit model parameters when investigating

the behavior of the DCHM-PV results.
::::
data

::::::::::
assimilation

::::
step.

:

The three sets of phenology parameters for each site allows us to investigate vegetation-atmosphere feedbacks through

different causal lenses by generating phenology model parameters in several climate scenarios. Furthermore, this type of

simulation permits us to investigate if meteorological conditions alter plant behavior (become more isohydric or anisohydric),330

rather than investigating if vegetation behavior affects the development of flash drought . Broadly speaking, vegetation model

parameters trained on dry conditions will represent isohydric vegetation and vice versa for vegetation trained on wet conditions
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Table 3. Summary of precipitation conditions during assimilation periods.

Stage-IV Annual Precipitation Accumulation [mm]

Year(s)

Abbreviations

:::::::::
Assimilation

::::::
Period*

US-KFS US-KLS US-Kon

2003-2005 3YR 1066 770 847

2003 DRY 804 756 670

2005 WET 1242 806 956

*The data assimilation periods: 3YR represents a period with average annual precipitation, WET and DRY are periods with above

and below average annual precipitation, respectively.

because vegetation adapted to minimal rainfall is more conservative in its water use (Lowman and Barros, 2018; Sade et al., 2012)

. By using the three different data assimilation periods, we are able to capture the sensitivity of phenology model parameters

to the meteorological conditions.335

2.7 Study Period and Outputs

We run the DCHM-V and DCHM-PV for 2002-2019. We are able to generate phenology parameters using a subset of this

time frame (2003-2005), allowing us to investigate land-atmosphere interactions outside of the parameter inference period. We

highlight

2.7
:::::::

Analysis
::
of

::::::
Model

:::::::
Outputs340

::
In

:::
this

::::::::::
manuscript,

:::
we

:::
are

::::::::
interested

:::
in

::::::::
exploring

:::::::
whether

:::::::::::
land-surface,

:::::::::
subsurface,

::::
and

::::::::::
atmospheric

::::::::::
interactions

:::
are

:::::::
distinct

::
in

::::
flash

:::::::
drought

::::::::
compared

::
to

:::::::
drought

::::
and

::::::::::
non-drought

:::::::
periods.

:::
We

:::::
focus

:::
on results from the three AmeriFlux sites for 2012

(flash drought),
:::::
2018

::::::::
(drought),

:
and 2019 (above average precipitation

::::::::::
non-drought) to draw conclusions about plant responses

:::::::
response

:
during flash drought . We are also able to compute yearly totals of GPP and ET

:::
and

::::
how

::::
they

:::::
differ

:::::
from

:::::::
drought

:::
and

::::::::::
non-drought

::::::
years.

:::
We

::::
also

:::::::
evaluate

:::::
model

:::::::
outputs from 2006-2019 to assess interannual variability of outputs from

:::
the345

:::::::::
differences

:::::::
between

:::
the DCHM-V and DCHM-PV .

:::::
model

::::::::::::
configurations

:::::
during

:::::::
drought

:::
and

::::::::::
non-drought

:::::
years

::::::::
compared

::
to
::
a

::::
flash

::::::
drought

:::::
year.

::::::
During

:::
this

::::
time

::::::
period,

:::
we

::::::::
identified

:::::::
drought

::::
years

::
as

:::::
2006,

:::::
2011,

:::::
2013,

:::::
2014,

::::
2018

::::
and

::::::::::
non-drought

:::::
years

::
as

:::::::::
2007-2010,

::::::::::
2015-2017,

::::
2019

:::::
using

:::
the

::::::
USDM

:::
for

::
the

:::::::
Central

:::
and

::::
East

::::::
Central

::::::
Kansas

::::::
climate

:::::::
regions

::::::::::::::::::
(Svoboda et al., 2002)

:
.
:::::::
Drought

:::::
years

::::
were

::::::::::
determined

:::
by

:::::::
whether

::::
parts

:::
of

:::
the

::::::
region

:::::::
reached

:::
the

:::
D2

:::::::
“Severe

::::::::
Drought”

:::::::::::
classification

:::
or

::::::
higher.

:::::
When

:::::::::
computing

:::::::
drought

::::
and

::::::::::
non-drought

::::::::
averages,

:::
we

::::
use

:::
the

:::::
years

:::::
listed

:::::
here.

::
In

:::::
many

::::
time

::::::
series

::::::
results,

:::
we

:::::::
display350

::
the

::::::
water

::::
year

:::::::::::::
(April-October)

:::::
rather

::::
than

::::
the

:::::
entire

::::
year

:::::::
because

:::::
plants

:::
are

:::::::
largely

:::::::
dormant

::::::
outside

:::
of

:::
the

:::::
water

::::
year

::
in

::
a

::::::::
temperate

::::::
region

::::::::::::::::::::::::::::::::::::::::::::::::::::
(Dai et al., 2016; Wang et al., 2003; Towne and Owensby, 1984).

:
Transpiration is calculated from total root

water uptake through the three soil layers
:::
and

::::
total

::::::::::
evaporation

:::
is

::::::::
computed

:::::
from

::::::::
summing

::::::::::
evaporation

:::::
from

::::::
ground

::::
and
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::::::
canopy

:::::::
surfaces

::::::::
allowing

::
us

:
to partition ET into evaporation and transpiration (Lowman and Barros, 2018; Lai and Katul,

2000). Water use efficiency is represented as the ratio of GPP and ET (WUE = GPP/ET, Beer et al. (2009)). We highlight355

differences between the DCHM-V and DCHM-PV model simulations and compare outputs to remotely sensed and in situ

observations where available.

Figure 3. Schematic of modeling workflow. Spatial and temporal resolutions of all forcing data
::
are

:::::::::
interpolated

::
to

:
match

::
the

::::::::
resolution

:
of
:::

the
:
Stage IV precipitation (4 km and 1 h) and dictate

::::
which

::
is
:::
the

::::::::
resolution

::::
used

::
for

:::
the

:
DCHM scales

:
in
:::
this

:::::
study. Land cover, soil

properties, and atmospheric forcing inputs come from MODIS, STATSGO, and NLDAS-2, respectively. Simulations are run from 2002-2019.

Three ensembles of parameters for the predictive phenology routine in the DCHM-PV are determined
:::::::
generated using an ensemble Kalman

filter (EnKF) with
:::::::
simulated

:::
soil

:::::
water

::::::
potential

::::
and

::::
vapor

:::::::
pressure

:::::
deficit

::::
from

:::
the DCHM-Voutputs, MODIS MOD15A2H FPAR/LAI,

and concurrent meteorological conditions from 2003 (DRY), 2005 (WET), and 2003-2005 (3YR). DCHM-V outputs of interest include

evapotranspiration (ET), Root water uptake (RU), and gross primary productivity (GPP). Additional DCHM-PV outputs include predicted

fraction of photosynthetically active radiation (FPAR) and leaf area index (LAI).

3 Results

We first present phenology model parameters as estimated from the data assimilation procedure. Then, we show DCHM-V (

forced phenology) and DCHM-PV (predictive phenology) results.360

3.1 Phenology

3.1.1 Phenology Model Parameters
:::::::
Growth

::::
Rate

::::::::::
Parameter

The growth rate parameter, γ, dictates how much phenological state (i.e. FPAR and LAI) can change in a given time step

(Lowman and Barros, 2018; Stöckli et al., 2008). Lower uncertainty in the growth rate parameter
:::
The

:::::::::
uncertainty

:::
in

:
γ
::::::
shows

15



::
the

:::::::::
variability

::
in

:::::::::
vegetation

::::::::
responses

::
to

::::::::
changing

::::::::::
phenological

::::::
states.

:::::
Lower

::::::::::
uncertainty

::
in

:
γ
:
establishes the 3YR assimilation365

period, with a mixture of wet and dry years, as the preferred choice for running the DCHM-PV (Figure 4)and .
::::
This

:::::::
finding

is in agreement with Lowman and Barros (2018)
:::
who

:::::
found

::::
that

:::::
using

::::::::::
assimilation

:::::::
periods

::::
with

::::
both

:::
wet

::::
and

:::
dry

:::::::::
conditions

:::
has

:::
the

:::::
effect

::
of

:::::::::
capturing

:::::::
adaptive

:::::
plant

:::::
water

:::
use

::::::::
strategies. This lower uncertainty propagates through the DCBP in the

DCHM-PV, reducing
::::::
leading

::
to
:::::
lower

:
uncertainty in the predictions of FPAR and LAI (Figures 5 and 6). The values of γ vary

by site , and therefore plant function type(PFT
:::
due

::
to

:
a
:::::::::::

combination
::
of

:::::
local

::::::
climate

::::
and

:::::::::
vegetation

::::
type.

::::::::
US-KFS,

::::::::
modeled370

::
as

:
a
::::::::
savanna,

:::
has

:::
the

::::::
lowest

:::::
mean

:::
and

::::::::
standard

::::::::
deviation

::
of

::
γ
::::::
(Table

:
4). The smaller magnitudes of the growth parameters

indicates that vegetation is less likely to make abrupt changes and exhibit more resilience when faced with extreme dry down.

Other parameter estimation outputs used to generate ensembles from the 3YR assimilation period can be found in Table 4.
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0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
 [
-]

3YR WET DRY

KFS

KLS

Kon

Figure 4. Growth rate parameters,γ with
:::::::
Ensemble

:::::
means

:::
and

:
one standard deviation

:
of

:::
the

:::::
growth

::::
rate

::::::::
parameter,

::
γ, for each site for

:::
and

all three data assimilation periods: 3YR (2003-2005), WET (2005), DRY (2003).

3.1.2 FPAR

::::::
Overall,

::::::::::
DCHM-PV

::::::::
simulated

::::::
FPAR

::::
tends

::
to
::::::
follow

:::
the

:::::
same

::::::
patterns

:::
as

::::::
MODIS

::::::::::
throughout

:::
the

:::::::
growing

::::::
season,

::::::::::
irrespective375

::
of

::::::
choice

::
of

::::::::::
parameters. Results indicate slower senescence and reduced variance using the 3YR assimilation parameters

::
as

::::::::
compared

::
to

:::
the

:::::
WET

:::
and

::::
DRY

::::::::::
parameters during late June and early July 2012 across all three sites . A decrease in FPAR can

be seen in late June 2012 across all simulations (Figure 5
::::
a,d,g). This aligns with the known period of flash drought that occurred

across Kansas (Lisonbee et al., 2021). For each site, the simulated FPAR from the 3YR assimilation phenology parameters

shows a less dramatic response in the decrease in FPAR when compared to the DCHM-PV simulations using the WET and380

DRY parameters. The predicted values of FPAR at US-KFS and US-KLS are slightly higher than the MODIS values during

the 2012 growing season. The predicted values of FPAR match well against MODIS for the US-Kon site, especially during the

decline in late June through July. During the flash drought period, there is a notable decrease in variance, or uncertainty, across

the Monte Carlo simulations.
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Table 4. Phenology
::::::::
Ensemble

::::
mean

:::
and

:::
one

::::::
standard

:::::::
deviation

::
of

::::::::
predictive

::::::::
phenology model parameters from

::
the

:
3YR assimilation period.

Mean parameter estimates ± one standard deviation

Parameter Description Units US-KFS US-KLS US-Kon

Tminmin Minimum value of daily minimum temperature ◦C −5.5± 3.1 0.1± 2.4 −2.3± 3.2

Tminmax Maximum value of daily minimum temperature ◦C 14.0± 1.8 16.5± 1.8 15.8± 2.0

Phtmin Minimum daily exposure to sunlight h 10.0± 0.4 9.8± 0.6 10.7± 0.6

Phtmax Maximum daily exposure to sunlight h 14.3± 0.3 14.2± 0.4 14.3± 0.4

V PDavgmin Minimum daily average vapor pressure deficit mb 17.1± 1.3 16.6± 1.4 16.9± 1.4

V PDavgmax Maximum daily average vapor pressure deficit mb 58.7± 2.3 55.8± 2.2 55.6± 2.3

ψsoil,avgmin Minimum daily average soil water potential J kg−1 −42.1± 5.6 −37.2± 5.8 16.9± 5.5

ψsoil,avgmax Maximum daily average soil water potential J kg−1 −7.4± 1.3 −7.0± 1.4 −6.9± 1.4

FPARmin Minimum fraction of photosynthetically active

radiation

- 0.31± 0.01 0.35± 0.01 0.31± 0.01

LAImax Maximum leaf area index m2 m−2 6.36± 0.15 6.51± 0.17 6.65± 0.18

γ growth rate day−1 0.22± 0.04 0.31± 0.06 0.38± 0.08

For an in depth description of the predictive phenology routine within dynamic canopy biophysical properties (DCBP) model see Lowman et al. (2023) and Lowman and Barros

(2018).

Time series of fraction of photosynthetically active radiation (FPAR) predicted from DCHM-PV for the flash drought year385

(2012) and an above average precipitation year (2019) for the three AmeriFlux study sites (US-KFS, US-KLS, US-Kon). The

different colors represent the usage of parameters from the different data assimilation periods (yellow - 3YR (2003-2005), blue

- WET (2005), red - DRY (2003), with corresponding shaded regions representing one standard deviation of model outputs

from the 2000 ensemble simulations. 8 day MODIS MOD15A2H FPAR is indicated with black markers. The gray shaded

region highlights the June to July decrease in FPAR during the 2012 flash drought. For US-KFS across the three simulations,390

the simulation using the WET parameters achieves a higher FPAR during the flash drought and holds its peak throughout the

month of May, with declines beginning in June and bottoming in early July before rising again in the latter part of the growing

season. The decrease in FPAR for the WET parameters is
:::::
FPAR

:::::::::
decreases from 0.77 to 0.41

::
for

:::
the

:::::
WET

::::::::::
parameters while

reductions from the time of peak FPAR to early July in the simulations using DRY and 3YR parameters are from 0.73 to 0.47

and 0.76 to 0.53, respectively.395

:::
The

::::::::
decreases

::
in

:::::
FPAR

::::::::
observed

::::
from

::::::::
mid-May

::
to

::::::::
mid-July

::
in

::::
2012

:::
are

:::::
more

:::::::::
pronounced

::::
than

::::::
during

:::
the

:::::::
growing

::::::
season

::
of

::
the

:::::::
drought

::::
year

:::::
2018

::::
when

::::::::::
fluctuations

::
in

::::::
FPAR

::::
were

:::::::
smaller. Results from an above average precipitation year (2019) show

a steady increase, a longer peak
::::::
growing

:
season, and a decrease in line with fall senescence across all simulations, though

:
.

::::::::
However,

::::
using

:
WET and DRY parameters at US-KLS both lead to a phenological response in

:::
lead

::
to

::::
∼0.2

::::::::
reduction

::
in
::::::
FPAR

::
in July 2019,

::::::
opposed

::
to
:::::
∼0.1

::::::::
reduction

::::
from

:::
the

:::::
3YR

:::::::::
parameters.

::::
The

:::::
larger

::::::::
reduction

::
is likely due to the below average July400

precipitation . Overall, the simulations tend to follow the same patterns as MODIS throughout the growing season, irrespective
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Figure 5.
::::::
Fraction

::
of

::::::::::::::
photosynthetically

:::::
active

:::::::
radiation

::::::
(FPAR)

:::::::
predicted

::::
from

::
the

:::::::::
DCHM-PV

:::
for

::
the

::::
flash

::::::
drought

::::
year

:::::
(2012),

::
a
::::::
drought

:::
year

::::::
(2018),

:::
and

:
a
::::::::::
non-drought

:::
year

::::::
(2019).

:::::
Colors

::::::
indicate

:::
the

:::::::
different

:::
data

:::::::::
assimilation

:::::::
periods:

::::
3YR

:::::::
(yellow),

::::
WET

:::::
(blue),

::::
DRY

:::::
(red).

:::::::::::
Corresponding

:::::
shaded

::::::
regions

:::::::
represent

::::
one

::::::
standard

::::::::
deviation

::
of

:::::
model

::::::
outputs

::::
from

:::
the

::::
2000

:::::::
ensemble

::::::::
members.

::::
The

::::
8-day

:::::::
MODIS

:::::::::
MOD15A2H

::::
LAI

::
is

:::::
shown

::
as

::::
black

::::
dots.

:::
The

::::
gray

:::::
shaded

::::::
regions

::
in

::
the

:::
left

::::
most

:::::
panels

::::::::
highlights

:::
the

::::
2012

::::
flash

::::::
drought

:::::
period.

of choice of parameters
::
and

::::
the

:::::
larger

:::::
WET

::::
and

::::
DRY

::::::
values

:::
of

:
γ
:::::::

leading
::
to
:::::

more
:::::
rapid

:::::::::::
phenological

:::::::
changes. Similar to

the 2012 results,
::::
2019 simulations using phenology parameters from the 3YR assimilation period showed slower late-season

declines in FPAR than the simulations using parameters derived from the WET or DRY assimilation periods. This behavior

can be seen from the 3YR parameter simulations for US-KLS and US-Kon which show higher FPAR through July. At these405

sites, the dip in July FPAR using the WET and DRY parameters is likely due to the susceptibility of abrupt changes in response

to minimal July rainfall. At US-KFS, the three different simulations vary little from one another which could be due to the

savanna representation at US-KFS and its resiliency to the minimal July precipitation during 2019. Despite the minimal July

rainfall, phenological stages were generally resilient due to the abundance of soil water from early precipitation.

3.1.3 LAI410

Predicted values of LAI are similar to MODIS LAI , with relative differences between DCHM-PV and MODIS similar to the

FPAR results
::::
with

::::
small

:::::::
relative

:::::::::
differences

:
(Figure 6). During the flash drought year of 2012, a steep decline in modeled LAI
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Figure 6.
:::
Leaf

::::
area

::::
index

:::::
(LAI)

:::::::
predicted

::::
from

:::::::::
DCHM-PV

:::
for

:::
the

::::
flash

::::::
drought

::::
year

:::::
(2012),

::
a
::::::
drought

::::
year

::::::
(2018),

:::
and

:
a
::::::::::
non-drought

:::
year

::::::
(2019).

:::::
Colors

::::::
indicate

:::
the

::::::
different

::::
data

:::::::::
assimilation

::::::
periods

::::::
(yellow

:
-
:::
3YR

::::::::::
(2003-2005),

::::
blue

:
-
::::
WET

::::::
(2005),

:::
red

:
-
::::
DRY

::::::
(2003)),

::::
with

::::::::::
corresponding

::::::
shaded

:::::
regions

::::::::::
representing

:::
one

::::::
standard

:::::::
deviation

::
of

:::::
model

::::::
outputs

::::
from

::
the

::::
2000

::::::::
ensemble

:::::::::
simulations.

:::
The

:::::
8-day

::::::
MODIS

:::::::::
MOD15A2H

::::
LAI

::
is

:::::
shown

::
in

::::
black

:::::::
markers.

:::
The

:::
gray

::::::
shaded

::::::
regions

::
in

::
the

:::
left

::::
most

:::::
panels

::::::::
highlights

::
the

::::
2012

::::
flash

::::::
drought

::::::
period.

can be seen in late June and early July across the three sites. The LAI experienced declines of
:::
LAI

:::::::
declines

:
almost 1 m2 m−2

in just a few days.
:
a
:::
few

::::::
weeks

::::::
during

::::::
summer

:::::
2012

::::::::
compared

::
to
:::::::
steadier

::::::
values

:::::
during

:::
the

:::::::
drought

::
of

:::::
2018.

::::::::
Growing

::::::
season

:::
LAI

::::
was

::::
∼0.5

:::
m2

::::
m−2

:::::
lower

::
in
:::::
2012

::::::::
compared

::
to

:::::
2018.

:
DCHM-PV model outputs of LAI during 2019 match MODIS but are415

1-2 m2 m−2 higher during June, July, and early August at US-KFS and US-KLS, and slightly lower than MODIS at US-Kon.

Time series plots of leaf area index (LAI) predicted from DCHM-PV for the flash drought year (2012) and an above average

precipitation year (2019) for the three AmeriFlux study sites (US-KFS, US-KLS, US-Kon). The different colors represent the

usage of parameters from the different data assimilation periods (yellow - 3YR (2003-2005), blue - WET (2005), red - DRY

(2003)), with corresponding shaded regions representing one standard deviation of model outputs from the 2000 ensemble420

simulations. 8 day MODIS MOD15A2H LAI is indicated with black markers. The gray shaded region highlights the June to

July decrease in FPAR during the 2012 flash drought. Simulated LAI

::::::::
Simulated

::::
LAI

::::::
values vary slightly across the three sites. For US-KFS, simulations using the WET year parameters achieve

higher values in LAI than the other two simulations (Figure 6 a,b
::
a-c). For US-KLS, and US-Kon, the growing season LAI has
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the highest peaks in the simulations using the 3YR parameters (Figure 6 c,d
:::
d-i). With more rainfall in May and June 2019, the425

simulations using the WET parameters show
:::::
result

::
in lower LAI than the simulations using the DRY parameters.

The most consistent similarities across the phenology results is that the simulations using the 3YR parameters generally

show a slower decline in LAI in both a flash drought year and a wet year
:::
flash

::::
and

::::::::
non-flash

::::::
drought

:::::
years for all sites. Another

similarity across these figures is that
::::::::::
Additionally,

:::
the

:
simulations using WET and DRY parameters align with one another more

than they match
:::
are

::::
more

::::::
similar

::
to

::::
each

:::::
other

::::
than

::
to the simulations using 3YR parameters. This result is commensurate with430

the values of the means and variances of the growth rate parameters
:
γ resulting from the different assimilation periods.

Differences in the growth rate parameter can also be seen in LAI outputs from the simulations of the DCHM-PV (6). During

the 2012 flash drought, simulations
:::::::::
Simulations

:
using the 3YR assimilation period show LAI staying

::::
result

::
in

::::
LAI

:::::::::
remaining

high for a longer period of time , and the decrease develops
:::
with

::
a

:::::::
decrease

::
in

::::::::
response

::
to

:::::
flash

::::::
drought

::::::::::
developing slower

than the other two simulations. This feature is also apparent in the 2019 plots for US-KLS and US-Kon . In
:
in

:
the 2019 plots,435

simulations continue to show growth through June, with peaks occurring
::::
3YR

:::::::::
simulations

:::
in

:::::
which

::::
leaf

::::::
growth

:::::::::
continues

::::::
through

::::
June

::::
and

:::::
peaks in the middle of July, while the LAI in plots of

::
in the WET and DRY simulations seem to flatten their

growth
:::
new

:::::::
growth

::::
tends

::
to

:::::
slow from the beginning of June to

::::::
through

:
mid-July.

3.2 Vegetation Responses

3.1.1 GPP440

::::::::
Generally,

:::
the

:::::::::
predictive

:::::::::
phenology

:::::
model

::::::::
compares

::::::::
favorably

::::
with

:::
the

::::::::
seasonal

:::::::
changes

:::::::
observed

::
in

:::::::
MODIS

::::::
FPAR

:::
and

::::
LAI

:::::::
(Figures

:
5
::::
and

::
6)

::
in

::::
both

:::::
flash

::::::
drought

::::
and

::::::::
non-flash

:::::::
drought

:::::::
periods.

::
In

:::
the

:::::::
summer,

::
at
::::::::
US-KFS

:::
and

::::::::
US-KLS

::::::
during

:::::
2019,

::
the

::::::
model

:::::
tends

::
to

::::::
predict

:::::
FPAR

:::
and

::::
LAI

::::::
values

:::::
higher

::::
than

::::::::
MODIS.

::
In

:::::
2019,

::
at

::::::::
US-KFS,

:::::::
MODIS

:::::::
observed

::
a
:::::
steady

:::::::
decline

::
in

:::::
FPAR

::::
from

:::
0.8

::
to

:::
0.6

:::::::::
throughout

::::
July

:::::::
followed

:::
by

::
an

:::::::
increase

::
to

:::
0.8

::::
over

::
an

:::::
8-day

::::::
period

::
at

:::
the

::::::::
beginning

::
of

::::::
August

:::::::
(Figure

:::
5c).

::::
The

::::::::::
DCHM-PV

:::::
results

:::
do

:::
not

:::::
show

:::
the

:::::
same

:::::::
decline.

::::::::
Similarly,

:::::::
MODIS

::::::::
observes

:
a
:::::
drop

::
in

::::
LAI

::::::
(Figure

:::
6c)

::::::
before

:::
an445

:::::
abrupt

:::::::
increase

:::::
while

::::::
model

:::::::
estimates

::::::
remain

::::::
higher

::::
than

:::::::
MODIS.

::::
Yet,

::
in

::::
June

:::::
2019

::
at

:::::::
US-Kon,

:::
the

::::::::::
DCHM-PV

::::::::
estimates

:::
are

:::::
lower

:::
than

:::::::
MODIS

:::::
LAI.

Time series of yearly totals of GPP and ET for 2006-2019 at US-KFS, US-KLS, and US-Kon from DCHM-V, three

DCHM-PV, AmeriFlux, and MODIS (GPP only). Yearly totals from the 2000 DCHM-PV Monte Carlo simulations are shown

as ensemble means and one standard deviation indicated by error bars. Estimates of ET from AmeriFlux were generated by450

dividing measurements of latent heat by the coefficient of vaporization and were eliminated from the analysis if more than

20% of the yearly data was missing.
:::
The

:::::
bulk

::
of

:::
the

:::::::::
following

:::::
results

::::
and

:::::::
analysis

::::::::
compares

:::::::::
vegetation

:::::::::
responses

::::::
during

::::
flash

:::::::
drought

:::
and

::::::::
non-flash

:::::::
drought

::::::
periods

:::::
rather

::::
than

:::
an

::::
inter

:::::
model

::::::::::
comparison

::::::
across

:::
the

:::::::
different

::::::::::
assimilation

:::::::::
strategies.

::::::::
Estimates

::::
from

:::
the

:::::
WET

:::
and

:::::
DRY

:::::::::
simulations

::::
tend

::
to
:::
be

::
in

:::::::::
agreement

::::
with

:::::
results

:::::
from

:::
the

::::
3YR

::::::::::
simulations.

:::::
From

:::
this

:::::
point

:::::::
forward,

:::
we

::::
only

::::
show

::::::
results

::::
from

:::
the

:::::
3YR

::::::::::
simulations.455
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Figure 7.
::::::::
DCHM-PV

::::
3YR

:::::::
ensemble

:::::
means

::
of

:::::::
monthly

::::::::
infiltration

::::::::::
accumulations

:::
for

::::::
drought

:::
(red

:::::
dashed

::::
line)

:::
and

:::::::::
non-drought

::::
(blue

::::::
dashed

:::
line)

:::::
years

:::::::
compared

::
to

::::
2012

:::::
(black

::::
solid

::::
line)

:::
for

::
all

::::
three

::::
study

:::::
sites.

::::::
Monthly

::::
sums

:::
are

::::::::
computed

::::
from

:::
the

:::::::
ensemble

:::::
means

::
of

:::
the

::::
2000

:::::
Monte

::::
Carlo

:::::::::
simulations

:::
then

:::::::
averaged

:::::
across

::::::
drought

::
or

::::::::::
non-drought

::::
years.

:::::
Error

:::
bars

:::::::
represent

:::
one

:::::::
standard

:::::::
deviation

:::::
across

::::::
drought

:::
and

:::::::::
non-drought

:::::
years.

Yearly totals (2006-2019) of GPP are shown in Figure ?? a-c for each site. The points used in the yearly time series represent

the ensemble means from DCHM-PV and yearly totals from DCHM-V, MODIS, and AmeriFlux tower records. The DCHM-PV

yearly totals of GPP at
:::::
During

:::::::::::
non-drought

:::::
years,

:::::::
monthly

:::::::::
infiltration

::::::::::::
accumulations

:::
are

:::::
above

::
or

::::
near

::::
100

:::
mm

:::
per

::::::
month,

:::
on460

:::::::
average,

::::
from

:::::
April

::
to

::::
July

::::
with

:::
the

::::::
highest

:::::::
amounts

::
in
:::::
May

::::::
(Figure

:::
7).

::::::
During

:::::::
drought

:::::
years,

:::::::::
infiltration

:::::::
between

:::::::::
April-July

:
is
::::
less

::::
than

::::::::::
non-drought

:::::
years.

:::::::::::
Furthermore,

:::::::
monthly

:::::::::::
accumulated

:::::::::
infiltration

::
is

:::::
lower

::::::
during

::
the

:::::
flash

::::::
drought

::::
year

:::::::::
compared

::
to

::::
both

::::::
drought

::::
and

::::::::::
non-drought

:::::
years,

:::::::::
suggesting

:::::
there

:
is
::::
less

:::::
water

:::::::
available

:::
for

:::::
plant

:::
use

:::::
during

:::
the

:::::::
growing

:::::::
season.

::
At

:
US-

KFS
::::
from

::::::::::::
April-October

::
of

:::::
2012,

:::::::
monthly

:::::::::
infiltration

::
is

:::::::
slightly

:::::
below

::::
that

:::::::
observed

::::::
during

:::::::
drought

:::::
years.

::
A

::::
large

:::::::
decline

::
in

::::
May

:::::::::
infiltration

::
at

:::::::
US-KLS

:
and US-Kon are similar to totals estimated for the same sites in another study which updated LAI465

and vegetation cover dynamically using Noah-MP (Hosseini et al., 2022). Ameriflux tower yearly totals were discarded from
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the analysis if more than 20% of the data were missing for the year. The error bars on the DCHM-PV plots show one standard

deviation from the mean for the 2000 ensemble members. Carbon uptake during water stress years is about
:::
led

::
to

:::::::::
infiltration

::::::::::::
accumulations

:::
that

:::
are

:::
1-2

:::::::
standard

:::::::::
deviations

:::::
below

:::::::
average

:::::::
drought

:::::::::
conditions.

:::
All

::::
sites

:::
had

:::::::::
infiltration

::::
rates

::::::
below

:::
100

::::
mm

::
for

:::
all

::::::
months

::::::
during

::::
2012

::::
with

:::
the

:::::::::
exception

::
of

:::::::
US-KLS

::
in
:::::::
August

:::::
2012.470

::::
Low

:::::::
monthly

:::::::::
infiltration

:::::::
amounts

::::::
during

:::
the

::::
flash

:::::::
drought

::::
year

:::
are

:::::
likely

:::
due

:::
to

:::::
lower

::::::::::
precipitation

::::::::::::
accumulations

:::::::
(Figure

:::
A4)

:::::::
coupled

::::
with

:::
an

:::::::
increase

::
in

:::
the

:::::::
number

::
of

::::
days

::::::::
between

:::::::::::
precipitation

:::::
events

:::::::
(Figure

::
8)

:::
and

:::
an

:::::::
increase

::
in

:::::::::::
atmospheric

::::::
demand

:::
for

:::::
water

::::::
(Figure

:::
A).

::::::
During

:::::::
drought

:::
and

::::::::::
non-drought

::::::
years,

::
the

:::::::
average

::::::
number

:::
of

::::
days

:::::::
between

::::::
rainfall

:::::
events

::::::
within

:
a
::::::
month

:::::
ranges

:::::
from 1 kgCm−2 less than during years experiencing above average precipitation. The DCHM-V, which uses

MODIS to update vegetation state indices (FPAR and LAI), compares well in magnitude to MODIS GPP yearly assimilation475

rates. In periods where there is no water stress (e
::
to

:
7
:::::
days,

:::::
while

:::
the

:::::
lower

:::
end

:::
for

:::
the

::::
flash

:::::::
drought

::::
year

::
is

:::::
higher

::
at

:::
2.5

:::::
days.

::::::::::
Additionally,

::::::
during

:::::::
drought

:::
and

:::::::::::
non-drought

:::::
years,

:::::::
monthly

:::::::::
infiltration

:::::::
exceeds

:::
150

::::
mm,

:::
but

::
in
:::::
2012

:::::::
remains

::
at

::
or

:::::
below

:::
75

:::
mm

:::
for

:::
all

::::
sites

::::
aside

:::::
from

::::::
August

::::
2012

::
at
::::::::
US-KLS

:::::
where

::::::::
monthly

:::::::::
infiltration

:
is
::::::
∼110

::::
mm.

::
In

:::::
2012,

::
all

:::::
three

::::
sites

::::::::
averaged

:::
over

::::
four

::::
days

:::::::
between

:::::::
rainfall

:::::
events

::::::
during

::::
May,

:::::
June,

:::
and

::::
July

::::
with

:::::::
US-KFS

::::::::
averaging

::::
over

:::
six

::::
days

:::::::
between

::::::
rainfall

::::::
events

:::::
during

::::
both

:::::
May

:::
and

::::
June

::::
and

::::
more

::::
than

::::
five

::::
days

::
in

::::
July

:::::::
(Figure

:::
8a).

::::::
Across

:::
all

:::::
three

::::
sites

::::
from

::::::::::::
April-October

:::::
2012,

:::::
there480

::::
were

:::::
more

:::
than

::::
four

::::
days

::::::::
between

::::::::::
precipitation

::::::
events

::::
80%

::::::
percent

:::
of

::
the

:::::
time

::::::::
compared

::
to

:::
just

:::::
20%

::
of

:::
the

::::
time

::
in

::::::::
non-flash

::::::
drought

:::::
years.

:
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Figure 8.
::::::
Monthly

::::::::
infiltration

::::::::::
accumulation

::
vs

::::::
average

::::
days

::::::
between

::::::::::
precipitation

:::::
events

:::::
within

:
a
::::
single

:::::
month

:::
for

::
(a)

:::::::
US-KFS,

:::
(b)

:::::::
US-KLS,

:::
and

::
(c)

::::::::
US-KON.

::::
Each

:::::
shape

:::::::
indicates

:::
one

::::::
month

:::
over

:::::
which

:::
the

::::::::
averaging

:::::::
occurred

:::
and

:::::
colors

:::::::::
distinguish

::::
flash

::::::
drought

::::::
(black)

::::
from

::::::
drought

::::
(red)

:::
and

:::::::::
non-drought

:::::
(blue)

::::
years.

3.2.2
:::
Soil

::::::::
Moisture
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:::
Soil

::::::::
moisture

:::::::
analysis

::::
and

::::::::::
comparison

::
to

:::::
other

::::
soil

::::::::
moisture

:::::::
products

::
is
:::::::

similar
:::
for

:::
all

::::
three

:::::
study

:::::
sites.

:::::::
Figures

:::
for

::::
soil

:::::::
moisture

::
at

:::::::
US-KFS

:::
for

:::
all

::::
three

::::
soil

:::::
layers

:::
are

:::::::
available

::
in
::::::::::::
supplemental

:::::::
material.

::::
Top

::::
layer

::::
soil

:::::::
moisture

:::::::
reaches

:::
the

::::::
wilting485

::::
point

::::::
several

:::::
times

:::::::::
throughout

:::
the

::::
flash

:::::::
drought

::::::
period

::
of

::::
2012

:::::::
(Figure

::::
Aa).

::::::
During

::::
peak

:::::
flash

:::::::
drought,

::
at

:::
the

:::
end

::
of

::::
June

::::
and

::::::::
beginning

::
of

:::::
July,

:::::::
moisture

:::::::
content

:::::::
remains

::
at

::::::
wilting

:::::
point

:::
for

:::::
many

:::::
days.

:::::
Daily

:::
soil

::::::::
moisture

::::::
agrees

::::
with

:::::::::
AmeriFlux

::::
soil

:::::::
moisture

:::::::::::
observations

::
in

:::
the

:::
top

::::
layer

::::::
during

::::
2012

::
at
::::::::
US-KFS.

::::::::::::
Discrepancies

::::
exist

::
in

:::::
2018

:::::
when

:::::::::
AmeriFlux

:::::::::::
observations

:::
fall

::
to

:::::
levels

:::
just

:::::
above

::
0

:::
m3

::::
m−3. g.

::::::::::
Fluctuations

::
in

:::
soil

::::::::
moisture

:::::
match

:::::::::
favorably

::::
with

::::::::
NLDAS-2

::::::::
estimates

::::::
across

:::
the

:::
top

::::
two

:::::
layers

::
in

:::::
2012,

::::
2018,

::::
and

:::::
2019.490

::::::::
However,

::::::
middle

::::
layer

:::
soil

::::::::
moisture

::::
from

:::::::
DCHM

::::::::
estimates

:
is
:::::
about

::::
0.05

:::
m3

::::
m−3

::::::
higher

::::
than

::::::::
NLDAS-2

::::
and

::::::::
SMERGE

:::
by

:::
the

:::
late

:::::::
growing

::::::
season

::
of

:::
the

::::
flash

:::::::
drought

::::
year

::::::
(Figure

::::
A2).

::::::
DCHM

::::::::
estimates

::::::
remain

:::::
fairly

::::::
steady

::
in

::
the

:::::
deep

::::
layer

::::::
during

:::::
2012,

::::
while

:::::::::
NLDAS-2

::::
soil

::::::::
moisture

::::::::
estimates

:::::::
continue

::
to
::::

fall
:::::::::
throughout

:::
the

::::
rest

::
of

:::
the

:::::::
growing

::::::
season

:::::::
(Figure

::::
A3).

::::
The

::::::
steady

::::::
DCHM

:::
soil

::::::::
moisture

:::::
levels

::::::
during

::::
flash

:::::::
drought

:::
may

:::
be

::::::::
indicative

::
of

:::
the

::::::::
modeling

:::::::
stunting

::::
root

:::::
water

::::::
uptake

:::::
during

:::
the

:::::
same

::::
time,

:::::::::
preserving

:::
soil

:::::
water

:::::::
content.

:
495

3.2.3
::::
Root

::::::
Water

:::::::
Uptake

::::
Root

:::::
water

::::::
uptake

::
is

:::::
above

::::::::
non-flash

:::::::
drought

:::::
levels

::
in

:::::
2012

:::::
before

:::
the

:::::
onset

::
of

:::::
flash

:::::::
drought

::
in

::::
June.

:::::
Then

::
it

:::::::
remains

:::::
lower

:::
than

:::::::::
non-flash

::::::
drought

::::::
levels

:::
for

:::
the

::::::::
remainder

:::
of

:::
the

:::::::
growing

::::::
season

:::::::
(Figure

::::
A6).

::::
The

::::::
middle

:::
soil

:::::
layer

::
is

::::::::::
responsible

:::
for

::
up

::
to

::::
four

:::::
times

:::::
more

:::
root

:::::
water

::::::
uptake

::::
than

:::
the

:::::
other

::::::
layers.

:::::
Thus,

:
a
::::::
major

::::::
decline

::
in

::::
root

:::::
water

::::::
uptake

:::::::
through

:::
the

::::::
middle

::::
layer

::
is

::::::::::
informative

::
of

::::
how

::::
plant

:::::
water

:::
use

::
is

::::::
altered

:::::
during

::::::::
drought.

:::::
While

::::
root

:::::
water

:::::
uptake

:::::
starts

:::
out

::
in

:::::
2012

:
at
::::::
levels

:::::
above500

::::::
average

:::::::::::
non-drought

:::::
years,

::
it

::::
falls

::
to

:::::
more

::::
than

:::
one

::::::::
standard

::::::::
deviation

:::::
below

:::::::
drought

::::::::
averages

::
by

::::
July.

:::::
This

::::::
drastic

::::
shift

::
is

:::::
likely

:::
due

::
to

:::::
lower

:::::::::
infiltration

:::::::
(Figure

::
7)

:::
and

::::::
drives

:::::
down

::::
rates

::
of
:::::::::::

transpiration
::::::
within

:::
the

:::::::::
DCHM-V

:::
and

::::
-PV

::::
over

:::
the

:::::
same

::::::
period.

3.3
:::::::::::::::
Plant-Atmosphere

:::::::::::
Interactions

3.3.1
::::::::
Sub-daily

::::::::
Stomatal

::::::::::::
Conductance505

::::::::
Sub-daily

::::::::
estimates

::
of
::::::::

stomatal
:::::::::::
conductance

::::::::
highlight

::::
how

:::::
VPD

:::
can

:::::
drive

::::::::
stomatal

:::::::
activity

:::::
within

::::
the

:::::::
DCHM.

::
In

::::::
2012,

:::::::
stomatal

::::::::::
conductance

::
in

:::
the

::::
first

::::
week

:::
of

::::
May

:::
was

::
as

::::
high

:::
or

:::::
higher

::::
than

::
in 2019), the

:
,
:
a
::::::::::
non-drought

::::
year

::
at

:::::::
US-KFS

:::::::
(Figure

::
9).

::::
But

::
by

::::
July,

::::::
major

:::::::::
differences

::
in

:::::
2012

:::
and

:::::
2019

:::::::
stomatal

:::::::::::
conductance

:::::::
coincide

::::
with

:::::::
changes

::
to

:::::
VPD.

:::
In

::::
July

:::::
2012,

::::
high

::::
VPD

:::::
shuts

:::::
down

::::::
midday

::::::::
stomatal

::::::::::
conductance

:::::::
whereas

:::::
lower

::::::
values

::
of

:::::
VPD

:::::
allow

:::
for

:::::
higher

:::::
rates

::
of

:::::::
stomatal

:::::::::::
conductance

:::::
during

:::
the

:::::
same

::::
time

:::
in

:::::
2019.

:::
The

:::::
large

::::::::
reduction

::
in
::::::::

stomatal
:::::::::::
conductance

::::
from

:::
the

::::
first

:::::
week

::
of

::::
May

:::
to

:::
the

::::
first

::::
week

:::
of510

:::
July

::::::
during

:::
the

::::
flash

:::::::
drought

::::
year

::
of

:::::
2012

:
is
::::::
unlike

:::
that

::::
seen

::
in
::
a
:::::::
drought

:::
year

::::
like

::::
2018

::::::
where

:::::::
stomatal

:::::::::::
conductance

::::
rates

:::
are

::::::
similar

::
in

::::
May

:::
and

::::
July.

:

3.3.2
::::
GPP
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Figure 9.
:::::::
Stomatal

:::::::::
conductance

:
[
:::
mm

:::
s−1]

:::
and

::::
vapor

:::::::
pressure

:::::
deficit

:::::
(VPD,

:::
kPa)

:::
for

:::
one

::::
week

::
in

::::
May

:::
and

:::
July

::
of

:::::
2012,

::::
2018,

:::
and

::::
2019

:::
for

:::::::
US-KFS.

:::::::
Monthly

::::::::
averages

::
of

::::
GPP

:::::::::::::
accumulations

::::
from

:
DCHM-PV predicts more carbon assimilation than DCHM-V and MODIS.

All simulations show major declines in net carbon assimilation during the
:::::::
ensemble

::::::
means

:::::::::
throughout

:::
the

:::::
water

::::
year

::::::
(April515

:
-
:::::::
October)

:::::::
indicate

::::
that

::::::
carbon

::::::
uptake

::::
falls

:::::
below

:::::::
drought

::::::::
averages

::::
from

::::
May

:::
to

::::
June

::::::
during

:::
the

::::
flash

:::::::
drought

::::
year

::
of

:
2012

flash drought
::::::
(Figure

:::
10

:::::
a,c,e).

::::::
Flash

::::::
drought

:::::::
carbon

::::::::::
assimilation

:::::::
amounts

:::::::
remain

:::::
below

:::::::
drought

:::::
levels

::::::
before

::::::::::
converging

::
to

::::::
average

::::::::::::::::::
drought/non-drought

:::::
levels

::
by

:::
the

::::
end

::
of

::::::::
October.

::::
GPP

:::::::
amounts

:::
are

:::
up

::
to

::::
50%

:::::
lower

:::
in

::::::
drought

:::::
years

:::::::::
compared

::
to

::::::::::
non-drought

::::::
years.

::::::
During

:::
the

::::
flash

::::::::
drought,

::::
GPP

::::::::
monthly

:::::
totals

::
in

::::
June

:::::::
through

::::::
August

:::::
2012

:::
are

::
at
:::::

least
:::
one

::::::::
standard

:::::::
deviation

::::::
lower

::::
than

:::::::
drought

::::
years

::::::::
averaged

::::
over

::::
the

:::::::::
2006-2019

:::::::::
simulation

::::::
period.

:::::
June

::::
2012

:::::
GPP

::::::::::::
accumulations

:::
are

::::
half520

:::
that

::
of

:::::::
drought

:::::
years

::::
and

:::
less

::::
than

:::::
30%

::
of

:::::::::::
non-drought

:::::
years.

:::
An

::::
even

:::::::
greater

::::::::::
discrepancy

::
is

:::::::
apparent

::
in
::::

July
:::::

with
::::::
carbon

::::::::::
assimilation

:::::::
amounts

::::
less

::::
than

::::
30%

:::
of

:::::::
drought

:::::
levels

:::
and

:::::
15%

::
of

:::::::::::
non-drought

:::::
levels.

:::::::
Despite

:::::::::
increased

::::
GPP

::::
from

::::
July

:::
to

::::::
August

::
in

:::::
2012,

::::::::::::
accumulations

:::
are

:::
still

::::
one

:::::::
standard

::::::::
deviation

:::::
below

:::::::
drought

:::::
levels.

We highlight the seasonal variation
::::::::
Seasonal

::::::::
variations of GPP at US-KFS (Figures 11, A15, A16

:::::
Figure

:::
11) for simulations

from the DCHM-V and -PV (3YR) with observations from MODIS and AmeriFlux for the flash drought year (2012)and an525

above average precipitation
:
,
:
a
:::::::

drought
::::
year

:::::::
(2018),

::::
and

:
a
:::::::::::
non-drought

:
year (2019) . We observe that during the growing

season of 2019, the simulations all predict GPP on par with MODIS, but during
:::
can

:::
also

:::
be

:::::::
explored

::
at

:::
the

:::::
daily

:::::
scale.

:::::
Daily

::::
GPP

::
is

:::::
lower

::
in

:::::::
drought

:::::
versus

:::::::::::
non-drought

::::
years

::::::::
between

:::::
April

:::
and

:::::::
October.

:::::::
During the flash drought of 2012, the DCHM

simulations (both -V
::::
year,

:::::
there

::
is

:
a
::::::
decline

::
in
:::::
GPP

::::
from

:::
10

:::
gC

:::
m2

:::
d−1

::
in
:::::
early

:::::
May,

:::::
above

::::
what

::::
was

::::::::
observed

::
in

::::
2018

:
and
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Figure 10.
:::::::::
DCHM-PV

::::
3YR

::::::
monthly

::::
totals

::
of
::::

GPP
:::::
(a,c,e)

:::
and

:::
ET

:::::
(b,d,f)

:::
for

::::::
drought

::::
(red)

:::
and

:::::::::
non-drought

:::::
(blue)

::::
years

::::::::
compared

::
to

::::
flash

::::::
drought

:::::
(black)

:::
for

:::::::
US-KFS,

:::::::
US-KLS,

::::
and

::::::
US-Kon

:::::::::
AmeriFlux

::::
sites.

:::::::
Monthly

::::
totals

:::
are

:::::::
computed

::::
from

:::
the

::::::::
ensemble

:::::
means

::
of

:::
the

::::
2000

:::::
Monte

::::
Carlo

:::::::::
simulations

:::
then

:::::::
averaged

:::::
across

::::::
drought

::
or

::::::::::
non-drought

::::
years.

:::::
Error

:::
bars

:::::::
represent

:::
one

:::::::
standard

:::::::
deviation

:::::
across

::::::
drought

:::
and

:::::::::
non-drought

:::::
years,

:::::::::
respectively.

-PV)respond to the dry down earlier than either MODIS or the tower. In particular, in late June to early July
::::
2019,

:::
to

::::
near530

:::
zero

:::
by

::::
July

::
in

:
2012

::::::
(Figure

::::::::::::
11,A15,A16).

::::::
During

:::
the

:::::::
drought

::::
year

:::::::
(2018),

::::
daily

:::::
GPP

::::::
remains

::::
low

:::::::::
throughout

:::
the

::::::::
growing

::::::
season,

:::
but

:::::
never

::::::::
decreases

::
to

:::::
below

:::
1.2

:::
gC

:::
m2

::::
d−1

::
at

::::::::
US-KFS.

::::
From

::::
June

:::
to

:::
July

::
in
:::::
2012, carbon uptake decreases from 5.0

to 0.7 gCm
::::::::
decreased

::::
from

:::::
more

::::
than

:
5
:::
to

:::
less

::::
than

::
1

::
gC

::
m−2 day

:
d−1. From these plots, we can also notice that uncertainties

from the ensemble runs are largest during the green up period, but are generally smaller in the flash drought year than in the

above average precipitation year.
:::
This

::::
type

:::
of

::::::
decline

::
is

:::
not

:::::::
observed

:::
in

:
a
:::::::
drought

::::
year

::::
(e.g.,

::::::
2018).

::::
The

::::
rapid

::::::
decline

:::
in

::::
GPP535

::::
from

::::
May

::
to

::::
July

::
is

::::
what

:::::::::::
distinguishes

:::
the

:::::
2012

::::
flash

:::::::
drought

::
as

::
a
:::::
period

:::
of

::::
time

:::::
where

::::::::::::::
land-atmosphere

::::::::::
interactions

::::::
switch

::::
from

:::::::::
resembling

:::::::::
conditions

::::::
wetter

::::
than

:::
an

::::::
average

::::
wet

::::
year

::
to

:::::
drier

::::
than

::
an

:::::::
average

:::
dry

:::::
year.

::::
The

::::::::::
DCHM-PV

::::
GPP

::::::
results

::
are

:::::::
similar

::
to

:::::::
MODIS

::::
GPP

::
in

:::::
most

:::::
cases,

::::::
except

:::
that

::
it
:::::
tends

::
to

::::::::::::
underestimate

::::
GPP

:::::::::
compared

::
to

:::::::
MODIS

::
in

:
a
:::::::

drought
:::::
year,

:::::
which

:::::
aligns

::::
with

:::
the

::::::
higher

:::::::
MODIS

::::::::
estimates

::
of

:::::
FPAR

::::
and

:::
LAI

::::::
during

:::
the

:::::
same

::::::
periods

::::::
(Figure

:::
6).

:::::::::
Simulated

::::
GPP

:::::
tends

::
to

:::::::::::
underestimate

::::
flux

:::::
tower

::::
GPP

::::::
during

::::
June

:::
and

::::
July

::
in

:::::
2012

:::
and

:::::
2018,

:::
but

:::::::::::
overestimate

::
in

:::::
2019.540
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Figure 11. Time series from the DCHM-V
::::
Daily

:::::
gross

::::::
primary

:::::::::
productivity, DCHM-PV three year assimilation period, 8 day MODIS,

and daily AmeriFlux totals of GPP,
:

at US-KFS for (a) 2012 , flash droughtyear and ,
:
(b)

:::
2018

::::::
drought

::::
and

::
(c)

:
2019 , an above average

precipitation
:
a

:::::::::
non-drought

:
year.

:::
One

:::::::
standard

:::::::
deviation

::
is

:::::
shown

::
as

::
a
:::::
shaded

::::::
region

::
for

:::
the

:::::::::
DCHM-PV

:::::::::
simulations.

:::::::
MODIS

::::
GPP

:::
are

:::::
shown

::
as

::
red

::::::
crosses

:::
and

::::::::
AmeriFlux

::::
GPP

::
as

::::
blue

::::
dots.

3.4 ET

Yearly ET totals for 2012 are approximately 0.1 m yr−1 less than maximum at US-KFS (Figure ?? d) and 0.2 m yr−1 at the

other
::
We

:::::::
consider

::::::::
monthly

::::::::::::
accumulations

::
of

:::
ET

::
for

:::
the

:::::
flash

::::::
drought

::::
year

::::
and

:::::::
averaged

::::::
across

::::::::
non-flash

::::::
drought

:::::
years

:::
for

:::
the

::::
three

:::::
study sites (Figure ?? e,

::
10

::::
b,d,f). DCHM-PV simulations (using WET, DRY, and 3YR) tend to estimate higher ET than the

DCHM-V and lower ET than that observed by AmeriFlux (Figure 13 with other sites in appendix, Figures A17 and A18). The545

Monte Carlo simulations indicate uncertainty is smaller during the
::
ET

::::::::::::
accumulations

:::
are

:::::
lower

::
in

:::
the

::::
flash

::::::
drought

::::
year

:::::::
starting

::
in

::::
May,

::::::::::
particularly

::
at

::::::::
US-KLS

:::
and

::::::::
US-Kon.

:::::::
Monthly

:::
ET

::::::
during

:::::::
drought

::::::
periods

:::
are

:::::::
slightly

:::::
lower,

:::
but

::::::::
generally

:::::::
similar

::
to

::::::::::
non-drought

::
at

:::::::
US-KFS

::::
and

::::::::
US-KLS,

::::::::
indicating

::::
that

:::
ET

::::
may

:::
not

::
be

::
a
:::::
strong

::::::::
indicator

::
of

:::::::
drought.

:::::::::
However,

::::::
parsing

:::
ET

::::
into

::
its

::::::::::
components

::
of

::::::::::
evaporation

::::
and

::::::::::
transpiration

:::::
offers

::
a
:::::::
different

::::::::::
perspective.

:::::::::
Simulated

:::::::
monthly

:::::::::::
transpiration

::::::::::::
accumulations

:::::
follow

::::::::::
trajectories

::::::
similar

::
to

::::
GPP

::::::
during

:
flash drought (Figure 13). Overall uncertainty in ET increases during the green up550

period at the beginning
::
12

:::::
a,c,e).

:::::::::::
Transpiration

:::::::
amounts

::::::
during

::::
flash

:::::::
drought

::::::
exceed

::::::::::
non-drought

:::::
years

::
in

:::::
April,

::::::
match

::::
what

::
is
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Figure 12. Time series
::::::::
DCHM-PV

::::
3YR

::::::
monthly

:::::
totals of ET at US-KFS for

::::::::::
transpiration,

::
T, (a

::
,c,e) 2012

::
and

:::::::::
evaporation, flash

:
E,

:::::
(b,d,f)

:::
for

drought year
::::
(red) and

:::::::::
non-drought

:
(b

:::
blue) 2019

::::
years

:::::::
compared

::
to

::::
flash

::::::
drought

:::::
(black)

:::
for

::::::
US-KFS, wet year from DCHM-V

:::::::
US-KLS, and

three different DCHM-PV simulations
:::::

US-Kon
:::::::::
AmeriFlux

:::
sites. Two standard deviations

::::::
Monthly

::::
totals

:
are shown for DCHM-PV

:::::::
computed

:::
from

:::
the

:::::::
ensemble

:::::
means

::
of

:::
the

::::
2000

:::::
Monte

::::
Carlo

:
simulations

:::
then

:::::::
averaged

:::::
across

::::::
drought

::
or

:::::::::
non-drought

::::
years. AmeriFlux ET is showing

with the blue markers
:::
Error

::::
bars

:::::::
represent

:::
one

:::::::
standard

:::::::
deviation

:::::
across

::::::
drought

:::
and

:::::::::
non-drought

:::::::::::::
years,respectively.

:::::::
observed

::::::
during

:::::::
drought

::::
years

::
in

:::::
May,

:::
and

::::::
decline

::
to

:::::
levels

::::::
below

::::::
drought

:::::
years

:::::::
through

::
the

::::
rest of the growing season(April).

The differences in simulated ET among the different assimilation strategies are most apparent during the early months of

the
:
.
:::::::::::
Transpiration

::
in

::::
July

:::::
2012

::::
falls

::::::
below

:::
one

::::::::
standard

::::::::
deviation

::
of

::::
the

::::::
drought

::::::
years.

:::
At

::
all

:::::
sites,

::::::::::
evaporation

:::::
rates

:::
for

::::::
drought

::::
and

::::::::::
non-drought

:::::
years

:::
are

::::::
similar.

:::
At

::::::::
US-KFS,

:::::::
monthly

::::::::::
evaporation

::
is

::::::::::
comparable

::
to

::::
both

:::::::
drought

:::
and

:::::::::::
non-drought555

::::
years

::::::::::
throughout

:::
the

:::::
entire growing season (April - May)with the WET assimilation showing highest rates of ET. During the

2012 flash drought from June through August, outputs of ET were similar across simulations with different phenology model

parameters. Peaks in ET occur after precipitation events with extended declines and troughs between rain events. The amount

of troughs and the corresponding ET rates are indicative of slowed vegetation activity in response to the water stress.
:::::
Figure

::::
12b).

:::
At

::::::::
US-KLS,

::::
May

:::
and

::::
June

::::::::::
evaporation

:::::
totals

:::
are

:::::
lower

::::::
during

:::
the

::::
flash

:::::::
drought

::::
than

::::::
drought

::::
and

::::::::::
non-drought

:::::
years.

:::
At560

:::::::
US-Kon,

::::
May

::::
and

:::
July

::::::::::
evaporation

::::
falls

::::::
below

::::::
drought

::::
and

::::::::::
non-drought

:::::
years.

:
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When ET was partitioned into evaporation and transpiration during
::::::
During the flash drought, transpiration gradually declined

. Resulting large
::::
from

::::
May

::
to

::::
July

:::::::
(Figures

:::::
A19a,

::::
12).

:::
The

:
fluctuations in total ET are a

::::::
starting

::
in

::::
June

:::::
2012

:::
are

:::
the result of

evaporation in response to precipitation (Figure A19a)
::::
small

:::::::::::
precipitation

:::::
events. This suggests water evaporated before it had

a chance to infiltrate the soils and be absorbed by the vegetation root systems. Since we compute transpiration
:::
that

:::::::::
following565

::::::::::
precipitation

::::::
events

:::::
during

:::::
flash

::::::
drought

:::::
onset,

:::
ET

::
is
:::::::::
dominated

:::
by

::::::::::
evaporation.

:::::::
Reduced

:::::::::
infiltration

:::::
limits

:::::
water

::::::::
available

:::
for

:::
root

:::::
water

::::::
uptake

:::::::
(Figures

:::
7,

::::
A6).

:::
As

::::::::::
transpiration

::
is
:::::::::
computed from root water uptake through

:::::
across the three soil layers,

the observation that transpiration decreases but still maintains a small
::::::::
consistent

:
rate through the flash drought is indicative of

vegetation
:::::::
indicates

:::
that

:::::::::
vegetation

::
is
:
extracting water from the deeper soil layersas it undergoes stress. ET never completely

shuts down because there is always a small
::
in

::::
2012

:::::::
because

::
of

:::
the

::::
low rate of transpiration. Evaporation reaches zero

::::::::
However,570

:::::::::
evaporation

::::::::::
completely

::::
halts

:
during early July 2012, which is the peak of the flash drought period.

::::::
Similar

::
to

::::
flash

::::::::
drought,

:::::
during

:::::::
drought

::
in

:::::
2018,

:::
ET

:
is
:::::::::
dominated

:::
by

::::::::::
evaporation

::::::
(Figure

::::
A19

::
b).

::::
But

::
in

:::
the

::::::::::
non-drought

::::
year

:::::
2019,

::::::::::
transpiration

::::::
makes

::
up

:::::
more

::::
than

::::
50%

::
of

:::
ET

:::::::::
throughout

:::
the

:::::
entire

:::::::
growing

::::::
season

::::::
except

:::
for

::::
short

::::::
periods

:::
in

:::
July

::::
and

::::::
August

::::::
(Figure

::::::
A19c).

:

e
v
a

p
o

tr
a

n
s
p

ir
a

ti
o

n
, 
E

T
, 
[m

m
 d

-1
]

US-KFS

(a)

(b)

(c)

Figure 13. Ensemble means of simulated
::::
Daily

:
evapotranspirationpartitioned into evaporation (E) and transpiration (T) for

:
,
::
ET,

:
[
::

mm
::::
d−1]

:
,

:
at
:
US-KFS in

::
for (a) 2012 , flash droughtand ,

:
(b)

::::
2018

::::::
drought

:::
and

:::
(c) 2019 , wet a

::::::::::
non-drought year. Transpiration totals

:::
Two

:::::::
standard

:::::::
deviations

:
are in DCHM from total root uptake across

:::::
shown

:::
for the three soil layers

::::::::
DCHM-PV

:::::::::
simulations. The top axis

:::::::
AmeriFlux

:::
ET

:
is

daily StageIV precipitation totals
:::::
derived

::::
from

:::::
latent

:::
heat

:::::::::::
measurements

:::
and

:::::
shown

::
as

:::
blue

::::
dots.

28



In contrast to
::::
Daily

::::
ET

::::::::
estimated

:::
by

:::
the

::::::::::
DCHM-PV

:::::::
matches

::::
well

:::::::
against

:::::::::
AmeriFlux

:::::::::
estimates

::
at

::::::::
US-KFS

::::::
during

:::
the

:::::::::::
flash-drought,

::::
and

::::::::
non-flash

:::::::
drought

:::::
years

:::::::
(Figure

::::
13).

:::
In

:
2012, during

:::::::::
DCHM-PV

::::
ET

::::::
agrees

::::
with

::::::::::
AmeriFlux

:::::::
through575

::::::::
mid-May.

:::::
From

:::
late

::::
May

:::::::
through

:::
July

:::
the

::::::
model

:::::
results

::::
tend

::
to

:::
fall

:::::
below

::::::::::
AmeriFlux

::::
until

::::::
August

:::::
when

::::
they

::::
once

::::
again

::::::
agree.

::
In

:::
the

::::::
drought

::::::
(2018)

::::
and

::::::::::
non-drought

:
(2019there was ample rainfall and water available for plant use

:
)
:::::
years,

::::::::::
DCHM-PV

:::
ET

::::::
appears

::
to

:::::
align

::::
with

:::::::::
AmeriFlux

::::::::::
throughout

::::
most

::
of

:::
the

::::::
season

:::::::
(Figure

::::::
13b,c).

:::::
While

::::::
model

::::::::
estimates

::
of

:::
ET

:::
are

::::::
higher

::::
than

:::
flux

:::::
tower

::::::::::::
measurements

::
in
:::::

2019
::
at

::::::::
US-KLS,

::::
they

::::::::
compare

::::::::
favorably

::
in

:::::
2012

:::
and

:::::
2018

::::::
(Figure

::::::
A17).

::
In

:::::::
contrast

::
to

::::::
model

:::
and

::::
flux

:::::
tower

::::::::::
comparisons

:::
at

:::::::
US-KFS

::::
and

::::::::
US-KLS,

::
at

:::::::
US-Kon

:::::::
modeled

:::
ET

:::::::
(Figure

:::::
A18)

:::::
agrees

:::::
with

:::::::::
AmeriFlux

::
in

:::::
2019580

::::::::::::
(non-drought),

:::
but

::::::::::::
underestimates

::::::
during

:::
the

:::::::
summer

::::::
months

::
in

:::::
2012

:::::
(flash

:::::::
drought)

:::
and

:::::
2018

::::::::
(drought).

::::
One

::::::::::
explanation

:::
for

::
the

::::::::::
differences

:::::::
between

:::::
model

::::
and

:::::
tower

:::
ET

::::
data

::::
could

:::
be

:::
that

:::::
water

:::
use

:::
by

:::::::::
vegetation

:::::
during

:::::
flash

::::::
drought

::
is
::::::
highly

:::::::
variable

:::::
across

:::::
sites,

:::
and

:::
the

::::::
model

:
is
::::
not

:::
able

:::
to

:::::::
represent

:::
all

:::::::
possible

:::::::::
responses.

:::::::::::
Additionally,

::
it

:
is
:::::::
difficult

:::
for

:::
the

:::::::
DCHM

:::
and

:::::
other

::::
Earth

::::::
system

:::::::
models

::
to

::::::
account

:::
for

:::::
plant

:::::
access

::
to
:::::
deep

:::::
water

:::::
stores

::::::::::::::::::
(Giardina et al., 2023)

:
.

4
:::::::::
Discussion585

4.1
::::::::::

Mechanisms
:::::::::::
Controlling

:::::
Plant

:::::::::
Responses

::
to

::::::::
Drought

4.1.1
::::::::
Stomatal

:::
and

::::::::::::
Non-stomatal

::::::::::
Regulation

::
of

:::::
GPP
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Figure 14.
:::::::
Stomatal

:::::::::
conductance

:
[
:::
mm

:::
s−1]

::
vs

:::
leaf

::::
area

:::::
index,

:::
LAI

:
[
:::
m2

:::
m−2]

::
for

::::::
US-KFS

:::
for

:
a
::::
flash

::::::
drought

::::
year

::::::
(2012),

:
a
::::::
drought

::::
year

:::::
(2018),

:::
and

::
a

:::::::::
non-drought

:::
year

::::::
(2019).

::::::
Marker

:::::
shapes

::::::
indicate

::::::::
individual

::::
days

::::::
between

:::::
April

:
1
:
-
::::::
October

:::
31.

::::
Each

:::::
month

::
is

::::
given

:
a
::::::
unique

::::
shape

:::::
whose

::::
color

::::::
reflects

::::
daily

:::::::::::
accumulations

::
of

::::
gross

::::::
primary

:::::::::
productivity

:
[
:::
gC

:::
m−2].

:

::
An

:::::::::
objective

::
of

::::
this

:::::
work

::
is

::
to

::::::::
evaluate

:::::::
whether

:::::::
changes

:::
in

:::::::::
phenology

::::::
versus

:::::::
changes

:::
in

:::::::
stomatal

:::::::::::
conductance

:::::
have

:
a
:::::::
stronger

:::::::
control

::
on

:::::::
carbon

::::::
uptake

::::::
during

::::
flash

:::::::
drought

:::::
(H2,

::::
H3).

:::
We

::::::::
consider

::::
how

::::
GPP

::::::::
covaries

::::::
during

::::
flash

::::::::
drought,
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:::::::
drought,

:::
and

::::::::::
non-drought

:::::
years

::::
with

:::::::::::
sub-seasonal

:::::::
changes

::
in

::::
LAI

:::
and

:::::::
stomatal

:::::::::::
conductance

::
at

:::::::
US-KFS

:::::::
(Figure

:::
14).

::::::
During

::
a590

::::::::::
non-drought

::::
year

::::::
(2019),

:::::
there

:::::
exists

:
a
:::::
wider

:::::
range

::
of

::::::
values

::
of

:::::::
stomatal

:::::::::::
conductance,

:::::
LAI,

:::
and

::::
GPP

:
throughout the growing

season . Despite minimal rainfall in early July
::::::
(Figure

:::::
14c).

:::::
There

::
is

::::
also

:
a
:::::
clear

:::::::
seasonal

:::::
cycle

::
in

:::
the

:::::::::
clockwise

:::::::::
movement

::::::
through

:::
the

::::::::
stomatal

::::::::::::::
conductance-LAI

:::::::::
parameter

::::::
space.

:::::::
Stomatal

:::::::::::
conductance

::::::::
increases

:::::
faster

::::
than

::::
LAI

::
in

:::
the

:::::
early

::::::
season

:::::
before

::::::::
reaching

::::::::
maximum

::::::
values

::::::
around

:::::
June.

::::
After

::::
LAI

::::::
peaks,

::::
there

::
is

::::
first

:
a
::::::::
reduction

::
in

::::::::
stomatal

::::::::::
conductance

::::
and

::::
GPP

::
at

:::::
higher

::::
LAI

::::::
before

:::
LAI

:::::::::
decreases

::::::
through

:::::::
August

:::
and

:::::::::
September.

:
595

::
In

:::::::
contrast,

::::::
during

::::
flash

:::::::
drought

::::::
(2012)

:::
and

:::::::
drought

:::::::
(2018),

::::
peak

:::::::
stomatal

:::::::::::
conductance,

:::::
LAI,

:::
and

:::::
GPP

:::::
values

::
at
::::::::
US-KFS

::
are

:::::::::::::
approximately

:::
half

::
of

:
2019 , we observe

::::::
values.

::::
Both

::::::::
stomatal

::::::::::
conductance

::::
and

::::
LAI

::::::
remain

:::
low

::::::::::
throughout

:::
the

:::::::
growing

:::::
season

::::
and

::::
GPP

::
is

:::::
below

:::
10

::
gC

:::::
m−2

::
at

::
all

::::
sites

::
in

:::::
2012

::::::
(Figure

::::
A7).

::::::::
Stomatal

::::::::::
conductance

::::
and

::::
LAI

:::
are

::::::
highest

::
in

::::
May

:::::
2012

::
as

:::::::
opposed

::
to

:::::
June

:::
and

::::
July

:::::
2019.

::::::
While

::::
both

:::::
2012

:::
and

:::::
2018

::::
have

::::
low

::::::
values

::
of

:::::::
stomatal

::::::::::::
conductance,

::::
LAI,

::::
and

::::
GPP,

:::
an

::::::::
important

::::::::
difference

::
is
:::
the

::::::::
near-zero

:::::::
stomatal

:::::::::::
conductance

::::::
during

::::
June

:::
and

::::
July

:::::
2012

::
for

::
a
:::::
range

::
of

::::
LAI

:::::
values

::::
(1-2

:::
m2

:::::
m−2,600

:::::
Figure

:::
14)

::::
that

::
is

:::
not

:::::::
observed

:::
in

::::
2018

:::
and

:::::
other

:::::::
drought

::::
years

:::::::
(Figure

:::::
A11).

:::
The

::::::::::
relationship

:::::::
between

:::::::
stomatal

:::::::::::
conductance,

::::
LAI,

::::
and

::::
GPP

:
is
::::::
similar

::::::
across

::
all

:::::
three

:::
sites

:::::
when

::::::::::
considering

::::
flash

:::::::
drought

::::::
(Figure

::::
A7),

:::::::
drought

:::::::
(Figure

:::::
A11),

:::
or

::::::::::
non-drought

:::::::
periods

::::::::
(Figures

:::
A8,

::::
A9,

:::::
A10).

::::
The

::::::::::
observable

:::::::::
clockwise

:::::::::
movement

::::::
through

:::::::::
parameter

:::::
space

::
is

:::
not

::
as

:::::
clear

::
in

::::
flash

:::::::
drought

:::
and

:::::::
drought

::
as

:::::::::
compared

::
to

:::::::::::
non-drought.

::
In

:::::::
drought

:::::
years,

::::::::
stomatal

::::::::::
conductance

::::
from

::::::::::::
April-October

::::::::
averages

:::
1.4

::::
mm

:::
s−1

::::::
across

::
all

::::
sites

:::::::
(Figure

::::
A11)

:::::::::
compared

::
to

:::
2.3

::::
mm

:::
s−1

::
in
::::
non

:::::::
drought605

::::
years

:::::::
(Figures

::::
A8,

:::
A9,

:::::
A10)

:::
and

:::
1.1

::::
mm

::::
s−1

::
in

::::
flash

:::::::
drought

::::::
(Figure

::::
A7).

:::::
Peak

::::
LAI

:
is
:::::::::::::

approximately
:::
1-2

:::
m2

::::
m−2

::::::
higher

::
in

::::::::::
non-drought

:::::
years

::::::::
compared

::
to
:::::

flash
:::::::
drought

:::
and

:::::
other

:::::::
drought

:::::
years.

::::::::
Similarly,

:::::::::::
non-drought

::::
GPP

:::::
levels

::::
are

::::::::::::
approximately

:::
6-8

:::
gC

::::
m−2

:::::
higher

::::
than

:::::
flash

::::::
drought

::::
and

::::::::::
non-drought

:::::::
periods.

::::
Prior

::::
work

::::::
linked

:::::::::::
phenological

::::::::
responses

::
to

::::::
drought

::
to

:::::::
changes

::
in

::::::::::::::::::
vegetation-atmosphere

::::::::::
interactions

:::::::::::::::::::::::::::::::::::::
(Lowman and Barros, 2018; Cui et al., 2017)

:
.
::::::::::
Dynamically

:::::::::
estimated

:::::
FPAR

::::
and

::::
LAI

::::
tend

::
to

:::::
exert

:::::
strong

:::::::
controls

:::
on

:::
the

::::::::
resulting

::::
GPP

:::::::::::::::::::::::
(Lowman and Barros, 2018)

:
.
:::
By610

:::::::
updating

:::::::::::
phenological

:::::
states

:::::
using

:::
the

:::::::::
phenology

:::::
model

:::::
rather

::::
than

:::::::
forcing

:::::::::
phenology

::::
with

:::::::
remotely

::::::
sensed

::::::
values,

:::
we

:::::
were

:::
able

::
to
:::::::
capture

:::
the

::::
plant

:::::::
growth

:::::::
response

::
to

:::::
water

::::::::::
availability.

:::::
When

:::::
more

:::::
water

::
is

::::::::
available,

:
DCHM-PV

:::::::::
simulation

:::::::
predicts

:::::
higher

::::::
values

::
of

::::::
FPAR,

::::
LAI,

::::
and

::::
thus

:::::
higher

::::::
values

::
of

:::::
GPP.

::
At

:::
the

:::::
onset

::
of

:::::
flash

:::::::
drought,

:::::::::
DCHM-V

:::
and

::::
-PV

:::::::
respond

:::::
faster

::
to

:::::::
changes

::
in

::::
LAI

:::
and

:::::
FPAR

::::
than

:::::::
MODIS

::::::
whose

::::::
affects

::::
were

::::
also

::::
seen

::
in
::::::::::

differences
::
in

:::::::
modeled

::::
and

::::::::
remotely

:::::
sensed

:::::
GPP

::::::
(Figure

::::
11).

::::::::
Moreover,

:::::::::
regardless

::
of

:::
the

:::::::::
simulation,

:::
the

::::::::
rapidness

::
of

:::
the

::::::
change

::
in

::::
LAI

:::
and

::::::
FPAR

:
is
:::::::::
indicative

::
of

::::
flash

:::::::
drought615

:::::::
(Figures

:
5
::::

and
::
6)

::::
and

::
in

:::::::::
agreement

:::::
with

::::::::::::::::
Zhang et al. (2020).

:::::::::
Decreases

::
in

:::::::::::
phenological

:::::
state

:::
due

::
to
::::

the
::::
lack

::
of

::::
soil

:::::
water

:::::::
available

::
to

::::::
plants

::::::
affected

::::::
carbon

::::
and

:::::
water

:::::::::
exchanges,

:::::::::
suggesting

:::::::
support

:::
for

:::
the

::::
third

:::::::::
hypothesis

:::::
(H3),

::::::::
however,

::::::::
decreases

::
in

:::::::
stomatal

::::::::::
conductance

::::::
driven

::
by

::::::::
increased

:::::
VPD

::::
may

:::::::::
compound

:::
the

:::::::::
detrimental

:::::::::::
phenological

::::::
effects.

:

4.1.2
::::
VPD

:::::::::::
Dependence

:::::
While

:::::::::
phenology

:
is
:::
an

::::::::
important

:::::::::
component

::
to

:::::::
consider

:::::
when

:::::::::
computing

:::::::
changes

::
to

::::::::::
transpiration

:::
and

::::::
carbon

::::::
uptake

:::::::::::::::::::::::::::::::::::::::::::
(Lowman and Barros, 2018; Flack-Prain et al., 2019)620

:
,
:::
our

:::::
results

:::::::
indicate

:::
that

:::::::
stomatal

:::::::::::
conductance

::
is

:::
also

::::::
critical

:::
for

:::::::::
accurately

::::::::::
representing

::::
these

::::::
fluxes.

:::::
Plants

:::::::::
adaptively

:::::::
regulate

::::
their

::::::
stomata

::::::
during

:::::::
periods

::
of

:::::
water

:::::
stress

::::::::::::::
(Guo et al., 2020)

:
,
:::
and

:::::
some

::::
have

::::
been

::::::::::::
demonstrated

::
to

:::::::
maintain

:::::
open

:::::::
stomata

::
or

::::
even

:::::::
increase

:::::::
stomatal

:::::::::::
conductance

:::::
under

::::
high

::::
VPD

:::::::::
conditions

::::::::::::::::
(Urban et al., 2017)

:
.
::::::::
Stomatal

::::::::::
conductance

:::::
shuts

:::::
down

:::::
under
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::::
high

::::
VPD

::
in
::::

the
::::::
DCHM

:::::::
(Figure

:::
9),

:::::
which

:::::
does

:::
not

:::::::
account

:::
for

:::
the

:::::::::
possibility

::
of

:::
an

:::::::
adaptive

::::::::
stomatal

::::::::
regulation

::::::::
strategy.

::::
Since

:::::
GPP

::
is

::::::
directly

:::::::::
dependent

:::
on

:::::::
stomatal

:::::::::::
conductance

::::::::::::::::::::::::
(Farquhar and Sharkey, 1982)

:
,
::::::
DCHM

::::::::
estimates

::
of

::::::::
sub-daily

:::::
GPP625

:::::::
decrease

::
in

::::::::
response

::
to

:::::::
elevated

:::::
VPD

::::::
(Figure

:::::
A22).

:::::::::
Moreover,

:::::::
changes

::
in

:::::::::::
phenological

::::::
growth

:::::
state

:::
(i.e.

:::::
LAI)

:::::
occur

::::::
across

:::::
longer

::::
(i.e.

::::::::
seasonal)

::::
time

::::::
scales

::::::::::::::::
(Katul et al., 2001)

:::
than

::::::::
stomatal

:::::::::
regulation,

::::::
which

:::::::
controls

::::::
carbon

:::
and

:::::
water

:::::::::
exchange

::
at

:::::::
sub-daily

:::::::::
timescales

:::::::::::::::
(Guo et al., 2020).

:

:::
The

:::::::::
differences

::::::::
between

:::::::
modeled

:::
and

::::::::
observed

::::
GPP

::::
and

::
ET

::::::::
(Figures

:::
11,

:::
13)

::::::
suggest

::::
that

::::
there

:::
are

::::::::::
mechanisms

::::::::::
controlling

::::
plant

::::::::
responses

::
to

:::::::
drought

:::::
stress

::
not

:::::::::
accounted

:::
for

:::::
within

:::
the

:::::::
DCHM.

:::
For

::::::::
example,

::
the

:::::::
DCHM

:::::
could

::
be

:::
too

::::
strict

::
in

::::::::::
representing630

::
the

:::::::::
sensitivity

:::
of

:::::::
stomatal

::::::
closure

::
to
::::::::

elevated
::::
VPD

:::
for

:::
the

:::::::
Kansas

:::::
study

::::
sites.

:::::
There

::::::
could

::
be

:::::
plant

::
or

::::::
climate

:::::::
specific

:::::
VPD

:::::::::
dependence

::::::::::::::::::::
(Grossiord et al., 2020),

::::::
plants

:::::
could

::::
have

::::::
access

::
to

:::::
stores

:::
of

:::::
water

:::
not

:::::::::
accounted

:::
for

::::::::::::::::::
(Giardina et al., 2023),

:::
or

::::
both.

:::::::::::::::
Guo et al. (2020)

::::::
showed

:::
that

::::::::::
isohydricity

::::
(i.e.

:::::::
stomatal

:::::::::
regulation)

:::::
exists

:::
on

:
a
::::::::
spectrum

:::
and

::::
that

:::::
some

:::::
plants

:::
are

::::
able

::
to

::::
move

:::::
along

::::
that

::::::::
spectrum

:
at
::::::::
sub-daily

::::::::::
time-scales

::::
with

::::::
varying

::::::::::::
environmental

::::::::::
conditions,

::::
such

::
as

::::::
higher

:::::
VPD.

:::::
Given

:::
the

::::
high

::::
VPD

::
in

:::::
2012

::
at

:::
our

:::::
study

::::
sites

:::::::
(Figures

::
A,

:::::
A28,

::::
A29,

:::::
A30),

:::
we

::::::
expect

:::
the

::::::
DCHM

::
to
::::::::
estimate

:::
low

:::::::
stomatal

:::::::::::
conductance,

::::
and635

:::
thus

::::
low

::::
GPP

:::::::
relative

::
to

:::::::::
AmeriFlux

:::::::::::
observations

:::::
when

:::::
under

::::::::::
atmospheric

:::::
water

::::::
stress.

:::::::::::
Additionally,

:::::
VPD

::::::::
estimated

:::
by

:::
the

::::::
DCHM

:::::
using

:::
the

:::::::::
NLDAS-2

::::::
Forcing

::::
File

::
A

::::::::::
atmospheric

::::::::
variables

::
is

:::::
higher

::::::
during

:::::
2012

:::
and

:::::
2018

:::
and

:::::
lower

::
in

:::::
2019

::::
than

:::
the

:::::::::
AmeriFlux

::::::::::
observations

:::::::
(Figure

:::::
A28),

:::::::::
explaining

::
in

::::
part

:::
the

:::::::::::
discrepancies

::::::::
between

:::::
model

::::
and

:::::::::
AmeriFlux

:::::
GPP.

::
As

::::::::
stomatal

:::::::
response

::
to

:::::::::
increasing

::::
VPD

::::
and

:::::::
resulting

:::::::
impacts

::
on

::::::::::::::
land-atmosphere

:::::
water

:::::
fluxes

::
is

:::::
more

:::::::
complex

::::
than

::::
how

:
it
::
is

::::::::::
represented

::
in

:::::
LSMs

::::::::::::::::::::::::::
(Vargas Zeppetello et al., 2023)

:
,
:::::
future

::::::::
modeling

::::::
studies

:::::::
should

:::::
focus

::
on

::::
how

::::::
rising

::::
VPD

::::::
drives

:::::::
stomatal

:::::::
closure640

:::::
across

:::::::
different

:::::::::
vegetation

:::::
types

::::::::::::::::::
Grossiord et al. (2020)

:
.

4.2
::::::

Surface
::::
and

::::::::::
Sub-surface

::::::
Water

::::::::::
Movement

4.2.1
:::::::::
Infiltration

::::
and

:::::::::::
Evaporation

::
At

:::
the

:::::
onset

::
of

::::
flash

::::::
drought

:::::
there

::
is

::
an

:::::::
increase

::
in

:::::::::
evaporative

:::::::
demand

:::
for

:::::
water

:::::
which

:::::
leads

::
to

:
a
:::::::::
temporary

:::::::
increase

::
in

::::::
surface

:::::::::
evaporation

::::::::::::::::::::::::::::::::::
(Lowman et al., 2023; Otkin et al., 2018)

::::
until

:::
the

::::
soil

:::
and

::::::
canopy

:::::::::
reservoirs

:::
no

:::::
longer

:::::::
contain

::::::
enough

::::::
water

::
to645

::::::::
evaporate.

:::::
Then

::::::::::
evaporation

:::::
shuts

::::::
down.

:::::::
Despite

::::::::::
evaporation

:::::::
tapering

::
to

::::
zero

::::::
during

:::::
June

::::
and

::::
July

::
of

:::::
2012

:
(3YR)model

predictions of decreased ET in response to the lower rainfall, but transpiration rates were still higher than evaporation rates

throughout the growing season (Figure A19
::
),

:::::
pulses

:::
of

::::::
rainfall

::::
lead

:::
to

:::::::::
temporary

:::::
rapid

::::::::
increases

::
in

:::::
rates

::
of

:::::::::::
evaporation.

::::::::
Increased

::::::
surface

::::::::::
evaporation

::::
may

::::::
reduce

:::::
water

:::::::::
infiltrating

:::
the

:::::
soils.

::
In

::::
May

:::
of

::::
2012

::
at
::::::::
US-KFS

::::
there

::::
was

:::
70

:::
mm

:::
of

:::::
water

::::::::
infiltrating

:::
the

:::::
soils

::::::
(Figure

::
7)

::::
with

:::
35

::::
mm

::
of

::::::::::
evaporation

::::::
(Figure

:::
12b). During the

::
But

:::
in

::::
June

:::
and

::::
July

::::
total

:::::::::
infiltration

::::
was650

::
61

::::
mm

::::
with

::
65

::::
mm

::
of

::::::::::
evaporation

::::
over

:::
the

::::
two

::::::
months.

:::::::
Similar

:::::::::::
comparisons

:::
can

::
be

:::::
found

::
at
::::::::
US-KLS

:::
and

::::::::
US-Kon

:::::::
(Figures

::
7,

:::
10).

:::
In

:::::::
contrast,

::
at

::::::::
US-KFS,

::::::
during

::::::::::
non-drought

::::::
years,

::::
June

:::::::
averages

:::
of

:::::::::
infiltration

:::
are

::
in

::::::
excess

::
of

::::
100

:::
mm

::::
with

:::
41

::::
mm

::
of

::::::::::
evaporation.

:::::::
Average

:::::::
drought

:::::
years

:::::
have

::
66

::::
mm

::
of

:::::::::
infiltration

:::::
with

::
47

::::
mm

::
of

::::::::::
evaporation

:::::::
(Figure

::::
7a).

:::::
Since

:::::::::
infiltration

::::::
usually

:::::::
exceeds

::::::::::
evaporation

::
in

:::
the

:
growing season, transpiration rates usually comprise

::::::::
infiltration

::::::::::::
accumulations

:::
of

::::::
similar

::::::::
magnitude

::
to
::::::::::

evaporation
:::::
totals

::::
may

:::::::
indicate

::::
flash

:::::::
drought.

:
655
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4.2.2
:::
The

:::::::::::
Partitioning

::
of

:::
ET

::
In

:::
this

::::::
study,

::::
from

::::::::::
2006-2019,

:::::::::
excluding

:::::
2012,

:::::::
growing

::::::
season

:::::::::::
transpiration

:::::
rates

:::::::
averaged

:
more than 50% of total ET at

US-KFS, a finding that aligns with
:
.
::::
This

::::::
finding

::::::
aligns

::::
with

::::
prior

:
results from Hosseini et al. (2022) who used the Noah-MP

Land Surface Model which
::::
LSM

::::
that also computes transpiration from root water uptake (Li et al., 2021). However, during the

flash drought yearof 2012, transpiration rates fell below 35% of overall ET at US-KFS (Figure ??
::
15a). Partitioned transpiration660

:::::::::::
Transpiration decreases approximately 40% from May to June at US-KLS (Figure ??

::
15b), and 20% at US-Kon (Figure ??

::
15c).

The rapid decline in transpiration rates can be attributed to the slowing of root
::::
water

:
uptake due to the lack of available water .

The transpiration rates follow changes in GPP during the flash drought of 2012 (Figure A23a). However
:::
and

:::::::::
decreased

:::::::
stomatal

::::::::::
conductance

:::::::
(Figures

::::
A6,

::::
A7).

::
In

:::::::
contrast, ET decreases at US-KFS during July 2019 while experiencing a brief period of low

rainfall (Figure A19b), yet is
:::::
plants

:::
are able to maintain rates of GPP during this period due to the amount of available water665

in soils from the excessive precipitation during May and June (Figures ??, ??, ??
:::
Ac,

::::
A2c,

::::
A3c).

5 Discussion

4.1 Vegetation Responses to Flash Drought

:::::::::::
Accumulated

:::::::
monthly

:::::::
averages

:::
of

::::::::::
transpiration

:::
as

:
a
:::::::
fraction

::
of

:::::::::::::::
evapotranspiration

::::::
(T/ET)

:::::
show

::
a

::::::::
transition

::::
from

::
at

::
or

::::::
above

::::::::::
non-drought

:::::
levels

::
to

::
at

::
or

::::::
below

:::::::
drought

:::::
levels

::::::
(Figure

::::
15).

::
At

::::::::
US-KFS

:::::::
drought

::::
years

:::::
have

:
a
:::::
lower

:::::::
fraction

::
of

:::::::::::
transpiration670

:::::::::
throughout

:::
the

:::::::
growing

:::::
season

:::::::
whereas

:::::::
drought

:::
and

::::::::::
non-drought

::::::
values

:::
are

::::::
similar

::::
from

:::::::::::
July-October

::
at

:::::::
US-KLS

:::
and

::::::::
US-Kon.

:::::::
US-Kon

:::::::::
experiences

:::::
larger

::::::::::
fluctuations

::
in

:::
the

:::::::
fraction

::
of

::::::::::
transpiration

:::::::
through

:::
the

::::
early

::::
and

::::::
middle

::::
parts

::
of

:::
the

:::::::
growing

::::::
season

:::::
(April

:
-
:::::
July).

::
It

::
is

:::::::
possible

::::
that

:::
the

:::::::::
fluctuating

::::
T/ET

::
at
::::::::
US-Kon,

::::::::
modeled

::
as

:
a
:::::::::
grassland,

::
is

::::::::
indicative

::
of

:::
an

:::::::::
adaptation

::
to

:::
the

::::
water

::::::::
stresses.

Vegetation responses to water stress can be seen through fluctuations in GPP (Zhang and Yuan, 2020; Jin et al., 2019) and675

ET (Chen et al., 2019). Decreases in GPP occur when plants close their stomata. With the stomata closed, plants will not

undergo normal gas exchange through photosynthesis and decrease their transpiration rates. Transpiration is only one part of

ET, so we must be careful not to directly link fluctuations in GPP with fluctuations in ET. Evaporation can still be high when

there is little to no transpiration , but GPP tend to follow the same trajectories as transpiration (Beer et al., 2009). The DCHM

accounts for evaporation of water intercepted by the canopy, water that has ponded on the ground, and water in the top soil680

layer. At the onset of flash drought there is an increase in evaporative demand for water which leads to a temporary increase

in surface evaporation (?Otkin et al., 2018) until the soil and canopy reservoirs no longer contain enough water to evaporate.

Then evaporation shuts down. With small rates of transpiration still occurring, small rates of GPP are maintained (i.e. carbon

uptake drastically slows, but it does not stop, Figure A23a) which affects plant WUE (Figure A24a). These results align with

our initial hypotheses (H1, H2). However, we did find that even during the peak flash drought ,685

4.1
::::::

Linking
:::::::
Carbon

::::
and

::::::
Water

::::::
Fluxes
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::::::
Despite

:::::
major

:::::::::
reductions

:::
in

:::::::::
infiltration

:::
and

::::::::::
fluctuations

:::
in

:::
top

::::
layer

::::
soil

::::::::
moisture

::::::
during

::::
flash

:::::::
drought

:::::
onset,

::::::::
modeled

::::
root

::::
water

::::::
uptake

::::::::
indicates

::::
that plants were still pulling small amounts of water from deep soil layers, allowing for transpiration

and carbon exchanges, preventing plants from complete shut down.

Computed growing season water use efficiency (WUE=GPP/ET) from DCHM-V, DCHM-PV (3YR), and AmeriFlux for690

(a) 2012, flash drought and (b) 2019, wet year at US-KFS. AmeriFlux WUE computed by converting latent heat into ET by

dividing by the coefficient of vaporization.

We compare simulated and observed data to determine how vegetation regulates its water use, either pulling water from

deeper or shutting down transpiration. We compare the timing of fluctuations in GPP and ET by combining previous plots

together on the same axes (Figure A23).
::::::
through

::::
their

:::::
roots,

:::::::::
preventing

:::::
them

::::
from

:::::::::
completely

:::::::
shutting

::::::
down.

::::
With

:::
the

::::::
ability695

::
to

:::
tap

::::
into

:::::
water

:::::
stores

:::::
from

::::::
deeper

::::::
layers

:::::::::::::::::::
(Giardina et al., 2023)

::
and

::::::
small

::::
rates

::
of
:::::::::::

transpiration
::::

still
:::::::::
occurring,

::::::::
modeled

:::::
carbon

::::::
uptake

::
is

::::
still

:::::::::
maintained

::::::
(Figure

::::
11a,

::::::
A15a,

::::::
A16a).

::::::::
Although

::::
GPP

:::::::::
drastically

:::::
slows,

::
it

::::
does

:::
not

::::
stop.

:
During the flash

drought of 2012 (mid May - early July), we estimated steady declines in rates of GPP with
::::::
despite bursts in ET corresponding

::
in

:::::::
response to rain recharge events . This implies evaporation may

::::::
(Figure

::::::
A23a).

:::
We

:::::
found

::::::::::
evaporation

::
to be the main contributor

to total ET during the flash drought since GPP is decreasing (Figures 11aand A23a
:::
and

:::
the

::::::::
decreases

::
in

::::
GPP

::::::::
followed

:::::::
changes700

::
in

::::::::::
transpiration

::::::
during

::::
flash

:::::::
drought

::::::
(Figure

:::::
A19a). The decreases in

::::::::
simulated

:
GPP due to flash drought during June and July

2012 are consistent in terms of magnitude withdecreases
:::
with

::::::::
decreases

:
found in recent studies (Yao et al., 2022; Poonia et al.,

2022; Zhang et al., 2020). These decreases are attributed to changes in transpiration during flash drought (Figure A19a). We

also find that when plants are transpiring more , they

:::::
Plants

:::
are

::::
more

:::::::
efficient

::::::
during

:::::::::::
non-drought

:::::::
periods,

:::
and

:::
are

:::
less

:::::::
efficient

::::::
during

::::
flash

:::::::
drought

:::::
onset

::::::
(Figure

::::
15).

::::::
Ratios

::
of705

::::
T/ET

::::
also

:::::::
indicate

:::::
plants

::::
that

:::::::
transpire

:::::
more are more efficient in their water use(Figure ??).

2012-2019 growing season time series transpiration as a fraction of ET (a-c) and WUE (d-f) for all three study sites.

Future studies would benefit from improved estimates of root water uptake since it is directly linked to the amount of

available water for transpiration. Vegetation types have distinct root characteristics leading to differences in hydraulic tendencies

under variable water regimes. Species specific hydraulic strategies may differ in a single location (Liu et al., 2020) so generalization710

of water use by PFT in hydrologic models would represent the average tendency of vegetation to regulate water. It is also

possible that the changing phenological state of root systems plays an important role in root water uptake. Thus, researchers

should ensure parameterizations of plant functions are accurately representing vegetation state and heterogeneity of the study

area.

We find noteworthy differences when we consider the contrasting conditions in July .
::::::

WUE
::
is

::::::
similar

:::
at

:::::::
US-KFS

:::
in715

:::::::::::::
August-October

:::::::::
regardless

::
in

::::::
drought

::::
and

::::::::::
non-drought

:::::
years

:::::
which

::::::
might

::
be

::::::::
attributed

:::
the

::::
site

:::::
being

:::::::
modeled

::
as

::
a

::::::::
cropland.

:::::
WUE

:
at
:::
all

::::
sites

::::::
started

::
off

::
in

:
2012 and 2019. During both years , minimal rainfall occurred in late June into early July, but rates

of ET did not decline as much in 2019 as they did in 2012. When US-KFS received rain in July
::::
with

:::::
above

::::::
average

:::::::::::
non-drought

:::::
levels

:::
and

::
an

:::::::
increase

:::::
from

::::
April

::
to

:::::
May.

::::::::
However,

::::
from

::::::::
May-July

:::::
WUE

::
at

:::
all

::::
sites

:::
fell

::::
from

:::::
above

:::::::::::
non-drought

::::
years

::
to

:::::
more

:::
than

::::
one

:::::::
standard

::::::::
deviation

:::::
below

:::::::
drought

:::::
years.

:::::
With

::::
GPP

:::::::::
differences

:::::
being

:::::
more

:::::::::
substantial

::::
than

:::
ET

:::::::
between

::::
flash

:::::::
drought720

:::
and

::::::::
non-flash

:::::::
drought

::::::
periods

::::::
(Figure

::::
10),

::::::::::
subseasonal

:::::::::
reductions

::
in

:::::
WUE

::::
can

::
be

::::::::
attributed

::
to

:::
the

::::::
losses

::
in

::::
GPP.

::::::::::
Reductions
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::
in

:::::
WUE

::::
from

::::::
above

::::::::::
non-drought

:::::::::
conditions

::
to

::::::
below

::::::
drought

:::::::::
conditions

:::::
(e.g.,

:::
the

:::::::::
60%-70%

::::::::
reduction

::::
from

::::
May

:::
to

::::
July

::
in

2012, there were immediate increases in rates of ET (Figure 13). This is likely due to the size of the rain events (Figure A19

coupled with the evaporative demand of the atmosphere. It is important to examine the coupling of ET and GPP since plants

transpire as they process carbon. We do not observe changes in GPP during July 2012 corresponding to the increased ET,725

indicating the main driver or ET during this time is the evaporation component and not transpiration. Alternatively, GPP levels

off in July 2019, and does not follow the 2012 decline as a result of little rainfall. This is indicative of the vegetation remaining

healthy during a period of low rainfall in a year experiencing otherwise above average rainfall. The continued carbon cycling

is likely due to the soil moisture available to the plants during this time (Figure ??).

The modeled vegetation responses are likely linked to the predictive phenological responses to drought (Lowman and Barros, 2018; Cui et al., 2017)730

. As in Lowman and Barros (2018), the modeled FPAR and LAI were directly linked to the resulting GPP . By updating

phenological states using the phenology model rather than forcing phenology with remotely sensed values, we are able to

capture the direct vegetation response to water availability. When more water is available, DCHM-PV simulation predicts

higher values of FPAR, LAI, and thus higher values of GPPthan MODIS. Decreases in phenological state due to the lack

of soil water available to plants affected carbon and water exchanges, validating our third hypothesis (H3).At the onset of735

flash drought, DCHM-V and -PV respond faster to changes in LAI and FPAR than MODIS whose affects were also seen in

differences in modeled and remotely sensed GPP (Figure 11). Moreover, regardless of the simulation, the rapidness of the

change in LAI and FPAR is indicative of flash drought (Figures 5 and 6) and in agreement with (Zhang et al., 2020)
:
,
:::::
Figure

:::
15

:::::
d,e,f),

::::::
appear

::
to

::
be

:
a
::::::
feature

:::
of

::::
flash

:::::::
drought

::::
onset.

4.2 Uncertainty in Vegetation Responses740

We implemented three different assimilation strategies to prepare ensemble parameters to be used in the predictive phenol-

ogy routine in the DCHM-PV. The 2003-2005 period represented “average” conditions as it spanned periods of below and

above average precipitation. Compared to the single year assimilation periods (WET and DRY), the uncertainty ranges in

model parameters were smaller in the 3YR assimilation period. The results are consistent with (Lowman and Barros, 2018)

:::::::::::::::::::::::
Lowman and Barros (2018) in that uncertainty in phenology shrinks during dry periods. Daily standard deviations in LAI745

across simulations are approximately 0.5 m2 m−2 during the growing season of a wet year but shrink to values of 0.2 at the

onset of flash drought and less than 0.1 during peak flash drought. The lower ensemble spread during the flash drought period

corresponds with winter phenological variability when plants are dormant. Similarly, decreases in uncertainty in estimates of

GPP and ET during the flash drought period fall to winter levels implying variability in plant life stage and functionality are

similar in drought periods and dormant months.750

The growth parameters, which drives the plant activity
:
γ
:::::::::
parameter

::::::
values,

:::::
which

:::::
drive

::::
plant

::::::
growth

::
in

:::
the

::::::::::
DCHM-PV, were

all smaller in the 3YR assimilation period for all three test sites when compared to simulations from drought and wet years.

Vegetation leaf out occurs later in the simulations from the 3YR assimilations (Figures 5 and 6). However, the more notable

effects of the smaller growth parameters, with regards to flash drought, can be seen through the delayed phenology responses

in the 3YR assimilations compared to the WET/DRY assimilations. Across the three test sites, the FPAR and LAI decreases755
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Figure 15.
::::
Ratio

::
of

::::::::::
transpiration

::
to

::::::::::::::
evapotranspiration,

:::::
T/ET,

:::
and

::::
water

:::
use

::::::::
efficiency,

:::::
WUE,

:::
for

::
for

::::::
drought

::::
(red)

::::
and

:::::::::
non-drought

:::::
(blue)

::::
years

:::::::
compared

::
to

::::
flash

::::::
drought

::::::
(black)

::
for

:::::::
US-KFS,

:::::::
US-KLS,

::::
and

::::::
US-Kon.

were slower in the simulations that used the 3YR assimilation period. The vegetation that was trained using average conditions

was slower to change when faced with the abrupt decrease in water availability. Although it was an above average year for

precipitation, there was little rainfall in early July 2019 at our Kansas sites. At US-KLS and US-Kon, there was a rapid decrease

in LAI during this time (Figure 6d,f) with some recovery in August. Moreover, the resiliency to the abrupt change is apparent

in the maintenance of season
:::::
slower

:::::::
changes

::
in

::::::::
seasonal LAI and FPAR dynamics from the 3YR assimilation simulations760

:::::::::
simulations

:::::
show

:::
the

::::::::
resiliency

::
to

::::::
abrupt

:::::::::::
phenological

:::::::
changes.

Future studies should use an assimilation period encompassing multiple wetness
::::::::::
precipitation

:
regimes (i.e. multi year in-

ference period) to best represent the variety and variability of climatological conditions , and because it leads to less abrupt

changes to extreme stress
:::::::
reduced

:::::::::
uncertainty

::
in
::::::
model

::::::
outputs. However, if the intent of a future study is to investigate vege-

tation responses to extreme events in a changing climate (Kirono et al., 2020; Pearson et al., 2013, e.g.,), it may be appropriate765

to use inference periods encompassing only
::::::
extreme

:
wet or dry conditions. For example, researchers

:::
one

:
could fit parameters
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to a dry regime if they want to investigate how plants used to wetter
:::::::::
accustomed

::
to

::::::
today’s

:::::::
average

:
conditions will function in

a future regime where more drought is
::::::
climate

::::::
where

::::
drier

:::::::::
conditions

:::
are expected.

4.3 Kansas Site Comparisons during 2012 Flash Drought
::::
Land

::::::
Cover

:::::::::
Influences

The seasonal dynamics of FPAR, LAI, and GPP from the simulations match well against the remotely sensed observations770

from MODIS regardless of vegetation type.
::::::
Effects

::
of

:::::
water

:::::
stress

::
on

:::::::::
infiltration,

::::::::
stomatal

:::::::::::
conductances,

::::
and

:::::
WUE

:::
are

::::::
similar

:::::
across

:::
all

:::::
three

::::
sites

::::
and

::::
help

::
to

::::::::::
distinguish

::::
flash

:::::::
drought

:::::::::
conditions

:::::
from

::::::::
non-flash

:::::::::
droughts.

:
However, there are subtle

differences in vegetation responses to water stress across all three sites. As seen in Figures 5 and 6, the
::::::::::
phenological

:
responses

to flash drought at US-KLS (cropland) and US-Kon (grassland) follow a similar trajectory throughout the growing season.

The savanna at US-KFS (note - AmeriFlux classifies US-KFS as a grasslandbut the MODIS pixel (500m) containing US-KFS775

reports a savanna terrain)
:
)
:
suggests more resilience to flash drought at first when compared to croplands and grasslands in

that values of FPAR and LAI are maintained for a longer period before tapering in late June. This can also be seen in the slow

reductions in GPP during May and June 2012 before reaching a minimum near the beginning of July marking stomatal closure

and
:
a
:
shift toward more isohydric behavior (Meinzer, 2002). The slower reduction, driven by the lower growth rate parameter

(γ), indicates that the vegetation is responding to the initial water stress, but also maintaining some activity.780

The vegetation at US-KLS and US-Kon show an earlier response to the water stress in 2012 by slowing phenology (FPAR,

Figure 5; LAI, Figure 6) at the beginning of May. Both sites experience another decrease in activity by the beginning of July.

These conservative strategies indicate that the vegetation is more isohydric at these locations. Interestingly, when the phenology

model parameters are generated from observations from a year of above average precipitation, the vegetation responds even

faster to the stress of water. It is likely that the water use characteristics defined in
:::::
When

::::::::
analyzing

:::::::
DCHM

::::::
outputs

:::::::
against785

:::::::
remotely

::::::
sensed

:::
and

:::::
eddy

:::::::::
covariance

::::::::::::
measurements,

:::
we

:::
are

:::::::::
comparing

:::
data

::::::
across

:::::::
temporal

::::
and

:::::
spatial

::::::
scales.

:::
The

::::
flux

::::::
towers

::::
exist

:::::
within

::
a
::
4

:::
km

:::
by

:
4
:::
km

::::::
region

:::::::
defined

::
by

:::
the

::::::::
Stage-IV

::::::
spatial

::::
grid

:::
cell

:::::
used

::
in

:::
the

:::::::
DCHM.

::::
Flux

::::::
tower

:::::
spatial

:::::::
extents

::::
range

:::::
from

:
a
::::::
couple

:::::::
hundred

::::::
meters

::
to

::
a
:::
few

:::::::::
kilometers

::::::::::::::::::::::::::::
(Baldocchi, 2003; Schmid, 1994)

::::::
making

:::
the

:
4
::::
km

:::
grid

::::
cell

::::
near

:::
the

::::::::
maximum

::::::
range.

:::::::
Sub-grid

:::::
scale

:::::::::::
heterogeneity

:::
can

::::
lead

::
to

:::::::::::
considerable

:::::::::::
discrepancies

:::::::
between

::::::::::::
parameterized

:::
and

:::::
actual

::::::
fluxes

::::::::::::
(Schmid, 1994)

:
.
::::
One

::::::::::
explanation

::
for

::::
why

::::
flux

:::::
tower

::::
data

:::::
differs

:::::
from

:::::
model

::::::
output

:
is
::::
that

:::
the

:::
flux

:::::
tower

::::::::
estimates

::::::::::
incorporate790

:
a
::::::
variety

::
of

:::::::::
vegetation

:::::
types

::::::
within

:::
the

:::::
fetch

::::::::::
contributing

:::
to

:::
the

::::::
vertical

::::::
fluxes,

::::::
rather

::::
than

:::
the

:::::
single

:::::::::
vegetation

::::
type

:::::
used

:::::
within

:::
the

::::::
model.

::::::::::::
Additionally,

:::
the

:::
size

::::
and

:::::::::
orientation

:::
of

:::
the

::::::::::
contributing

:::::
fetch

:::::
varies

::
in
:::::

time
:::::::::
depending

::
on

::::::::::::
measurement

:::::
height

::::
and

::::::::
turbulent

:::::
fluxes

:::::::::::::::
(Chu et al., 2021).

:

:::::::::
Differences

::
in

::::
land

:::::
cover

:::::::::::
classification

:::::
could

::
be

:::::::
another

:::::
reason

:::
for

::::::::::::
discrepancies

:::::::
between

:::::::
modeled

:::
and

::::::::
observed

:::::
FPAR

::::
and

::::
LAI.

::::::
Though

:::
we

:::
use

:::::::
MODIS

::
to

:::::::::
determine

::
the

::::
land

:::::
cover

::::
type,

:::
we

::::
first

::::::::::
interpolated

:::
the

:::
500

::
m

::::
data

::
to

::::::::
determine

:::
the

:::::
value

::
of

:::
the795

:
4
:::
km

::::
grid

:::
cell

::::
used

::
in
:::
the

:::::::
DCHM.

:::::
After

:::::::
upscale,

:::
the

:::::
pixel

::
at

:::::::
US-KFS

::
is

::::::
labeled

::
as

::
a
:::::::
savanna,

:::
but

:::
the

::::
500

::
m

:::::::
MODIS

:::
grid

::::
cell

::::::::
containing

::::::::
US-KFS

::
is

::::::::
classified

::
as

::::::::
grassland.

:::::::::
Regardless

:::
of

:::
the

::::::::::
classification

::::::::::
differences,

:::
the

:::::::
spectral

:::::::::
reflectance

:::::::
method

::::
used

::
by

:::::::
MODIS

::
is

::::::::
inherently

:::::::
different

:::::
from

::
the

:::::::::
predictive

::::::::
phenology

:::::::
routine

::::
used

:
in
:::
the

:
DCHM-PV(Lowman and Barros, 2016; Garcia-Quijano and Barros, 2005)

based on PFT cause the model to be more conservative in its water use strategies. Another explanation could be the deep soil

layers (1.83 m, 72 in) (Soil Survey Staff) allowing for deep root the deep soils of the Kansas Plains and to allow the model to800
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account for deeper root water uptake (Lowman and Barros, 2016).
:
,
::::::::::
specifically

::
in

::::
that

:
it
::::::
cannot

:::::::
account

:::
for

::::
how

::::
soil

:::::
water

:::::::::
availability

:::::::::
influences

::::::::
vegetation

::::::
growth

::::::::::::::::::::::::
(Lowman and Barros, 2018).

:

4.4 Implications

The coupling of the land-surface-subsurface hydrology model to the predictive phenology model allows for dynamic updates

of vegetation growth states (Lowman and Barros, 2018). By updating phenology, we are able to better capture vegetation805

responses to water stress events through water use efficiency (Figure A24), indicating plants that transpire more are more

efficient in their water use. Vegetation activity is directly linked to the coupling of the water and carbon cycling through

photosynthesis (Farquhar et al., 1980) and assimilating plant phenology into land-surface models (e.g., DCHM-V or Noah-MP)

can improve estimates of GPP and ET (Hosseini et al., 2022; Xu et al., 2021; Mocko et al., 2021; Kumar et al., 2019).

4.4
:::::

Model
:::::::::::
Performance

::::
and

:::::::::::
Limitations810

4.4.1
:::::
Model

:::
vs

::::::::::::
Observations

This study allows us to investigate how vegetation responses can be used to study the effects of flash droughts on the to-

tal carbon budget
:::
and

:::::
water

:::::::
budgets. Our modeling approach permits direct comparisons of remotely sensed observations to

physically derived estimates. Generally, MODIS overestimates GPP compared to EC flux tower data (Heinsch et al., 2006;

Running et al., 2004)and our model underestimates MODIS and flux tower GPP during droughtperiods and aligns more with815

MODIS
:
.
:::::
Daily

::::
GPP

::::
from

:::
the

:::::::
DCHM

:::::
tends

::
to

:::::
match

:::
the

:::::::::
magnitude

:::
of

:::::::
MODIS

:::
and

::::::::::
AmeriFlux

::::
GPP

::
at

:::::::
US-KFS

::::::::::
throughout

::::
much

:::
of

:::
the

:::::::
growing

::::::
season

:::
but

:::::::::::::
underestimates

::::
June

:::
and

::::
July

:::::::::::
observations

::
in

:::::
2012

:::::
(flash

:::::::
drought)

::::
and

::::
2018

:::::::::
(drought).

::::
The

:::::::::
DCHM-PV

:::::
tends

::
to

:::::::::::
overestimate

:::::
during

:::::
2019

:::::::::::
(non-drought)

:::::
while

:::
the

:::::::::
DCHM-V

::::
more

::::::
closely

::::::
aligns

::::
with

:::::::::::
observations.

:::::
Large

:::::::::::
discrepancies

:::
are

::::
also

:::::::
apparent

::
in

::::::
hourly

::::::::
estimates

::
of
:::::

GPP
::
at

:::::::
US-KFS

:::::::
(Figure

:::::
A22).

::::
The

::::::
DCHM

:::::
halts

::::::
midday

:::::
GPP

::
in

::::
July

:::::
2018,

:::
but

:::::::::
AmeriFlux

:::::
values

::::::
remain

:::::
high.

::::
The

:::::::::
differences

:::
are

::::::
smaller

::
in

:::::
2012,

::::::
where

:::::::::
AmeriFlux

::::::::
observed

::::::
carbon

::::::::::
assimilation820

::::
rates

::
of

::
1

:::
gC

::::
m−2

::::
s−1

:::::::::
throughout

:::
the

:::::::
daytime

::::
and

:::
the

::::::
DCHM

::::
shut

:::::
down

::::::
carbon

:::::::::::
assimilation

:::
due

::
to
::::::::

elevated
::::
VPD

:::::::
(Figure

:::::
A22).

:::
The

::::::::::
DCHM-PV

::::::::
compares

::::::::
favorably

::::::
against

:::::::
MODIS

::::
LAI

::::::
during

::::
flash

:::::::
drought

::::
and

::::::::::
non-drought

::
at

::::::::
US-KFS and flux tower

estimates during high precipitation years. By explicitly considering plant tendencies, we can dynamically account for current

meteorological conditions
:::::::
US-KLS

:::::::
(Figure

:::::::
6a,c,d,f)

:::
and

::::::::::::
underestimate

:::::
those

::::
sites

::::::
during

:::::::
drought

::::::
(Figure

:
6
:::::

b,e).
::
At

::::::::
US-Kon,825

::::::
MODIS

::::
LAI

::::::
during

:::::
May,

::::
June,

::::
and

::::
July

:::::
tends

::
to

::
be

:::::
above

::::::::::
DCHM-PV

:::::::::
estimates.

:::
The

::::::
higher

::::::::::
DCHM-PV

:::::
model

::::::::
estimates

:::
of

:::::
FPAR

:::
and

::::
LAI

:::::
during

:::::::
summer

:::::
2019

::::
could

:::
be

:::
due

::
to

:::
the

:::::
model

:::::::::
accounting

:::
for

::::::
excess

::::
water

::::::::::
availability

:::
and

::::
other

:::::::::::::
meteorological

::::::::
conditions

::::::::
favorable

:::
for

::::::
growth

::::::::::::
(temperature,

:::::
VPD,

::::
etc.).

:::::::
MODIS

::::::::
estimates

::
of

::::::
FPAR

:::
and

::::
LAI

:::
are

:::::
based

:::
on

:::::::
radiative

:::::::
transfer

::::::
models

::::
using

:::::::::::
bidirectional

:::::::::
reflectance

::
of

::::::::
incoming

:::::::
radiation

:::::
from

:::
the

:::
red

:::
and

::::
near

::::::
infrared

:::::
bands

:::::::::::::::::::::::::::::::
(Myneni et al., 2015; Yan et al., 2016)

:
.
::::::
MODIS

:::::
GPP

:
is
:::::::
directly

:::::::::
dependent

::
on

::::::::::
observations

:::
of

:::::
FPAR

::::::::::::::::::
(Running et al., 2015).

::::
This

:::::::::
difference

::
is

:::::::
apparent

::
in

::::::::::
DCHM-PV830

:::::::
estimates

:::
of

::::
GPP

:::::::::
exceeding

::::::::
estimates

:::::
from

:::
the

::::::::
DCHM-V

::::
and

:::::::
MODIS

:::::
GPP

:::::
during

::::
the

::::
same

::::::
period

::::::
where

:::
the

::::::::::
DCHM-PV

::::::
predicts

::::::
larger

:::::
values

:::
of

:::::
FPAR

::::
and

::::
LAI

:::::
during

:::::
2019

::::::
(Figure

::::
11).

::::
Our

::::::
model

::::::::::
performance

:::::::
against

:::::::
MODIS

::
is

::::::
similar

::
to

::::
that
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:::::
found

::
in

::::::::::::::::::
Hosseini et al. (2022),

::::
who

:::::
used

:
a
:::::::::
predictive

:::::::::
phenology

:::::
model

:::::::
coupled

:::::
with

::::::::
Noah-MP.

:::::::
Across

::
all

:::
11

:::::
years

::
in

::::
that

:::::
study,

::::
their

::::::::
dynamic

:::::::::
vegetation

::::::
models

::::::
tended

::
to

::::::::::::
underestimate

:::::
June

:::
and

::::
July

::::
LAI

::
at

::::::::
US-Kon

:::
and

:::::::
slightly

:::::::::::
overestimate

::
at

:::::::
US-KFS.

:
835

:::::::::
AmeriFlux

::::::::
estimates

::
of

::::
GPP

:::::
during

::::
June

::::
and

::::
early

::::
July

::
of

::::
2012

:
and thus use physical principles to capture vegetation-atmosphere

interactions. Moving forward, improvements made to phenological states of the entire plants (i. e. root systems included)rather

than just the leaf phenology might better capture water movement through plants under water stress conditions.

4.5 Limitations

::::
2018

:::
are

::::
also

:::::
above

::::::::
estimates

:::::
from

:::::::
MODIS.

::::
This

::::::::
suggests

:::
that

::::::
during

:::::::
drought

:::
and

::::
flash

::::::::
drought,

:::::
plants

:::
are

::::
able

::
to

::::::::
maintain840

:::::
higher

:::::
levels

::
of

::::
GPP

::::
than

:::::
what

:::
can

::
be

::::::::
recreated

::
in

::::
land

::::::
surface

::::::
models

::::
and

::::::
satellite

::::::
remote

:::::::
sensing.

::::::::::
Differences

::
in

::::::::::
DCHM-PV

:::
and

:::::::::
AmeriFlux

::::
GPP

::::::
cannot

::
be

::::
fully

::::::::
attributed

::
to

::::::
carbon

::::::::::
reallocation

::::
since

:::
the

:::::::::
Noah-MP

:::::
model

:::::::
accounts

:::
for

::::::
carbon

::::::::::
reallocation

:::
and

::::::::
similarly

:::::::::::::
underestimated

::::
GPP

:::::::::
compared

::
to

::::
flux

::::::
tower

::::
data

::::::::::::::::::
(Hosseini et al., 2022)

:
.
:::::
Even

:::::
while

:::::::::
accounting

:::
for

:::::::
carbon

:::::::::
movement,

::::
they

:::::
found

::::
that

::::::
during

:::::
June,

::::
July,

:::
and

:::::::
August

::::
they

:::::::::::::
underestimated

:::::
tower

::::
data

::
by

::::
100

:::
gC

::::
m−2

::
at
::::::::

US-Kon
:::::
while

::::::::::::
overestimating

::
by

:::
the

:::::
same

::::::
amount

::
at

:::::::
US-KFS

::
in

:::::
April,

:::::
May,

:::
and

::::
June

::::::::
(averaged

::::::
across

::
an

:::::::
11-year

::::
study

::::::
period

::::::::::::
encompassing845

:::
wet

:::
and

::::
dry

:::::::
periods).

::::
The

::::::::::
DCHM-PV,

:::::
which

::::
does

::::
not

::::::
account

:::
for

::::::
carbon

:::::::::::
reallocation,

:::::::
responds

::
to
:::::::
drought

::::
and

::::
flash

:::::::
drought

::::::::
differently

::::
than

:::::
what

:
is
::::::::
observed

::
at

::::
flux

:::::
tower

::::
sites.

::
It

:::::::
matches

:::::
better

::::
with

:::::::::
AmeriFlux

::::
data

::::::
during

:::::
2012,

::
the

:::::
flash

::::::
drought

:::::
year,

:
at
::::::::
US-KFS

:::
and

::::::::
US-KLS

::::::::
compared

::
to

:::::
2018,

::
a

::::::
drought

::::
year

:::::::
(Figure

:::
11,

:::::
A15).

:::::::
Another

::::::::
difference

::::::::
between

:::::::
modeled

::::
and

::::
flux

:::::
tower

::::
data

:::::
could

:::
be

::::
that

::::::
models

:::::
may

:::
not

:::
be

::::
able

::
to

::::
fully

:::::::::
represent

::::
how

::::::::
vegetation

::::
can

:::::::
maintain

:::
ET

:::
by

::::::::
accessing

:::::::::::
groundwater

::
or

::::
deep

::::
soil

::::::::
moisture,

:::::::::
ultimately

::::::
biasing

:::::::
models

::::::
towards

:::::
more

::::::
severe850

:::::
effects

:::
of

::::::
drought

:::
on

:::::::::
vegetation

::::::::::::::::::
(Giardina et al., 2023)

:
.
::::::
DCHM

:::
has

:::::::
similar

:::
soil

::::::::
moisture

::::::
profiles

::
to
::::::::::
NLDAS-2,

::::::
derived

:::::
from

::::::::::
Noah-LSM,

:::
and

:::::::::::::::::::
Hosseini et al. (2022)

:::
who

:::::
used

:::::::::
Noah-MP

::::::::::::
configurations,

::::
for

::::
both

:::
the

:::::
2012

:::::
flash

:::::::
drought

::::
and

:::
the

:::::
2018

:::::::
drought.

::::
The

::::::
DCHM

::::
also

:::::::
follows

::::::
trends

::::::
similar

::
to

::::::::::
AmeriFlux

::
in

:::::
2012,

::::
but

:::::::::
AmeriFlux

::::
top

::::
layer

::::
soil

::::::::
moisture

::::::
values

:::
are

::::
much

:::::::
smaller

:::::
from

::::
May

::
to

:::::::
October

:::
of

:::::
2018,

:::::
often

:::::
under

:::
0.1

:::
m3

:::::
m−3

::::::
during

:::
that

:::::
time

::::::
(Figure

::::
A).

::::::
Despite

:::::::::
extremely

::::
low

:::
top

::::
layer

::::
soil

::::::::
moisture

::
in

:::::
2018,

::::::::::
AmeriFlux

::::
GPP

:::::::
reaches

:::::
levels

:::::
above

:::
10

:::
gC

:::::
m−2

:::
d−1

::::::::::
coinciding

::::
with

:
a
:::::

brief
:::::::
recharge

:::
in855

:::
soil

:::::::
moisture

::
at
:::
the

::::
end

::
of

:::::
June.

:::
The

:::::::
DCHM

::::::::
estimates

::
of

::::
GPP

:::
are

:::::
often

:::
less

::::
than

:::
50

::
%

::
of

:::::::::
AmeriFlux

:::::
GPP

::
in

::::
2012

::::
and

:::::
2018.

:::
The

::::::
model

:::::
results

::::
from

:::
the

:::::::::
Noah-MP

:::::::
similarly

::::::::::::
underestimate

::::
GPP

:::
and

:::::::::::
overestimate

:::
soil

::::::::
moisture

:::::
during

:::::
these

::::::
drought

:::::::
periods

::::::::::::::::::
(Hosseini et al., 2022)

:::::::::
suggesting

:::
that

::::::
access

::
to

::::
deep

:::::
water

:::::::
reserves

:::
are

:::::::::
responsible

:::
for

::::
these

::::::::::
differences

::::::::::::::::::
(Giardina et al., 2023)

:
.

4.4.1
:::::::::::
Implications

:::
for

:::::
LSMs860

Capturing phenological responses
:::
and

::::::::::
subsequent

:::::::
changes

::
to
:::::::

carbon
:::
and

::::::
water

:::::
fluxes

:
within a physically based model is

not without its limitations. As we update phenological states during the DCHM-PV simulations, forced atmospheric condi-

tions from NLDAS-2 and StageIV
:::::::
Stage-IV

:
variables are the same as in the DCHM-V simulations. We continue to use these

conditions to force the model, so it is possible that the meteorological observations are already accounting for some vegetation-

atmosphere interactions. When analyzing DCHM outputs against remotely sensed and eddy covariance measurements, we are865
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comparing data across temporal and spatial scales. For example, the DCHM takes in one value for soil texture and porosity

and land cover type, and uses these values to define how water moves through soils and root systems across the 4 km grid cell.

Vegetation at AmeriFlux tower sites differs from the interpolated MODIS land cover type used in the DCHM in some instances.

Other challenges arise throughout the analysis with missing tower data, and data at different scales, units, and measurement

locations. Here, the DCHM is operating at a 4 km grid scale, so representing vegetation as one PFT does not capture the870

landscape heterogeneity below the grid scale even if it does match AmeriFlux . Soil moisture measurements from SMERGE,

Noah-LSM, and Ameriflux (Figures ??-??) are all at varying depths that may differ from, but most closely align with, the

soil layers we defined. We derive evapotranspiration using latent heat fluxes from AmeriFlux towers and recognize that the

energy balance may not be closed in doing this (Wilson et al., 2002), while the DCHM forces energy balance closure.To get

past the limitations, the ensemble Monte Carlo simulations help capture model uncertainty, incorporated throughout the results875

as ensemble means and standard deviations.
::::
But,

::
by

::::::::
explicitly

::::::::::
considering

:::::
plant

:::::::::
tendencies,

:::
we

::::
can

::::::::::
dynamically

:::::::
account

:::
for

::::::
current

::::::::::::
meteorological

:::::::::
conditions

:::
and

::::
thus

:::
use

::::::::
physical

::::::::
principles

::
to

::::::
capture

:::::::::::::::::::
vegetation-atmosphere

::::::::::
interactions.

:

:::::::::
Vegetation

::::::::
responses

::
to

:::::
water

:::::
stress

:::
are

:::::::
apparent

:::::::
through

::::::::::
fluctuations

::
in

:::::
GPP

:::::::::::::::::::::::::::::::::
(Zhang and Yuan, 2020; Jin et al., 2019)

:::
and

::
ET

::::::::::::::::
(Chen et al., 2019).

:::::::::
Decreases

::
in

::::
GPP

:::::
occur

:::::
when

:::::
plants

:::::
close

::::
their

:::::::
stomata.

:::::
With

:::
the

::::::
stomata

::::::
closed,

::::::
plants

:::
will

:::::
limit

:::
gas

::::::::
exchange

:::::::
affecting

::::
both

:::::::::::::
photosynthesis

:::
and

::::::::::
transpiration

:::::
rates.

:::::::::::
Transpiration

::
is
::::
only

::::
one

:::
part

::
of
::::
ET,

::
so

:::
we

::::
must

:::
be

::::::
careful

:::
not880

::
to

::::::
directly

::::
link

:::::::::
fluctuations

:::
in

::::
GPP

::::
with

:::::::::
fluctuations

::
in
::::
ET.

::::::::::
Evaporation

:::
can

::::
still

::
be

::::
high

:::::
when

::::
there

::
is

::::
little

::
to

:::
no

:::::::::::
transpiration,

:::
but

::::
GPP

::::
tend

::
to
::::::

follow
:::

the
:::::

same
::::::::::

trajectories
::
as

:::::::::::
transpiration

::::::::::::::::::::::::::::
(Figures 10, 12, Beer et al., 2009)

:
.
::
In

:::::
some

::::::
cases,

:::::::::
vegetation

:::
can

::::::::
reallocate

::::::
already

:::::::::
processed

::::::
carbon

::
to

::::
their

:::::
roots

::::
when

::::::
under

::::::
drought

:::::
stress

:::::::::
mitigating

::::
GPP

:::::
losses

::::::::::::::::::
(Ingrisch et al., 2020)

:
.

::::::::
However,

:::::::
modeled

:::::
GPP

:::::
losses

:::
are

:::::
likely

::
a
:::::
result

::
of

:::::::
modeled

::::::::
stomatal

:::::::
behavior,

:::
as

:::
the

:::::
model

::::
does

:::
not

:::::::
account

:::
for

::::::::::
reallocation

::
of

::::::
carbon

:::::
stores

:::::
within

:::
the

::::::
plants.

::::::::
Sub-daily

:::::
scale

:::::::
stomatal

:::::::::::
conductance

::::::
reduces

::
to

::::
zero

::
in

::::::::
response

::
to

::::::::
increased

::::
VPD

:::::::
(Figure885

::
9)

::::::
leading

::
to

:::::::
similar

::::::::
reductions

:::
in

:::::::
modeled

::::
GPP

:::::::
(Figure

:::::
A22).

::::
This

:::::::::
limitation

::
of

:::
the

:::::::
DCHM

:::::
could

::::::
explain

::::
why

::::::::::
AmeriFlux

::::
GPP

::::
tends

::
to
:::
be

:::::
higher

::::
than

:::
the

::::::::
modeled

::::
GPP.

:

:::::::::
Vegetation

::::::
activity

::
is

::::::
directly

:::::
linked

::
to

:::
the

::::::::
coupling

::
of

::
the

:::::
water

:::
and

::::::
carbon

:::::::
cycling

::::::
through

::::::::::::
photosynthesis

:::::::::::::::::::
(Farquhar et al., 1980)

:::
and

::::::::::
assimilating

:::::
plant

:::::::::
phenology

:::
into

:::::::::::
land-surface

::::::
models

:::::
(e.g.,

:::::::::
DCHM-V

::
or

:::::::::
Noah-MP)

:::
can

::::::::
improve

::::::::
estimates

::
of

::::
GPP

::::
and

::
ET

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Hosseini et al., 2022; Xu et al., 2021; Mocko et al., 2021; Kumar et al., 2019).

:::::::::
However,

:::
our

::::::::
findings

::::
also

:::::::
indicate

::::
that890

::::::::
improved

:::::::::
phenology

::::::
cannot

:::::
alone

::::::
account

:::
for

:::::::::
vegetation

::::::::::
adaptations

::
to

:::::
water

:::::
stress

::::
and

:::::
ability

:::
to

:::::
access

:::::
water

::
in
:::::

ways
::::
that

::::::
current

:::::
LSMs

::::::
cannot

:::::::
account

:::
for

:::::::::::::::::::
(Giardina et al., 2023).

::::::
Future

::::::
studies

::::::
should

:::::
focus

:::
on

:::::::::
improving

::::
our

::::::::::::
understanding

::::
how

:::
how

::::::
plants

:::
are

::::
able

::
to

:::
tap

::::
into

:::::::
different

:::::
stores

:::
of

:::::
water

::
to

:::::::
continue

::::::::::
exchanging

:::::
water

::::
and

::::::
carbon

::::::
despite

:::::
lower

:::::::::::
precipitation

::
or

::::::::
increased

:::::
VPD.

:::::::::::
Additionally,

::
as

:::::::
stomata

::::::
control

:::
the

::::::::
movement

:::
of

:::::
water

:::
and

::::::
carbon,

::::::::
affecting

::::
GPP

:::
and

:::::
water

:::
use

:::::::::
efficiency

::::::::::::::::::::::::::::::
(Lawson and Vialet-Chabrand, 2019),

::::::::::
accounting

::
for

:::::
plant

::::::::::
adaptations

:::
that

:::::::::
adaptively

:::::::
regulate

:::::::
stomatal

:::::::::
sensitivity

::
to

:::::::
drought895

:::::
stress,

::::::::
especially

:::::
VPD,

::::
may

:::::::
improve

::::::
model

::::::::
accuracy.

::::::
Moving

::::::::
forward,

::::::::::::
improvements

:::::
made

::
to

:::::::::::
phenological

::::::
states

::
of

:::
the

:::::
entire

::::::
plants

::::
(i.e.

::::
root

:::::::
systems

::::::::
included)

::::::
rather

::::
than

:::
just

:::
the

::::
leaf

:::::::::
phenology

:::::
might

::::::
better

::::::
capture

::::::
water

:::::::::
movement

:::::::
through

:::::
plants

:::::
under

::::::
water

:::::
stress

:::::::::
conditions.

::::::
Future

:::::::
studies

:::::
would

::::::
benefit

:::::
from

::::::::
improved

::::::::
estimates

::
of

::::
root

:::::
water

::::::
uptake

:::::
since

::
it
::
is

:::::::
directly

:::::
linked

:::
to

:::
the

::::::
amount

:::
of

::::::::
available

:::::
water

:::
for

:::::::::::
transpiration.

:::::::::
Vegetation

:::::
types

::::
have

::::::
distinct

::::
root

::::::::::::
characteristics

:::::::
leading

::
to

:::::::::
differences

::
in
:::::::::

hydraulic
:::::::::
tendencies

:::::
under

:::::::
variable900
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::::
water

:::::::
regimes

::::
and

::::::::::
atmospheric

:::::::::
conditions

:::::
which

::::::::::
distinguish

::::::::
vegetation

::::
that

::
is

::::
more

:::::
likely

:::
to

::::::
survive

::
or

:::::::
recover

::::
from

:::::::
drought

:::::::::::::::::::::::::::::::::::::::::::
(McDowell et al., 2008; Martínez-Vilalta et al., 2002).

:::::::
Species

:::::::
specific

:::::::::
hydraulic

::::::::
strategies

::::
may

::::::
differ

::
in

::
a
:::::
single

::::::::
location

::::::::::::::
(Liu et al., 2020)

::
so

:::::::::::
generalization

:::
of

::::
water

:::
use

:::
by

::::
PFT

::
in

:::::::::
hydrologic

::::::
models

:::::
would

::::::::
represent

:::
the

::::::
average

::::::::
tendency

::
of

::::::::
vegetation

::
to

:::::::
regulate

:::::
water.

::
It

::
is

:::
also

:::::::
possible

::::
that

:::
the

::::::::
changing

:::::::::::
phenological

::::
state

::
of

::::
root

:::::::
systems

::::
plays

:::
an

::::::::
important

::::
role

::
in

::::
root

:::::
water

:::::
uptake

:::::::::::::::::::::
(McCormack et al., 2014)

:
.
:::::::::
Moreover,

::::::
models

:::
that

::::
can

::::::
account

:::
for

:::::::
different

:::::::::
vegetation

::::::::
behavior

::::
such

::
as

:::
the

::::::::::
reallocation905

::
of

::::::
carbon

::::::
storage

::::
and

:::::
below

:::::::
ground

:::::::::
respiration

::::::
during

:::::::
drought

::::
may

:::::::
provide

:
a
:::::
better

::::::::::::
understanding

:::
of

::::::::::
mechanisms

:::::::
driving

::::::
drought

:::::::::
resiliency

:::
and

::::::::
changes

::
to

::::::
carbon

::::::
uptake

::::::
during

:::::::
drought

:::::::::::::::::::::::::::::::::::::
(Ingrisch et al., 2020; Sanaullah et al., 2012).

::::::
These

:::::
types

::
of

::::::::::
mechanisms

::::::
could

::::::
explain

::::
how

::
a
:::::
warm

::::
and

::::
wet

:::::
spring

:::::::::
mitigated

:::
the

::::::
effects

::
of

::::
the

::::
2012

:::::
flash

:::::::
drought

:::
on

::::
GPP

::::::
losses

:::::::::::::::
(Wolf et al., 2016).

:

5 Conclusions910

Changes in vegetation phenology, or growth stage, drive water use strategies and have implications on the carbon and water

budgets (H3).

To address how water stresses affect carbon
:::
and

:::::
water

:
cycling, we implemented a one-dimensional version of the DCHM-V

coupled to a predictive phenology model and analyzed vegetation water use strategies during drought and non drought
::::::::::::::::::
vegetation-atmosphere

::::
water

::::
and

::::::
carbon

:::::::::
exchanges

::::::
during

::::
flash

::::::::
drought,

:::::::
drought,

::::
and

::::::::::
non-drought

:
periods. The modeling procedure first required915

running the DCHM-V with phenology updates from remotely sensed observations of FPAR and LAI. In order to couple

:::::::
Coupling

:
the predictive phenology model to the DCHM-V, we generated ensembles of model parameters from the outputs of

the DCHM-V
:::
and

:::
ran

::::::
Monte

:::::
Carlo

::::::::::
simulations

::
of

:::
the

::::::::::
DCHM-PV

:
with concurrent meteorological conditions. We ran three

simulations using three distinct assimilation periods for three different sites in Kansas. Uncertainty in model parameters and

outputs is reduced when a three year assimilation period (covering net-average conditions) is used. Decreases in predicted920

FPAR and LAI and reductions in their uncertainty ranges aligned with periods of known flash drought . These proxies for

vegetation state influence rates of ET and GPP and thus WUE as seen through the partitioning of ET and the near shutdown of

transpiration

:::
Our

:::::::
findings

:::::::
indicate

:::
that

::::
both

:::::::::
phenology

::::
and

:::::::
stomatal

::::::::::
conductance

::::
play

:::
an

::::::::
important

:::
role

::::::::::
controlling

::::::::
vegetation

:::::::::
responses

::
to

:::::::
extreme

::::::
drought

::::
(H2,

:::::
H3).

::::::::
Decreased

:::::::::
infiltration

::::
due

::
to

::::::::
increased

::::
days

:::::::
between

:::::::::::
precipitation

::::::
during

::::
flash

:::::::
drought

:::::::
resulted925

::
in

:::
less

::::
new

:::::
water

:::::::
available

:::
for

:::::
plant

:::
use

::::::::
(H1,H2).

::::
High

:::::
vapor

:::::::
pressure

:::
led

::
to
::::::::
stomatal

::::::
closure

::::::
within

:::
the

::::::
model.

::::
With

:::::::
stomata

::::::
closed,

:::
root

:::::::
uptake,

:::::::::::
transpiration,

:
and carbon assimilation

:::::::
reduced

::
to

:::::::
dormant

:::::
levels

::::::
which

:::
led

::
to

:::::::::
reductions

::
in

:::::
WUE

::::::
during

::::
flash

:::::::
drought

::
to

:::::
levels

::::
more

::::
than

::::
one

:::::::
standard

::::::::
deviation

:::::
below

:::::
other

:::::::
drought

::::::
periods

:
(H2)during the summer of 2012 (Figure

A24a ), while evaporation continued in response to precipitation and atmospheric demand for water (H1).
:
.
:::::
FPAR

::::
and

::::
LAI

:::
also

:::::::
reduced

::::::
during

:::::
flash

:::::::
drought,

:::
but

:::
did

:::
not

:::::
exert

::
as

::::::
strong

::
of

::
a
::::::
control

:::
on

:::::::::
reductions

::
in

::::
GPP

:::
as

:::
did

:::::::
changes

::
to

::::::::
stomatal930

::::::::::
conductance

:::
due

::
to
::::::::
increased

:::::
VPD.

:

The seasonal timing of the flash drought likely had larger impacts since
:
as

:
the rapid dry down occurred during the peak

growing season (Yuan et al., 2019). The amount of available water is
::::
water

::::::::
available

::::::
during

:::
the

:::::::
growing

:::::
season

::::
has a major in-
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fluence on vegetation activity
::::
(H1). In this region of the United States, droughts can reduce yearly

:::::::
monthly carbon assimilation

by 50% compared to periods of average or above average precipitation (Figure ??a-c)
:::
half

:::::::::
compared

::
to

::::::::::
non-drought

:::::::
periods935

::::::
(Figure

:::
10)

:::::
while

:::::
flash

:::::::
droughts

:::
are

::::
even

:::::
more

::::::::::
detrimental

::
to

:::
the

::::::
overall

::::::
carbon

::::::
budget. This has major implications for the

annual crop yield as well as the carbon uptake capacity for the grasslands and savannas that cover most
:::::
much of the Mid-

western US. Future
::::::::
modeling studies should investigate how different vegetation types change

:::
alter

:
their water use strategies

in response to different water stresses by focusing on
::::::::
including (1) expanding this modeling framework to include seasonal

variations in the representation of root distributions which can affect subsurface responses to water stresses and (2) exploring940

a wider range of plant function
::::::
adaptive

::::::::
stomatal

::::::::
regulation

:::::
under

::::::::
elevated

:::::
VPD,

::
(2)

::::::
access

::::
deep

::::::
stores

::
of

:::::
water

::
in

::::
soils

::::
and

::
(3)

:::::
wider

::::::
ranges

::
of

:::::
plant

::::::::
functional

:
types and climatological regimes.

Appendix A: Additional
:::::::::::
Supplemental

:
Figures
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Top layer soil moisture for the non flash
:
,
::
(b)

::::
2018

:
drought

::
and

:::
(c)

::::
2019

:
a
:::::::::
non-drought

:
year 2019.

::::
using

:::
the

::::::::
DCHM-V

:::::
(black

:::::
dotted

::::
line),

::
the

:::::::::
DCHM-PV

::::
with

:::
two

::::::
standard

::::::::
deviations

::::
(red),

:::::::::
AmeriFlux

::::
(blue

:::::
dashed

:::::
line),

:::::::
NLDAS-2

::::::
derived

::::
from

:::::::::
Noah-LSM

::::::
(yellow)

:::
and

:::::
Stage

::
IV

:::::::::
precipitation

:::
on

::
the

:::
top

:::
and

::::
right

::::
axes

:::::
(blue).

Top layer soil moisture for the non flash
:
,
:::
(b)

:::::
2018 drought

:::
and

:::
(c)

:::::
2019

::
a
:::::::::::
non-drought year 2019.

:::::
using

:::
the

:::::::::
DCHM-V

:::::
(black

::::::
dotted

::::
line),

:::
the

::::::::::
DCHM-PV

::::
with

::::
two

::::::::
standard

::::::::
deviations

:::::
(red),

::::::::::
AmeriFlux

::::
(blue

::::::
dashed

:::::
line),

:::::::::
NLDAS-2

::::::
derived

:::::
from

:::::::::
Noah-LSM

:::::::
(yellow)

::::
and

:::::
Stage

::
IV

:::::::::::
precipitation

::
on

:::
the

:::
top

::::
and

::::
right

::::
axes

::::::
(blue).

Figure A1. Top layer soil moisture at US-KFS for the
::
(a)

:::::
2012, flash droughtyear 2012.

Top layer soil moisture for the non flash ,
:::
(b)

::::
2018

:
drought

::
and

:::
(c)

::::
2019

:
a
::::::::::
non-drought year 2019.

::::
using

:::
the

:::::::
DCHM-V

:::::
(black

:::::
dotted

:::::
line),

::
the

:::::::::
DCHM-PV

::::
with

:::
two

::::::
standard

::::::::
deviations

::::
(red),

:::::::::
AmeriFlux

::::
(blue

:::::
dashed

::::
line),

::::::::
NLDAS-2

::::::
derived

::::
from

::::::::
Noah-LSM

:::::::
(yellow)

:::
and

::::
Stage

:::
IV

:::::::::
precipitation

::
on

:::
the

:::
top

:::
and

::::
right

:::
axes

:::::
(blue).
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Figure A2. Middle layer soil moisture
:
at

:::::::
US-KFS

:
for the

::
(a)

:::::
2012,

:
flash drought,

:::
(b)

::::
2018

::::::
drought

::::
and

::
(c)

:::::
2019

:
a
::::::::::

non-drought
:
year

2012.
::::
using

:::
the

::::::::
DCHM-V

:::::
(black

:::::
dotted

::::
line),

:::
the

::::::::
DCHM-PV

::::
with

:::
two

:::::::
standard

::::::::
deviations

::::
(red),

:::::::::
AmeriFlux

::::
(blue

:::::
dashed

:::::
line),

::::::::
NLDAS-2

:::::
derived

::::
from

:::::::::
Noah-LSM

::::::
(yellow)

:::
and

:::::
Stage

::
IV

::::::::::
precipitation

::
on

:::
the

::
top

::::
and

:::
right

::::
axes

:::::
(blue).
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Figure A3. Middle layer
::::
Deep soil moisture

:
at
:::::::
US-KFS for the non

::
(a)

:::::
2012, flash drought,

::
(b)

::::
2018

::::::
drought

:::
and

:::
(c)

::::
2019

:
a
:::::::::
non-drought

:
year

2019.
::::
using

:::
the

::::::::
DCHM-V

:::::
(black

:::::
dotted

::::
line),

:::
the

::::::::
DCHM-PV

::::
with

:::
two

:::::::
standard

::::::::
deviations

::::
(red),

:::::::::
AmeriFlux

::::
(blue

:::::
dashed

:::::
line),

::::::::
NLDAS-2

:::::
derived

::::
from

:::::::::
Noah-LSM

::::::
(yellow)

:::
and

:::::
Stage

::
IV

::::::::::
precipitation

::
on

:::
the

::
top

::::
and

:::
right

::::
axes

:::::
(blue).
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Figure A4. Deep layer soil moisture for
:::::::
Monthly

::::::::::
accumulation

::
of

::::::::
infiltration

:::::
versus

:::::::::::
precipitation.

::::
Each

:::::
shape

:::::::
indicates

:::
one

:::::
month

::::
over

::::
which

:
the

::::::::
averaging

::::::
occurred

:::
and

:::::
colors

:::::::::
distinguish flash drought year 2012.

::::::
(black)

::::
from

::::::
drought

::::
(red)

:::
and

:::::::::
non-drought

::::
years

:::::
(blue)
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Root water uptake through three soil layers throughout 2012 using the DCHM-V
::::::
(black),

::::::
drought

::::
(red),

:
and DCHM-PV 3YR

:::::::::
non-drought

::::
(blue).

:::
The

::::
error

:::
bar

:::::::
represents

::::
one

::::::
standard

:::::::
deviation

:::::
across

::::::
drought

:::
and

::::::::::
non-drought

::::
years,

::::::::::
respectively.

Root water uptake through three soil layers throughout 2012 using the DCHM-V
::::::
(black),

:::::::
drought

:::::
(red),

:
and DCHM-PV

3YR
::::::::::
non-drought

:::::
(blue).

:::
The

::::
error

:::
bar

:::::::::
represents

:::
one

::::::::
standard

::::::::
deviation

:::::
across

:::::::
drought

:::
and

:::::::::::
non-drought

:::::
years,

::::::::::
respectively.

Figure A5. Deep layer soil moisture
::::::
Monthly

::::::
average

:::::
vapor

:::::::
pressure

:::::
deficit [

::
kPa] for the non

::::
three

::::::::
AmeriFlux

::::
sites

::::
from

::::
April

:
-
:::::::

October

::
for

:::
the flash drought year 2019.

Root water uptake through three soil layers throughout 2012 using the DCHM-V
:::::
(black),

::::::
drought

:::::
(red), and DCHM-PV 3YR

:::::::::
non-drought

::::
(blue).

:::
The

::::
error

:::
bar

:::::::
represents

:::
one

:::::::
standard

:::::::
deviation

:::::
across

::::::
drought

:::
and

::::::::::
non-drought

::::
years,

::::::::::
respectively.
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Figure A6. Root
:::::::::
DCHM-PV

::::
3YR

::::::
monthly

::::
root

:
water uptake through

::::
totals

:::
for

::::::
drought

::::
(red)

::::
and

:::::::::
non-drought

:::::
(blue)

:::::
years

::::::::
compared

:
to
::::

flash
:::::::

drought
::::::
(black)

:::::
across three soil layers throughout 2019 using

::
for

::::
our

::::
three

::::
study

:::::
sites.

:::::::
Monthly

::::
sums

:::
are

::::::::
computed

::::
from

:
the

DCHM-V
:::::::
ensemble

:::::
means

::
of

:::
the

::::
2000

:::::
Monte

:::::
Carlo

::::::::
simulations

::::
then

:::::::
averaged

:::::
across

::::::
drought

::
or
::::::::::

non-drought
:::::
years.

::::
Error

::::
bars

:::::::
represent

:::
one

::::::
standard

:::::::
deviation

:::::
across

::::::
drought and DCHM-PV 3YR

:::::::::
non-drought

::::
years,

:::::::::
respectively.

::::::
Drought

::::
years

:::
are

::::
2006,

:::::
2011,

::::
2013,

:::::
2014,

::::
2018

:::
and

:::::::::
non-drought

::::
years

:::
are

:::::::::
2007-2010,

::::::::
2015-2017,

:::::
2019.
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Figure A7. MODIS (MOD17A2H)
::::
Daily

:::::::
stomatal

::::::::::
conductance [

:::
mm

:::
s−1] vs DCHM-PV (DRY

:::
leaf

:::
area

:::::
index, WET, and 3YR)

:::
LAI

:
[
:::
m2

:::
m−2] for all three sites during

::
the

::::
flash

::::::
drought

::
of 2012.

:::::
Marker

:::::
shapes

:::::::
indicate

:::::::
individual

::::
days

::::
from

::::
April

:
1
:
-
:::::::

October
::
31

::::
from

::
the

:::::::
selected

:::
year.

::::
Each

::::::
month

:
is
:::::
given

:
a
:::::
unique

:::::
shape

:::
and

::::
daily

::::
totals

::
of

::::
gross

:::::::
primary

:::::::::
productivity [

::
gC

::::
m−2]

::
are

:::::::
indicated

::
by

:::::
color.
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Figure A8.
::::
Daily

::::::
stomatal

::::::::::
conductance

:
[
:::
mm

:::
s−1]

::
vs

:::
leaf

::::
area

:::::
index,

:::
LAI

:
[
:::
m2

::::
m−2]

::
for

:::::::
US-KFS

::
for

:::::::
selected

:::::::::
non-drought

:::::
years.

::::::
Marker

:::::
shapes

::::::
indicate

::::::::
individual

:::
days

::::
from

::::
April

::
1

:
-
::::::
October

::
31

::::
from

:::
the

::::::
selected

::::::
drought

::::
year.

::::
Each

:::::
month

:
is
::::
given

::
a
:::::
unique

::::
shape

:::
and

::::
daily

:::::
totals

:
of
:::::

gross
::::::
primary

:::::::::
productivity

:
[
::
gC

::::
m−2]

::
are

:::::::
indicated

:::
by

::::
color.
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Figure A9. MODIS (MOD17A2H)
::::
Daily

::::::
stomatal

::::::::::
conductance

:
[
:::
mm

:::
s−1] vs DCHM-PV (DRY

:::
leaf

:::
area

:::::
index, WET

:::
LAI

:
[
::
m2

::::
m−2]

::
for

::::::
US-KLS

:::
for

::::::
selected

::::::::::
non-drought

::::
years.

::::::
Marker

:::::
shapes

:::::::
indicate

:::::::
individual

::::
days

::::
from

:::::
April

:
1
:
-
::::::
October

:::
31

::::
from

::
the

:::::::
selected

::::::
drought

::::
year.

::::
Each

:::::
month

:
is
:::::
given

:
a
:::::
unique

:::::
shape

:::
and

::::
daily

::::
totals

::
of

::::
gross

:::::::
primary

:::::::::
productivity [

::
gC

::::
m−2]

::
are

:::::::
indicated

::
by

:::::
color.
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Figure A10.
::::
Daily

::::::
stomatal

::::::::::
conductance [

:::
mm

:::
s−1]

::
vs

:::
leaf

:::
area

:::::
index,

:::
LAI [

::
m2

::::
m−2]

::
for

:::::::
US-Kon

::
for

:::::::
selected

:::::::::
non-drought

:::::
years.

::::::
Marker

:::::
shapes

::::::
indicate

::::::::
individual

::::
days

::::
from

::::
April

::
1

:
-
::::::
October

:::
31

::::
from

::
the

:::::::
selected

::::::
drought

::::
year.

::::
Each

:::::
month

::
is
::::
given

::
a
:::::
unique

:::::
shape

:
and 3YR)

::::
daily

::::
totals

::
of

::::
gross

::::::
primary

::::::::::
productivity [

::
gC

:::
m−2]

::
are

:::::::
indicated

::
by

:::::
color.
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Figure A11.
::::
Daily

:::::::
stomatal

:::::::::
conductance

:
[
::

mm
::::

s−1]
::
vs

:::
leaf

:::
area

::::::
index,

:::
LAI

:
[
:::
m2

::::
m−2] for all three

::::
study

:
sites during 2012.

::
for

:::::::
selected

::::::
drought

::::
years.

::::::
Marker

::::::
shapes

::::::
indicate

::::::::
individual

::::
days

::::
from

::::
April

::
1
:
-
:::::::
October

::
31

::::
from

:::
the

::::::
selected

::::::
drought

:::::
year.

::::
Each

:::::
month

::
is

::::
given

::
a

:::::
unique

::::
shape

:::
and

:::::
daily

::::
totals

::
of

::::
gross

::::::
primary

:::::::::
productivity

:
[
::

gC
:::
m−2]

:::
are

:::::::
indicated

::
by

::::
color.
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Figure A12.
:::::

MODIS
:::::::::::
(MOD17A2H)

:::
vs

::::::::
DCHM-PV

:::::
3YR,

::::
WET,

:::
and

::::
DRY

:::
for

::
all

::::
three

::::
sites

:::::
during

:::::
2012.
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Figure A13.
:::::

MODIS
:::::::::::
(MOD17A2H)

:::
vs

::::::::
DCHM-PV

:::::
3YR,

::::
WET,

:::
and

::::
DRY

:::
for

::
all

::::
three

::::
sites

:::::
during

:::::
2018.
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Figure A14.
:::::

MODIS
:::::::::::
(MOD17A2H)

:::
vs

::::::::
DCHM-PV

:::::
3YR,

::::
WET,

:::
and

::::
DRY

:::
for

::
all

::::
three

::::
sites

:::::
during

:::::
2019.
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Figure A15. Time series from the DCHM-V
::::

Daily
::::
gross

::::::
primary

:::::::::
productivity, DCHM-PV three year assimilation period

::::
GPP, 8 day MODIS

::
at

::::::
US-KLS

:::
for

::
(a)

:::::
2012

::::
flash

::::::
drought,

::
(b)

::::
2018

::::::
drought and daily

::
(c)

::::
2019

:
a
::::::::::
non-drought

::::
year.

:::
One

:::::::
standard

:::::::
deviation

::
is

:::::
shown

::
as

:
a
::::::
shaded

:::::
region

::
for

:::
the

:::::::::
DCHM-PV

::::::::::
simulations.

::::::
MODIS

::::
GPP

:::
are

:::::
shown

:::
as

:::
red

::::::
crosses

:::
and

:
AmeriFlux totals

:::
GPP

::
as

::::
blue

::::
dots.

:::::
series

:
of

::::
gross

::::::
primary

:::::::::
productivity,

:
GPP

:
, at US-KLS for (a) 2012, flash droughtyear and

:
, (b)

:::
2018

:::::::
drought

:::
and

::
(c)

:
2019 , an above average precipitation

:
a
:::::::::
non-drought

:
year.

:::
One

::::::
standard

:::::::
deviation

::
is

:::::
shown

:::
for

::
the

:::::::::
DCHM-PV

:::::::::
simulations.

::::::
MODIS

::::
GPP

:::
are

:::::
shown

::
as

:::
red

:::::
crosses

:::
and

:::::::::
AmeriFlux

:::
GPP

::
as

:::::
small

::::
dots.
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Figure A16. Time series from the DCHM-V
::::
Daily

::::
gross

:::::::
primary

:::::::::
productivity, DCHM-PV three year assimilation period, 8 day MODIS,

and daily AmeriFlux totals of GPP,
:

at US-Kon for (a) 2012 , flash droughtyear and ,
:
(b)

::::
2018

::::::
drought

:::
and

:::
(c)

:
2019 , an above average

precipitation
:
a

:::::::::
non-drought

:
year.

:::
One

:::::::
standard

:::::::
deviation

::
is

:::::
shown

::
as

::
a
:::::
shaded

::::::
region

::
for

:::
the

:::::::::
DCHM-PV

:::::::::
simulations.

:::::::
MODIS

::::
GPP

:::
are

:::::
shown

::
as

::
red

::::::
crosses

:::
and

::::::::
AmeriFlux

::::
GPP

::
as

::::
blue

::::
dots.
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Figure A17. Time series of
::::
Daily

::::::::::::::
evapotranspiration,

:
ET,

:
[
::
mm

::::
d−1]

:
,
:
at US-KLS for (a) 2012 , flash droughtyear and

:
, (b)

::::
2018

::::::
drought

:::
and

::
(c) 2019 , wet

:
a
::::::::::
non-drought yearfrom DCHM-V and three different DCHM-PV simulations. Two standard deviations are shown for

::
the

DCHM-PV simulations. AmeriFlux ET is showing with the
::::::
derived

::::
from

::::
latent

::::
heat

::::::::::
measurements

:::
and

:::::
shown

::
as
:
blue markers

:::
dots.
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Figure A18. Time series of
::::
Daily

::::::::::::::
evapotranspiration,

:
ET

:
, [

::
mm

::::
d−1]

:
, at US-Kon for (a) 2012 , flash droughtyear and , (b)

::::
2018

::::::
drought

:::
and

::
(c)

:
2019 , wet

:
a
:::::::::
non-drought

:
yearfrom DCHM-V and three different DCHM-PV simulations. Two standard deviations are shown for

::
the

DCHM-PV simulations. AmeriFlux ET is showing with the
::::::
derived

::::
from

::::
latent

::::
heat

::::::::::
measurements

:::
and

:::::
shown

::
as
:
blue markers

:::
dots.
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Figure A19. Simulated
::::

Daily evapotranspiration
:
,
:::
ET, partitioned into evaporation(

:
, E)

:
, and transpiration(

:
, T) for US-KLS ,

:
in

::
mm

::::
d−1

::
at

::::::
US-KFS

:::
for (a) 2012 , flash droughtand ,

:
(b) 2019

::::
2018

::::::
drought, wet

:::
and

::
(c)

::
a
::::
2019

:::::::::
non-drought

:
year. Transpiration totals are in DCHM

:::
The

:::::
curves

:::::::
represent

:::::::
ensemble

:::::
means

:
from total root uptake across the three soil layers

::::::::
DCHM-PV

::::
3YR. The top axis is daily StageIV

::::
Daily

precipitation totals
::::::::::
accumulation

::
is

:::::
shown

::
on

:::
the

::::
right

:::
axis.
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Figure A20.
::::
Daily

::::::::::::::
evapotranspiration,

:::
ET,

:::::::::
partitioned

:::
into

:::::::::
evaporation,

::
E,
::::

and
::::::::::
transpiration,

::
T,

::
in

:::
mm

::::
d−1

:
at
:::::::

US-KLS
:::

for
:::
(a)

::::
2012

::::
flash

::::::
drought,

:::
(b)

::::
2018

:::::::
drought,

:::
and

:::
(c)

::
a
::::
2019

::::::::::
non-drought

::::
year.

:::
The

::::::
curves

:::::::
represent

::::::::
ensemble

:::::
means

::::
from

:::
the

:::::::::
DCHM-PV

:::::
3YR.

:::::
Daily

:::::::::
precipitation

::::::::::
accumulation

::
is

:::::
shown

::
on

:::
the

::::
right

::::
axis.
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Figure A21. Simulated
::::
Daily evapotranspiration

:
,
:::
ET, partitioned into evaporation(

:
, E)

:
, and transpiration(

:
, T) for US-Kon ,

:
in

::
mm

::::
d−1

::
at

::::::
US-Kon

::
for

:
(a) 2012 , flash droughtand ,

:
(b) 2019

:::
2018

::::::
drought, wet

:::
and

::
(c)

::
a

::::
2019

:::::::::
non-drought year. Transpiration totals are in DCHM

:::
The

:::::
curves

:::::::
represent

:::::::
ensemble

:::::
means

:
from total root uptake across the three soil layers

:::::::::
DCHM-PV

::::
3YR. The top axis is daily StageIV

::::
Daily

precipitation totals
::::::::::
accumulation

::
is

:::::
shown

::
on

:::
the

::::
right

:::
axis.
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Figure A22.
:::::
Hourly

::::
gross

:::::::
primary

:::::::::
productivity

:
[
::
gC

::::
m−2

::::
s−1]

:::
from

:::
the

::::::::
DCHM-V

:::
and

:::::::::
DCHM-PV

:::::
shown

::::::
against

:::::::::
AmeriFlux

::::::::
30-minute

:::::::
estimates

::
for

:::
one

:::::
week

:
in
::::
May,

::::
July,

:::
and

::::::
August

::
of

::::
2012,

:::::
2018,

:::
and

::::
2019

::
at

:::::::
US-KFS.

Figure A23. Simulated daily totals of GPP and ET from the DCHM-PV 3YR assimilation period for (a) 2012, flash drought year and (b)

2019, wet year.
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Figure A24. 2012 and 2019
::::::
Growing

::::::
season water use efficiency (WUE=GPP/ET)

:::
from

::::::::
DCHM-V,

:::::::::
DCHM-PV

::::::
(3YR),

:::
and

::::::::
AmeriFlux

:
for

US-KLS
::
(a)

:::::
2012

::::
flash

::::::
drought,

:::
(b)

::::
2018

:::::::
drought,

:::
and

:::
(c)

::::
2019

:::::::::
non-drought

::
at
:::::::
US-KFS.

:::::::
Ensemble

:::::
means

::::::
shown

::
for

:::::::::
DCHM-PV

::::
with

::
2

::::::
standard

::::::::
deviations

:::::::
(shaded).
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Figure A25.
::::::
Growing

:::::
season

:::::
water

:::
use

:::::::
efficiency

:::::::::::::
(WUE=GPP/ET)

::::
from

::::::::
DCHM-V,

:::::::::
DCHM-PV

::::::
(3YR),

:::
and

::::::::
AmeriFlux

:::
for

:::
(a)

::::
2012

::::
flash

::::::
drought,

:::
(b)

:::
2018

:::::::
drought,

:::
and

::
(c)

::::
2019

:::::::::
non-drought

::
at

:::::::
US-KLS.

::::::::
Ensemble

:::::
means

:::::
shown

::
for

:::::::::
DCHM-PV

:::
with

::
2

::::::
standard

::::::::
deviations

:::::::
(shaded).
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Figure A26. 2012 and 2019
::::::
Growing

::::::
season water use efficiency (WUE=GPP/ET)

:::
from

::::::::
DCHM-V,

:::::::::
DCHM-PV

::::::
(3YR),

:::
and

::::::::
AmeriFlux

:
for

::
(a)

::::
2012

::::
flash

:::::::
drought,

:::
(b)

::::
2018

::::::
drought,

::::
and

::
(c)

::::
2019

::::::::::
non-drought

::
at

:
US-Kon.

:::::::
Ensemble

:::::
means

:::::
shown

:::
for

:::::::::
DCHM-PV

::::
with

:
2
:::::::
standard

:::::::
deviations

:::::::
(shaded).

:
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Figure A27.
::::

Daily
::::::
averages

::
of

:::::
water

::
use

::::::::
efficiency

:::::
versus

:::::::::
transpiration

:::
for

:::::
2012,

::::
2018,

:::
and

:::::
2019.
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Figure A28.
::::
Daily

:::::
vapor

::::::
pressure

:::::
deficit

::
at

:::::::
US-KFS

::
for

:::
(a)

::::
2012

:
-
:::
flash

:::::::
drought,

::
(b)

::::
2018

:
-
::::::
drought

:::
and

:::
(c)

::::
2019

:
-
::::::::::
non-drought.

:::
The

::::::
DCHM

:::::::
computes

::::
VPD

::::
using

:::
air

:::::::::
temperature

:::
and

::::
vapor

:::::::
pressure

::::
from

::::::::
NLDAS-2

::::::
Forcing

:::
File

::
A.
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Figure A29.
::::
Daily

:::::
vapor

::::::
pressure

:::::
deficit

::
at

:::::::
US-KLS

::
for

:::
(a)

::::
2012

:
-
:::
flash

:::::::
drought,

::
(b)

::::
2018

:
-
::::::
drought

:::
and

:::
(c)

::::
2019

:
-
::::::::::
non-drought.

:::
The

::::::
DCHM

:::::::
computes

::::
VPD

::::
using

:::
air

:::::::::
temperature

:::
and

::::
vapor

:::::::
pressure

::::
from

::::::::
NLDAS-2

::::::
Forcing

:::
File

::
A.
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Figure A30.
::::
Daily

:::::
vapor

::::::
pressure

:::::
deficit

::
at

::::::
US-Kon

:::
for

::
(a)

::::
2012

:
-
::::
flash

:::::::
drought,

::
(b)

::::
2018

:
-
::::::
drought

:::
and

:::
(c)

::::
2019

:
-
::::::::::
non-drought.

:::
The

::::::
DCHM

:::::::
computes

::::
VPD

::::
using

:::
air

:::::::::
temperature

:::
and

::::
vapor

:::::::
pressure

::::
from

::::::::
NLDAS-2

::::::
Forcing

:::
File

::
A.
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