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Abstract. In many cases, flood frequency analysis (FFA) needs to be carried out on mean daily flows (MDF) instead of

instantaneous peak flows (IPF), which can lead to underestimation of design flows. Typically, correction methods are applied

to the MDF data to account for such underestimation. In this study, we first analyse the error distribution of MDF-derived flood

quantiles over 648 catchments in Germany. The results show that using MDF instead of IPF data can lead to underestimation

of the mean annual peak flow (MHQ) by up to 80% and mainly depends on the catchment area but appears to be influenced5

by gauge elevation as well. This relationship is shown to differ for summer vs. winter floods. To correct such underestimation,

different linear models based on predictors derived from MDF hydrograph and catchment characteristics are investigated.

Apart from the catchment area, a key predictor in these models is the event-based ratio of flood peak to flood volume (p/V

ratio) obtained by the MDF data. The p/V models applied to either MDF-derived events or statistics seem to outperform other

reference correction methods. Moreover, they require a minimum data input, are easily applied, and are valid for the entire10

study area. Best results are achieved when the L-moments of the MDF maximum annual series are corrected with the proposed

model, which reduces the flood quantile errors up to 60%. The approach behaves particularly well in smaller catchments

(<500km2), where reference methods fall short. However, the limit of the proposed approach is reached for catchment sizes

under 100 km2, where the hydrograph information from the daily series is no longer capable of approximating instantaneous

flood dynamics and gauge elevation below 100m, where the difference between MDF and IPF floods is very small.15

1 Introduction

Common flood frequency analysis (FFA) is based on samples of maximum flows, e.g. annual maximum flow series (AMS).

The magnitude and variability of these maxima form the baseline for the choice of probability distribution, the estimation of

its parameters, and eventually the deduction of flood quantiles as design criteria for various water works (Maidmennt, 1993).

For FFA to be as accurate as possible, two criteria need to be met; first, a large number of observed peak flows is necessary20

to ensure an adequate selection and fitting of the probability distribution and, second, it is important that the peak flows are

measured with high precision to account for the best description of maximum flood magnitude and dynamics. However, em-

bracing the true dimension of a peak requires continuous measurement of the flow at a high temporal resolution (e.g. at 15min

time steps). Such data are rarely available or, at best, only available for short periods, which is insufficient for flood frequency

1



analysis. Typically, long observations of floods are available as mean daily flow records and oftentimes FFA needs to be carried25

out on these records instead. The daily averaging naturally flattens the flood peak and the true maximum becomes unknowable.

Particularly for small basins, there is a considerable underestimation of the flood peak by the mean daily flows (Fill and Steiner,

2003). Hence, it becomes essential to develop new methods based on easily accessible data to correct the mean daily flows for

a better representation of the flood peaks.

The degree of the above-mentioned smoothing, i.e. the difference between the true instantaneous peak flow (IPF) and the max-30

imum mean daily flow (MDF) (here addressed as the peak ratio), depends on the response time of a system, which is controlled

by a multitude of factors. The average relationship between MDF and IPF peaks at a site depends greatly on its basin area

(Fuller, 1914) and characteristics related to topography, like altitude, relief, and channel slope (Canuti and Moisello, 1982).

For instance, there is a visible trend that the IPF-MDF ratio decreases with larger basin areas, which is expected because larger

basins have higher baseflows (Ellis and Gray, 1966). Furthermore, the internal variability of the IPF-MDF ratio in a site’s flow35

record is largely determined by the type of meteorological input causing the individual flood events (Viglione and Blöschl,

2009; Gaál et al., 2015). This means that the peak ratios of rainfall and snowmelt events are different from one another. A

variety of studies make use of the dependencies named above in order to estimate IPFs from MDFs, and can generally be

classified as methods based only on catchment characteristics, as in Fuller (1914); Ellis and Gray (1966); Canuti and Moisello

(1982); Ding et al. (2015), or also including climate characteristics, as in Muñoz et al. (2012), Taguas et al. (2008), and Gaál40

et al. (2015). Mostly, these methods are in the form of linear models based on maximum MDFs and the selected catchment or

climate predictors.

Other IPF estimation methods aim at using the bare minimum of available data, i.e. solely the available mean daily flow record

(MDF). In these cases, the shapes of hydrographs are used to estimate the instantaneous peaks of events. The shape of a hy-

drograph can hold important information regarding an event’s or even the entire site’s flashiness and thus its peak ratio. Short45

flood events with steep rising and falling limbs are typical of a quickly reacting system, due to limited storage capacity and/or

high-intensity rainfall or due to moderate-intensity rainfall on snow. In such events, the discrepancy between IPF and MDF

will be significantly greater than for hydrographs with long durations and gentle slopes. For example, Ellis and Gray (1966)

found that the peak ratio distinctively decreases with increasing hydrograph width.

Several approaches use the maximum mean daily flow and the discharge of the previous and/or successive day (e.g. Langbein50

(1944)) to estimate IPFs. Chen et al. (2017) compared three of these methods, namely those of Sangal (1983) and Fill and

Steiner (2003) and their own new method (referred to as the slope method). These methods are based on the rising and falling

slopes of the event hydrograph, estimated from the three consecutive days around the peak, and differ in terms of how the

information is integrated in the formula. They found out that their slope method and Fill and Steiner’s method outperform the

other two approaches and Fullers’ method (Fuller, 1914) (estimation method based on basin area), and are probably applicable55

for a wide range of climates. However, both methods’ performance deteriorates with decreasing catchment size and they work

best for areas larger than 500 km2.

Of course, there exist more complex means to correct the divergence between MDFs and IPFs. This includes disaggregation of

the daily flow series to a finer scale, as done by e.g. Stedinger and Vogel (1984); Tarboton et al. (1998); Kumar et al. (2000); Tan
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et al. (2007); Acharya and Ryu Jae (2014). Also, hydrological modelling may be applied for IPF estimation, e.g. in combination60

with high-resolution disaggregated rainfall (Ding et al., 2016) or by using regionalized model parameters (Ding and Haber-

landt, 2017). Several studies have applied machine-learning techniques to estimate instantaneous peaks from mean daily flows,

including Shabani and Shabani (2012); Dastorani et al. (2013); Jimeno-Sáez et al. (2017). While disaggregation, hydrological

modeling, and machine learning proved to be very effective in their studies, they often require a number of computational

steps and/or a variety of data sources. Indeed, the estimation methods based on the catchment or hydrograph characteristics65

remain even more desirable due to their simplicity, as they are based on easily accessible data and popular methods (i.e. linear

models).

So far, the two main IPF estimation methods have been developed separately with no combination of both catchment and

hydrograph information. In this study, on the other hand, we propose linear models that facilitate IPF estimation using a com-

bination of daily event hydrographs and functional dependencies with catchment descriptors, while keeping the data input to70

a minimum. A key predictor in these linear models is the ratio of direct event peak runoff to direct event volume. This ratio

is expected to effectually describe the shape of a flood event, which in turn gives us an idea about the expected instantaneous

peak: the larger the daily peak and the smaller the event volume, the larger the expected difference between IPF and MDF and

vice versa. We assume that the peak-volume ratio (p/V) holds important information on the general behavior of flood events

(Gaál et al., 2015; Fischer, 2018; Tan et al., 2007), and thus the expected magnitude of the IPF peaks. Moreover, the p/V of75

individual events can describe the internal variability at a site by reflecting different types of floods caused by different rainfall

and/or snowmelt inputs. At the same time, the p/V accounts for the variability between sites caused by local flood-generating

processes governed by general physiographic and climatic conditions.

Another important point to be considered is that most of the studies mentioned above investigate the performance on the IPF

maximum series and pay little attention to how these methods estimate the design flows with specific return periods. The gen-80

eral assumption is that, if the IPF maximum series are estimated well enough on average, so are the IPF quantiles. However,

a well-estimated average IPF maximum may still lead to underestimation of design flows with a high return period (say, 100

years). It makes sense to investigate as well whether linear models based on MDF moments, parameters or quantiles are more

favourable for the estimation of the IPF quantiles. Accordingly, p/V models are employed here to correct MDF information at

different levels: correction of individual flood events from MDF, correction of MDF annual or seasonal maximum series, and85

the direct correction of MDF-derived statistics (like mean maximum flow, L-moments, distribution parameters or even flood

quantiles).

In this study, the linear models based on the p/V as key predictor (referred to here as p/V models) are developed and assessed

based on flow data from 648 catchments in Germany (as described in Section 2). The description of the methods and models

used here for the estimation of the IPF from MDF information is given in Section 3.2. We then analyse the performance of90

the models in two main parts: their ability to estimate the mean maximum flow (MHQ) (see Section 4.1) and their ability to

estimate probability distributions and the respective design floods (see Section 4.2). For the best model achieved, an uncer-

tainty estimation is tackled by means of spatio-temporal resampling (see Section 4.3). Finally, the range and limitations of the

proposed methodology and conclusions are given respectively in Sections 5 and 6.
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Figure 1. The spatial distribution of 648 catchments and their respective discharge gauges employed in this study. The 103 sites used for

model calibration are marked in blue. The elevation is shown in the background colours and is provided by Jarvis et al. (2008), while the

borders of the German federal states are shown with black lines.

2 Study area and data95

This study uses flow data from 648 catchments distributed over Germany as shown in Figure 1. For the analyses, continuous

average daily flow (MDF) and instantaneous peak flows provided for each month as monthly peaks (IPF) are available. The

selected sites represent the data sets of the federal agencies, which provide online access to both data sets (Lower Saxony,

Saxony-Anhalt, Saxony, Bavaria and Baden-Württemberg; see Section 6).

Germany forms a transition zone from an oceanic climate in the Northwest to a humid continental climate in the Southeast.100

The northwestern parts are influenced by wet air and have mild winters, while the more southeastern parts are drier and exhibit

larger temperature ranges. The average temperature for the entire country is 8.9 °C, the monthly averages ranging between

0.4°C in January and 18°C in July (reference period 1981-2010 Deutscher Wetterdienst (DWD) (2021)). The average annual

precipitation is 819 mm, where amounts generally decrease West-East and in strong dependence on the topography. Annual

rainfall sums are generally highest over the Alps right at the southern border and the various secondary mountain ranges.105

The flat continental East is the driest. Temporally, the summer months are wettest, with rainfall often occurring in convective

events. Snowfall occurs between October and April, where the amount and depth of snow cover increase with decreasing

oceanic influence and increasing altitude.

Even though the entire area of Germany is not covered by the available data, the selected sites provide a cross-section through
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Figure 2. Distribution of catchment size and elevation for all the 648 sites employed in this study.

the climatically and topographically distinct regions, from the flat oceanic Northwest to the mountainous continental Southeast.110

The lengths of the discharge records vary substantially from 11 to 183 years, with a mean of 48.4 years (temporal span from

1831 to 2021). For the general assessment of differences in IPF and MDF floods and final model validation, all 648 sites with

their variable record lengths are considered. For the assessment of flood frequency criteria, only sites with at least 30 years of

observations are used (486). Model fitting (herein referred to as calibration) was carried out on a subset of 103 sites, whose

discharge data were thoroughly checked. Also, their records were cropped to a common period from 1979 to 2012, to eliminate115

potential non-stationary effects. For the 103 sites used for calibration, a catalogue of catchment descriptors is available. For

the remaining sites, only rudimentary information was obtained, i.e. catchment size, geographical position, and altitude of the

gauges. Figure 2 shows how the 648 discharge gauges are distributed in terms of catchment size and elevation. It is evident that

the majority of the sites have catchment areas under 500km2 and gauges situated at elevations higher than 100m a.s.l..

3 Methods120

3.1 Flood frequency analysis

Flood frequency analysis (FFA) is applied to the two data sets for the available catchments in Germany: mean daily flows

(MDF) and instantaneous monthly peak flows (IPF). First, the maximum series are extracted from each data set either on an

annual basis (annual maximum series - AMS) or for each season of summer and winter (seasonal maximum series). For ex-

trapolation of the maximum series and estimation of floods with specific return periods, distributions are fitted to the annual125

and seasonal samples of both IPF and MDF data sets. This enables the direct comparison of both flood quantiles and distribu-

tion parameters. For this study, the General Extreme Value distribution (GEV) of the following form is used for all samples
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(Maidmennt, 1993):

F (x) = exp{−[1− κ · (x− ξ)

α
]

1
k

}, (1)

with location parameter ξ, scale parameter α, and shape parameter κ. The parameters are estimated using sample L-moments130

(Hosking and Wallis, 1997). The GEV has been proven before to be a suitable distribution for different catchments in Germany,

as indicated by Haktanir and Horlacher (1993); Villarini et al. (2011); Ding et al. (2015, 2016); Ding and Haberlandt (2017),

and therefore has been chosen in our study as well. The goodness of fit of the distributions is determined with the Cramer-von-

Mises test.

When extracting annual maximum series (AMS), different flood peaks of different genesis (i.e. from convective/stratiform135

rainfall, from snowmelt, and so on) are mixed together and described by a single GEV distribution. However, if a certain flood

type is dominating the annual maxima sample but is not typical for extremely large floods, then the fitted GEV distribution

becomes misleading. To consider the different genesis in the flood peaks, maximum series are derived here for two seasons:

summer (May-October) and winter (November-April). Then, a mixed model is applied, which combines two GEV distributions

fitted to each of these sub-samples of the data: summer and winter floods. A simple maximum-mixing approach is used to140

combine the individual distributions to assess the annual non-exceedance probability of specific flood values:

Fmix(x) =

n∏
i=1

fi(x), (2)

with fi(x) as the annual non-exceedance probability calculated for each sub-sample (summer and winter) and Fmix(x) as the

mixed-model annual non-exceedance probability for a flood value x. This approach allows the combined estimation of flood

quantiles from multiple underlying distributions and thus the assessment of errors in seasonal FFA. The approach is described145

in detail in Fischer et al. (2016). In their study, they used thresholds to determine whether a seasonal maximum was actually a

flood event, which may not be the case during dry summers. This threshold was defined as the minimum annual maximum flow.

We do not censor our data with thresholds, i.e. for matters of simplicity we assume that every seasonal maximum is indeed a

flood event.

3.2 Analysis and estimation of instantaneous peak flows (IPF)150

3.2.1 Calculation of the p/V predictor from mean daily flows

Motivated by the recent findings of Fischer et al. (2016); Fischer (2018) regarding different flood types, here the flood peak-

volume ratio (p/V) extracted from mean daily flows (MDF) is considered an important predictor that can help to estimate more

accurately the IPF series from the MDF ones. This ratio is computed for each flood event extracted from the MDF data set as

shown by Eq. 3:155

p\V (
1

d
) =

Qdir[m
3d−1]]

V oldir[m3]
, (3)
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where p/V is the peak-volume ratio, Qdir the direct peak flow, and Voldir the direct flood volume. Both Qdir and Voldir are

calculated for flood events extracted from MDF series (see below) after subtracting the baseflow.

To separate the flood events from the MDF, the initial steps of the procedure used by Tarasova et al. (2018) are carried out,

which have been proven effective and convenient for the German catchments. For the initial step of baseflow separation, they160

selected the simple non-parametric algorithm provided by the (Institute of Hydology, 1980), which is able to identify the

starting points of events in daily flow series in a wide range of catchments. The same method is applied to the series of mean

daily flows in our study, which involves the following steps. First, 5-day non-overlapping blocks are used to find the minima,

which are identified as turning points if they are more than 1.1 times smaller than their neighbouring minima. The baseflow

is then derived by simple linear interpolation between the turning points. Discharge peaks are subsequently determined from165

the flow series, and for every peak the start and end of the respective flow event is defined by the nearest surrounding turning

points. To prevent false identification of events due to natural variability, events are discarded if their peak discharge is not at

least 10% larger than the baseflow. Tarasova et al. (2018) suggested a second step of re-defining events with multiple peaks in

an iterative procedure. This step is not carried out here, as it requires rainfall and snowmelt information, which is not available

in our case. It is assumed that most of the events, especially the larger ones relevant for FFA, are separated correctly.170

3.2.2 Estimation of instantaneous peak flows

In this study, we propose linear models to estimate IPF from the MDF data, where the peak-volume ratio (as described in

Eq. 3) is one of the main predictors (referred to here as p/V models). Other predictors that describe the catchment physiology

or climate (referred to for simplicity as catchment descriptors) are also integrated and investigated. The combination of hy-

drograph shape and catchment characteristics as predictors is expected to better reproduce both the on-site and between-site175

variability in the IPF-MDF relationship and yield a more universal model. Several catchment descriptors describing land use,

soil type, average climate variables, geographic information, and catchment morphology were investigated prior to the study.

Two main descriptors, namely basin area and gauge elevation, were found to be more important for the linear model and hence

are included in the study as shown here.

Since the p/V ratio is calculated for each event, the first p/V model investigated aims to correct individual flood events from180

MDF series. All events that contain maximum instantaneous monthly peaks are identified. For these events, the daily MDFevent

and instantaneous IPFevent peaks as well as the p/Vevent are computed. Then, a linear model of the following form is fitted:

IPFevent =
MDFevent

a+ b1 · p\Vevent + b2 ·CD1 + ...+ bn+1 ·CDn
, (4)

where CD denotes additional catchment and climate descriptors that may be included in the models, and a and b are the

parameters of the linear model fitted by the calibration procedure. The fitting of the model parameters is performed on the185

calibration set (as indicated in Section 2) only for the period 1972-2012.

To assess the performance of the new methodology, we also employ here the slope method developed by Chen et al. (2017) as

a reference. The slope method estimates an instantaneous event peak flow IPFevent based on the slopes of the daily peak Qpeak
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to its preceding Qpre and following daily flows Qsuc as shown in Eq. 5:

IPFevent =Qpeak +
(Qpeak −Qpre) · (Qpeak −Qsuc)

2 ·Qpeak −Qpre −Qsuc
, (5)190

Both of these estimation methods need information from the MDF hydrograph selected for each flood event observed. Hence,

these methods can be applied in two ways: 1) IPFs are estimated for all separate events in the average daily flow (MDF) series,

even if these events have small daily peaks. Then, the flood frequency analysis is performed on the estimated event-based IPFs

(after selecting maximum events for each year or season). 2) IPFs are estimated for the maximum daily peak only. This means

that the event hydrograph corresponding to the annual or seasonal daily maximum is considered for the calculation of p/V195

in Eq. 4 or the peak discharges in Eq. 5. The obtained annual/seasonal maximum series is then used as a basis for the flood

frequency analysis. In both cases, statistics are derived from the estimated IPF series and compared to the observed IPF ones.

Procedure (1) is theoretically more accurate, since maxima in IPF and MDF do not necessarily occur at the same time (no

temporal overlap). More precisely, events with maximum instantaneous peaks can have rather small mean daily peaks in some

instances. Correcting only the maximum MDFs would lead to underestimation of the IPFs in these cases. On the other hand,200

Procedure (2) may prove more robust in cases where smaller events are not properly separated, i.e. their volumes are over- or

underestimated. These events would lead to unrealistic IPF estimates when using the p/V as a primary predictor. The larger

events containing the annual maximum MDF are expected to be more properly separated by the algorithm described above.

Alternatively to the event-based estimation, the proposed p/V model can also be applied directly to the MDF-derived statistics

with the aim of reproducing the IPF statistics. These involve the estimation of flood statistics, i.e. mean annual and seasonal205

maximum flows (MHQ), sample L-moments, estimated distribution parameters, and derived flood quantiles based on averaged

peak-volume ratios (p/Vmean). These average p/Vs are obtained from all annual/seasonal maximum MDF events at each site. As

described above, these maximum events are expected to be properly separated, and although the maximum MDF events may

not necessarily be identical to the maximum IPF events, their shape may hold important information about local processes. The

model set-up is analogous to the event correction approach:210

IPFstat =
MDFstat

a+ b1 · p\Vmean + b2 ·CD1 + ...+ bn+1 ·CDn
, (6)

where stat is the desired statistic being estimated, CD the selected catchment or climate descriptors, a and b the parameters of

the model as fitted to the calibration set, and p/Vmean the average p/Vevent for annual or seasonal series. The model is expected

to represent the average conditions that determine the average deviation of MDF from IPF estimates. The p/Vmean in itself is

expected to be a good predictor that reflects local conditions like spatial scale, climate, geology, and other external factors that215

control flow variability obtainable from daily flow records. The additional inclusion of catchment descriptors is tested case by

case and may contribute to the reproduction of the spatial variability of the target variable.

An overview of all the methods employed here together with their descriptions is given in Table 1. All methods consisting of

the linear models based on the p/V ratio as a main predictor (p/V methods) have been optimized based on the calibration set

only for the period 1972-2012. To select the best model, the coefficient of determination (R2) and the significance of model220

parameters (based on the p-value) are considered. For validation, all sites with their respective observed periods are used.
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Through the validation we compare and assess the ability of the proposed models to capture the mean maximum flow (MHQ)

and the probability distribution and respective design floods.

Table 1. Description of all the methods employed here for the computation of IPF series and their respective statistics.

Application Name Description

Reference MDF IPFs are taken directly without correction from average daily flows MDF

Event-based slope-events estimates IPF for all flood events derived from MDF according to Eq. 5

analysis p/V-events estimates IPF for all flood events derived from MDF according to Eq. 4

AMS-based slope-AMS estimates IPF as per Eq. 5 only for the flood events that correspond to annual/seasonal maxima from MDF series

analysis p/V-AMS estimates IPF as per Eq. 4 only for the flood events that correspond to annual/seasonal maxima from MDF series

Statistics-based p/V-Lmoms estimates IPF L-moments as per Eq. 6 based on L-moments derived from annual/seasonal maximum series of MDF data set

analysis p/V-params estimates IPF GEV parameters as per Eq. 6 based on GEV parameters derived from annual/seasonal maximum series of MDF data set

p/V-quants estimates IPF quantiles as per Eq. 6 based on quantiles derived from annual/seasonal maximum series of MDF data set

p/V-MHQ IPF mean annual maxima (MHQ) as per Eq. 6 based on average daily MHQ.

3.2.3 Analysis of the instantaneous peak flows

Since the IPF series are not continuous but rather one maximum per month (see Section 2), a direct comparison for each flood225

event is not possible. Instead, we focus here on the analysis of flood statistics. For this purpose, the general difference between

IPF statistics IPFstat and MDF-estimated flood statistics MDFstat are calculated as follows:

Error(%) =
MDFstat − IPFstat

IPFstat
· 100, (7)

where the error is computed at each site for any desired statistical quantity stat, like the mean annual maximum flow (MHQ),

L-moments (Hosking, 1990), distribution parameters, and flood quantiles.230

Apart from the error (%) at each site, two additional performance criteria are calculated over all sites: the normalized root

mean square error nRMSE as per Eq. 8 and the percent bias pBIAS as per Eq. 9:

nRMSE(%) = 100 ·

√
1
N ·

∑N
i=1 (MDFstati − IPFstati)

2

sdIPFstat

, (8)

pBIAS(%) =

∑N
i=1MDFstati − IPFstati∑N

i=1 IPFstati

, (9)235

where N is the number of validation sites, MDFstati and IPFstati are the respective statistics from MDF and IPF series, and

sdIPFstat is the standard deviation of IPF statistics over all considered sites. These criteria are computed for each of the methods

described in Table 1.
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3.3 Uncertainty Analysis

Since both the distribution fitting and the IPF estimation via p/V models are approximations and not fully accurate, we even-240

tually assess the overall level of uncertainty in the final IPF flood-quantile estimates. As will be shown later in Section 4.2,

the best correction approach is chosen to be the p/V-Lmoms - the model directly correcting the L-moments of the MDF series.

This is done using simple resampling with replacement procedures; resampling in time when selecting the maximum series for

FFA, resampling in space when selecting the sites for the p/V model (either for calibration or validation of the models), and

resampling in both space and time. In the first step, the series of annual/seasonal maxima from both MDF and IPF data sets are245

analogously resampled 1,000 times with replacement (temporal sample and parameter uncertainty). For each resampling, the

desired flood quantiles are estimated using L-moments. The range of these estimates provides the baseline level of uncertainty

due to sample and parameter uncertainty. The temporal sample uncertainty is calculated at each site for the original IPF and

MDF series (IPF-bs and MDF-bs, respectively) and are considered as a benchmark for comparison.

In the second step, p/V models are fitted to each pairing of temporally resampled IPF and MDF series while considering all sites250

in the study area that have more than 30 years of observations. This means that the temporal sample uncertainty is propagated

through the p/V model (p/V-full). To assess the uncertainty of the selected p/V model, another resampling is carried out, this

time shuffling the set of considered sites, where original MDF-Lmoments are resampled again 1,000 times with replacement

before fitting the p/V model (p/V-bs). Lastly, the total uncertainty in both space and time is assessed by combining the tempo-

ral sample and parameter uncertainty with the uncertainty of the fitted models: this means the maximum series are resampled255

1,000 times, and for each of these sets, the sites are resampled 1,000 times as well before fitting the p/V model. So, the total

uncertainty will be derived by 1,000 · 1,000 quantile estimates (p/V-bs-bs). Of course, the uncertainty ranges might change

slightly if more realizations are included. For method comparison in terms of their uncertainty range, the number of random

resampling will influence all methods similarly. On the other hand 1,000 realization are enough to investigate the dominant

sources of uncertainty. Finally to capture the overall uncertainty, previous conducted test showed that 1,000,000 realizations260

are enough to capture the overall trends of the uncertainty.

To assess the overall level of uncertainty, several indices are computed at each site. The first one is the relative width of the

95% confidence intervals (CI) calculated for all aforementioned resampling estimates of the desired flood quantile:

CI95%bs =
xbs;0.975 −xbs;0.025

xbs;0.5
, (10)

where xbs 0.025 and xbs 0.975 are the 2.5% and 97.5% quantiles and xbs 0.5 the median of the respective sample.265

The second one is the deviation of the IPF estimated samples from the IPF original sample, which allows the assessment of

error distributions:

errorbs =
xbs − IPFbs

IPFbs
· 100%, (11)

where IPFbs is the temporal resample of the IPF original data and xbs is the resample estimated from either the original MDF

series or the modelled IPF series. From the resulting error vector, a variety of statistics can be computed for comparison.270
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Finally, the agreement of the 95% confidence intervals of the MDF and p/V model samples with the IPF confidence bands are

determined as the percentage overlap at each site:

overlap=
min(Xbs 0.975, IPFbs 0.975)−max(Xbs 0.025, IPFbs 0.025)

max(Xbs 0.975, IPFbs 0.975)−min(Xbs 0.025, IPFbs 0.025)
· 100%, (12)

where IPFbs is the temporal resample of the IPF original data and xbs is the resample estimated from either the original MDF

series or the modelled IPF series.275

4 Results

4.1 Mean Maximum Flow (MHQ)

4.1.1 Comparison of mean daily (MDF) and instantaneous peak (IPF) flows

Figure 3 demonstrates the error in the mean annual maximum flow (MHQ) estimated by MDF instead of IPF series (as per

Eq. 7) in relation to the catchment size and the geographic location. It is clear that the larger the area, the smaller the deviation280

between MDF and IPF. In these cases, the MDF are good representations of the IPF peaks. Moreover, MHQ errors shown in

Figure 3 appear to be especially large at higher altitudes. This is as indeed expected, as mountainous catchments have a fast

response time and are generally more heavily influenced by the meteorological forcing (by snowmelt processes or convective

events). Overall, the MHQ error in our catchments seems to increase in the North-South direction, which could be a secondary

effect of both increasing altitude and decreasing catchment size.285

When assessing the differences between mean daily and instantaneous peaks, it is also meaningful to take a closer look at

different types of floods. For our German sites, the two most opposite types are a) flood events induced by short intense rainfall,

especially convective events dominant mainly in summer (May-October), and b) extended flood events with significant volume,

as caused by snowmelt and/or stratiform rain occurring mainly in winter (November-April). Presumably, the latter flood type

is much better represented by mean daily flow than the former. In order to roughly distinguish between the two types, the flow290

records are divided into summer (May - October) and winter (November - April) half years. Due to the limited data availability,

a clear distinction between convective, stratiform, and snowmelt events cannot be achieved here. Some snowmelt events in the

high alpine catchments may still occur in May/June but are classified as summer events. However, the coarse division of the

data into half years rather than seasons is due to the subsequent analysis of seasonal flood statistics and application of the mixed

seasonal model. In the upper row of Figure 4 (a-c), the MHQ error is shown for the entire year and also for summer and winter295

seasons. The relationship to the catchment area is still clearly visible in all three cases. Also, the effect of the elevation becomes

obvious, as sites at the lowest elevations (yellow points, below 100 m) show very small errors, even for small catchment sizes

down to approximately 100 km2. This is the clearest stratification in the error due to elevation; the errors at higher altitudes

appear less distinguishable.

There is, however, a clear distinction between summer and winter seasons. As expected, the MHQ error is smaller overall in300

the winter months, where snowmelt and stratiform events prevail, while the convective events in summer are poorly captured
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Figure 3. Spatial distribution of the mean annual maximum flow (MHQ) error (%) between mean daily (MDF) and instantaneous peak (IPF)

flows obtained from all sites (calculated as per Eq. 7).

by MDF. The error in the annual peaks is a mixture of the two seasons; which season contributes more to the annual peaks

depends on the individual flood regimes. When looking at the IPF data, at 68.8% of the considered sites the winter floods

exceed on average their summer counterparts, while 29.2% of sites are dominated by summer floods. When considering MDF

instead, only 22.1% of the sites are identified as having maximum peaks in summer. This indicates that the mean daily flow305

significantly smooths the summer peaks to a point where they are no longer relevant for the overall flood behavior. Figure 4

(d) shows the percentage of annual maxima at each site that are attributed to the wrong season when using MDF. Each site is

represented by two dots: negative values show the percentage of all annual maxima that are falsely attributed to summer, while

positive values show the falsely attributed winter peaks. It is obvious that with decreasing catchment size an increasing number

of annual maxima are falsely identified in the winter half of the year, while the actual instantaneous maxima occur in summer.310

Another general issue highlighted by this analysis, independent of seasonality, is that the peaks of both IPF and MDF data

sets do not necessarily occur on the same day (there is no temporal overlap). In their study, Chen et al. (2017) illustrated that

only for 82% of the events investigated did the peaks of both IPF and MDF series occur on the same day. This suggests that

instantaneous maxima are not always identifiable in the mean daily flows, i.e. the maxima obtained from the daily series are

inevitably found in other places. The temporal overlap of IPF- and MDF-derived peaks for our catchments is shown in 4 (e).315
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Figure 4. Upper row - error (%) in the mean maximum flow (MHQ) (as per Eq. 7) obtained in relation to catchment size and gauge elevation

for the entire year (a), summer (b), and winter (c); lower row - percentage of peaks falsely attributed by mean daily flows (MDF) to the winter

or summer half year (d) and percentage of peaks in mean daily (MDF) and instantaneous (IPF) flows that overlap in time (within a 5-day

buffer (e). Results are illustrated for all sites.
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In general, the smaller the catchment, the smaller the temporal overlap between instantaneous and daily peaks. This problem

needs to be kept in mind when attempting to estimate instantaneous peaks from daily peaks, since the two may belong to

significantly different events (different genesis) and thus to different populations.

4.1.2 Estimation of mean maximum flow (MHQ)

So far, the error in the mean maximum flow (MHQ) between MDF and IPF is shown to be influenced by both catchment320

area and gauge elevation. Both of these predictors may be helpful in correcting MDF for a better agreement with the IPF

data. Moreover, there seems to be a significant linear dependence between the peak ratios MDF/IPF, the p/V ratio, and the

logarithm of the catchment size. We first test the suitability of various predictors to predict MHQ from IPF by fitting the p/V

models to the individual events of MDF (p/V-events), or to the MDF maximum series (p/V-AMS) or, lastly, directly to the

MDF mean maximum flow (p/V-MHQ). Various model combinations with the available predictors (catchment area, elevation,325

and p/V ratio) are tested using the calibration data set, and their respective coefficients of determination are shown in Table

2. The selected models are marked in bold in Table 2 and their respective full-model formulas are given in Table 3. For most

models, the majority of variance in the IPF-MDF relationship is explained by the p/V ratio and the catchment area. For winter,

including gauge elevation appeared to improve the model slightly.

Table 2. Coefficients of determination for various model combinations (see Table 1 for description of models). Values are obtained by fitting

the models only to the calibration set. Bold numbers indicate the best p/V model for each application and asterisks indicate at least one

non-significant predictor in the p/V models.

Applications Event-based (p/V-events) Maximum-based (p/V-AMS) MHQ-based (p/V-MHQ)

Predictors Year Summer Winter Year Summer Winter Year Summer Winter

Area 0.14 0.19 0.12 0.30 0.26 0.25 0.42 0.42 0.38

Elevation 0.01 0.01 0.01 0.04 0.01 0.03 0.06 0.02 0.08

p\V 0.13 0.13 0.09 0.21 0.21 0.20 0.55 0.49 0.49

p\V + Area 0.23 0.26 0.17 0.39 0.36 0.35 0.66 0.65 0.63

p\V+ Area 0.14 0.13 0.10 0.23 0.22 0.23 0.56* 0.51 0.56

p\V + Area + Elevation 0.23 0.26 0.17 0.40 0.36* 0.36 0.67* 0.65* 0.68

The models show a similar performance for the annual and summer peak ratios in both the correction of individual events330

(p/V-events) and the mean maximum flow (p/V-MHQ). For winter, the model performance seems to differ, especially when

correcting the individual events (p/V-events). It appears that the models using the p/V have more difficulty estimating the winter

peak ratio. This could be due to improper event separation, which will be discussed in more detail below and leads to unrealistic

p/V ratios. The fact that elevation is a significant predictor in the MHQ model (p/V-MHQ) may also suggest that the peak ratios

in winter are more heterogeneous.335

Figure 5 shows the change in mean absolute error in the annual MHQ after correction with the different methods in relation
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Table 3. Best p/V models (as shown in bold in Table 2) fitted to the calibration set for correction of individual events (p/V-events), annu-

al/seasonal maxima (p/V-AMS), and the MHQ (p/V-MHQ).

Type Model

Events Year MDF / (0.59 - 0.43 · p/Vevent + 0.047 · log(area))

(p/V-events) Summer MDF / (0.44 - 0.36 · p/Vevent + 0.063 · log(area))

Winter MDF / (0.63 - 0.35 · p/Vevent + 0.044 · log(area))

Maxima Year MAXMDF / (0.53 - 0.42 · p/Vmax + 0.057 · log(area))

(p/V-AMS) Summer MAXMDF / (0.61 - 0.73 · p/Vmax + 0.061 · log(area))

Winter MAXMDF / (0.70 - 0.68 · p/Vmax + 0.054 · log(area))

MHQ Year MHQMDF / (0.74 - 0.94 · p/Vmean + 0.043 · log(area))

(p/V-MHQ) Summer MHQMDF / (0.83 - 1.19 · p/Vmean + 0.054 · log(area))

Winter MHQMDF / (0.99 - 1.31 · p/Vmean + 0.035 · log(area) - 0.00012 · elevation)

to catchment size and elevation: positive values indicate that the error has increased after correction, while negative values

indicate that the error has decreased after correction. The slope method (5-a) applied to the individual events (slope-events)

yields a rather constant reduction of the error independent of catchment size. However, there are several outliers produced by

this method, which can be attributed to improper separation of smaller events. Applying the slope method only to the annual340

maximum MDF events (slope-AMS), as done in Figure 5 (b), shows a much smoother and more constant error reduction. The

corrections using the p/V models proposed here (Figure 5 (c-e)) yield a much larger improvement for the smaller catchments

(where the original MDF error was generally larger than in the bigger catchments). Nevertheless, these corrections simultane-

ously lead to an increase of the error in several cases. This deterioration appears to affect the sites that were highlighted before

in Section 4.1.1, namely those with the lowest elevations in the data set where the original MDF error was quite low.345

The differences between correcting the individual events (p/V-events) and the annual maxima (p/V-AMS) (as illustrated respec-

tively in Figure 5 (c-d)) by means of the p/V models appear rather small. This suggests that even though the annual maximum

from the MDF in many cases does not occur at the same time as the annual maximum from the IPF, the method still yields

an appropriate estimate of the true IPF. On the other hand, directly correcting the MHQ (p/V-MHQ in Figure 5 (e)) results in

slightly lower error reduction for the smaller catchments but also appears to produce fewer outliers and is thus considered more350

robust.

It should be noted that working with large data sets and automatic event separation without manual post-correction leads to

problems that could potentially be avoided when considering individual time series more carefully. Several events are identified

as too long or too short (or not at all), so their volumes are over- or understated, respectively. This results in false p/V ratios

and in some cases to severe over- or underestimation of the peaks. The weight of such events is assumed to be significantly355

lower when correcting flood statistics based on average p/V ratios. In addition, the overall performance can only be assessed for

events that contain the monthly instantaneous maximum flow, i.e. primarily larger events. How the event correction performs

for minor events cannot be analysed here.
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Figure 5. Error reduction (negative values) vs error increase (positive values) in the mean maximum flow (MHQ) for different IPF estimation

methods when compared to MDF. For an overview of the methods, the reader is directed to Table 1. Values are obtained by applying the

selected methods to the validation set.

Figure 6 summarizes the overall model performances to estimate the IPF mean annual/seasonal maximum flow (MHQ) at all

validation sites and compares the individual methods to the error using MDF directly. It is obvious that all methods give signif-360

icantly better IPF estimates than the MDF alone. The slope correction methods (both slope-events and slope-AMS) have quite

a large bias (median error around -10%), which is, as seen above, not only disadvantageous. Still, the overall error is smaller

for the p/V models (p/V-events, p/V-AMS, and p/V-MHQ), where the median error is at 0-2%, with fewer positive outliers

produced by the p/V-MHQ approach.

Table 4 summarizes the normalized root mean square error (nRMSE (%)) and the percentage bias (pBIAS (%)) of the mean365

annual/seasonal maximum flow (MHQ) estimated via the different model variants. In terms of nRMSE, the performances of the

slope and p/V methods are comparable, with the slope methods being more biased. There are a number of outliers produced by

the p/V methods, especially positive ones, that affect the overall nRMSE. As seen in Figure 5, this is primarily concerning the

low elevation catchments below 100 m. The values in parentheses in Table 4 indicate the performance criteria for gauges with

catchment areas under 500 km2. Here, the advantage of the p/V approaches over the slope methods become apparent, even370

though a large number of low elevation catchments fall into this category, which negatively affects the overall error.
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Figure 6. Error (%) comparison of different methods to estimate the mean maximum annual flow (MHQ) for the entire year (a), summer

(b), and winter (c). Values are obtained by applying the selected methods to the validation set. For an overview of the methods, the reader is

directed to Table 1.

Table 4. Normalized root mean square error (nRMSE (%)) and percentage bias (pBIAS (%)) of estimated vs. observed instantaneous annu-

al/seasonal mean maximum flow (MHQ) over all validation sites for different methods. The values in parentheses show the performances for

catchment sizes under 500 km2.

Year Summer Winter

nRMSE[%] nBIAS[%] nRMSE[%] pBIAS[%] nRMSE[%] nBIAS[%]

MDF 17.0 (47.9) -18.0 (-32.4) 18.1 (49.0) -20.6 (-38.1) 14.9 (44.1) -16.4 (-28.7)

Slope-events 8.4 (25.0) -6.8 (-15.8) 7.9 (29.0) -9.2 (-21.8) 9.2 (21.3) -6.5 (-13.0)

Slope-AMS 7.4 (31.2) -8.1 (-19.3) 8.4 (33.6) -10.5 (-25.0) 7.2 (28.0) -7.4 (-16.1)

p/V-events 9.3 (16.7) -2.8 (-1.0) 8.4 (16.6) -2.6 (-0.5) 10.6 (17.6) -5.1 (-4.1)

p/V-AMS 10.7 (20.4) -5.4 (-2.9) 11.0 (19.7) -5.4 (-3.7) 9.4 (21.4) -4.7 (-2.9)

p/V-MHQ 7.7 (19.0) -3.9 (-2.3) 12.5 (20.6) -6.8 (-5.0) 8.5 (20.8) -3.8 (-1.7)

Table 5 shows the average error between the annual MHQ predicted by the p/V-MHQ model with the observed instantaneous

annual MHQ, distributed for different catchment sizes and elevations. It becomes obvious that for the lowest elevations, the

instantaneous annual MHQ is overestimated, especially for smaller catchment sizes. Catchments in the range of 100 to 200 m

altitude also show quite large errors, but these are mostly negative. It is also apparent that the catchments with outlets at higher375

elevations exhibit large negative errors in most cases.
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Table 5. Average prediction error (%) of the p/V-MHQ model for the annual MHQ calculated over the validation sites and shown here for

different ranges of area and elevation. Red shades indicate overestimation, blue shades underestimation.
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Elevation [m a.s.l]

<100 <200 <300 <400 <500 <600 <700 <800 <900 <1,200

<50 9.35 -10.77 -8.86 -6.77 1.17 -6.35 0.64 -3.14 -0.31 -15.33

<100 18.59 -16.98 -9.75 1.97 4.21 0.37 1.83 -1.05 -2.74 -19.45

<200 13.79 -10.41 1.04 1.45 8.70 -3.61 3.27 5.48 -9.16 4.96

<500 11.43 -6.57 -0.01 4.19 5.58 3.62 -4.05 -3.93 -21.83 -

<1,000 8.12 -5.31 3.80 0.86 3.22 -4.66 3.53 - - -

<2,000 5.05 -1.94 -4.45 5.29 -1.66 -3.97 -3.68 -5.91 6.42 -13.63

<5,000 -0.61 -6.75 -1.96 -1.15 -2.73 -3.53 - - - -

<10,000 -3.47 -6.38 -0.70 -4.96 -6.50 - - - - -

<30,000 -7.48 -8.37 -5.25 -5.84 - - - - - -

4.2 Probability distributions and derived design flows

So far, the proposed p/V models have been analysed in terms of their ability to better estimate the mean maximum flow (MHQ)

from MDF data. In this sub-section, the focus is shifted to the ability of the methods to estimate the parameter distribution

of the IPF and the derived flood quantiles. The GEV distribution appears to be a generally suitable distribution for the sites380

in the data set. A Cramer-von-Mises test is carried out for the original IPF and MDF samples, as well as for the slope and

p/V-corrected samples at each site, and certified to be a good fit in all cases (p-value= 5%).

4.2.1 Comparing mean daily (MDF) with instantaneous peak (IPF) flow distributions

A comparison between the estimated parameters for the IPF and MDF samples for the year and the seasons are shown in Figure

7. As expected, the location parameters are consistently underestimated by the MDF series, with the largest errors in summer.385

This naturally leads to an overall downward shift of the “true” distribution when estimated from MDF values. The scales, here

normalized by the location, appear to be primarily overestimated in summer, leading to distributions that are steeper for MDF

than for IPF samples. For the year and winter, the errors in the scale parameters appear to be balanced in their directions. The

shape parameters differ quite substantially between the seasons. In summer, the vast majority of estimated parameter values are

negative, both in IPF and MDF. This indicates a heavy tail behavior for the summer floods. The fact that these negative values390

are in many cases smaller in the MDF than in the IPF sample suggests that the tails are overstated in the former case. For the

year and winter season, again, no clear trend is visible. The distribution parameters of the low-elevation gauges appear to be

very well estimated by the MDF. For the higher elevations, especially the estimation of the shape parameters seems difficult.

For the whole year, the IPF shape is underestimated at a lot of gauges, while it is primarily overestimated in winter. Overall,

due to the underestimation of the location parameter, underestimation of both lower and higher flood quantiles by the MDF395
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sample is expected.

Figure 7. Estimated Generalized Extreme Value (GEV) parameters from the instantaneous peaks (IPF) vs. mean daily (MDF) annual/seasonal

maximum series. Here, only validation sites with observations longer than 30 years are shown.

Generally, the heavy tails of the summer distributions in contrast to the flatter tails in winter let the summer floods become

dominant at higher quantiles. For a return period of 100 years, the summer floods exceed the winter peaks at 61.9% of the sites.

For 50 and 10 years, this exceedance occurs at 51.2% and 35.7% of sites, respectively. This behavior is also noticeable in the

MDF but for fewer gauges, namely 53.4%, 43.2%, and 21.0% for 100-, 50-, and 10-year return periods.400

4.2.2 Estimation of instantaneous peak flow (IPF) distributions and quantiles

Three approaches were tested to estimate IPF flood quantiles based on MDF statistics: a) correcting the sample L-moments

required for parameter estimation (p/V-Lmoms), b) correcting the parameters of the fitted distribution (p/V-params), and c)
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directly correcting the desired flood quantiles (p/V-quants). Method (a) is convenient, since a single model for each L-moment

facilitates a correction of the complete distribution and hence each desired flood quantile. Estimating the L-moments has the405

additional advantage of not being restricted to a certain type of probability distribution. A proper distribution can be selected

and fitted locally using the corrected L-moments. Still, the other methods may prove more robust and are hence tested as

well. The final models for each target variable are selected according to the procedure for the MHQ (see Table 2), using the

calibration data set. For reasons of conciseness, only the final models are presented in Table 6.

Table 6. p/V models fitted to the calibration data set for correction of L-moments (p/V-Lmoms), GEV parameters (p/V-params), and flood

quantiles (p/V-quants) derived from the mean daily flow (MDF) annual or seasonal maximum series. For an overview of the methods, the

reader is directed to Table 1.

Type Model R2

L-moments L1 Year L1MDF / (0.74 - 0.94 · p/Vmean + 0.043 · log(area)) 0.66

(p/V-Lmoms) Summer L1MDF / (0.83 - 1.19 · p/Vmean + 0.054 · log(area)) 0.65

Winter L1MDF / (0.99 - 1.31 · p/Vmean + 0.036 · log(area))- 0.00012 · elevation 0.67

L2 Year L2MDF / (0.64 - 0.65 · p/Vmean + 0.048 · log(area)) 0.66

Summer L2MDF / (0.71 - 0.86 · p/Vmean + 0.062 · log(area)) 0.65

Winter L2MDF / (0.89 - 1.09 · p/Vmean + 0.043 · log(area))- 0.00016 · elevation 0.53

GEV ξ Year ξMDF / (0.77 - 1.02 · p/Vmean + 0.042 · log(area)) 0.67

parameters Summer ξMDF / (0.89 - 1.39 · p/Vmean + 0.052 · log(area)) 0.64

(p/V-params) Winter ξMDF / (0.96 - 1.36 · p/Vmean + 0.037 · log(area)) 0.63

α Year αMDF / (0.67 - 0.77 · p/Vmean + 0.048 · log(area)) 0.45

Summer αMDF / (0.78 - 1.14 · p/Vmean + 0.064 · log(area)) 0.42

Winter αMDF / (0.97 - 1.24 · p/Vmean + 0.037 · log(area) - 0.00015 · elevation) 0.56

Flood HQ10 Year HQ10MDF / (0.72 - 0.87 · p/Vmean + 0.043 · log(area)) 0.61

qunatiles Summer HQ10MDF / (0.79 - 1.09 · p/Vmean + 0.058 · log(area)) 0.60

(p/V-quants) Winter HQ10MDF / (0.96 - 1.23 · p/Vmean + 0.038 · log(area) - 0.00014 · elevation) 0.63

HQ50 Year HQ50MDF / (0.70 - 0.75 · p/Vmean + 0.044 · log(area)) 0.52

Summer HQ50MDF / (0.73 - 0.83 · p/Vmean + 0.057 · log(area)) 0.53

Winter HQ50MDF / (0.89 - 1.09 · p/Vmean + 0.043· log(area) -0.00016 · elevation) 0.54

HQ100 Year HQ100MDF / (0.69 - 0.70 · p/Vmean + 0.044 · log(area)) 0.46

Summer HQ100MDF / (0.70 - 0.71 · p/Vmean + 0.057 · log(area)) 0.46

Winter HQ100MDF / (0.87 - 1.03 · p/Vmean + 0.0044· log(area) -0.00017 · elevation) 0.49

For further comparisons, distributions were also fitted to the annual and seasonal maxima that were previously corrected using410

the slope (slope-events) and p/V methods for events (p/V-events). Since the shape parameter is generally difficult to estimate,

especially for such a short time period, and the models’ estimates are generally close to the observed MDF shape parameter, it
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will not be estimated using the model variants. Instead, the MDF shape parameter estimate will be used in all instances. Figure

8 shows the errors (%) in GEV-parameter estimates for the different approaches in comparison to the original uncorrected MDF

error (%) computed over the 486 validation sites with a minimum of 30 years of observations. Since the p/V-quants method415

directly corrects the MDF quantiles, it cannot be used to estimate the GEV parameters and hence is not illustrated in Figure

8. All methods shown clearly improve the estimation for the location and scale parameters when compared to the original

MDF estimates. The corrections based on the p/V models proposed here (p/V-events, p/V-Lmoms, and p/V-params) are less

biased than the slope method (slope-events) proposed by Chen et al. (2017). Particularly the correction of the MDF sample

L-moments (p/V-Lmoms) shows the smallest error and bias.

Figure 8. Error (%) comparison of various IPF-estimation methods (see Table 1 for an explanation of the methods) regarding their ability to

estimate Generalized Extreme Value (GEV) distribution parameters based on annual or seasonal maximum series. Only validation sites with

more than 30 years of observations are used for the boxplots.

420

Figure 9 demonstrates the quality of the different correction approaches for the 10-, 50-, and 100-year floods at the 486

validation sites. With increasing return periods, the performance of all correction methods appears to decline. Differences in

the tails of the fitted distributions are more difficult to capture by the analysed approaches. This turns out to be especially valid

for the low-altitude catchments. The over-correction that was observed for the mean is even more pronounced here, which

leads to an average decline in model performance. Also, the general uncertainty in parameter estimation and extrapolation far425
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beyond the time series length needs to be kept in mind. Overall, even the estimation of the “true” IPF quantiles is potentially

defective in itself, as will be discussed in the next section.

Figure 9. Error (%) comparison of various IPF-estimation methods (see Table 1 for an explanation of the methods) regarding their ability to

estimate different flood quantiles based on annual maximum series. Only validation sites with more than 30 years of observations are used

for the boxplots.

Since the average p/V ratio is used for the direct correction of L-moments, parameters, and flood quantiles, it is expected for

the performance to decrease with increasing return periods, as the p/Vmean may not relate much to the higher quantiles. Still,

even for the 100-year flood, these approaches appear to work just as well as the p/V-events approach, as also indicated by the430

performance criteria (nRMSE (%) and pBIAS (%)) given in Table 7. The performance of all three methods is comparable, but

due to its previously mentioned advantages, the L-moment method (p/V-Lmoms) is considered the superior approach in this

setting. Among the event correction techniques, the slope method performs similarly to the p/V method in terms of overall

error but is again more biased. When focusing on the catchments with areas under 500 km2, the superiority of the p/V methods

becomes apparent.435

The distribution of the prediction error for the correction of L-moments (p/V-Lmoms) over the different catchment areas

and elevations can be found in Table 8. The errors are exemplarily shown for the 100-year flood. The error distribution is

comparable to the MHQ shown in Table 5. Again, especially the overestimation for the lowest elevations is striking, as well as

the significant underestimation at higher altitudes.

440

Finally, the model performance of the mixed models, combining summer and winter floods, is analysed for different flood

quantiles. Their behavior is generally comparable to the annual maximum series approach, as shown in Figure 10. Even though

the quantiles obtained with the mixed models may be more extreme and more parameters may need to be estimated and

corrected, there is no indication that the IPF correction will not function in this case. The nRMSE (%) and pBIAS (%) values
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Table 7. Performance of different IPF estimation methods in terms of normalized root mean square error (nRMSE (%)) and percent bias

(pBIAS (%)) for different flood quantiles estimated from annual maximum series. The performance is computed over validation sites with

more than 30 years of observations, while the values in parentheses show the performance for catchment sizes under 500 km2. For a descrip-

tion of the methods shown here, see Table 1.

T = 10 years T = 50 years T = 100 years

nRMSE[%] pBIAS[%] nRMSE[%] pBIAS[%] nRMSE[%] pBIAS[%]

MDF 17.8 (50.0) -18.0 (-32.9) 17.8 (48.1) -18.2 (-32.3) 17.9 (47.5) -18.3 (-39.1)

Slope-events 7.0 (30.3) -5.8 (-17.5) 8.7 (27.7) -4.7 (-15.8) 10.3 (27.8) -4.2 (-15.2)

p/V-events 7.7 (20.1) -2.1 (-1.3) 8.5 (19.1) -0.8 (0.8) 9.8 (21.1) - 0.3(1.8)

p/V-Lmoms 8.2 (21.1) -4.0 (-3.3) 8.7 (21.1) -3.8 (-2.8) 9.3 (22.8) -3.7 (-2.6)

p/V-params 8.1 (20.6) -3.6 (-2.3) 8.5 (20.7) -3.3 (-1.6) 9.1 (22.5) -3.1(-1.2)

p/V-quants 7.8 (20.9) -3.6 (-3.1) 8.6 (21.4) -4.0 (-3.9) 9.3 (23.2) -4.3(-4.4)

Table 8. Average prediction error (%) of the p/V-Lmoms model for the 100-year flood (HQ100) calculated over the validation sites and

shown here for different ranges of catchment area and gauge elevation. Red shades indicate overestimation, blue shades underestimation.
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Elevation [m a.s.l]

<100 <200 <300 <400 <500 <600 <700 <800 <900 <1,200

<50 18.37 -34.61 -14.45 -12.68 2.66 -2.17 17.33 -6.80 -13.73 -15.58

<100 24.81 -7.61 -8.01 6.46 4.91 0.72 3.98 5.26 7.49 -33.61

<200 30.72 -9.97 -1.26 0.57 4.38 -4.76 3.33 5.37 -5.10 -

<500 16.30 2.68 -1.65 2.56 4.34 8.03 5.78 2.56 -20.01 -

<1,000 7.95 1.56 -2.25 -1.93 6.88 3.36 3.43 - - -

<2,000 5.47 -8.43 -12.11 -2.63 -3.31 1.26 -6.80 1.19 16.97 -1.23

<5,000 -0.50 -7.33 -7.80 -3.66 -0.53 5.03 - - - -

<10,000 -6.63 -9.86 -6.86 -4.07 -7.26 - - - - -

<30,000 -6.40 -17.31 -5.02 -0.92 - - - - - -

for the mixed models are shown in Table 9. According to these values, the event-correction methods appear to perform best445

overall. For the smaller catchments (< 500 km2), the p/V methods outperform the slope method.

4.3 Uncertainty Analysis

The results of the resampling procedure used to assess uncertainty in the IPF estimates are exemplarily shown in Figure 11

for the 100-year flood (HQ100) at a single site with a reduced number of 100 realizations. In panel (a), the IPF and MDF

estimates for each temporal resampling of the annual maximum series are plotted against each other (IPF-bs and MDF-bs,450
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Figure 10. Error (%) comparison of various IPF-estimation methods (see Table 1 for an explanation of the methods) regarding their ability

to estimate different flood quantiles based on a mixed model of seasonal maximum series. Only validation sites with more than 30 years of

observations are used for the boxplots.

Table 9. Performance of different IPF estimation methods in terms of normalized root mean square error (nRMSE (%)) and percent bias

(pBIAS (%)) for different flood quantiles estimated from mixed models of seasonal maximum series. The performance is computed over

validation sites with more than 30 years of observations, while the values in parentheses show the performance for catchment sizes under

500 km2. For a description of the methods shown here, see Table 1.

T = 10 years T = 50 years T = 100 years

nRMSE[%] pBIAS[%] nRMSE[%] pBIAS[%] nRMSE[%] PBIAS[%]

MDF 17.7 (50.2) -17.9 (-32.9) 17.5 (48.3) -18.0 (-32.3) 17.6 (48.0) -18.1 (-32.1)

Slope-events 8.1 (31.7) -6.3 (-18.6) 9.6 (28.6) -4.7 (-16.6) 10.6 (28.5) -4.1 (-15.9)

p/V-events 8.1 (21.2) -2.5 (-2.7) 8.5 (20.8) -0.3 (1.2) 9.1 (23.3) 0.7 (3.1)

p/V-Lmoms 12.3 (23.0) -5.7 (-3.9) 12.7 (22.1) -5.8 (-3.0) 13.0 (22.9) -5.8 (-2.6)

p/V-params 12.5 (23.5) -6.2 (-4.7) 13.4 (23.8) -7.3 (-5.7) 14.0 (25.3) -7.9 (-6.6)

respectively). This shows the bandwidths of both the IPF and MDF estimates as a result of sample and parameter uncertainty.

Figure 11 (b) shows the resampled IPF flood quantiles (IPF-bs) vs. the quantiles estimated using the p/V-Lmoms model by

considering different sources of uncertainty; p/V-bs illustrates the uncertainty only due to the fitting of the p/V-Lmoms model,

p/V-full indicates the sample and parameter uncertainty (MDF-bs) propagated through the p/V-Lmoms model, and p/V-bs-bs

combines the sample and parameter uncertainty (MDF-bs) with the p/V-Lmoms model uncertainty (p/V-bs) to tackle the total455

uncertainty. In this example, it becomes obvious that uncertainty from the p/V model (p/V-bs) is significantly smaller than the

sample and parameter uncertainty (MDF-bs or even IPF-bs). This is valid for the majority of sites and is hardly affected by the

number of realizations.
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Figure 11. Example of uncertainty ranges with 100 realizations at a single site: (a) HQ100 from IFP-bs vs. MDF-bs illustrating the sample

and parameter uncertainty, (b) HQ100 from IPFbs vs. estimated IPF where p/V-bs illustrates the p/V-Lmoms model uncertainty (shown as

dark blue points); p/V-full illustrates the propagation of sample and parameter uncertainty through the p/V-Lmoms model, and the p/V-bs-bs

illustrates the total uncertainty that combines both sample and parameter uncertainty with the p/V-Lmoms model uncertainty.

Figure 12 shows the relative widths of the 95% confidence intervals for all types of uncertainty estimated. The average widths

of the IPF-bs, MDF-bs, and p/V-full seem to be similar to each other, where the IPF sample and parameter uncertainty shows460

greater variability. The width of the average range of the p/V-Lmoms model uncertainty (p/V-bs) is very small at all sites and

therefore contributes little to the overall level of uncertainty (p/V-bs-bs). Thus, the overall uncertainty of the p/V-Lmoms model

is mainly influenced by the sample and parameter uncertainty of the original MDF series.

In order to assess the full range of the errors in the p/V-Lmoms model estimates, they are compared to the range of errors

in the MDF estimates. Here, the errors for the uncertainty both in MDF (MDF-bs) and p/V-Lmoms (p/V-bs-bs) estimates465

are computed according to Eq. 11. Figure 13 shows the median deviations of the MDF-bs and p/V-bs-bs quantiles from the

respective IPF-bs quantiles, as well as the lower and upper limits of the 95% confidence intervals of the errors for the 10-, 50-

and 100-year flood quantiles. The median errors from p/V-bs-bs are very similar over the three quantiles, but the higher quantile

HQ100 exhibits higher outliers. This is in agreement with the performance of the p/V-Lmoms model illustrated in Figure 9. This

means that the median errors obtained over the 1,000,000 realizations are very similar to the actual model errors at each site.470

Moreover, it is obvious that the overall uncertainty gets larger with increasing return periods, as can be seen by the increasing

distance between lower and upper confidence limits. The p/V-Lmoms estimates appear to be slightly positively skewed, which

is especially noticeable in the 95% confidence interval for the HQ100. At many sites, there is a significant overestimation of the

true IPF quantile when combining sample and parameter uncertainty with p/V-Lmoms model uncertainty. The MDF estimates,

on the other hand, exhibit the expected persistent underestimation.475

Figure 14 summarizes the general overlap of the confidence intervals of MDF and estimated IPF with the confidence intervals

of the observed IPF for the three flood quantiles (as per Eq. 12). It becomes obvious that the agreement between IPF and
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Figure 12. Relative widths of the 95% confidence interval (as per Eq. 10) of various uncertainty types for different flood quantiles, where

IPF-bs and MDF-bs show the sample and parameter uncertainty of the original series, p/V-full shows the sample and parameter uncertainty

propagated through the p/V-Lmoms model, p/V-bs shows only the uncertainty of the p/V-Lmoms model, and p/V-bs-bs shows the total

uncertainty that combines both sample and parameter uncertainty with the p/V-Lmoms model uncertainty. The boxplots here are obtained

for validation sites with more than 30 years of observations.

Figure 13. Error distribution obtained as per Eq. 11 for three flood quantiles (left) from considering the sample and parameter uncertainty of

the mean daily flow (MDF) series (MDF-bs) and (right) total uncertainty of the p/V-Lmoms model (p/V-bs-bs). Shown are the median errors,

as well as the lower and upper limits of the 95% confidence intervals obtained at the validation sites with more than 30 years of observations.

the p/V-Lmoms model estimates is significantly greater than with the MDF values. This observation suggests that with high

probability the p/V-Lmoms model estimates are in the range of the “true” IPF quantiles. The fact that overlaps in both the

MDF and the models increase with increasing return periods suggests again the overall level of uncertainty in the higher IPF480

quantiles due to sample and parameter uncertainty.
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Figure 14. Percentage overlap for the three flood quantiles as per Eq. 12 computed from the 95% confidence intervals of mean daily flow

(MDF) sample and parameter uncertainty (MDF-bs) and p/V-Lmoms total uncertainty (p/V-bs-bs). The boxplots are obtained by considering

validation sites with more than 30 years of observations.

5 Discussion

5.1 Factors affecting the correction of mean daily (MDF) to instantaneous peak flow (IPF) statistics

In theory, the relative deviation between MDF and IPF peaks depends greatly on catchment size, as shown, for instance, in

Fuller (1914) and Ellis and Gray (1966). The effect of the catchment size is clearly visible in our data set. The larger the485

area, the smaller the error between instantaneous peak and daily flows, and consequently, the respective computed statistics.

For catchments smaller than 1,000 km2, this error can reach down to -80%. Small catchments without appreciable buffering

capacity react quickly to even low rainfall, leading to short and steep flood waves that are hardly reproduced on coarsely

averaged time scales. Factors like steep slopes, impermeable underground, and short but intense rainfall contribute to the

flashiness of storm events and make these events less representable through daily flow records. For areas larger than 5,000490

km2, this error becomes very small (< -20%). This agrees well with the findings of Ellis and Gray (1966) and Chen et al.

(2017) which state that for basins larger than 10,000km2, the peak ratio between MDF and IPF series converges to 1. Larger

basins are typically characterized by high base flow and long response times which translates on a good representation of IPF

from the MDF.

Apart from catchment size, elevation can play also an important role as shown in Canuti and Moisello (1982). Mountainous495

catchments have a fast response time and are generally more heavily influenced by meteorological forcing, such as snowmelt

processes or convective events, as demonstrated by Gaál et al. (2015). Therefore, the error is expected to increase with high

elevation. In our case study, errors at high-altitude sites seem to be particularly significant (40% to 60% underestimation).

However, this could be a combined effect of small catchments, as mountainous basins are typically smaller in size. On the

other hand, sites with elevation lower than 100m a.s.l. exhibit smaller errors and are stratified according to catchment size. For500
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example, basins larger than 5,000 km2 show a lower error at an elevation of 100m compared to 300m a.s.l. The effect of the

elevation on the higher altitudes is less visible in our dataset. Apart from the error in the peak magnitude, a weak link is also

visible between high elevation and a smaller temporal overlap between the MDF and IPF peaks.

Different flood genesis, considered here by separating the data in two seasons (winter and summer), also exhibit different error

behavior. Overall, summer IPF statistics were up to 20% more underestimated than winter IPF statistics. This occurs mainly505

due to the presence of frequent convective events and moderate rainfall on snow – which enable faster catchment responses. As

the summer peaks are underestimated, consequently, when performing a typical annual maximum flow series, summer events

will be underrepresented, resulting in a non-representative fitted probability distribution. This is visible in catchments with

areas under 500km2, where up to 40% of annual peaks are falsely chosen from the winter season. Apart from not being able

to properly identify flood magnitudes when using mean daily flow, this is serious issue for the classification of flood regimes,510

identification of dominating flood types and application of heterogeneous flood frequency analyses when daily data are the

only available option.

Additionally, other factors such as the type and amount of precipitation, soil initial conditions and characteristics or slope and

land use, have been shown to influence the in-site variation between instantaneous peak and daily flows. Since their combined

effect generates a distinctive daily flow hydrograph, the peak-to-volume (p/V) ratio becomes an important predictor to describe515

the in-site and intra-site variation when correcting MDF events or statistics. The same principle holds as well for the slope-

method correction suggested by Chen et al. (2017). However, in contrast to the slope-method, the p/V ratio contains information

about the direct flood volume, which may describe the variability between events and catchments better. This is shown to be

the case, mainly for catchments under 500km2, where the proposed linear models based on the p/V ratio outperform the slope-

method. However, this can be attributed to the integration of the most important predictors (such as area, elevation or p/V ratio),520

or to the poor performance of the slope-methods for areas under 500km2 as discussed in Chen et al. (2017).

5.2 Range of applications and limitations

All the correction methods applied here, either on MDF peak flow events or MDF statistics, generated a better agreement with

IPF statistics than the statistics from the pure MDF series. The slope-methods exhibited overall a constant underestimation

around 10 to 20% of the IPF statistics. This agrees also with the results from Chen et al. (2017), where similar underestimation525

for catchments in Iowa, USA, was also observed. On the other hand, the p/V methods were less biased than the slope-method.

Although all the p/Vmodels proposed had similar performance, the L-moment method (p/V-Lmoms) is more preferable due

to its convenience. Correcting the MDF L-moments ensures not only a complete correction of the distribution, including both

low and high quantiles, but as well is not restricted to a type of probability distribution. The method of correcting the error

in MDF floods using the p/V ratio performs well and is easily applicable in our study area. However, its great simplification530

and mere approximation of physical flood-generating processes results in some problems and limitations that will be listed and

discussed here.

The first aspect that may influence the performance of the proposed IPF correction method is the event separation technique.

The chosen technique determines how flood events and thus the required hydrograph characteristics are defined. The choice of
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baseflow-separating algorithm can greatly affect the identification of start and end points of flood events. Strict independence535

criteria and thresholds for event recognition may lead to rejection of crucial flood events when considering daily time series.

Lax criteria, on the other hand, may create unnaturally long multi-peak events and false inclusion of small events, leading

to unrealistic hydrograph characteristics and IPF estimates. Thus, the additional step of refining multiple peak events, as

suggested by Tarasova et al. (2018), should be carried out when rainfall and snowmelt information is available. In their study,

the refinement led to a reduction of multi-peak events from more than 50% to 44.7% of all identified events. In this study, the540

ratio of multi-peak to single-peak events is 57.9% for the year, 58.2% for summer, and 58.4% for winter.

Using the p/Vevent in order to correct individual events and then using the corrected series for FFA in theory represents a more

sensible approach than using the p/Vmean from the annual MDF maxima. As mentioned above, maximum MDF events do not

necessarily coincide with maximum IPF events, which is why correcting all events first and then selecting the annual maxima

should yield a more appropriate IPF sample. But again, correcting individual events depends greatly on a very careful event545

separation, which could not be achieved in this case and led to some unrealistic IPF estimates. Nonetheless, if a proper event

separation is possible, the event correction method may have the greater potential. In such a case, a single model would be

sufficient to account for all aspects of IPF estimation, including high flood quantiles.

A problem for IPF correction, which has been exhaustively discussed above, has to do with the gauges that exhibit little

difference between MDF and IPF floods, even though their p/V ratio would suggest a much larger error. For our catchments,550

this applies to the lowest-altitude gauges in the data set. The MDFs at these sites are over-corrected and thus exhibit severe

overestimation of the true IPFs. We therefore discourage the application of the suggested correction methods at catchment

outlets situated below 100 m a.s.l..

This observation may also suggest that other factors need to be considered for proper error estimation or that the parameters of

the correction models need to be adjusted for different subsets of data. This is also relevant for the question of the universality555

of the proposed method. Our data set is limited and representative of a temperate humid climate and moderate altitude. Thus, a

qualitative sensitivity analysis was carried out on the full 648-site data set in order to identify patterns that could be extrapolated

to other regions. The subsets were selected by combinations of geographical location, catchment size, and gauge elevation. The

target variable was the mean annual maximum IPF. Differences in the individual models due to different degrees of freedom

are natural, which is why only the subsets that lead to significant deviations from the original model are mentioned here.560

Two sets of sites deviate noticeably from the original model. The first includes the low-altitude gauges discussed before. Here,

the overall error is so small that no correction yields better results than correction via the p/V approach. The second group

includes the catchments with areas under 50 km2. The errors for these sites appear very scattered and randomly distributed.

Comparing the p/V from the daily series with the p/V obtained from instantaneous events, it becomes obvious that the difference

increases with decreasing catchment size and becomes excessively large and random for catchment sizes under 100 km2. The565

correction using mean daily p/V only functions where unknown instantaneous flood dynamics are roughly approximated by

observed daily flow variability. The smaller the temporal scale of an instantaneous flood event, the poorer it is reproduced in

the daily records. If instantaneous events manifest themselves primarily on a sub-daily basis, the possibility to describe their

dynamics via daily flows becomes ineligible. This observation is also in accordance with the observed temporal shifts between
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MDF and IPF events, which is increasingly pronounced in smaller catchments. In summary, the proposed correction method570

flounders at smaller scales below 100 km2. Even though the IPF estimation leads to a general improvement at this scale, the

daily flood time scale poses a poor predictor in these catchments. In other cases, when the flood timescale is larger than a day,

then the p/V predictor should be able to capture the flood dynamics. Still, attention must be paid to the baseflow separation, to

ensure that the calculated p/V predictor is representative of the catchment behavior.

On the other hand, for catchments between 100 to 500km2 , the p/Vmodels showed the best results. This can be attributed to575

the selected predictors, whose combination is more representative for these catchments. It also be attributed to the available

dataset, as the majority of the sites have a catchment area under 500km2 and the fitted linear models may favor the minimization

of the errors for these catchments. Although the conducted uncertainty analysis showed that the model uncertainty (due to the

selected sites) is very low compared to the local parameter and sample uncertainty.

Nevertheless, the effect of the dataset should not be neglected, when determining which and how many locations should be580

grouped together for the fitting of the linear model. Even in the optimal case that the p/V predictor describes the flood dynamics

correctly at each site, the question of how well a single linear model can represent the whole group of sites arises. Although L-

moments are considered more robust than parameters or quantiles, they may differ significantly for a particular group. Hence, a

more reasonable approach would be to break the group down into subgroups. In our case, longitude and latitude did not appear

to have any effect on the model fitting. Dividing the study area into quadrants did not result in any differences between the585

subsets, even when considering similar catchment size and elevation. Also, neither record length nor period of record appeared

to have an influence.

The distinction between summer and winter for representation of the two most opposite flood types is particularly valid for

this study area and should be adjusted where flood types are otherwise distributed. In general, even the rough distinction

between different flood types for IPF estimation proved meaningful in our case, as it revealed different dynamics and MDF-590

IPF relationships. This observation could be further exploited by more carefully defining and distinguishing between flood

types, as e.g. proposed by Fischer (2018) or Tarasova et al. (2018).

Finally, one should note that the type of distribution for flood quantile estimation can only be selected based on daily data and

may differ from the optimal IPF distribution. For our data, the GEV proved flexible enough to be a good match for both MDF

and IPF, but this could differ in other cases.595

6 Conclusions and outlook

As in other studies before this one, it could be shown that the mean daily (MDF) and instantaneous peak flow (IPF) relationship

depends primarily on catchment size. It could also be observed that other factors, in this case gauge elevation, play a role in

determining the difference between MDF and IPF floods. The relationship also appeared to differ between the two types of

floods considered here, namely winter and summer floods. Since summer floods are often caused by short but intense rain600

events and thus exhibit steep rising and falling limbs, their sub-daily peaks are much larger than and difficult to estimate from

the smoothed average daily peaks. Long, voluminous winter floods, on the other hand, show a much smaller IPF-MDF ratio
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and are easier to model.

This study has also shown that hydrograph characteristics, like the peak-volume ratio of flood events, can be used to estimate

instantaneous peak flows when only average daily series are available. The p/V ratio may be used to predict both IPF of indi-605

vidual events and instantaneous flood statistics, including mean annual and seasonal maximum flows and flood quantiles. Due

to improper flood event separation, the event correction method produced some outliers in our case but may work significantly

better when flood events can be defined more carefully. In general, the p/V method requires a minimum of data and can be

applied using only information from the daily series itself. The performance could be marginally improved by including gauge

elevation as an additional predictor in some of the models.610

The general recommendation for estimating IPF flood quantiles is to use the average p/V approach for correction of L-moments.

This method is convenient, since L-moments can be globally corrected, while distributions may be locally fitted afterwards. It

turns out that the first two L-moments are easily estimated using p/Vmean, while higher-order L-moments or L-moment ratios

are more difficult to model with this approach.

There are two limitations where the proposed method should be handled with care: a) at sites with elevations below 100 m,615

since it overestimates the true difference between IPF and MDF, and b) at catchments smaller than 100 km2, where it under-

estimates the error so that the full correction potential cannot be achieved. Still, in comparison to the slope method, the p/V

approach works significantly better for smaller catchment areas, especially under 500 km2. For larger catchments, the slope

method appears very robust for all catchment sizes and elevations. The p/V methods perform better in many larger catchments

but outliers my be produced where the above-named restrictions are met. For future analyses, it will be meaningful to test the620

universality of the proposed approach in other study regions. Also, the effect of the flood event separation on the IPF estimation

performance should be analysed in more detail, especially in order to improve the event correction technique. Finally, it will be

interesting to see whether explicit consideration of more carefully defined flood types can improve the IFP estimation in mixed

models.
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