
Responses to Anonymous Reviewer 2 for paper: Unraveling phenological to extreme drought
and implications for water and carbon budgets

The authors greatly appreciate the reviewer taking time to provide feedback on our manuscript.
We think that the comments are helpful in shaping the new analysis and clarifying how important
mechanisms driving plant controls of water and carbon movements may be affected during flash
drought.

In light of new analysis described in our responses below, we propose a new title: Unraveling
phenological and stomatal responses to flash drought and implications for water and
carbon budgets

We respond to each of the Reviewer’s comments below, which are in bold and italics. Author
responses are in blue with proposed manuscript changes in bold. Responses in italics are used
to reference exact quotes from the author’s responses to Reviewer Comment 1 (RC1). New
figures that we propose to include have labels N# throughout this document and the number
corresponds to how the new figures were introduced starting with RC1. Revised figures have
the same figure number as in the original manuscript. Figures used to support claims in this
document that are not going into the revised manuscript do not have Figure numbers but we
have included figure captions.

This study investigates vegetation phenological processes during drought and
non-drought periods using a set of DCHM-V and DCHM-PV model simulations. The focus
is on three sites in Kansas USA, as they experienced extreme drought and pluvial
conditions in recent decades, and also have ground-based and satellite-based
observations available to compare with model simulations and study observed
processes. The modeling experiments are neatly designed, and the investigation is
systematic to study sources of uncertainty in vegetation phenology. I however have a
number of comments that need to be addressed – please see below.

Main comments

1) This study uses 2012 and 2019 to exemplify the contrast of vegetation phenology
between flash drought vs non-drought years. It would help to add a
non-flash/conventional drought year to the study, as the vegetation phenology could
differ considerably between flash drought and conventional drought. It would be
interesting to see how the evolution of plant phenology, water use, and productivity may
differ between the two drought cases.

The authors appreciate this comment and agree with the reviewer that we should highlight the
differences between flash drought and “non-flash/conventional drought”. To this end, we
propose to add 2018 (conventional drought) as a specific case study to compare against 2012
(flash drought) and 2019 (non-drought). Additionally, we focus components of the analysis to
consider average conditions across conventional “drought” and “non-drought” over the course of



the period 2006-2019. This major change is described in our response to Major Comment #1
from Reviewer #1.

From response to Review Comment 1 (RC1): We now present our results using all years of
available model output and framing the analyses in terms of flash drought vs “non-flash” drought
conditions. We used the United States Drought Monitor (USDM, Svboda et al., 2002) to
determine “drought” and “non-drought” years in Kansas. The Central and East Central Kansas
climate regions contain the three study sites (see figure from USDM below). From the USDM
time series of the climate regions, drought years were determined if an entire year was in
drought or if parts of the region reached D2 (Severe Drought) or higher. The years 2006, 2011,
2013, 2014, and 2018 are labeled as drought years for analysis. The years 2007-2010,
2015-2017, and 2019 are labeled as non-drought years. The flash drought year 2012 is kept
separate from other drought years in the analyses.

Figure Caption. Percent land area in U.S. Drought Monitor Categories for two Kansas climate
regions that contain our study sites US-KFS, US-KLS, US-Kon.

We will update the methods Section 2.7 beginning at line 243 with the change in bold.

Line 243: “…We highlight results from the three AmeriFluxes sites for 2012 (flash drought), 2018
(drought), and 2019 (non-drought) to draw conclusions about plant response during flash
drought and how they differ from drought and non-drought years. We also evaluate model
outputs from 2006-2019 to assess the differences between the DCHM-V and DCHM-PV
model configurations during drought and non-drought years compared to a flash drought
year. During this time period, we identified drought years as 2006, 2011, 2013, 2014, 2018
and non-drought years as 2007-2010, 2015-2017, 2019 using the USDM for the Central and



East Central Kansas climate regions (Svoboda et al., 2002). Drought years were
determined by whether parts of the region reached the D2 “Severe Drought”
classification or higher. When computing drought and non-drought averages, we use the
years listed here. Transpiration is calculated from total root water uptake through the
three soil layers and total evaporation is computed from summing evaporation from
ground and canopy surfaces allowing us to partition ET into evaporation and
transpiration.”

An example of how we compare flash drought to non-flash drought can be seen with updated
Figure 7. We replace yearly totals in Figure 7 with monthly averages of accumulated GPP and
ET for drought and non-drought years. We also include monthly averages of ET separated as
evaporation and transpiration in a new figure.

Figure 7 (replacement). DCHM-PV 3YR monthly totals of GPP (a,c,e) and ET (b,d,f) for
drought and non-drought years compared to 2012 for US-KFS, US-KLS, and US-Kon
AmeriFlux sites. Monthly sums are computed from the ensemble means of the 2000
Monte Carlo simulations then averaged across drought or non-drought years. Error bars
represent one standard deviation across drought and non-drought years, respectively.

An example of how we integrate 2018, a non-flash drought, to compare against 2012 and 2019
can be seen in the updated Figure 11.



Figure 11. Computed growing season water use efficiency (WUE=GPP/ET) from the
DCHM-V, DCHM-PV 3YR, and AmeriFlux for (a) 2012 (b) 2018, drought (c) 2019,
non-drought at US-KFS. AmeriFlux WUE is computed by converting latent heat into eT by
dividing by the coefficient of vaporization.

2) Much of the findings are based on the DCHM-V and DCHM-PV simulations, and are
thus subject to the performance of the DCHM and its predictive phenology in simulating
observed land surface and vegetation processes. The comparison between the model
results and independent observations (e.g., MODIS, AmeriFlux) however shows
considerable differences: some of the models vs. observations differences are so
substantial that they are much larger than the differences between different model
experiments (e.g., Figs.5-9). While these differences could be in part due to the data
comparison across different spatial and temporal scales (Section 4.5), they also make
one wonder about the performance of the DCHM and its predictive phenology. I suggest
the study provides more information/results on the fidelity of the DCHM and its predictive
component is simulating basic land surface variables (e.g., soil moisture,
evapotranspiration) and observed vegetation phonology related fields (e.g., LAI, FPAR),
e.g., in terms of climatology, seasonal cycle and year-to-year variations, to make the
model-based findings more convincing. Also see some of my detailed comments below.

The author’s appreciate this reviewer's comment and we agree that more discussion is needed
involving the comparison of the results from the DCHM and measurements and observations
from AmeriFlux and MODIS.

Major Comment 3 from our responses to RC1, who shared similar feedback, addressed this
point.



From our responses to RC1:

One reason for the discrepancies between modeled output and flux tower data was that plots of
daily average rates of GPP and ET had to do with how we were calculating daily averages for
the figure. While it made sense to average these variables over the entire 24-hour period for the
flux tower data, the model shuts off GPP and evaporation when there is no incoming solar
radiation leading to zeroes during half of the day. Thus, we only average GPP and ET over the
active period within the model to avoid including the unrealistic zeros. This is how the DCHM
model results were previously presented in Lowman and Barros (2016, 2018) and Lowman et
al. (2018). Presenting the results differently was a mistake that has now been fixed. Additionally,
we were able to find available gap-filled time series for GPP for US-KFS and US-KLS from the
AmeriFlux FLUXNET database (Pastorello et al., 2020), allowing us to make comparisons
where previous data was missing in the analysis.

We proposed the following text to be added to the Discussion section of the manuscript in RC1
to discuss the discrepancies.

In a recent paper, Giardina et al. (2023) argue that observed plant responses to water
stress indicate the ability of plants to access deep groundwater and other stores of water
that land surface models (LSMs) are not accounting for. The DCHM has similar soil
moisture profiles to the NLDAS-2 and Hosseini et al., 2022, who used Noah-MP
configurations, for both the 2012 flash drought and the 2018 drought. The DCHM also
follows trends similar to AmeriFlux in 2012, but AmeriFlux top layer soil moisture values
are much smaller from May to October of 2018, often under 0.1 m^3 m^{-3}, which is
below wilting point, during that time (Figure A1). Despite extremely low top layer soil
moisture in 2018, AmeriFlux GPP reaches levels above 10 gC m^{-2} d{-1} coinciding with
a brief recharge in soil moisture at the end of June. The DCHM estimates of GPP are
often less than 50% of AmeriFlux GPP in 2012 and 2018. The model results from the
Noah-LSM similarly underestimate GPP and overestimate soil moisture during these
drought periods (Hosseini et al. 2022), suggesting that access to deep water reserves
that LSMs cannot reproduce could explain these differences (Giardina et al. 2023).

Hosseini et al. (2022) compared predicted estimates of GPP to flux tower measurements
at US-KFS and US-KON using predictive phenology with Noah-MP, which accounts for
carbon reallocation to leaves, stems, roots, and soils. Even while accounting for carbon
movement, they found that during June, July, and August they underestimated tower
carbon uptake by 100 gC m^{-2} at US-Kon while overestimating by the same amount at
US-KFS in April, May, and June (averaged across an 11-year study period encompassing
wet and dry periods). The DCHM-PV, which does not account for carbon reallocation,
performs similarity to the model employed by Hosseini et al. (2022), suggesting the
accounting for carbon allocation cannot explain underestimating GPP in 2012 and 2018.
The DCHM-PV compares more favorably against AmeriFlux data during 2012, the flash
drought year, at US-KFS and US-KLS as opposed to 2018, a drought year (Figure 8, A11).
This suggests that there are missing processes in both the DCHM and the Noah-MP that



cannot capture plant water use during drought, and cannot be attributed to carbon
allocation.

During drought and flash drought, the DCHM-V and DCHM-PV tend to follow similar
trajectories. However, when not under water stress, the predictive phenology model
predicts higher carbon uptake than the DCHM-V, which aligns more with MODIS in 2019.
AmeriFlux estimates of GPP during June and early July of 2012 and 2018 are also above
estimates from MODIS. GPP estimates from the flux tower are higher than the DCHM and
MODIS, suggesting that plants are able to maintain higher levels of GPP than what can be
recreated in land surface models and satellite remote sensing during drought and flash
drought. Differences in DCHM-PV and AmeriFlux GPP cannot be attributed to carbon
reallocation since the Noah-MP model accounts for carbon reallocation and similarly
underestimated GPP compared to flux tower data (Hosseini et al. 2022). A likely
hypothesis is that plants have access to deeper water stores than can be accounted for
in land surface models, as suggested by Giardina et al. (2023).

Updated Figure 8 includes averaging DCHM only over daytime and the inclusion of 2018.

Figure 8 (updated). Time series of gross primary productivity, GPP, at US-KFS for (a)
2012, flash drought, (b) 2018 drought and (c) 2019 a non-drought year. One standard
deviation is shown for the DCHM-PV simulations. MODIS GPP are shown as red crosses
and AmeriFlux GPP as small dots.



Figure A11 (updated). Time series of gross primary productivity, GPP, at US-KLS for (a)
2012, flash drought, (b) 2018 drought and (c) 2019 a non-drought year. One standard
deviation is shown for the DCHM-PV simulations. MODIS GPP are shown as red crosses
and AmeriFlux GPP as small dots.

As further explanation, the flux towers exist within a 4 km by 4 km region defined by the StageIV
spatial grid cell used in the DCHM. Flux tower footprints cover areas with length dimensions
ranging from a couple hundred meters to a few kilometers (Baldocchi, 2003, Schmid, 1994)
making the 4 km grid cell near the maximum range. Subgrid scale heterogeneity can lead to
considerable discrepancies between parameterized and actual fluxes (Schmid, 1994). Since the
DCHM treats the entire grid cell as a single vegetation type, our results hold some uncertainty
as we cannot account for the heterogeneous mix of vegetation and land-use present on the
ground (see Figure below). In addition to savanna, there are deciduous forests within this
gridcell that could influence tower readings, and that the DCHM does not account for.



Figure (non included in manuscript). US-KFS AmeriFlux tower site at the center of a 4 km by 4
km grid representing vegetation heterogeneity of the surrounding region.

We will also add to the discussion section 4.5 Limitations

Line 465: Capturing phenological responses and subsequent changes to carbon and water
fluxes within a physically based model is not without its limitations.

We propose to remove lines 470-480, beginning with “For example…”

Line 470: …temporal and spatial scales. The flux towers exist within a 4 km by 4 km region
defined by the StageIV spatial grid cell used in the DCHM. Flux tower spatial extents
range from a couple hundred meters to a few kilometers (Baldocci, 2003, Schmid, 1994)
making the 4 km grid cell near the maximum range. Subgrid scale heterogeneity can lead
to considerable discrepancies between parameterized and actual fluxes (Schmid, 1994).
One explanation for why flux tower data differs from model output is that the flux tower
estimates incorporate a variety of vegetation types within the fetch contributing to the
vertical fluxes, rather than the single vegetation type used within the model. Additionally,
the size and orientation of the contributing fetch varies in time depending on
measurement height and turbulent fluxes (Chu et al., 2021).

Another difference between modeled and flux tower data could be that models may not
be able to fully represent how vegetation can maintain ET by accessing groundwater or
deep soil moisture, ultimately biasing models towards more severe effects of drought on
vegetation (Giardina et al., 2023). Using predictive phenology with NOAM-LM, which can
account for carbon reallocation to leaves, stems, roots, and soils, Hoessini et al. (2022),
compared predicted estimates to flux tower measurements of GPP. Even while



accounting for carbon movement, they found that during June, July, and August they
underestimated tower data by 100 gC m^{-2} at US-Kon while overestimating by the same
amount at US-KFS in April, May, and June (averaged across an 11-year study period
encompassing wet and dry periods). The DCHM-PV, which does not account for carbon
reallocation, responds to drought and flash drought differently than what is observed at
flux tower sites. It matches better with AmeriFlux data during 2012, the flash drought
year, at US-KFS and US-KLS (Figure 8, A11) compared to 2018, a drought year.

During drought and flash drought, DCHM-PV values also agree favorably with MODIS and
tend to be slightly larger than MODIS during a non-drought year like 2019. During
drought and flash drought, the DCHM-V and DCHM-PV tend to follow similar trajectories
but in response to little water stress, the predictive phenology model predicts increased
carbon uptake compared to the DCHM-V results which align more with MODIS in 2019.
Drought levels of AmeriFlux observed GPP during June are above observed non-drought
levels. Even during flash drought, GPP tended to be slightly higher than non-drought
June levels. This suggests that during drought and flash drought, plants are able to
maintain higher levels of GPP. Differences in DCHM-PV and AmeriFlux GPP are less likely
to be attributed to carbon reallocation since the model used by Hosseini et al. (2022)
accounted for carbon reallocation and still underestimated AmeriFlux.

Detailed comments

1) It would help to briefly discuss the implications of the findings (e.g., based on WET
vs DRY vs 3YR) to subseasonal prediction of vegetation.

Our original intention was to simulate different plant isohydric and anisohydric tendencies
following Lowman and Barros (2018) who showed that the data assimilation period can be used
to generate phenology model parameters that represent different water use strategies.
Following this logic led us to test parameters using WET, DRY, or mixed conditions (3YR) to
simulate anisohydric vs isohydric tendencies among the different plants. Our results show that
the data assimilation period may not be the only factor to consider when trying to simulate water
use strategies. The DCHM predicts stomatal conductance depending on vapor pressure deficit
(VPD), light exposure, and soil moisture. High temperatures and low relative humidity lead to
increases in VPD. In the model, high VPD leads to very low (or zero) stomatal conductance.
(Figure N9). With little water available and high VPD, the DCHM-V and the DCHM-PV follow
very closely. The DCHM-PV predicts higher stomatal conductance than the DCHM-V when
ample water is available and there are lower values of VPD (Figure N9). This translates to
higher GPP predictions in non-drought years (Figure 8).

We suggest the following updates to the discussion section 4.1 Vegetation Responses to Flash
Drought.

While phenology is an important component to consider when computing changes to
transpiration and carbon uptake (Lowman and Barros, 2018; Flack-Prain et al., 2019), our
results indicate that stomatal conductance is also critical for accurately representing



these fluxes. Plants adaptively regulate their stomata during periods of water stress (Guo
et al., 2020), and some have been demonstrated to maintain open stomata or even
increase stomatal conductance under high VPD conditions (Urban et al., 2017). Stomatal
conductance shuts down under high VPD in the DCHM (Figure N9), which does not
account for the possibility of an adaptive stomatal regulation strategy. Since GPP is
directly dependent on stomatal conductance (Farquhar and Sharkey, 1982), DCHM
estimates of sub-daily GPP decrease in response to elevated VPD (Figure N11). Moreover,
changes in phenological growth state (i.e. LAI) occur across longer (i.e. seasonal) time
scales (Katul et al., 2001) than stomatal regulation, which controls carbon and water
exchange at sub-daily timescales (Guo et al., 2020). The differences between modeled
and observed GPP and ET suggest that there are mechanisms controlling plant
responses to drought stress not accounted for within the DCHM. For example, the DCHM
could be too strict in representing the sensitivity of stomatal closure to elevated VPD for
the Kansas study sites. There could be plant or climate specific VPD dependence
(Grossiord et al., 2020), plants could have access to stores of water not accounted for
(Giardina et al., 2023), or both.

Guo et al. (2020) showed that isohydricity (i.e. stomatal regulation) exists on a spectrum
and that some plants are able to move along that spectrum at sub-daily time-scales with
varying environmental conditions, such as higher VPD. Given the high VPD in 2012 at our
test sites (Figures N4, N13), we expect the DCHM to estimate low stomatal conductance,
and thus low GPP relative to AmeriFlux observations when under atmospheric water
stress. We also highlight that the VPD estimated by the DCHM using the NLDAS-2
Forcing File A atmospheric variables is higher during 2012 and 2018 and lower in 2019
compared to AmeriFlux (Figure N13), explaining in part the discrepancies between model
and AmeriFlux GPP. As stomatal response to increasing VPD is more complex than how
it is represented in LSMs, we agree with Grossiord et al. (2020) who suggest that future
modeling studies should focus on how rising VPD drives stomatal closure across
different plant functional types.

Daily GPP from the DCHM tends to match the magnitude of AmeriFlux daily GPP at
US-KFS in 2012 (flash drought) throughout much of the growing season while greatly
underestimating June and July observations in 2018 (drought). The larger discrepancies
are also apparent in hourly estimates of GPP (Figure N13). The DCHM halts midday GPP
in July 2018, but AmeriFlux values remain high. The differences are smaller in 2012,
where AmeriFlux observed carbon assimilation rates of 1 gC m^{-2} s^{-1} throughout
the daytime and the DCHM shut down carbon assimilation due to elevated VPD. This
again points to the ability for vegetation to access water in ways that current LSMs
cannot account for (Giardina et al. 2023). If plants have access to deeper water or are
able to tap into stores of water not currently accounted for, they may be able continue (at
least temporarily) exchanging water and carbon despite lower precipitation or increased
VPD. As stomata control the movement of water and carbon, affecting GPP and water use
efficiency (Lawson and Vialet-Chabrand, 2019), accounting for plant adaptations that
adaptively regulate stomatal sensitivity to drought stress may improve model accuracy.



Figure N9 (Adapted). Hourly stomatal conductances [mm s^{-1}] for one week in May, and
July of 2012, 2018, and 2019 compared with vapor pressure deficit (VPD, kPa) for
US-KFS.

Figure N11 (Adapted). Hourly gross primary productivity [g C m^{-2} s^{-1}] from the
DCHM-V and DCHM-PV shown against AmeriFlux 30-minute estimates for one week in
May, July, and August of 2012, 2018, and 2019 atUS-KFS.



Figure N4 (appendix addition). Monthly average vapor pressure deficit [kPa] for the three
AmeriFlux sites from April - October for the flash drought year 2012 (black), drought
years (red), and non-drought years (blue). The error bar represents one standard
deviation across drought and non-drought years.

Figure N13 (Appendix) Daily vapor pressure deficit at US-KFS for (a) 2012 - flash drought,
(b) 2018 - drought and (c) 2019 - non-drought. The DCHM computes VPD using air
temperature and vapor pressure from NLDAS-2 Forcing File A.



2) Noah-LSM: Noah LSM has multiple versions. If the Noah-LSM used in this study
refers to the Noah in NLDAS-2, please specify.

The reviewer’s point is well-taken. The Noah-LSM in this study does refer to the Noah model
employed in NLDAS-2 (Xia et al., 2012). We will update the soil moisture figure captions and
any references to NLDAS-2 soil moisture computed using Noah-LSM in the main body of the
manuscript and in the Appendix. We also propose to combine figures from the Appendix so that
Figure A1 and A2 become A1 a,b,c to represent the top layer soil moisture at US-KFS for 2012,
2018, and 2019.



Figure A1 (new and combined with A2). Top layer soil moisture at US-KFS for (a) 2012,
flash drought, (b) 2018 drought and (c) 2019 a non-drought year using the DCHM-V (black
dotted line), the DCHM-PV with two standard deviations (red), AmeriFlux (blue dashed
line), NLDAS-2 derived from Noah-LSM (yellow) and Stage IV precipitation on the top and
right axes (blue).

3) line 259: of gamma => of the growth rate parameter

This comment is well taken. Following a similar comment from Review 1, we now use gamma
once it is defined throughout the remainder of the manuscript rather than going back and forth
between gamma and the growth rate parameter.

4) Figure 12: May want to increase the thickness of curves for 2012 and 2019 to
highlight the results for these two years

This comment is well taken. We have updated many figures to use thicker lines, varied color,
dashed lines, and new marker shapes to help distinguish between simulations/years. Figure 12
has been completely reformatted so the flash drought can be compared to other drought and
non-drought periods, as opposed to solely 2019.

Figure 12 (replacement). Modeled growing season monthly averages of transpiration as a
fraction of ET (a-c) and water use efficiency (WUE, d-f) for drought and non-drought
years compared with the flash drought year of 2012 for US-KFS, US-KLS, and US-Kon
AmeriFlux sites. Monthly averages are computed from the ensemble means of the 2000
Monte Carlo simulations then averaged across drought or non-drought years. Error bars
represent one standard deviation across drought and non-drought years. Drought years
are 2006, 2011, 2013, 2014, 2018 and non-drought years are 2007-2010, 2015-2017, 2019.



5) Line 390: (Figure 10 => (Figure 10)

This review comment is well taken, and we will implement this change.

6) Figures A3, A5. Middle and deep layer soil moisture for the flash drought year 2012.
How to explain the substantial differences between DCHM-V/DCHM-PV and Noah-LSM?
Noah-LSM seems to make more sense as it shows a notable decline after June 2012. In
contrast, the soil moisture in DCHM-V/DCHM-PV remains relatively steady throughout
2012 and does not seem to be responsive to the strong precipitation deficits during 2012,
which looks odd; this is concerning as any issues in simulating soil moisture would
adversely impact the simulation of vegetation and evapotranspiration processes etc.
Please also see my second main comment.

The reviewer’s comment is well taken. First, see updates to Figure A3, which will now be A2
and combine 2012, 2018, and 2019 middle layer soil moisture for US-KFS. We respond below
by (1) explaining why we see differences between the DCHM and NLDAS-2 soil moisture, and
(2) by describing how these differences impact estimates of carbon uptake (GPP) and
transpiration (T). We investigate soil moisture, GPP, and T by comparing our results to another
modeling study who investigated US-KFS and US-Kon during 2012 and 2018 (Hosseini et al.
2022).

**NOTE: We cannot reproduce the figures referenced from Hosseini et al. (2022) here. Instead,
we reference specific figures and panels from their paper for comparison. In reference to soil
moisture, see the bottom four panels of Figure 6 in Hosseini et al. (2022). In reference to GPP,
see bottom panels of Figure 3 in Hosseini et al. (2022). In reference to transpiration, see the
third panel of Figure 5 in Hosseini et al. (2022). In reference to LAI, see the top panels of Figure
6 in Hosseini et al. (2022).

(1) Why we see differences

**NOTE: In the following paragraphs we compare DCHM soil moisture from different layers to
other products (SMERGE, NLDAS-2) and model outputs Noah-MP (Hosseini et al., 2022). Layer
depths do not directly compare so for reference, we briefly state the various depths used.

The DCHM top layer soil moisture is an average over 0-8 cm, the middle layer is 8-89 cm, and
the deep layer is 89-183). Depths were determined from the Kansas Soil Survey (Soil Survey
Staff). In Hosseini et al. (2022) the top layer in Noah-MP is 0-10 cm and the deep layer average
soil moisture they present comes from three layers with thicknesses of 30, 60, and 100 cm.
Effectively, this is an average over 10-200 cm vs the DCHM which ranges from 8-183 cm . We
average the DCHM middle and deep layers for comparison (see Figure below) and convert
Noah-MP estimates into volumetric soil water content for comparison. The NLDAS-2 soil
moisture depths used for comparison are 0-10 cm, 0-100 cm, 100-200 cm (Xia et al. 2012) to
compare against the DCHM top, middle, and deep layers, respectively. In figures of the middle
layer soil moisture, we include comparisons to SMERGE 0-40 cm, computed from “merging”
NLDAS and the European Space Agency satellite soil moisture (Tobin et al. 2019).



A first explanation for why we see differences between DCHM modeled soil moisture and
NLDAS-2 is that NLDAS-2 soil moisture was estimated from the Noah-LSM without predictive
phenology (Xia et al., 2012). However, Hosseini et al. (2022) used various Noah-MP
configurations (including with and without predictive phenology) to compute soil moisture, and
the DCHM results match well with their soil moisture at US-Kon in 2012 and 2018 (see Figure 6
in Hosseini et al. 2022). Converting units from mm to m^3m^{-3}, we see that Noah-MP predicts
a drop in 2012 soil moisture at US-Kon from ~0.35 to 0.28 m^3 m^{-3} from January to
September while the DCHM sees a drop of about from ~0.36 to 0.30 m^3 m^{-3}. The Noah-MP
model configuration that uses dynamic LAI and vegetation fraction (V3-LD-FD) predicts soil
moisture decay from June-September that shows the least steep decline in soil moisture from
late June to late August (Hosseini et al. 2022, Figure 6 bottom panel), aligning with results from
the DCHM-V and -PV (Figure N14, N15 and additional figure below).

Figure (averaging outputs from N14 and N15). DCHM-PV 3YR volumetric soil moisture
averaged across middle and deep layers for US-Kon in 2012, 2018.

It is also important to note that Hosseini et al. (2022) estimates of the top 10 cm of soil moisture
match well the magnitude of flux tower soil moisture, fluctuating between ~0.15-0.3 m^3 m^{-3},
between May and July. These findings agree favorably with DCHM top layer soil moisture in
2012 (Figure N14). However, like the DCHM, all model configurations of Noah-MP in Hosseini et
al. (2022) estimate lower soil moisture compared to field measurements in the top layer from
mid-February to early May 2012 and higher soil moisture from early May through the rest of the
year except for some spikes preceding larger rainfall events. Similarly for top layer soil moisture
results from 2018, all of the Hosseini models and the DCHM overestimate soil moisture
compared to field observations starting in late April and throughout the end of the year (Figure
N14a). Thus, the DCHM model results for soil moisture in 2012 and 2018 at KON are in line with
what has previously been estimated from different configurations of the Noah-MP that use



predictive phenology and differ similarly from the NLDAS-2 dataset and field observations of soil
moisture.

A second explanation of the DCHM estimating higher soil moisture than NLDAS-2 might have to
do with cascading effects high VPD has on stomatal conductance. In response to high VPD in
the DCHM, stomatal conductance shuts down (Figure N9). Therefore plants are not transpiring.
Reduced transpiration is directly tied to reduced root water uptake, resulting in the soils
retaining comparatively higher levels of moisture. Figure A7 shows that modeled middle and
deep layer root water uptake decreases ~50% from May to July 2012 at US-KFS. Within the
DCHM, reduced root water uptake (Figure A7) is likely why estimates of soil moisture in the
middle and deep layers remain higher compared to SMERGE and NLDAS-2 (using Noah-LSM)
soil moisture (Figures A2 and A3) at US-Kon. However, the DCHM and SMERGE agree
favorably in 2012 and 2018 throughout most of the growing season at US-KFS. Note that the
DCHM matches well middle and deep layer estimates of soil moisture from NLDAS-2 and
SMERGE in 2019 when there is ample water available for plant use within the DCHM.

(2) How these differences impact estimates of GPP and transpiration

GPP

The DCHM estimates low GPP and stomatal conductance rates during the flash drought period
in 2012, while eddy covariance data recorded elevated rates of GPP (e.g., Figure 8, N9, N11).
The low estimates of GPP and stomatal conductance from the DCHM are directly related to high
atmospheric aridity (or VPD) indicating that the DCHM slows carbon and water exchanges
under atmospheric water stress, despite sufficient soil moisture to undergo photosynthesis.

Hosseini et al. (2022) report 11-year (2008-2018) averages of GPP for US-Kon and US-KFS
using different Noah-MP configurations, MODIS and AmeriFlux data (Figure 3 in Hosseini et al.
2022). In the figure below, we show the same 11-year averages computed from the DCHM-PV.
Noah-MP using predictive LAI configurations estimates higher GPP in April (~150-200 gC
m^{-2}) and May (~300 gC m^{-2}), than the DCHM by ~100 gC m^{-2} for similar soil moisture
during this time (see Figure 6 in Hosseini et al. 2022 and Figure A2 and N14 below). Both
Noah-MP and the DCHM GPP peak in June and the Noah-MP results fall within one standard
deviation of the DCHM in June and July at both sites. However, the DCHM 11-year averages of
GPP match well the Apr-Oct averages from flux towers for KFS. Noah-MP includes routines for
reallocating carbon to different parts of plants (i.e. stems, roots, etc.) that may account for the
higher estimates of GPP compared to the DCHM, which does not include such processes.



Figure. Monthly GPP averages across the same 11-year period (2008-2018) as Hosseini et al.
(2022) using ensemble mean estimates from the DCHM-PV 3YR. Error bars represent one
standard deviation from the 11-year average.

Transpiration

The maximum daily transpiration rate estimated from the DCHM, which computes transpiration
from root water uptake, is 1.25 mm d^{-1} in 2012 and 2018 (Figure below), but the Noah-MP
modeled transpiration reach over 2mm d^{-1} in May and June for both 2012 and 2018. July -
September rates of transpiration for both the DCHM and Noah-MP (with dynamic LAI) fall to less
than 0.5 mm d^{-1}. Peak transpiration in May and June of 2012 before a decrease to lower
transpiration rates in July-October is observed in both the DCHM and Noah-MP (see the third
panel of Figure 5 Hosseini et al., 2022) although there are differences in magnitude of
transpiration, some of which can be attributed to the differences in computed LAI. Like Hosseini
et al., (2022), the DCHM estimates two seasonal peaks of transpiration in June and September
of 2018. The late season peak seems to align with large increases in late season precipitation.

Some of the discrepancies in transpiration may result from differences in estimated LAI from
both models. The DCHM-PV estimates of LAI tend to agree favorably with the timing of green
up and seasonal changes compared to MODIS (see RC1 for full Figure 6 showing LAI at all
three sites from 2012, 2018, 2019). At US-Kon, the DCHM-PV 3YR shows April LAI less than 1
m^2 m^{-2} (see our Figure 6g below,), but Hosseini et al., (2022) estimates leaf out earlier and
with April LAI at ~2.7 m^2 m^{-2} (see top panels of their Figure 6). The uptick in transpiration
seen by Hoesseini in September 2012 might also be due to the increase in LAI from 0.2 to 2.0
m^2 m^{-2} that they found at the same time. Meanwhile, the uptick in LAI seen by the
DCHM-PV was from 1.0 to 1.2 m^2 m^{-2}.

Overestimating LAI leads to overestimating latent heat fluxes, as transpiration is a component of
latent heat. DCHM estimates of latent heat in May and June of 2012 are less than that of flux
tower by ~100 W m^{-2} and match tower measurements well when during wet periods, like
2019 (Figure below). In Noah-MP (Niu et al, 2011; Ma et al., 2017, Li et al., 2021) and in the
DCHM, transpiration is directly related to root water uptake which depends on canopy (and
stomatal) conductance and both models compute canopy conductance using LAI. Soil moisture
across the two models was similar, but LAI varied by over 1 m^2 m^{-2} during the growing



season. Thus, LAI and not differences in soil moisture are likely responsible for differences in
modeled GPP and transpiration. .

Figure. Daily transpiration averaged over daytime.

Cropped from Figure 6. Time series of leaf area index (LAI) predicted from DCHM-PV for
the flash drought year (2012), a drought year (2018), and a non-drought year (2019).
Colors indicate the different data assimilation periods (yellow - 3YR (2003-2005), blue -
WET (2005), red - DRY (2003)), with corresponding shaded regions representing one
standard deviation of model outputs from the 2000 ensemble simulations. The 8-day
MODIS MOD15A2H LAI is shown in black markers. The gray shaded region highlights the
June to July decrease in FPAR during the 2012 flash drought.



Figure. DCHM estimates of latent heat at US-Kon for 2012, 2018, 2019 compared with
AmeriFlux.



Figure A2 (newly created to combine A3 and A4 and adding 2018). Middle layer soil moisture
at US-KFS for (a) 2012, flash drought, (b) 2018 drought and (c) 2019 a non-drought year
using the DCHM-V (black dotted line), the DCHM-PV with two standard deviations (red),
SMERGE (green dashed line), NLDAS-2 derived from Noah-LSM (yellow) and Stage IV
precipitation on the top and right axes (blue).



Figure A7 (Replacing A7 and A8). DCHM-PV 3YR monthly root water uptake totals for
drought (red) and non-drought (blue) years compared to 2012 (black) across three soil
layers for our three study sites. Monthly sums are computed from the ensemble means of
the 2000 Monte Carlo simulations then averaged across drought or non-drought years.
Error bars represent one standard deviation across drought and non-drought years,
respectively. Drought years are 2006, 2011, 2013, 2014, 2018 and non-drought years are
2007-2010, 2015-2017, 2019.



  

Figure (N14 - appendix). Top layer soil moisture at US-Kon for (a) 2012, flash drought, (b)
2018 drought and (c) 2019 a non-drought year using the DCHM-V (black dotted line), the
DCHM-PV with two standard deviations (red), AmeriFlux (blue dashed line), NLDAS-2
derived from Noah-LSM (yellow) and Stage IV precipitation on the top and right axes
(blue).



Figure N15 (appendix). Middle layer soil moisture at US-Kon for (a) 2012, flash drought, (b)
2018 drought and (c) 2019 a non-drought year using the DCHM-V (black dotted line), the
DCHM-PV with two standard deviations (red), SMERGE (green-dashed line), NLDAS-2
derived from Noah-LSM (yellow) and Stage IV precipitation on the top and right axes
(blue).

7) Figure A6 is identical to Figure A5 and appears to be incorrect. Please check if it
plots the results for 2019.



The author’s appreciate the reviewer pointing this out. We have fixed this mistake and combined
into one figure while adding 2018. This mistake also happened with A1 and A2 (see
combination above). We can make similar combinations of soil moisture plots for other sites and
layers to add to the appendix.

Figure A3 (new and result of combining A5 and A6 with results from 2018). Deep layer soil
moisture at US-KFS for (a) 2012, flash drought, (b) 2018 drought and (c) 2019 a
non-drought year using the DCHM-V (black dotted line), the DCHM-PV with two standard
deviations (red), NLDAS-2 derived from Noah-LSM (yellow) and Stage IV precipitation on
the top and right axes (blue).



8) Figure A10: “during 2012”=>”during 2019’?

The authors thank the reviewer for pointing out this error. We will update the figure caption
accordingly. We also propose to provide updated figures with the DCHM averaged over only the
daytime hours as mentioned above in response to Major Comment 2. We update the color
scheme to be monochromatic grayscale to be more vision friendly. It should be noted that the
WET and DRY were identical to the 3YR. This was a bug in the plotting code that we fixed.

An example of one of the new figures is below. With the addition of a new figure, A10 might not
be the label in the revised manuscript.

Figure A10 (replacement). MODIS (MOD17A2H) vs DCHM-PV 3YR, WET, and DRY for all
three sites during 2019.

9) Figure A11a: The difference between Ameriflux and model simulation is striking. The
inclusion of Ameriflux appears to cause confusion rather than providing a truthful
evaluation of the model results.

The authors appreciate this comment from the reviewer. The data discrepancies were striking
and were the result of an error made when plotting. See Response to Major Comment 3a from
the responses to RC1 and Response to Major Comment 2 above.



With updates to how we compute daily averages from model GPP and the use of AmeriFlux
FLUXNET, we see that model and AmeriFlux are in better alignment. There is still a striking
difference in June and July of 2018 (newly added drought year) that suggests during drought
there may be something plants are doing below ground to maintain higher rates of GPP that the
DCHM is not capturing. We feel that the use of AmeriFlux FLUXNET in updated figures
(including Figure A11 above) are now more useful in evaluating model performance.

Closing remarks

The authors would like to express our gratitude for the thoughtful comments and that our replies
provide clearer and deeper analysis of evaluating the role of vegetation of the movement of
water and carbon during flash drought. We understand that should this manuscript be accepted
for publication, that there are several new passages and figures (both here and in our response
to Reviewer Comment 1) that will need to be included (or removed) and that other changes to
enhance cohesiveness of the manuscript in light of the new analysis will need to be
incorporated.
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