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Abstract. In many cases, flood frequency analysis (FFA)
needs to be carried out on mean daily flows (MDF) instead
of instantaneous peak flows (IPF), which can lead to under-
estimation of design flows. Typically, correction methods are
applied to the MDF data to account for such underestima-5

tion. In this study, we first analyse the error distribution of
MDF-derived flood quantiles over 648 catchments in Ger-
many. The results show that using MDF instead of IPF data
can lead to underestimation of the mean annual peak flow
(MHQ) by up to 80% and mainly depends on the catch-10

ment area but appears to be influenced by gauge elevation
as well. This relationship is shown to differ for summer vs.
winter floods. To correct such underestimation, different lin-
ear models based on predictors derived from MDF hydro-
graph and catchment characteristics are investigated. Apart15

from the catchment area, a key predictor in these models is
the event-based ratio of flood peak to flood volume (p/V ra-
tio) obtained by the MDF data. The p/V models applied to
either MDF-derived events or statistics seem to outperform
other reference correction methods. Moreover, they require20

a minimum data input, are easily applied, and are valid for
the entire study area. Best results are achieved when the L-
moments of the MDF maximum annual series are corrected
with the proposed model, which reduces the flood quantile
errors up to 60%. The approach behaves particularly well in25

smaller catchments (<500km2), where reference methods fall
short. However, the limit of the proposed approach is reached
for catchment sizes under 100 km2, where the hydrograph
information from the daily series is no longer capable of ap-
proximating instantaneous flood dynamics and gauge eleva-30

tion below 100m, where the difference between MDF and
IPF floods is very small.

1 Introduction

Common flood frequency analysis (FFA) is based on sam-
ples of maximum flows, e.g. annual maximum flow series 35

(AMS). The magnitude and variability of these maxima form
the baseline for the choice of probability distribution, the es-
timation of its parameters, and eventually the deduction of
flood quantiles as design criteria for various water works
(Maidmennt, 1993). For FFA to be as accurate as possible, 40

two criteria need to be met; first, a large number of observed
peak flows is necessary to ensure an adequate selection and
fitting of the probability distribution and, second, it is impor-
tant that the peak flows are measured with high precision to
account for the best description of maximum flood magni- 45

tude and dynamics. However, embracing the true dimension
of a peak requires continuous measurement of the flow at a
high temporal resolution (e.g. at 15min time steps). Such data
are rarely available or, at best, only available for short peri-
ods, which is insufficient for flood frequency analysis. Typi- 50

cally, long observations of floods are available as mean daily
flow records and oftentimes FFA needs to be carried out on
these records instead. The daily averaging naturally flattens
the flood peak and the true maximum becomes unknowable.
Particularly for small basins, there is a considerable underes- 55

timation of the flood peak by the mean daily flows (Fill and
Steiner, 2003). Hence, it becomes essential to develop new
methods based on easily accessible data to correct the mean
daily flows for a better representation of the flood peaks.
The degree of the above-mentioned smoothing, i.e. the dif- 60

ference between the true instantaneous peak flow (IPF) and
the maximum mean daily flow (MDF) (here addressed as
the peak ratio), depends on the response time of a system,
which is controlled by a multitude of factors. The average
relationship between MDF and IPF peaks at a site depends 65

greatly on its basin area (Fuller, 1914) and characteristics re-
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lated to topography, like altitude, relief, and channel slope
(Canuti and Moisello, 1982). For instance, there is a visi-
ble trend that the IPF-MDF ratio decreases with larger basin
areas, which is expected because larger basins have higher
baseflows (Ellis and Gray, 1966). Furthermore, the internal5

variability of the IPF-MDF ratio in a site’s flow record is
largely determined by the type of meteorological input caus-
ing the individual flood events (Viglione and Blöschl, 2009;
Gaál et al., 2015). This means that the peak ratios of rainfall
and snowmelt events are different from one another. A vari-10

ety of studies make use of the dependencies named above in
order to estimate IPFs from MDFs, and can generally be clas-
sified as methods based only on catchment characteristics, as
in Fuller (1914); Ellis and Gray (1966); Canuti and Moisello
(1982); Ding et al. (2015), or also including climate char-15

acteristics, as in Muñoz et al. (2012), Taguas et al. (2008),
and Gaál et al. (2015). Mostly, these methods are in the form
of linear models based on maximum MDFs and the selected
catchment or climate predictors.
Other IPF estimation methods aim at using the bare mini-20

mum of available data, i.e. solely the available mean daily
flow record (MDF). In these cases, the shapes of hydrographs
are used to estimate the instantaneous peaks of events. The
shape of a hydrograph can hold important information re-
garding an event’s or even the entire site’s flashiness and thus25

its peak ratio. Short flood events with steep rising and falling
limbs are typical of a quickly reacting system, due to lim-
ited storage capacity and/or high-intensity rainfall or due to
moderate-intensity rainfall on snow. In such events, the dis-
crepancy between IPF and MDF will be significantly greater30

than for hydrographs with long durations and gentle slopes.
For example, Ellis and Gray (1966) found that the peak ratio
distinctively decreases with increasing hydrograph width.
Several approaches use the maximum mean daily flow and
the discharge of the previous and/or successive day (e.g.35

Langbein (1944)) to estimate IPFs. Chen et al. (2017) com-
pared three of these methods, namely those of Sangal (1983)
and Fill and Steiner (2003) and their own new method (re-
ferred to as the slope method). These methods are based on
the rising and falling slopes of the event hydrograph, esti-40

mated from the three consecutive days around the peak, and
differ in terms of how the information is integrated in the
formula. They found out that their slope method and Fill and
Steiner’s method outperform the other two approaches and
Fullers’ method (Fuller, 1914) (estimation method based on45

basin area), and are probably applicable for a wide range of
climates. However, both methods’ performance deteriorates
with decreasing catchment size and they work best for areas
larger than 500 km2.
Of course, there exist more complex means to correct the50

divergence between MDFs and IPFs. This includes disaggre-
gation of the daily flow series to a finer scale, as done by
e.g. Stedinger and Vogel (1984); Tarboton et al. (1998); Ku-
mar et al. (2000); Tan et al. (2007); Acharya and Ryu Jae
(2014). Also, hydrological modelling may be applied for IPF55

estimation, e.g. in combination with high-resolution disag-
gregated rainfall (Ding et al., 2016) or by using regional-
ized model parameters (Ding and Haberlandt, 2017). Sev-
eral studies have applied machine-learning techniques to es-
timate instantaneous peaks from mean daily flows, including 60

Shabani and Shabani (2012); Dastorani et al. (2013); Jimeno-
Sáez et al. (2017). While disaggregation, hydrological mod-
eling, and machine learning proved to be very effective in
their studies, they often require a number of computational
steps and/or a variety of data sources. Indeed, the estimation 65

methods based on the catchment or hydrograph characteris-
tics remain even more desirable due to their simplicity, as
they are based on easily accessible data and popular methods
(i.e. linear models).
So far, the two main IPF estimation methods have been de- 70

veloped separately with no combination of both catchment
and hydrograph information. In this study, on the other hand,
we propose linear models that facilitate IPF estimation us-
ing a combination of daily event hydrographs and functional
dependencies with catchment descriptors, while keeping the 75

data input to a minimum. A key predictor in these linear mod-
els is the ratio of direct event peak runoff to direct event vol-
ume. This ratio is expected to effectually describe the shape
of a flood event, which in turn gives us an idea about the ex-
pected instantaneous peak: the larger the daily peak and the 80

smaller the event volume, the larger the expected difference
between IPF and MDF and vice versa. We assume that the
peak-volume ratio (p/V) holds important information on the
general behavior of flood events (Gaál et al., 2015; Fischer,
2018; Tan et al., 2007), and thus the expected magnitude of 85

the IPF peaks. Moreover, the p/V of individual events can de-
scribe the internal variability at a site by reflecting different
types of floods caused by different rainfall and/or snowmelt
inputs. At the same time, the p/V accounts for the variabil-
ity between sites caused by local flood-generating processes 90

governed by general physiographic and climatic conditions.
Another important point to be considered is that most of the
studies mentioned above investigate the performance on the
IPF maximum series and pay little attention to how these
methods estimate the design flows with specific return pe- 95

riods. The general assumption is that, if the IPF maximum
series are estimated well enough on average, so are the IPF
quantiles. However, a well-estimated average IPF maximum
may still lead to underestimation of design flows with a high
return period (say, 100 years). It makes sense to investigate 100

as well whether linear models based on MDF moments, pa-
rameters or quantiles are more favourable for the estimation
of the IPF quantiles. Accordingly, p/V models are employed
here to correct MDF information at different levels: correc-
tion of individual flood events from MDF, correction of MDF 105

annual or seasonal maximum series, and the direct correc-
tion of MDF-derived statistics (like mean maximum flow, L-
moments, distribution parameters or even flood quantiles).
In this study, the linear models based on the p/V as key pre-
dictor (referred to here as p/V models) are developed and as- 110
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Figure 1. The spatial distribution of 648 catchments and their re-
spective discharge gauges employed in this study. The 103 sites
used for model calibration are marked in blue. The elevation is
shown in the background colours and is provided by Jarvis et al.
(2008), while the borders of the German federal states are shown
with black lines.

sessed based on flow data from 648 catchments in Germany
(as described in Section 2). The description of the methods
and models used here for the estimation of the IPF from
MDF information is given in Section 3.2. We then analyse
the performance of the models in two main parts: their abil-5

ity to estimate the mean maximum flow (MHQ) (see Sec-
tion 4.1) and their ability to estimate probability distributions
and the respective design floods (see Section 4.2). For the
best model achieved, an uncertainty estimation is tackled by
means of spatio-temporal resampling (see Section 4.3). Fi-10

nally, the range and limitations of the proposed methodology
and conclusions are given respectively in Sections 5 and 6.

2 Study area and data

This study uses flow data from 648 catchments distributed
over Germany as shown in Figure 1. For the analyses, con-15

tinuous average daily flow (MDF) and instantaneous peak
flows provided for each month as monthly peaks (IPF) are
available. The selected sites represent the data sets of the fed-
eral agencies, which provide online access to both data sets
(Lower Saxony, Saxony-Anhalt, Saxony, Bavaria and Baden-20

Württemberg; see Section 6).
Germany forms a transition zone from an oceanic climate in
the Northwest to a humid continental climate in the South-

east. The northwestern parts are influenced by wet air and
have mild winters, while the more southeastern parts are 25

drier and exhibit larger temperature ranges. The average tem-
perature for the entire country is 8.9 °C, the monthly av-
erages ranging between 0.4°C in January and 18°C in July
(reference period 1981-2010 Deutscher Wetterdienst (DWD)
(2021)). The average annual precipitation is 819 mm, where 30

amounts generally decrease West-East and in strong depen-
dence on the topography. Annual rainfall sums are generally
highest over the Alps right at the southern border and the var-
ious secondary mountain ranges. The flat continental East is
the driest. Temporally, the summer months are wettest, with 35

rainfall often occurring in convective events. Snowfall occurs
between October and April, where the amount and depth of
snow cover increase with decreasing oceanic influence and
increasing altitude.
Even though the entire area of Germany is not covered by 40

the available data, the selected sites provide a cross-section
through the climatically and topographically distinct regions,
from the flat oceanic Northwest to the mountainous continen-
tal Southeast.
The lengths of the discharge records vary substantially from 45

11 to 183 years, with a mean of 48.4 years (temporal span
from 1831 to 2021). For the general assessment of differ-
ences in IPF and MDF floods and final model validation, all
648 sites with their variable record lengths are considered.
For the assessment of flood frequency criteria, only sites with 50

at least 30 years of observations are used (486). Model fitting
(herein referred to as calibration) was carried out on a subset
of 103 sites, whose discharge data were thoroughly checked.
Also, their records were cropped to a common period from
1979 to 2012, to eliminate potential non-stationary effects. 55

For the 103 sites used for calibration, a catalogue of catch-
ment descriptors is available. For the remaining sites, only
rudimentary information was obtained, i.e. catchment size,
geographical position, and altitude of the gauges. Figure 2
shows how the 648 discharge gauges are distributed in terms 60

of catchment size and elevation. It is evident that the majority
of the sites have catchment areas under 500km2 and gauges
situated at elevations higher than 100m a.s.l..

3 Methods

3.1 Flood frequency analysis 65

Flood frequency analysis (FFA) is applied to the two data
sets for the available catchments in Germany: mean daily
flows (MDF) and instantaneous monthly peak flows (IPF).
First, the maximum series are extracted from each data set
either on an annual basis (annual maximum series - AMS) or 70

for each season of summer and winter (seasonal maximum
series). For extrapolation of the maximum series and estima-
tion of floods with specific return periods, distributions are
fitted to the annual and seasonal samples of both IPF and
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Figure 2. Distribution of catchment size and elevation for all the
648 sites employed in this study.

MDF data sets. This enables the direct comparison of both
flood quantiles and distribution parameters. For this study,
the General Extreme Value distribution (GEV) of the follow-
ing form is used for all samples (Maidmennt, 1993):

F (x) = exp{−[1− κ · (x− ξ)

α
]

1
k

}, (1)5

with location parameter ξ, scale parameter α, and shape pa-
rameter κ. The parameters are estimated using sample L-
moments (Hosking and Wallis, 1997). The GEV has been
proven before to be a suitable distribution for different catch-
ments in Germany, as indicated by Haktanir and Horlacher10

(1993); Villarini et al. (2011); Ding et al. (2015, 2016); Ding
and Haberlandt (2017), and therefore has been chosen in our
study as well. The goodness of fit of the distributions is de-
termined with the Cramer-von-Mises test.
When extracting annual maximum series (AMS), different15

flood peaks of different genesis (i.e. from convective/strati-
form rainfall, from snowmelt, and so on) are mixed together
and described by a single GEV distribution. However, if a
certain flood type is dominating the annual maxima sample
but is not typical for extremely large floods, then the fitted20

GEV distribution becomes misleading. To consider the dif-
ferent genesis in the flood peaks, maximum series are de-
rived here for two seasons: summer (May-October) and win-
ter (November-April). Then, a mixed model is applied, which
combines two GEV distributions fitted to each of these sub-25

samples of the data: summer and winter floods. A simple
maximum-mixing approach is used to combine the individ-
ual distributions to assess the annual non-exceedance proba-
bility of specific flood values:

Fmix(x) =

n∏
i=1

fi(x), (2) 30

with fi(x) as the annual non-exceedance probability calcu-
lated for each sub-sample (summer and winter) and Fmix(x)
as the mixed-model annual non-exceedance probability for a
flood value x. This approach allows the combined estimation
of flood quantiles from multiple underlying distributions and 35

thus the assessment of errors in seasonal FFA. The approach
is described in detail in Fischer et al. (2016). In their study,
they used thresholds to determine whether a seasonal maxi-
mum was actually a flood event, which may not be the case
during dry summers. This threshold was defined as the mini- 40

mum annual maximum flow. We do not censor our data with
thresholds, i.e. for matters of simplicity we assume that every
seasonal maximum is indeed a flood event.

3.2 Analysis and estimation of instantaneous peak
flows (IPF) 45

3.2.1 Calculation of the p/V predictor from mean daily
flows

Motivated by the recent findings of Fischer et al. (2016); Fis-
cher (2018) regarding different flood types, here the flood
peak-volume ratio (p/V) extracted from mean daily flows 50

(MDF) is considered an important predictor that can help to
estimate more accurately the IPF series from the MDF ones.
This ratio is computed for each flood event extracted from
the MDF data set as shown by Eq. 3:

p\V (
1

d
) =

Qdir[m
3d−1]]

V oldir[m3]
, (3) 55

where p/V is the peak-volume ratio, Qdir the direct peak flow,
and Voldir the direct flood volume. Both Qdir and Voldir are
calculated for flood events extracted from MDF series (see
below) after subtracting the baseflow.
To separate the flood events from the MDF, the initial steps 60

of the procedure used by Tarasova et al. (2018) are carried
out, which have been proven effective and convenient for the
German catchments. For the initial step of baseflow separa-
tion, they selected the simple non-parametric algorithm pro-
vided by the (Institute of Hydology, 1980), which is able to 65

identify the starting points of events in daily flow series in a
wide range of catchments. The same method is applied to the
series of mean daily flows in our study, which involves the
following steps. First, 5-day non-overlapping blocks are used
to find the minima, which are identified as turning points if 70

they are more than 1.1 times smaller than their neighbouring
minima. The baseflow is then derived by simple linear in-
terpolation between the turning points. Discharge peaks are
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subsequently determined from the flow series, and for every
peak the start and end of the respective flow event is defined
by the nearest surrounding turning points. To prevent false
identification of events due to natural variability, events are
discarded if their peak discharge is not at least 10% larger5

than the baseflow. Tarasova et al. (2018) suggested a second
step of re-defining events with multiple peaks in an iterative
procedure. This step is not carried out here, as it requires
rainfall and snowmelt information, which is not available in
our case. It is assumed that most of the events, especially the10

larger ones relevant for FFA, are separated correctly.

3.2.2 Estimation of instantaneous peak flows

In this study, we propose linear models to estimate IPF from
the MDF data, where the peak-volume ratio (as described in
Eq. 3) is one of the main predictors (referred to here as p/V15

models). Other predictors that describe the catchment phys-
iology or climate (referred to for simplicity as catchment
descriptors) are also integrated and investigated. The com-
bination of hydrograph shape and catchment characteristics
as predictors is expected to better reproduce both the on-site20

and between-site variability in the IPF-MDF relationship and
yield a more universal model. Several catchment descriptors
describing land use, soil type, average climate variables, ge-
ographic information, and catchment morphology were in-
vestigated prior to the study. Two main descriptors, namely25

basin area and gauge elevation, were found to be more im-
portant for the linear model and hence are included in the
study as shown here.
Since the p/V ratio is calculated for each event, the first p/V
model investigated aims to correct individual flood events30

from MDF series. All events that contain maximum instan-
taneous monthly peaks are identified. For these events, the
daily MDFevent and instantaneous IPFevent peaks as well as
the p/Vevent are computed. Then, a linear model of the fol-
lowing form is fitted:35

IPFevent =
MDFevent

a+ b1 · p\Vevent + b2 ·CD1 + ...+ bn+1 ·CDn
,

(4)

where CD denotes additional catchment and climate descrip-
tors that may be included in the models, and a and b are the
parameters of the linear model fitted by the calibration proce-
dure. The fitting of the model parameters is performed on the40

calibration set (as indicated in Section 2) only for the period
1972-2012.
To assess the performance of the new methodology, we also
employ here the slope method developed by Chen et al.
(2017) as a reference. The slope method estimates an instan-45

taneous event peak flow IPFevent based on the slopes of the
daily peak Qpeak to its preceding Qpre and following daily

flows Qsuc as shown in Eq. 5:

IPFevent =Qpeak+
(Qpeak −Qpre) · (Qpeak −Qsuc)

2 ·Qpeak −Qpre −Qsuc
, (5)

Both of these estimation methods need information from the 50

MDF hydrograph selected for each flood event observed.
Hence, these methods can be applied in two ways: 1) IPFs
are estimated for all separate events in the average daily flow
(MDF) series, even if these events have small daily peaks.
Then, the flood frequency analysis is performed on the es- 55

timated event-based IPFs (after selecting maximum events
for each year or season). 2) IPFs are estimated for the maxi-
mum daily peak only. This means that the event hydrograph
corresponding to the annual or seasonal daily maximum is
considered for the calculation of p/V in Eq. 4 or the peak 60

discharges in Eq. 5. The obtained annual/seasonal maximum
series are then used as a basis for the flood frequency anal-
ysis. In both cases, statistics are derived from the estimated
IPF series and compared to the observed IPF ones. Procedure
(1) is theoretically more accurate, since maxima in IPF and 65

MDF do not necessarily occur at the same time (no tempo-
ral overlap). More precisely, events with maximum instanta-
neous peaks can have rather small mean daily peaks in some
instances. Correcting only the maximum MDFs would lead
to underestimation of the IPFs in these cases. On the other 70

hand, Procedure (2) may prove more robust in cases where
smaller events are not properly separated, i.e. their volumes
are over- or underestimated. These events would lead to unre-
alistic IPF estimates when using the p/V as a primary predic-
tor. The larger events containing the annual maximum MDF 75

are expected to be more properly separated by the algorithm
described above.
Alternatively to the event-based estimation, the proposed p/V
model can also be applied directly to the MDF-derived statis-
tics with the aim of reproducing the IPF statistics. These in- 80

volve the estimation of flood statistics, i.e. mean annual and
seasonal maximum flows (MHQ), sample L-moments, esti-
mated distribution parameters, and derived flood quantiles
based on averaged peak-volume ratios (p/Vmean). These av-
erage p/Vs are obtained from all annual/seasonal maximum 85

MDF events at each site. As described above, these maxi-
mum events are expected to be properly separated, and al-
though the maximum MDF events may not necessarily be
identical to the maximum IPF events, their shape may hold
important information about local processes. The model set- 90

up is analogous to the event correction approach:

IPFstat =
MDFstat

a+ b1 · p\Vmean + b2 ·CD1 + ...+ bn+1 ·CDn
,

(6)

where stat is the desired statistic being estimated, CD the se-
lected catchment or climate descriptors, a and b the parame-
ters of the model as fitted to the calibration set, and p/Vmean 95

the average p/Vevent for annual or seasonal series. The model
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is expected to represent the average conditions that deter-
mine the average deviation of MDF from IPF estimates. The
p/Vmean in itself is expected to be a good predictor that re-
flects local conditions like spatial scale, climate, geology, and
other external factors that control flow variability obtainable5

from daily flow records. The additional inclusion of catch-
ment descriptors is tested case by case and may contribute to
the reproduction of the spatial variability of the target vari-
able.
An overview of all the methods employed here together with10

their descriptions is given in Table 1. All methods consisting
of the linear models based on the p/V ratio as a main pre-
dictor (p/V methods) have been optimized based on the cali-
bration set only for the period 1972-2012. To select the best
model, the coefficient of determination (R2) and the signifi-15

cance of model parameters (based on the p-value) are consid-
ered. For validation, all sites with their respective observed
periods are used. Through the validation we compare and as-
sess the ability of the proposed models to capture the mean
maximum flow (MHQ) and the probability distribution and20

respective design floods.

3.2.3 Analysis of the instantaneous peak flows

Since the IPF series are not continuous but rather one max-
imum per month (see Section 2), a direct comparison for
each flood event is not possible. Instead, we focus here on25

the analysis of flood statistics. For this purpose, the general
difference between IPF statistics IPFstat and MDF-estimated
flood statistics MDFstat are calculated as follows:

Error(%) =
MDFstat − IPFstat

IPFstat
· 100, (7)

where the error is computed at each site for any desired sta-30

tistical quantity stat, like the mean annual maximum flow
(MHQ), L-moments (Hosking, 1990), distribution parame-
ters, and flood quantiles.
Apart from the error (%) at each site, two additional perfor-
mance criteria are calculated over all sites: the normalized35

root mean square error nRMSE as per Eq. 8 and the percent
bias pBIAS as per Eq. 9:

nRMSE(%) = 100·

√
1
N ·

∑N
i=1 (MDFstati − IPFstati)

2

sdIPFstat

,

(8)

pBIAS(%) =

∑N
i=1MDFstati − IPFstati∑N

i=1 IPFstati

, (9)40

where N is the number of validation sites, MDFstati and
IPFstati are the respective statistics from MDF and IPF series,
and sdIPFstat is the standard deviation of IPF statistics over all
considered sites. These criteria are computed for each of the
methods described in Table 1.45

3.3 Uncertainty Analysis

Since both the distribution fitting and the IPF estimation via
p/V models are approximations and not fully accurate, we
eventually assess the overall level of uncertainty in the fi-
nal IPF flood-quantile estimates. As will be shown later in 50

Section 4.2, the best correction approach is chosen to be the
p/V-Lmoms - the model directly correcting the L-moments
of the MDF series. This is done using simple resampling with
replacement procedures; resampling in time when selecting
the maximum series for FFA, resampling in space when se- 55

lecting the sites for the p/V model (either for calibration or
validation of the models), and resampling in both space and
time. In the first step, the series of annual/seasonal maxima
from both MDF and IPF data sets are analogously resam-
pled 1,000 times with replacement (temporal sample and pa- 60

rameter uncertainty). For each resampling, the desired flood
quantiles are estimated using L-moments. The range of these
estimates provides the baseline level of uncertainty due to
sample and parameter uncertainty. The temporal sample un-
certainty is calculated at each site for the original IPF and 65

MDF series (IPF-bs and MDF-bs, respectively) and are con-
sidered as a benchmark for comparison.
In the second step, p/V models are fitted to each pairing of
temporally resampled IPF and MDF series while considering
all sites in the study area that have more than 30 years of ob- 70

servations. This means that the temporal sample uncertainty
is propagated through the p/V model (p/V-full). To assess the
uncertainty of the selected p/V model, another resampling
is carried out, this time shuffling the set of considered sites,
where original MDF-Lmoments are resampled again 1,000 75

times with replacement before fitting the p/V model (p/V-
bs). Lastly, the total uncertainty in both space and time is as-
sessed by combining the temporal sample and parameter un-
certainty with the uncertainty of the fitted models: this means
the maximum series are resampled 1,000 times, and for each 80

of these sets, the sites are resampled 1,000 times as well be-
fore fitting the p/V model. So, the total uncertainty will be
derived by 1,000 · 1,000 quantile estimates (p/V-bs-bs). Of
course, the uncertainty ranges might change slightly if more
realizations are included. For method comparison in terms 85

of their uncertainty range, the number of random resampling
will influence all methods similarly. On the other hand 1,000
realization are enough to investigate the dominant sources of
uncertainty. Finally to capture the overall uncertainty, pre-
vious conducted test showed that 1,000,000 realizations are 90

enough to capture the overall trends of the uncertainty.
To assess the overall level of uncertainty, several indices are
computed at each site. The first one is the relative width of
the 95% confidence intervals (CI) calculated for all afore-
mentioned resampling estimates of the desired flood quan- 95

tile:

CI95%bs =
xbs,0.975 −xbs,0.025

xbs,0.5
, (10)
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Table 1. Description of all the methods employed here for the computation of IPF series and their respective statistics.

Application Name Description

Reference MDF IPFs are taken directly without correction from average daily flows MDF

Event-based slope-events estimates IPF for all flood events derived from MDF according to Eq. 5
analysis p/V-events estimates IPF for all flood events derived from MDF according to Eq. 4

AMS-based slope-AMS estimates IPF as per Eq. 5 only for the flood events that correspond to annual/seasonal maxima from MDF series
analysis p/V-AMS estimates IPF as per Eq. 4 only for the flood events that correspond to annual/seasonal maxima from MDF series

Statistics-based p/V-Lmoms estimates IPF L-moments as per Eq. 6 based on L-moments derived from annual/seasonal maximum series of MDF data set
analysis p/V-params estimates IPF GEV parameters as per Eq. 6 based on GEV parameters derived from annual/seasonal maximum series of MDF data set

p/V-quants estimates IPF quantiles as per Eq. 6 based on quantiles derived from annual/seasonal maximum series of MDF data set
p/V-MHQ IPF mean annual maxima (MHQ) as per Eq. 6 based on average daily MHQ.

where xbs,0.025 and xbs,0.975 are the 2.5% and 97.5% quantiles
and xbs,0.5 the median of the respective sample.
The second one is the deviation of the IPF estimated samples
from the IPF original sample, which allows the assessment
of error distributions:5

errorbs =
xbs − IPFbs

IPFbs
· 100%, (11)

where IPFbs is the temporal resample of the IPF original data
and xbs is the resample estimated from either the original
MDF series or the modelled IPF series. From the resulting
error vector, a variety of statistics can be computed for com-10

parison.
Finally, the agreement of the 95% confidence intervals of the
MDF and p/V model samples with the IPF confidence bands
are determined as the percentage overlap at each site:

overlap=
min(Xbs,0.975, IPFbs,0.975)−max(Xbs,0.025, IPFbs,0.025)

max(Xbs,0.975, IPFbs,0.975)−min(Xbs,0.025, IPFbs,0.025)
·100

(12)15

where IPFbs is the temporal resample of the IPF original data
and xbs is the resample estimated from either the original
MDF series or the modelled IPF series.

4 Results

4.1 Mean Maximum Flow (MHQ)20

4.1.1 Comparison of mean daily (MDF) and
instantaneous peak (IPF) flows

Figure 3 demonstrates the error in the mean annual maximum
flow (MHQ) estimated by MDF instead of IPF series (as per
Eq. 7) in relation to the catchment size and the geographic25

location. It is clear that the larger the area, the smaller the de-
viation between MDF and IPF. In these cases, the MDF are
good representations of the IPF peaks. Moreover, MHQ er-
rors shown in Figure 3 appear to be especially large at higher
altitudes. This is as indeed expected, as mountainous catch-30

ments have a fast response time and are generally more heav-
ily influenced by the meteorological forcing (by snowmelt

Figure 3. Spatial distribution of the mean annual maximum flow
(MHQ) error (%) between mean daily (MDF) and instantaneous
peak (IPF) flows obtained from all sites (calculated as per Eq. 7).

processes or convective events). Overall, the MHQ error in
our catchments seems to increase in the North-South direc-
tion, which could be a secondary effect of both increasing 35

altitude and decreasing catchment size.
When assessing the differences between mean daily and in-

stantaneous peaks, it is also meaningful to take a closer look
at different types of floods. For our German sites, the two
most opposite types are a) flood events induced by short in- 40

tense rainfall, especially convective events dominant mainly
in summer (May-October), and b) extended flood events with
significant volume, as caused by snowmelt and/or stratiform
rain occurring mainly in winter (November-April). Presum-
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ably, the latter flood type is much better represented by mean
daily flow than the former. In order to roughly distinguish be-
tween the two types, the flow records are divided into sum-
mer (May - October) and winter (November - April) half
years. Due to the limited data availability, a clear distinction5

between convective, stratiform, and snowmelt events cannot
be achieved here. Some snowmelt events in the high alpine
catchments may still occur in May/June but are classified as
summer events. However, the coarse division of the data into
half years rather than seasons is due to the subsequent anal-10

ysis of seasonal flood statistics and application of the mixed
seasonal model. In the upper row of Figure 4 (a-c), the MHQ
error is shown for the entire year and also for summer and
winter seasons. The relationship to the catchment area is still
clearly visible in all three cases. Also, the effect of the eleva-15

tion becomes obvious, as sites at the lowest elevations (yel-
low points, below 100 m) show very small errors, even for
small catchment sizes down to approximately 100 km2. This
is the clearest stratification in the error due to elevation; the
errors at higher altitudes appear less distinguishable.20

There is, however, a clear distinction between summer and
winter seasons. As expected, the MHQ error is smaller over-
all in the winter months, where snowmelt and stratiform
events prevail, while the convective events in summer are
poorly captured by MDF. The error in the annual peaks25

is a mixture of the two seasons; which season contributes
more to the annual peaks depends on the individual flood
regimes. When looking at the IPF data, at 68.8% of the
considered sites the winter floods exceed on average their
summer counterparts, while 29.2% of sites are dominated30

by summer floods. When considering MDF instead, only
22.1% of the sites are identified as having maximum peaks
in summer. This indicates that the mean daily flow signifi-
cantly smooths the summer peaks to a point where they are
no longer relevant for the overall flood behavior. Figure 4 (d)35

shows the percentage of annual maxima at each site that are
attributed to the wrong season when using MDF. Each site is
represented by two dots: negative values show the percent-
age of all annual maxima that are falsely attributed to sum-
mer, while positive values show the falsely attributed winter40

peaks. It is obvious that with decreasing catchment size an
increasing number of annual maxima are falsely identified
in the winter half of the year, while the actual instantaneous
maxima occur in summer.
Another general issue highlighted by this analysis, indepen-45

dent of seasonality, is that the peaks of both IPF and MDF
data sets do not necessarily occur on the same day (there
is no temporal overlap). In their study, Chen et al. (2017)
illustrated that only for 82% of the events investigated did
the peaks of both IPF and MDF series occur on the same50

day. This suggests that instantaneous maxima are not always
identifiable in the mean daily flows, i.e. the maxima obtained
from the daily series are inevitably found in other places.
The temporal overlap of IPF- and MDF-derived peaks for our
catchments is shown in Figure 4 (e). In general, the smaller55

the catchment, the smaller the temporal overlap between in-
stantaneous and daily peaks. This problem needs to be kept in
mind when attempting to estimate instantaneous peaks from
daily peaks, since the two may belong to significantly dif-
ferent events (different genesis) and thus to different popula- 60

tions.

4.1.2 Estimation of mean maximum flow (MHQ)

So far, the error in the mean maximum flow (MHQ) between
MDF and IPF is shown to be influenced by both catchment
area and gauge elevation. Both of these predictors may be 65

helpful in correcting MDF for a better agreement with the
IPF data. Moreover, there seems to be a significant linear
dependence between the peak ratios MDF/IPF, the p/V ra-
tio, and the logarithm of the catchment size. We first test the
suitability of various predictors to predict MHQ from IPF by 70

fitting the p/V models to the individual events of MDF (p/V-
events), or to the MDF maximum series (p/V-AMS) or, lastly,
directly to the MDF mean maximum flow (p/V-MHQ). Vari-
ous model combinations with the available predictors (catch-
ment area, elevation, and p/V ratio) are tested using the cali- 75

bration data set, and their respective coefficients of determi-
nation are shown in Table 2. The selected models are marked
in bold in Table 2 and their respective full-model formulas
are given in Table 3. For most models, the majority of vari-
ance in the IPF-MDF relationship is explained by the p/V 80

ratio and the catchment area. For winter, including gauge el-
evation appeared to improve the model slightly.
The models show a similar performance for the annual
and summer peak ratios in both the correction of individ-
ual events (p/V-events) and the mean maximum flow (p/V- 85

MHQ). For winter, the model performance seems to dif-
fer, especially when correcting the individual events (p/V-
events). It appears that the models using the p/V have more
difficulty estimating the winter peak ratio. This could be
due to improper event separation, which will be discussed in 90

more detail below and leads to unrealistic p/V ratios. The fact
that elevation is a significant predictor in the MHQ model
(p/V-MHQ) may also suggest that the peak ratios in winter
are more heterogeneous.
Figure 5 shows the change in mean absolute error in the an- 95

nual MHQ after correction with the different methods in re-
lation to catchment size and elevation: positive values indi-
cate that the error has increased after correction, while neg-
ative values indicate that the error has decreased after cor-
rection. The slope method (Figure 5-a) applied to the indi- 100

vidual events (slope-events) yields a rather constant reduc-
tion of the error independent of catchment size. However,
there are several outliers produced by this method, which can
be attributed to improper separation of smaller events. Ap-
plying the slope method only to the annual maximum MDF 105

events (slope-AMS), as done in Figure 5 (b), shows a much
smoother and more constant error reduction. The corrections
using the p/V models proposed here (Figure 5 (c-e)) yield a
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Figure 4. Upper row - error (%) in the mean maximum flow (MHQ) (as per Eq. 7) obtained in relation to catchment size and gauge elevation
for the entire year (a), summer (b), and winter (c); lower row - percentage of peaks falsely attributed by mean daily flows (MDF) to the winter
or summer half year (d) and percentage of peaks in mean daily (MDF) and instantaneous (IPF) flows that overlap in time (within a 5-day
buffer) (e). Results are illustrated for all sites.

Table 2. Coefficients of determination for various model combinations (see Table 1 for description of models). Values are obtained by fitting
the models only to the calibration set. Bold numbers indicate the best p/V model for each application and asterisks indicate at least one
non-significant predictor in the p/V models.

Applications Event-based (p/V-events) Maximum-based (p/V-AMS) MHQ-based (p/V-MHQ)

Predictors Year Summer Winter Year Summer Winter Year Summer Winter

Area 0.14 0.19 0.12 0.30 0.26 0.25 0.42 0.42 0.38
Elevation 0.01 0.01 0.01 0.04 0.01 0.03 0.06 0.02 0.08

p\V 0.13 0.13 0.09 0.21 0.21 0.20 0.55 0.49 0.49
p\V + Area 0.23 0.26 0.17 0.39 0.36 0.35 0.66 0.65 0.63
p\V+ Area 0.14 0.13 0.10 0.23 0.22 0.23 0.56* 0.51 0.56

p\V + Area + Elevation 0.23 0.26 0.17 0.40 0.36* 0.36 0.67* 0.65* 0.68

much larger improvement for the smaller catchments (where
the original MDF error was generally larger than in the big-
ger catchments). Nevertheless, these corrections simultane-
ously lead to an increase of the error in several cases. This
deterioration appears to affect the sites that were highlighted5

before in Section 4.1.1, namely those with the lowest eleva-

tions in the data set where the original MDF error was quite
low.
The differences between correcting the individual events
(p/V-events) and the annual maxima (p/V-AMS) (as illus- 10

trated respectively in Figure 5 (c-d)) by means of the p/V
models appear rather small. This suggests that even though
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Table 3. Best p/V models (as shown in bold in Table 2) fitted to the calibration set for correction of individual events (p/V-events), annu-
al/seasonal maxima (p/V-AMS), and the MHQ (p/V-MHQ).

Type Model

Events Year MDF / (0.59 - 0.43 · p/Vevent + 0.047 · log(area))
(p/V-events) Summer MDF / (0.44 - 0.36 · p/Vevent + 0.063 · log(area))

Winter MDF / (0.63 - 0.35 · p/Vevent + 0.044 · log(area))
Maxima Year MAXMDF / (0.53 - 0.42 · p/Vmax + 0.057 · log(area))

(p/V-AMS) Summer MAXMDF / (0.61 - 0.73 · p/Vmax + 0.061 · log(area))
Winter MAXMDF / (0.70 - 0.68 · p/Vmax + 0.054 · log(area))

MHQ Year MHQMDF / (0.74 - 0.94 · p/Vmean + 0.043 · log(area))
(p/V-MHQ) Summer MHQMDF / (0.83 - 1.19 · p/Vmean + 0.054 · log(area))

Winter MHQMDF / (0.99 - 1.31 · p/Vmean + 0.035 · log(area) - 0.00012 · elevation)

the annual maximum from the MDF in many cases does not
occur at the same time as the annual maximum from the IPF,
the method still yields an appropriate estimate of the true IPF.
On the other hand, directly correcting the MHQ (p/V-MHQ
in Figure 5 (e)) results in slightly lower error reduction for the5

smaller catchments but also appears to produce fewer outliers
and is thus considered more robust.
It should be noted that working with large data sets and auto-
matic event separation without manual post-correction leads
to problems that could potentially be avoided when consid-10

ering individual time series more carefully. Several events
are identified as too long or too short (or not at all), so their
volumes are over- or understated, respectively. This results
in false p/V ratios and in some cases to severe over- or un-
derestimation of the peaks. The weight of such events is as-15

sumed to be significantly lower when correcting flood statis-
tics based on average p/V ratios. In addition, the overall per-
formance can only be assessed for events that contain the
monthly instantaneous maximum flow, i.e. primarily larger
events. How the event correction performs for minor events20

cannot be analysed here.
Figure 6 summarizes the overall model performances to es-
timate the IPF mean annual/seasonal maximum flow (MHQ)
at all validation sites and compares the individual methods to
the error using MDF directly. It is obvious that all methods25

give significantly better IPF estimates than the MDF alone.
The slope correction methods (both slope-events and slope-
AMS) have quite a large bias (median error around -10%),
which is, as seen above, not only disadvantageous. Still, the
overall error is smaller for the p/V models (p/V-events, p/V-30

AMS, and p/V-MHQ), where the median error is at 0-2%,
with fewer positive outliers produced by the p/V-MHQ ap-
proach.
Table 4 summarizes the normalized root mean square error
(nRMSE (%)) and the percentage bias (pBIAS (%)) of the35

mean annual/seasonal maximum flow (MHQ) estimated via
the different model variants. In terms of nRMSE, the perfor-
mances of the slope and p/V methods are comparable, with
the slope methods being more biased. There are a number
of outliers produced by the p/V methods, especially posi-40

tive ones, that affect the overall nRMSE. As seen in Figure 5,
this is primarily concerning the low elevation catchments be-
low 100 m. The values in parentheses in Table 4 indicate the
performance criteria for gauges with catchment areas under
500 km2. Here, the advantage of the p/V approaches over the 45

slope methods become apparent, even though a large num-
ber of low elevation catchments fall into this category, which
negatively affects the overall error.
Table 5 shows the average error between the annual MHQ
predicted by the p/V-MHQ model with the observed instanta- 50

neous annual MHQ, distributed for different catchment sizes
and elevations. It becomes obvious that for the lowest eleva-
tions, the instantaneous annual MHQ is overestimated, espe-
cially for smaller catchment sizes. Catchments in the range of
100 to 200 m altitude also show quite large errors, but these 55

are mostly negative. It is also apparent that the catchments
with outlets at higher elevations exhibit large negative errors
in most cases.

4.2 Probability distributions and derived design flows

So far, the proposed p/V models have been analysed in terms 60

of their ability to better estimate the mean maximum flow
(MHQ) from MDF data. In this sub-section, the focus is
shifted to the ability of the methods to estimate the param-
eter distribution of the IPF and the derived flood quantiles.
The GEV distribution appears to be a generally suitable dis- 65

tribution for the sites in the data set. A Cramer-von-Mises
test is carried out for the original IPF and MDF samples, as
well as for the slope and p/V-corrected samples at each site,
and certified to be a good fit in all cases (p-value= 5%).

4.2.1 Comparing mean daily (MDF) with 70

instantaneous peak (IPF) flow distributions

A comparison between the estimated parameters for the IPF
and MDF samples for the year and the seasons are shown
in Figure 7. As expected, the location parameters are consis-
tently underestimated by the MDF series, with the largest er- 75

rors in summer. This naturally leads to an overall downward
shift of the “true” distribution when estimated from MDF
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Figure 5. Error reduction (negative values) vs error increase (positive values) in the mean maximum flow (MHQ) for different IPF estimation
methods when compared to MDF. For an overview of the methods, the reader is directed to Table 1. Values are obtained by applying the
selected methods to the validation set.

Figure 6. Error (%) comparison of different methods to estimate the mean maximum annual flow (MHQ) for the entire year (a), summer
(b), and winter (c). Values are obtained by applying the selected methods to the validation set. For an overview of the methods, the reader is
directed to Table 1.

values. The scales, here normalized by the location, appear
to be primarily overestimated in summer, leading to distribu-
tions that are steeper for MDF than for IPF samples. For the
year and winter, the errors in the scale parameters appear to
be balanced in their directions. The shape parameters differ5

quite substantially between the seasons. In summer, the vast

majority of estimated parameter values are negative, both in
IPF and MDF. This indicates a heavy tail behavior for the
summer floods. The fact that these negative values are in
many cases smaller in the MDF than in the IPF sample sug- 10

gests that the tails are overstated in the former case. For the
year and winter season, again, no clear trend is visible. The
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Table 4. Normalized root mean square error (nRMSE (%)) and percentage bias (pBIAS (%)) of estimated vs. observed instantaneous annu-
al/seasonal mean maximum flow (MHQ) over all validation sites for different methods. The values in parentheses show the performances for
catchment sizes under 500 km2.

Year Summer Winter
nRMSE[%] nBIAS[%] nRMSE[%] pBIAS[%] nRMSE[%] nBIAS[%]

MDF 17.0 (47.9) -18.0 (-32.4) 18.1 (49.0) -20.6 (-38.1) 14.9 (44.1) -16.4 (-28.7)
Slope-events 8.4 (25.0) -6.8 (-15.8) 7.9 (29.0) -9.2 (-21.8) 9.2 (21.3) -6.5 (-13.0)
Slope-AMS 7.4 (31.2) -8.1 (-19.3) 8.4 (33.6) -10.5 (-25.0) 7.2 (28.0) -7.4 (-16.1)
p/V-events 9.3 (16.7) -2.8 (-1.0) 8.4 (16.6) -2.6 (-0.5) 10.6 (17.6) -5.1 (-4.1)
p/V-AMS 10.7 (20.4) -5.4 (-2.9) 11.0 (19.7) -5.4 (-3.7) 9.4 (21.4) -4.7 (-2.9)
p/V-MHQ 7.7 (19.0) -3.9 (-2.3) 12.5 (20.6) -6.8 (-5.0) 8.5 (20.8) -3.8 (-1.7)

Table 5. Average prediction error (%) of the p/V-MHQ model for the annual MHQ calculated over the validation sites and shown here for
different ranges of area and elevation. Red shades indicate overestimation, blue shades underestimation.
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Elevation [m a.s.l]
<100 <200 <300 <400 <500 <600 <700 <800 <900 <1,200

<50 9.35 -10.77 -8.86 -6.77 1.17 -6.35 0.64 -3.14 -0.31 -15.33
<100 18.59 -16.98 -9.75 1.97 4.21 0.37 1.83 -1.05 -2.74 -19.45
<200 13.79 -10.41 1.04 1.45 8.70 -3.61 3.27 5.48 -9.16 4.96
<500 11.43 -6.57 -0.01 4.19 5.58 3.62 -4.05 -3.93 -21.83 -

<1,000 8.12 -5.31 3.80 0.86 3.22 -4.66 3.53 - - -
<2,000 5.05 -1.94 -4.45 5.29 -1.66 -3.97 -3.68 -5.91 6.42 -13.63
<5,000 -0.61 -6.75 -1.96 -1.15 -2.73 -3.53 - - - -

<10,000 -3.47 -6.38 -0.70 -4.96 -6.50 - - - - -
<30,000 -7.48 -8.37 -5.25 -5.84 - - - - - -

distribution parameters of the low-elevation gauges appear to
be very well estimated by the MDF. For the higher elevations,
especially the estimation of the shape parameters seems dif-
ficult. For the whole year, the IPF shape is underestimated at
a lot of gauges, while it is primarily overestimated in winter.5

Overall, due to the underestimation of the location parame-
ter, underestimation of both lower and higher flood quantiles
by the MDF sample is expected.
Generally, the heavy tails of the summer distributions in con-
trast to the flatter tails in winter let the summer floods be-10

come dominant at higher quantiles. For a return period of 100
years, the summer floods exceed the winter peaks at 61.9%
of the sites. For 50 and 10 years, this exceedance occurs at
51.2% and 35.7% of sites, respectively. This behavior is also
noticeable in the MDF but for fewer gauges, namely 53.4%,15

43.2%, and 21.0% for 100-, 50-, and 10-year return periods.

4.2.2 Estimation of instantaneous peak flow (IPF)
distributions and quantiles

Three approaches were tested to estimate IPF flood quantiles
based on MDF statistics: a) correcting the sample L-moments20

required for parameter estimation (p/V-Lmoms), b) correct-
ing the parameters of the fitted distribution (p/V-params),
and c) directly correcting the desired flood quantiles (p/V-
quants). Method (a) is convenient, since a single model for

each L-moment facilitates a correction of the complete dis- 25

tribution and hence each desired flood quantile. Estimating
the L-moments has the additional advantage of not being re-
stricted to a certain type of probability distribution. A proper
distribution can be selected and fitted locally using the cor-
rected L-moments. Still, the other methods may prove more 30

robust and are hence tested as well. The final models for each
target variable are selected according to the procedure for the
MHQ (see Table 2), using the calibration data set. For rea-
sons of conciseness, only the final models are presented in
Table 6. 35

For further comparisons, distributions were also fitted to the
annual and seasonal maxima that were previously corrected
using the slope (slope-events) and p/V methods for events
(p/V-events). Since the shape parameter is generally difficult
to estimate, especially for such a short time period, and the 40

models’ estimates are generally close to the observed MDF
shape parameter, it will not be estimated using the model
variants. Instead, the MDF shape parameter estimate will be
used in all instances. Figure 8 shows the errors (%) in GEV-
parameter estimates for the different approaches in compar- 45

ison to the original uncorrected MDF error (%) computed
over the 486 validation sites with a minimum of 30 years of
observations. Since the p/V-quants method directly corrects
the MDF quantiles, it cannot be used to estimate the GEV pa-
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Figure 7. Estimated Generalized Extreme Value (GEV) parameters from the instantaneous peaks (IPF) vs. mean daily (MDF) annual/seasonal
maximum series. Here, only validation sites with observations longer than 30 years are shown.

rameters and hence is not illustrated in Figure 8. All methods
shown clearly improve the estimation for the location and
scale parameters when compared to the original MDF esti-
mates. The corrections based on the p/V models proposed
here (p/V-events, p/V-Lmoms, and p/V-params) are less bi-5

ased than the slope method (slope-events) proposed by Chen
et al. (2017). Particularly the correction of the MDF sample
L-moments (p/V-Lmoms) shows the smallest error and bias.
Figure 9 demonstrates the quality of the different correction
approaches for the 10-, 50-, and 100-year floods at the 48610

validation sites. With increasing return periods, the perfor-
mance of all correction methods appears to decline. Differ-
ences in the tails of the fitted distributions are more difficult
to capture by the analysed approaches. This turns out to be
especially valid for the low-altitude catchments. The over-15

correction that was observed for the mean is even more pro-
nounced here, which leads to an average decline in model
performance. Also, the general uncertainty in parameter es-
timation and extrapolation far beyond the time series length

needs to be kept in mind. Overall, even the estimation of the 20

“true” IPF quantiles is potentially defective in itself, as will
be discussed in the next section.
Since the average p/V ratio is used for the direct correction
of L-moments, parameters, and flood quantiles, it is expected
for the performance to decrease with increasing return peri- 25

ods, as the p/Vmean may not relate much to the higher quan-
tiles. Still, even for the 100-year flood, these approaches ap-
pear to work just as well as the p/V-events approach, as also
indicated by the performance criteria (nRMSE (%) and pBIAS
(%)) given in Table 7. The performance of all three methods 30

is comparable, but due to its previously mentioned advan-
tages, the L-moment method (p/V-Lmoms) is considered the
superior approach in this setting. Among the event correc-
tion techniques, the slope method performs similarly to the
p/V method in terms of overall error but is again more bi- 35

ased. When focusing on the catchments with areas under 500
km2, the superiority of the p/V methods becomes apparent.
The distribution of the prediction error for the correction of



14 Bartnes et al.: Flood frequency analysis using mean daily flows vs. instantaneous peak flows

Table 6. p/V models fitted to the calibration data set for correction of L-moments (p/V-Lmoms), GEV parameters (p/V-params), and flood
quantiles (p/V-quants) derived from the mean daily flow (MDF) annual or seasonal maximum series. For an overview of the methods, the
reader is directed to Table 1.

Type Model R2

L-moments L1 Year L1MDF / (0.74 - 0.94 · p/Vmean + 0.043 · log(area)) 0.66
(p/V-Lmoms) Summer L1MDF / (0.83 - 1.19 · p/Vmean + 0.054 · log(area)) 0.65

Winter L1MDF / (0.99 - 1.31 · p/Vmean + 0.036 · log(area))- 0.00012 · elevation 0.67
L2 Year L2MDF / (0.64 - 0.65 · p/Vmean + 0.048 · log(area)) 0.66

Summer L2MDF / (0.71 - 0.86 · p/Vmean + 0.062 · log(area)) 0.65
Winter L2MDF / (0.89 - 1.09 · p/Vmean + 0.043 · log(area))- 0.00016 · elevation 0.53

GEV ξ Year ξMDF / (0.77 - 1.02 · p/Vmean + 0.042 · log(area)) 0.67
parameters Summer ξMDF / (0.89 - 1.39 · p/Vmean + 0.052 · log(area)) 0.64

(p/V-params) Winter ξMDF / (0.96 - 1.36 · p/Vmean + 0.037 · log(area)) 0.63
α Year αMDF / (0.67 - 0.77 · p/Vmean + 0.048 · log(area)) 0.45

Summer αMDF / (0.78 - 1.14 · p/Vmean + 0.064 · log(area)) 0.42
Winter αMDF / (0.97 - 1.24 · p/Vmean + 0.037 · log(area) - 0.00015 · elevation) 0.56

Flood HQ10 Year HQ10MDF / (0.72 - 0.87 · p/Vmean + 0.043 · log(area)) 0.61
quantiles Summer HQ10MDF / (0.79 - 1.09 · p/Vmean + 0.058 · log(area)) 0.60

(p/V-quants) Winter HQ10MDF / (0.96 - 1.23 · p/Vmean + 0.038 · log(area) - 0.00014 · elevation) 0.63
HQ50 Year HQ50MDF / (0.70 - 0.75 · p/Vmean + 0.044 · log(area)) 0.52

Summer HQ50MDF / (0.73 - 0.83 · p/Vmean + 0.057 · log(area)) 0.53
Winter HQ50MDF / (0.89 - 1.09 · p/Vmean + 0.043· log(area) -0.00016 · elevation) 0.54

HQ100 Year HQ100MDF / (0.69 - 0.70 · p/Vmean + 0.044 · log(area)) 0.46
Summer HQ100MDF / (0.70 - 0.71 · p/Vmean + 0.057 · log(area)) 0.46
Winter HQ100MDF / (0.87 - 1.03 · p/Vmean + 0.0044· log(area) -0.00017 · elevation) 0.49

L-moments (p/V-Lmoms) over the different catchment areas
and elevations can be found in Table 8. The errors are exem-
plarily shown for the 100-year flood. The error distribution
is comparable to the MHQ shown in Table 5. Again, espe-
cially the overestimation for the lowest elevations is striking,5

as well as the significant underestimation at higher altitudes.

Finally, the model performance of the mixed models, com-
bining summer and winter floods, is analysed for different
flood quantiles. Their behavior is generally comparable to10

the annual maximum series approach, as shown in Figure 10.
Even though the quantiles obtained with the mixed models
may be more extreme and more parameters may need to be
estimated and corrected, there is no indication that the IPF
correction will not function in this case. The nRMSE (%) and15

pBIAS (%) values for the mixed models are shown in Table
9. According to these values, the event-correction methods
appear to perform best overall. For the smaller catchments
(< 500 km2), the p/V methods outperform the slope method.

4.3 Uncertainty Analysis20

The results of the resampling procedure used to assess uncer-
tainty in the IPF estimates are exemplarily shown in Figure
11 for the 100-year flood (HQ100) at a single site with a re-
duced number of 100 realizations. In panel (a), the IPF and
MDF estimates for each temporal resampling of the annual25

maximum series are plotted against each other (IPF-bs and
MDF-bs, respectively). This shows the bandwidths of both
the IPF and MDF estimates as a result of sample and pa-
rameter uncertainty. Figure 11 (b) shows the resampled IPF
flood quantiles (IPF-bs) vs. the quantiles estimated using the 30

p/V-Lmoms model by considering different sources of un-
certainty; p/V-bs illustrates the uncertainty only due to the
fitting of the p/V-Lmoms model, p/V-full indicates the sam-
ple and parameter uncertainty (MDF-bs) propagated through
the p/V-Lmoms model, and p/V-bs-bs combines the sample 35

and parameter uncertainty (MDF-bs) with the p/V-Lmoms
model uncertainty (p/V-bs) to tackle the total uncertainty. In
this example, it becomes obvious that uncertainty from the
p/V model (p/V-bs) is significantly smaller than the sample
and parameter uncertainty (MDF-bs or even IPF-bs). This is 40

valid for the majority of sites and is hardly affected by the
number of realizations.
Figure 12 shows the relative widths of the 95% confidence
intervals for all types of uncertainty estimated. The average
widths of the IPF-bs, MDF-bs, and p/V-full seem to be sim- 45

ilar to each other, where the IPF sample and parameter un-
certainty shows greater variability. The width of the average
range of the p/V-Lmoms model uncertainty (p/V-bs) is very
small at all sites and therefore contributes little to the overall
level of uncertainty (p/V-bs-bs). Thus, the overall uncertainty 50

of the p/V-Lmoms model is mainly influenced by the sample
and parameter uncertainty of the original MDF series.
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Figure 8. Error (%) comparison of various IPF-estimation methods (see Table 1 for an explanation of the methods) regarding their ability to
estimate Generalized Extreme Value (GEV) distribution parameters based on annual or seasonal maximum series. Only validation sites with
more than 30 years of observations are used for the boxplots.

Figure 9. Error (%) comparison of various IPF-estimation methods (see Table 1 for an explanation of the methods) regarding their ability to
estimate different flood quantiles based on annual maximum series. Only validation sites with more than 30 years of observations are used
for the boxplots.

In order to assess the full range of the errors in the p/V-
Lmoms model estimates, they are compared to the range of
errors in the MDF estimates. Here, the errors for the uncer-
tainty both in MDF (MDF-bs) and p/V-Lmoms (p/V-bs-bs)
estimates are computed according to Eq. 11. Figure 13 shows5

the median deviations of the MDF-bs and p/V-bs-bs quantiles

from the respective IPF-bs quantiles, as well as the lower and
upper limits of the 95% confidence intervals of the errors for
the 10-, 50- and 100-year flood quantiles. The median errors
from p/V-bs-bs are very similar over the three quantiles, but 10

the higher quantile HQ100 exhibits higher outliers. This is
in agreement with the performance of the p/V-Lmoms model
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Table 7. Performance of different IPF estimation methods in terms of normalized root mean square error (nRMSE (%)) and percent bias
(pBIAS (%)) for different flood quantiles estimated from annual maximum series. The performance is computed over validation sites with
more than 30 years of observations, while the values in parentheses show the performance for catchment sizes under 500 km2. For a descrip-
tion of the methods shown here, see Table 1.

T = 10 years T = 50 years T = 100 years
nRMSE[%] pBIAS[%] nRMSE[%] pBIAS[%] nRMSE[%] pBIAS[%]

MDF 17.8 (50.0) -18.0 (-32.9) 17.8 (48.1) -18.2 (-32.3) 17.9 (47.5) -18.3 (-39.1)
Slope-events 7.0 (30.3) -5.8 (-17.5) 8.7 (27.7) -4.7 (-15.8) 10.3 (27.8) -4.2 (-15.2)
p/V-events 7.7 (20.1) -2.1 (-1.3) 8.5 (19.1) -0.8 (0.8) 9.8 (21.1) - 0.3(1.8)

p/V-Lmoms 8.2 (21.1) -4.0 (-3.3) 8.7 (21.1) -3.8 (-2.8) 9.3 (22.8) -3.7 (-2.6)
p/V-params 8.1 (20.6) -3.6 (-2.3) 8.5 (20.7) -3.3 (-1.6) 9.1 (22.5) -3.1(-1.2)
p/V-quants 7.8 (20.9) -3.6 (-3.1) 8.6 (21.4) -4.0 (-3.9) 9.3 (23.2) -4.3(-4.4)

Table 8. Average prediction error (%) of the p/V-Lmoms model for the 100-year flood (HQ100) calculated over the validation sites and
shown here for different ranges of catchment area and gauge elevation. Red shades indicate overestimation, blue shades underestimation.
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Elevation [m a.s.l]
<100 <200 <300 <400 <500 <600 <700 <800 <900 <1,200

<50 18.37 -34.61 -14.45 -12.68 2.66 -2.17 17.33 -6.80 -13.73 -15.58
<100 24.81 -7.61 -8.01 6.46 4.91 0.72 3.98 5.26 7.49 -33.61
<200 30.72 -9.97 -1.26 0.57 4.38 -4.76 3.33 5.37 -5.10 -
<500 16.30 2.68 -1.65 2.56 4.34 8.03 5.78 2.56 -20.01 -

<1,000 7.95 1.56 -2.25 -1.93 6.88 3.36 3.43 - - -
<2,000 5.47 -8.43 -12.11 -2.63 -3.31 1.26 -6.80 1.19 16.97 -1.23
<5,000 -0.50 -7.33 -7.80 -3.66 -0.53 5.03 - - - -

<10,000 -6.63 -9.86 -6.86 -4.07 -7.26 - - - - -
<30,000 -6.40 -17.31 -5.02 -0.92 - - - - - -

illustrated in Figure 9. This means that the median errors ob-
tained over the 1,000,000 realizations are very similar to the
actual model errors at each site. Moreover, it is obvious that
the overall uncertainty gets larger with increasing return peri-
ods, as can be seen by the increasing distance between lower5

and upper confidence limits. The p/V-Lmoms estimates ap-
pear to be slightly positively skewed, which is especially no-
ticeable in the 95% confidence interval for the HQ100. At
many sites, there is a significant overestimation of the true
IPF quantile when combining sample and parameter uncer-10

tainty with p/V-Lmoms model uncertainty. The MDF esti-
mates, on the other hand, exhibit the expected persistent un-
derestimation.
Figure 14 summarizes the general overlap of the confidence
intervals of MDF and estimated IPF with the confidence15

intervals of the observed IPF for the three flood quantiles
(as per Eq. 12). It becomes obvious that the agreement be-
tween IPF and the p/V-Lmoms model estimates is signifi-
cantly greater than with the MDF values. This observation
suggests that with high probability the p/V-Lmoms model20

estimates are in the range of the “true” IPF quantiles. The
fact that overlaps in both the MDF and the models increase
with increasing return periods suggests again the overall level

of uncertainty in the higher IPF quantiles due to sample and
parameter uncertainty. 25

5 Discussion

5.1 Factors affecting the correction of mean daily
(MDF) to instantaneous peak flow (IPF) statistics

In theory, the relative deviation between MDF and IPF peaks
depends greatly on catchment size, as shown, for instance, 30

in Fuller (1914) and Ellis and Gray (1966). The effect of the
catchment size is clearly visible in our data set. The larger
the area, the smaller the error between instantaneous peak
and daily flows, and consequently, the respective computed
statistics. For catchments smaller than 1,000 km2, this error 35

can reach down to -80%. Small catchments without apprecia-
ble buffering capacity react quickly to even low rainfall, lead-
ing to short and steep flood waves that are hardly reproduced
on coarsely averaged time scales. Factors like steep slopes,
impermeable underground, and short but intense rainfall con- 40

tribute to the flashiness of storm events and make these events
less representable through daily flow records. For areas larger
than 5,000 km2, this error becomes very small (< -20%).
This agrees well with the findings of Ellis and Gray (1966)
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Figure 10. Error (%) comparison of various IPF-estimation methods (see Table 1 for an explanation of the methods) regarding their ability
to estimate different flood quantiles based on a mixed model of seasonal maximum series. Only validation sites with more than 30 years of
observations are used for the boxplots.

Table 9. Performance of different IPF estimation methods in terms of normalized root mean square error (nRMSE (%)) and percent bias
(pBIAS (%)) for different flood quantiles estimated from mixed models of seasonal maximum series. The performance is computed over
validation sites with more than 30 years of observations, while the values in parentheses show the performance for catchment sizes under
500 km2. For a description of the methods shown here, see Table 1.

T = 10 years T = 50 years T = 100 years
nRMSE[%] pBIAS[%] nRMSE[%] pBIAS[%] nRMSE[%] PBIAS[%]

MDF 17.7 (50.2) -17.9 (-32.9) 17.5 (48.3) -18.0 (-32.3) 17.6 (48.0) -18.1 (-32.1)
Slope-events 8.1 (31.7) -6.3 (-18.6) 9.6 (28.6) -4.7 (-16.6) 10.6 (28.5) -4.1 (-15.9)
p/V-events 8.1 (21.2) -2.5 (-2.7) 8.5 (20.8) -0.3 (1.2) 9.1 (23.3) 0.7 (3.1)

p/V-Lmoms 12.3 (23.0) -5.7 (-3.9) 12.7 (22.1) -5.8 (-3.0) 13.0 (22.9) -5.8 (-2.6)
p/V-params 12.5 (23.5) -6.2 (-4.7) 13.4 (23.8) -7.3 (-5.7) 14.0 (25.3) -7.9 (-6.6)

and Chen et al. (2017) which state that for basins larger than
10,000 km2, the peak ratio between MDF and IPF series con-
verges to 1. Larger basins are typically characterized by high
base flow and long response times which translates on a good
representation of IPF from the MDF.5

Apart from catchment size, elevation can play also an im-
portant role as shown in Canuti and Moisello (1982). Moun-
tainous catchments have a fast response time and are gen-
erally more heavily influenced by meteorological forcing,
such as snowmelt processes or convective events, as demon-10

strated by Gaál et al. (2015). Therefore, the error is expected
to increase with high elevation. In our case study, errors at
high-altitude sites seem to be particularly significant (40% to
60% underestimation). However, this could be a combined
effect of small catchments, as mountainous basins are typi-15

cally smaller in size. On the other hand, sites with elevation
lower than 100m a.s.l. exhibit smaller errors and are stratified
according to catchment size. For example, basins larger than
5,000 km2 show a lower error at an elevation of 100m com-
pared to 300m a.s.l. The effect of the elevation on the higher20

altitudes is less visible in our dataset. Apart from the error in

the peak magnitude, a weak link is also visible between high
elevation and a smaller temporal overlap between the MDF
and IPF peaks.
Different flood genesis, considered here by separating the 25

data in two seasons (winter and summer), also exhibit dif-
ferent error behavior. Overall, summer IPF statistics were
up to 20% more underestimated than winter IPF statistics.
This occurs mainly due to the presence of frequent convec-
tive events and moderate rainfall on snow – which enable 30

faster catchment responses. As the summer peaks are un-
derestimated, consequently, when performing a typical an-
nual maximum flow series, summer events will be underrep-
resented, resulting in a non-representative fitted probability
distribution. This is visible in catchments with areas under 35

500 km2, where up to 40% of annual peaks are falsely chosen
from the winter season. Apart from not being able to prop-
erly identify flood magnitudes when using mean daily flow,
this is a serious issue for the classification of flood regimes,
identification of dominating flood types and application of 40

heterogeneous flood frequency analyses when daily data are
the only available option.
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Figure 11. Example of uncertainty ranges with 100 realizations at
a single site: (a) HQ100 from IFP-bs vs. MDF-bs illustrating the
sample and parameter uncertainty, (b) HQ100 from IPFbs vs. esti-
mated IPF where p/V-bs illustrates the p/V-Lmoms model uncer-
tainty (shown as dark blue points); p/V-full illustrates the propaga-
tion of sample and parameter uncertainty through the p/V-Lmoms
model, and the p/V-bs-bs illustrates the total uncertainty that com-
bines both sample and parameter uncertainty with the p/V-Lmoms
model uncertainty.

Additionally, other factors such as the type and amount of
precipitation, soil initial conditions and characteristics or
slope and land use, have been shown to influence the on-site
variation between instantaneous peak and daily flows. Since
their combined effect generates a distinctive daily flow hy-5

drograph, the peak-to-volume (p/V) ratio becomes an impor-
tant predictor to describe the on-site and between sites vari-
ations when correcting MDF events or statistics. The same
principle holds as well for the slope-method correction sug-
gested by Chen et al. (2017). However, in contrast to the10

slope-method, the p/V ratio contains information about the
direct flood volume, which may describe the variability be-
tween events and catchments better. This is shown to be the
case, mainly for catchments under 500 km2, where the pro-
posed linear models based on the p/V ratio outperform the15

slope-method. However, this can be attributed to the integra-
tion of the most important predictors (such as area, eleva-
tion or p/V ratio), or to the poor performance of the slope-
methods for areas under 500 km2 as discussed in Chen et al.
(2017).20

5.2 Range of applications and limitations

All the correction methods applied here, either on MDF peak
flow events or MDF statistics, generated a better agreement
with IPF statistics than the statistics from the pure MDF se-
ries. The slope-methods exhibited overall a constant underes-25

timation around 10 to 20% of the IPF statistics. This agrees
also with the results from Chen et al. (2017), where simi-
lar underestimation for catchments in Iowa, USA, was also
observed. On the other hand, the p/V methods were less bi-
ased than the slope-method. Although all the p/Vmodels pro-30

posed had similar performance, the L-moment method (p/V-
Lmoms) is more preferable due to its convenience. Correct-
ing the MDF L-moments ensures not only a complete cor-
rection of the distribution, including both low and high quan-
tiles, but as well is not restricted to a type of probability dis- 35

tribution. The method of correcting the error in MDF floods
using the p/V ratio performs well and is easily applicable in
our study area. However, its great simplification and mere
approximation of physical flood-generating processes results
in some problems and limitations that will be listed and dis- 40

cussed here.
The first aspect that may influence the performance of the
proposed IPF correction method is the event separation tech-
nique. The chosen technique determines how flood events
and thus the required hydrograph characteristics are defined. 45

The choice of baseflow-separating algorithm can greatly af-
fect the identification of start and end points of flood events.
Strict independence criteria and thresholds for event recogni-
tion may lead to rejection of crucial flood events when con-
sidering daily time series. Lax criteria, on the other hand, 50

may create unnaturally long multi-peak events and false in-
clusion of small events, leading to unrealistic hydrograph
characteristics and IPF estimates. Thus, the additional step of
refining multiple peak events, as suggested by Tarasova et al.
(2018), should be carried out when rainfall and snowmelt in- 55

formation is available. In their study, the refinement led to a
reduction of multi-peak events from more than 50% to 44.7%
of all identified events. In this study, the ratio of multi-peak
to single-peak events is 57.9% for the year, 58.2% for sum-
mer, and 58.4% for winter. 60

Using the p/Vevent in order to correct individual events and
then using the corrected series for FFA in theory repre-
sents a more sensible approach than using the p/Vmean from
the annual MDF maxima. As mentioned above, maximum
MDF events do not necessarily coincide with maximum IPF 65

events, which is why correcting all events first and then se-
lecting the annual maxima should yield a more appropriate
IPF sample. But again, correcting individual events depends
greatly on a very careful event separation, which could not
be achieved in this case and led to some unrealistic IPF esti- 70

mates. Nonetheless, if a proper event separation is possible,
the event correction method may have the greater potential.
In such a case, a single model would be sufficient to account
for all aspects of IPF estimation, including high flood quan-
tiles. 75

A problem for IPF correction, which has been exhaustively
discussed above, has to do with the gauges that exhibit little
difference between MDF and IPF floods, even though their
p/V ratio would suggest a much larger error. For our catch-
ments, this applies to the lowest-altitude gauges in the data 80

set. The MDFs at these sites are over-corrected and thus ex-
hibit severe overestimation of the true IPFs. We therefore dis-
courage the application of the suggested correction methods
at catchment outlets situated below 100 m a.s.l..
This observation may also suggest that other factors need to 85
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Figure 12. Relative widths of the 95% confidence interval (as per Eq. 10) of various uncertainty types for different flood quantiles, where
IPF-bs and MDF-bs show the sample and parameter uncertainty of the original series, p/V-full shows the sample and parameter uncertainty
propagated through the p/V-Lmoms model, p/V-bs shows only the uncertainty of the p/V-Lmoms model, and p/V-bs-bs shows the total
uncertainty that combines both sample and parameter uncertainty with the p/V-Lmoms model uncertainty. The boxplots here are obtained
for validation sites with more than 30 years of observations.

Figure 13. Error distribution obtained as per Eq. 11 for three flood quantiles (left) from considering the sample and parameter uncertainty of
the mean daily flow (MDF) series (MDF-bs) and (right) total uncertainty of the p/V-Lmoms model (p/V-bs-bs). Shown are the median errors,
as well as the lower and upper limits of the 95% confidence intervals obtained at the validation sites with more than 30 years of observations.

be considered for proper error estimation or that the param-
eters of the correction models need to be adjusted for dif-
ferent subsets of data. This is also relevant for the question
of the universality of the proposed method. Our data set is
limited and representative of a temperate humid climate and5

moderate altitude. Thus, a qualitative sensitivity analysis was
carried out on the full 648-site data set in order to identify
patterns that could be extrapolated to other regions. The sub-
sets were selected by combinations of geographical location,
catchment size, and gauge elevation. The target variable was10

the mean annual maximum IPF. Differences in the individ-
ual models due to different degrees of freedom are natural,
which is why only the subsets that lead to significant devia-
tions from the original model are mentioned here.

Two sets of sites deviate noticeably from the original model. 15

The first includes the low-altitude gauges discussed before.
Here, the overall error is so small that no correction yields
better results than correction via the p/V approach. The sec-
ond group includes the catchments with areas under 50 km2.
The errors for these sites appear very scattered and randomly 20

distributed. Comparing the p/V from the daily series with the
p/V obtained from instantaneous events, it becomes obvious
that the difference increases with decreasing catchment size
and becomes excessively large and random for catchment
sizes under 100 km2. The correction using mean daily p/V 25

only functions where unknown instantaneous flood dynam-
ics are roughly approximated by observed daily flow vari-
ability. The smaller the temporal scale of an instantaneous
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Figure 14. Percentage overlap for the three flood quantiles as per
Eq. 12 computed from the 95% confidence intervals of mean daily
flow (MDF) sample and parameter uncertainty (MDF-bs) and p/V-
Lmoms total uncertainty (p/V-bs-bs). The boxplots are obtained by
considering validation sites with more than 30 years of observa-
tions.

flood event, the poorer it is reproduced in the daily records.
If instantaneous events manifest themselves primarily on a
sub-daily basis, the possibility to describe their dynamics via
daily flows becomes ineligible. This observation is also in
accordance with the observed temporal shifts between MDF5

and IPF events, which is increasingly pronounced in smaller
catchments. In summary, the proposed correction method
flounders at smaller scales below 100 km2. Even though the
IPF estimation leads to a general improvement at this scale,
the daily flood time scale poses a poor predictor in these10

catchments. In other cases, when the flood timescale is larger
than a day, then the p/V predictor should be able to capture
the flood dynamics. Still, attention must be paid to the base-
flow separation, to ensure that the calculated p/V predictor is
representative of the catchment behavior.15

On the other hand, for catchments between 100 to 500 km2 ,
the p/V models showed the best results. This can be attributed
to the selected predictors, whose combination is more repre-
sentative for these catchments. It can also be attributed to the
available dataset, as the majority of the sites have a catch-20

ment area under 500 km2 and the fitted linear models may
favor the minimization of the errors for these catchments.
Although the conducted uncertainty analysis showed that the
model uncertainty (due to the selected sites) is very low com-
pared to the local parameter and sample uncertainty.25

Nevertheless, the effect of the dataset should not be ne-
glected, when determining which and how many locations
should be grouped together for the fitting of the linear model.
Even in the optimal case that the p/V predictor describes the
flood dynamics correctly at each site, the question of how30

well a single linear model can represent the whole group of
sites arises. Although L-moments are considered more robust
than parameters or quantiles, they may differ significantly for
a particular group. Hence, a more reasonable approach would

be to break the group down into subgroups. In our case, lon- 35

gitude and latitude did not appear to have any effect on the
model fitting. Dividing the study area into quadrants did not
result in any differences between the subsets, even when con-
sidering similar catchment size and elevation. Also, neither
record length nor period of record appeared to have an influ- 40

ence.
The distinction between summer and winter for representa-
tion of the two most opposite flood types is particularly valid
for this study area and should be adjusted where flood types
are otherwise distributed. In general, even the rough distinc- 45

tion between different flood types for IPF estimation proved
meaningful in our case, as it revealed different dynamics
and MDF-IPF relationships. This observation could be fur-
ther exploited by more carefully defining and distinguishing
between flood types, as e.g. proposed by Fischer (2018) or 50

Tarasova et al. (2018).
Finally, one should note that the type of distribution for flood
quantile estimation can only be selected based on daily data
and may differ from the optimal IPF distribution. For our
data, the GEV proved flexible enough to be a good match 55

for both MDF and IPF, but this could differ in other cases.

6 Conclusions and outlook

As in other studies before this one, it could be shown that
the mean daily (MDF) and instantaneous peak flow (IPF) re-
lationship depends primarily on catchment size. It could also 60

be observed that other factors, in this case gauge elevation,
play a role in determining the difference between MDF and
IPF floods. The relationship also appeared to differ between
the two types of floods considered here, namely winter and
summer floods. Since summer floods are often caused by 65

short but intense rain events and thus exhibit steep rising and
falling limbs, their sub-daily peaks are much larger than and
difficult to estimate from the smoothed average daily peaks.
Long, voluminous winter floods, on the other hand, show a
much smaller IPF-MDF ratio and are easier to model. 70

This study has also shown that hydrograph characteristics,
like the peak-volume ratio of flood events, can be used to
estimate instantaneous peak flows when only average daily
series are available. The p/V ratio may be used to predict
both IPF of individual events and instantaneous flood statis- 75

tics, including mean annual and seasonal maximum flows
and flood quantiles. Due to improper flood event separation,
the event correction method produced some outliers in our
case but may work significantly better when flood events
can be defined more carefully. In general, the p/V method 80

requires a minimum of data and can be applied using only
information from the daily series itself. The performance
could be marginally improved by including gauge elevation
as an additional predictor in some of the models.
The general recommendation for estimating IPF flood 85

quantiles is to use the average p/V approach for correction
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of L-moments. This method is convenient, since L-moments
can be globally corrected, while distributions may be locally
fitted afterwards. It turns out that the first two L-moments
are easily estimated using p/Vmean, while higher-order
L-moments or L-moment ratios are more difficult to model5

with this approach.
There are two limitations where the proposed method should
be handled with care: a) at sites with elevations below 100
m, since it overestimates the true difference between IPF
and MDF, and b) at catchments smaller than 100 km2,10

where it underestimates the error so that the full correction
potential cannot be achieved. Still, in comparison to the
slope method, the p/V approach works significantly better
for smaller catchment areas, especially under 500 km2. For
larger catchments, the slope method appears very robust15

for all catchment sizes and elevations. The p/V methods
perform better in many larger catchments but outliers may be
produced where the above-named restrictions are met. For
future analyses, it will be meaningful to test the universality
of the proposed approach in other study regions. Also, the20

effect of the flood event separation on the IPF estimation
performance should be analysed in more detail, especially
in order to improve the event correction technique. Finally,
it will be interesting to see whether explicit consideration
of more carefully defined flood types can improve the IFP25

estimation in mixed models.
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