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Abstract. In many cases, flood frequency analysis (FFA) needs to be carried out on mean daily flow (MDF) instead of 

instantaneous peak flow (IPF), which can lead to underestimation of design flows. Typically, correction methods are applied 

on to the MDF data to account for such underestimation. In this study, we first analyse the error distribution of MDF- derived 

flood quantiles over 648 catchments in Germany. The results show that using MDF instead of IPF data can lead to 

underestimation of the mean annual maximum peak flow (MHQ) up to 80% and is mainly dependable depends on the 5 

catchment area but appears to be influenced as well from by gauge elevation as well. This relationship is shown to be 

differentdiffer for summer vs winter floods. To correct such underestimation, different linear models based on predictors 

derived from MDF hydrograph and catchment characteristics are investigated. Apart from the catchment area, a key predictor 

in these models is the event-based ratio of flood peak and to flood volume (p/V ratio) obtained by MDF data. The p/V models 

applied to either on MDF- derived events or statistics, seem to outperform other reference correction methods. Moreover, they 10 

require a minimum of data input, are easily applied, and are valid for the entire study area. Best results are achieved when the 

L-moments of the MDF annual maximum annual series are corrected with the proposed model, which reduces the flood 

quantile errors up to 60%. Thies approach behaves particularly well in smaller catchments (<500km2), where reference 

methods fall short. However, the limit of the proposed approach is reached for catchment sizes below under 100 km², where 

the hydrograph information from the daily series is no longer capable of approximating instantaneous flood dynamics, and 15 

gauge elevation below 100m, where the difference between MDF and IPF floods is very small.  

1 Introduction 

Common flood frequency analysis (FFA) is based on samples of maximum flows, e.g. annual maximum flow series (AMS). 

The magnitude and variability of these maxima pose form the baseline for the choice of probability distribution, the estimation 

of its parameters and eventually the deduction of flood quantiles as design criteria for various water works (Maidment, 1993). 20 

For FFA to be as accurate as possible, two criteria need to be met; first, a large number of observed peak flows is necessary to 

ensure an adequate selection and fitting of the probability distribution, and second,ly it is important that the peak flows are 

measured with high precision in order to account for the best description of maximum flood magnitude and dynamics.  
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However, embracing the true dimension of a peak requires continuous measurement of the flow on at a high temporal resolution 

(e.g. at 15min time steps). Such data is are rarely available, or at the best, case  only available for short periods, which is 25 

insufficient for flood frequency analysis. Typically, long observations of floods are available as mean daily flows records and 

oftentimes FFA needs to be carried out on these records instead. The daily averaging naturally flattens the flood peak, and the 

true maximum becomes unknowable. Particularly for small basins, there is a considerable underestimation of flood peak by 

the mean daily flows (Fill and Steiner, 2003). Hence, it becomes essential to develop new methods based on easily accessible 

data to correct the mean daily flows for a better representation of the flood peaks.  30 

The degree of the above-mentioned smoothing, i.e. the difference between the true instantaneous peak flow (IPF) and the 

maximum mean daily flow (MDF) (herein referred to  addressed as the peak ratio), depends on the response time of a system, 

which is controlled by a multitude of factors. The average relationship between MDF and IPF peaks at a site depends greatly 

on its basin area (Fuller, 1914) and characteristics related to topography,; like altitude, relief, and channel slope (Canuti and 

Moisello, 1982). For instance, there is a visible trend of the peakthat the IPF-MDF ratio to decreases with the larger basin 35 

areas, which is expected as because larger basins have higher baseflows (Ellis and Grey, 1966). Furthermore, the internal 

variability of the peak IPF-MDF ratio at a site’s flow record is largely determined by the type of meteorological input causing 

the individual flood events (Viglione and Blöschl, 2009; Gaál et al., 2015). This means that the peak ratio of rainfall and 

snowmelt events are different from one another. A variety of studies make use of the dependencies named above in order to 

estimate IPFs from MDFs, and can be generally be classified as methods based on the catchment characteristics as in Fuller 40 

(1914);, Ellis & Gray (1966);, Canuti & Moisello (1982);, Ding et al. (2015), or also including also climate characteristics, as 

in Muñoz et al. (2012), Taguas et al. (2008), Muñoz et al. (2012) and Gaal et al. (2015). Mostly, these methods are in the form 

of linear models based on maximum MDFs and the selected catchment or climate predictors.  

Other IPF estimation methods aim at using the bare minimum of available data, i.e., solely the available mean daily flow record 

(MDF). In these cases, the shapes of hydrographs are used to estimate the instantaneous peaks of events. The shape of a 45 

hydrograph can hold important information regarding an event’s or even the entire site’s flashiness and thus its peak ratio. 

Short flood events with steep rising and falling limbs are typical of a quickly reacting system, due to limited storage capacity 

and/or high- intensity rainfall or due to moderate- intensity rainfall on snow. In such events, the discrepancy between IPF and 

MDF will be significantly larger greater than for hydrographs with long durations and gentle slopes. For example, Ellis and& 

Gray (1966) found that the peak ratio distinctively decreases with increasing hydrograph width.  50 

Several approaches use the maximum mean daily flow and the discharge of the previous and/or successive day (e.g. Langbein, 

(1944)) to predict IPFs. Chen et al. (2017) compared three of these methods, namely those of Sangal (1983) and, Fill and 

Steiner (2003) and their own new method (referred to as the slope -method). These methods are based on the rising and falling 

slopes of the event hydrograph, estimated from the three consecutive days around the peak, and differ on in terms of how the 

information is integrated in the formula. They found that their slope- method and Fill and Steiner’s method outperform the 55 

other two approaches and Fullers' method (Fuller, 1914) (estimation method based on basin area), and are probably applicable 
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under for  a wide range of climates. However, both methods’ performances deteriorates with decreasing catchment size and 

they work best for areas larger than 500 km².  

Of course, there exist more complex means to correct the divergence between MDFs and IPFs. This includes disaggregation 

of the daily flow series to a finer scale, as done by e.g. Stedinger and Vogel (1984),;  Tarboton et al. (1998);, Kumar et al. 60 

(2000);, Tan et al. (2007); and Acharya and Ryu (2014). Also, hydrological modelling may be applied for IPF estimation, e.g. 

in combination with high-resolution disaggregated rainfall (Ding et al., 2016) or by using regionalized model parameters (Ding 

and Haberlandt, 2017). Several studies have applied machine- learning techniques to estimate instantaneous peaks from mean 

daily flows, including Shabani & and Shabani (2012);, Dastorani et al. (2013); and Jimeno-Sáez et al. (2017). While 

disaggregation, hydrological modeling and machine learning proved to be very effective in their studies, they often require a 65 

number of computational steps and/or a variety of data sources. Indeed, the estimation methods based on the catchment or 

hydrograph characteristics remain still even more desirable due to their simplicity, as they are based on easily accessible data 

and popular methods (i.e. linear models). 

So far, the two main IPF estimation methods are have been developed distinctively from one another separately with no 

combination of both catchment and hydrograph information. In this study, on the other hand, we propose linear models that 70 

facilitate IPF estimation using a combination of daily event hydrographs and functional dependencies with geomorphic 

catchment descriptors, while keeping the data input to a minimum. A kKey predictor in this approachthese linear models is the 

ratio of direct event peak runoff and to  direct event volume. This ratio is expected to effectually describe the shape of a flood 

event, which in turn gives us an idea about the expected instantaneous peak: the larger the daily peak and the smaller the event 

volume, the larger the expected difference between IPF and MDF and vice versa. We assume that the peak-volume ratio (p/V) 75 

holds important information on the general behavior of flood events (Tan et al., 2006; Gaál et al. 2015; Fischer, 2018) and thus 

on the expected magnitude of the IPF peaks as well. Moreover, the p/V of individual events can describe the internal variability 

at a site by reflecting different types of floods caused by different rainfall and/or snowmelt inputs. At the same time, the p/V 

accounts for the variability between sites caused by local flood- generating processes governed by general physiographic and 

climatic conditions. 80 

Another important point to be considered is that most of the studies mentioned before above  investigate the performance on 

IPF maximum series and pay little attention to how these methods estimate the design flows with specific return periods. The 

general assumption is that, if the IPF maximum series are estimated well enough on average, so are the IPF quantiles. However, 

a well estimated average IPF maximum may still lead to underestimation of design flows with a high return period (say, 

100years). It makes sense to investigate as well if whether  linear models based on MDF- moments, parameters or quantiles 85 

are more favorable for the estimation of the IPF quantiles. Accordingly, p/V models are employed here to correct MDF 

information at different levels;: correction of individual flood events from MDF, correction of MDF annual or seasonal 

maximum series, and the direct correction of MDF-derived statistics (like mean maximum flow, L-moments, distribution 

parameters or even flood quantiles). 
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In this study, the linear models based on the p/V as key predictor (referred to here as p/V models) are developed and assessed 90 

based on flow data from 648 catchments in Germany (as described in Section 2). The description of methods and models used 

here for the estimation of the IPF from MDF information is given in Section 3.2. We then analyzse the performance of the 

models in two main parts: their ability to estimate the mean maximum flow (MHQ) (see Section 4.1) and their ability to 

estimate probability distribution and the respective design floods (see Section 4.2). For the best model achieved, an uncertainty 

estimation is tackled by means of spatio-temporal resampling (see Section 4.3). Finally, the range and limitations of the 95 

proposed methodology and conclusions are given in Sections 4.4 5and  5. 6  

2 Study area and data 

This study uses flow data from 648 catchments distributed over Germany as shown in Figure 1. For the analyses, continuous 

average daily flow (MDF) and instantaneous peak flows provided for each month as monthly peaks (IPF) are available. The 

selected sites represent the data sets of the federal agencies, whicho provide online access to both data sets (Lower Saxony, 100 

Saxony-Anhalt, Saxony, Bavaria and Baden-Württemberg; see section Data Availability). 

 

Figure 1: The spatial distribution of the 648 catchments and their respective discharge gauges employed in this study. The 103 sites used 

for model calibration are marked in blue. The elevation is shown in the background colors and is provided by Jarvis et al. (2008), while the 

borders of the German federal states are shown with black lines. 105 

Germany poses forms a transition zone from an oceanic climate in the northwest Northwest to a humid continental climate in 

the southeastSoutheast. The northwestern parts are influenced by wet air and have mild winters, while the more southeastern 

Formatiert: Schriftart: Nicht Fett



   

 

5 

 

parts are drier and exhibit larger temperature ranges. The average temperature for the entire country is 8.9 °C, the monthly 

averages ranging between 0.4°C in January and 18°C in July (reference period 1981-2010 Deutscher Wetterdienst; (DWD) 

(2021)). The average annual precipitation is 819 mm, where amounts generally decrease in westWest-east East direction and 110 

in strong dependence on the topography. Annual rainfall sums are generally highest over the Alps right at the very Southern 

southern border and the various secondary mountain ranges. The flat continental east East is the driest. Temporally, the summer 

months are wettest, with rainfall often occurring in convective events. Snowfall occurs between October and April, where the 

amount and depth of snow cover increase with decreasing oceanic influence and increasing altitude.   

Even though not the entire area of Germany is not covered by the available data, the selected sites provide a cross cross-section 115 

through the climatically and topographically distinct regions, from the flat oceanic northwest Northwest to the mountainous 

continental southeastSoutheast. 

The lengths of the discharge records vary substantially from 11 to 183 years, with a mean of 48.4 years (temporal span from 

1831 to 2021). For the general assessment of differences in IPF and MDF floods and final model validation, all 648 sites with 

their variable record lengths are considered. For assessment of flood frequency criteria, only those sites with at least 30 years 120 

of observations were are used (486). Model fitting (herein referred to as calibration) was carried out on a subset of 103 sites, 

whose discharge data were thoroughly checked. Also, their records were cropped to a common period from 1979 to 2012, to 

eliminate potential non-stationary effects. For the 103 gauges sites used for calibration, a catalogue of catchment descriptors 

is available. For the remaining gauges sites, only rudimentary information was obtained, i.e. catchment size, geographical 

position, and altitude of the gauges. Figure. 2 shows how the 648 discharge gauges are distributed in terms of catchment size 125 

and gauge elevation. It is evident that the majority of the sites have catchment areas below under 500 km2 and gauges situated 

at elevations higher than 100 m a.s.l.. 

 

 

Figure 2: Distribution of catchment size and elevation for all the 648 sites employed in this study. 130 Formatiert: Schriftart: Nicht Fett
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3 Methods 

3.1 Flood frequency analysis 

Flood frequency analysis (FFA) is applied on the two data sets for the available catchments in Germany: mean daily flows 

(MDF) and instantaneous monthly peak flows (IPF). First, the maximum series are extracted from each data set either on an 

annual basis (annual maximum series – AMS) or for each season of summer vs and  winter (seasonal maximum series). For 135 

extrapolation of the maximum series and estimation of floods with specific return periods, distributions were are  fitted to the 

annual and seasonal samples of both IPF and MDF data sets. This enables the direct comparison of both flood quantiles and 

distribution parameters. HereFor this study, the General Extreme Value distribution (GEV) of the following form was is  used 

for all samples (Maidment, 1993): 

𝐹(𝑥) =  exp {− [1 − 𝑘 ∙
(𝑥−𝜉)

𝛼
]

1

𝑘
},         (1) 140 

with location parameter ξ, scale parameter α, and shape parameter k. The parameters are estimated using sample L- moments 

(Hosking and Wallis, 1997). The GEV has been proven before to be a suitable distribution for different catchments in Germany 

as indicated by Haktanir and Horlacher (1993);, Villarini et al. (2011);, Ding et al. (2015,2016);, Ding and Haberlandt (2017), 

and therefore has been chosen in our study as well. The goodness of fit of the distributions was is  determined with the Cramer-

von-Mises test. 145 

When extracting annual maximum series (AMS) different flood peaks from of different genesis (i.e. from convective/stratiform 

rainfall, from snowmelt, and so on) are mixed together and described by a single GEV distribution. However, if a certain flood 

type is dominating the annual maxima sample but is not typical for extremely large floods, then the fitted GEV distribution 

becomes misleading. To consider the different genesis in the flood peaks, maximum series are derived here for two seasons; 

summer (May-October) and winter (November-April). Then, a mixed model is applied, which combines two GEV distributions 150 

fitted to each of these sub-samples of the data, like:  summer and winter floods. A simple maximum maximum-mixing approach 

is used to combine the individual distributions in order to assess the annual non-exceedance probability of specific flood values: 

𝐹mix(𝑥) =  ∏ 𝑓𝑖(𝑥)𝑛
𝑖=1 .          ( 2) 

with fi(x) as the annual non-exceedance probability calculated for each sub-sample (summer and winter) and Fmix(x) as the 

mixed-model annual non-exceedance probability for a flood value x. This approach allows the combined estimation of flood 155 

quantiles from multiple underlying distributions and thus the assessment of errors in seasonal FFA. The approach is described 

in detail in Fischer et al. (2016). In their study, they used thresholds to determine whether a seasonal maximum wasis actually 

a flood event, which may not be the case during dry summers. This threshold was defined as the minimum annual maximum 
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flow. We do not censor our data with thresholds, i.e. for matters of simplicity we assume that every seasonal maximum is 

indeed a flood event. 160 

3.2 Analysis and estimation of instantaneous peak flows (IPF)  

3.2.1 Calculation of the p/V predictor from mean daily flows 

Motivated by the recent findings of Fischer et al. (2016); and Fischer (2018) regarding different flood types, here the flood 

peak-volume ratio (p/V) extracted from mean daily flows (MDF) is considered an important predictor that can help to estimate 

more accurately the IPF series from the MDF ones. This ratio is computed for each flood event extracted from the MDF data 165 

set as shown by Eqn. (3):  

p/V [
1

𝑑
] =  

Qdir [m3d−1]

Voldir  [m³]
 .           (3) 

where p/V is the peak-volume ratio, Qdir is the direct peak flow, and Voldir the direct flood volume. Both Qdir and Voldir are 

calculated on flood events extracted from the MDF series (see below) after subtracting the baseflow. 

For To  separateion of the flood events from MDF, the initial steps of the procedure used by Tarasova et al. (2018) are carried 170 

out, which are have been  proven effective and convenient for the German catchments. For the initial step of baseflow 

separation, they selected the simple non-parametric algorithm provided by the Institute of Hydrology (1980), which was is  

able to identify the starting points of events in daily flow series in a wide range of catchments. The same method is applied to 

the series of mean daily flows in our study, which involves the following steps. First, 5-day non-overlapping blocks are used 

to find the minima, which are identified as turning points if they are more than 1.1 times smaller than their neighboring minima. 175 

The baseflow is then derived by simple linear interpolation between the turning points. Discharge peaks are subsequently 

determined from the flow series, and for every peak the start and end of the belonging respective flow event is defined by the 

nearest surrounding turning points. To prevent false identification of events due to natural variability, events are discarded if 

their peak discharge is not at least 10% larger than the baseflow. Tarasova et al. (2018) suggested a second step of re-defining 

events with multiple peaks in an iterative procedure. This step is not carried out here, as it requires rainfall and snowmelt 180 

information, which are not available in our case. It is assumed that most of the events, especially the larger ones relevant for 

FFA, are separated correctly. 

3.2.2 Estimation of instantaneous peak flows 

In this study, we propose linear models to estimate IPF from the MDF data, where the peak-volume ratio (as described in Eqn. 

3) is one of the main predictors (referred to here as p/V models). Additionally, other Other predictors that describe the 185 

catchment physiology or climate (referred to for simplicity as catchment descriptors) are also integrated and investigated. The 

combination of hydrograph shape and catchment descriptors as predictors is expected to better reproduce both the aton-site 

and between-site variability in the IPF-MDF relationship and yield a more universal model. Several catchment descriptors 
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describing land use, soil type, average climate variables, geographic information, and catchment morphology were investigated 

prior to the study. Two main descriptors, namely basin area and gauge elevation, were found to be more important for the 190 

linear model and hence are included in the study as shown here.  

Since the p/V ratio is calculated for each event, the first p/V model investigated aims at to correcting individual flood events 

from MDF series. All events that contain a maximum instantaneous monthly peaks are identified. For these events, the daily 

MDFevent and instantaneous peaks IPFevent, peaks as well as the p/Vevent are computed. Then, a linear model of the following 

form is fitted: 195 

IPFevent =
 MDFevent

(𝑎+𝑏1∙∗p/Vevent+ 𝑏2∙∗CD1+⋯+ 𝑏𝑛+1∙∗CD𝑛)
,                                   (4) 

where CD denotes additional catchment and climate descriptors that may be included in the models, and a and b are the 

parameters of the linear model fitted by the calibration procedure. The fitting of the linear model parameters is performed on 

the calibration set (as indicated in section 2) only for the period 1972-2012.  

To assess the performance of the new methodology, we also employ here also the slope- method developed by Chen et al. 200 

(2017) as a reference. The slope- method estimates an instantaneous event peak flow IPFevent based on the slopes of the daily 

peak Qpeak to its preceding Qpre and following daily flows  Qsuc as shown in Eqn. 5: 

IPFevent =  Qpeak +
(Qpeak−Qpre)∙∗(Qpeak−Qsuc)

2∗Qpeak−Qpre−Qsuc
 ,             (5) 

Both event correctingof these estimation methods need information from the MDF hydrograph selected for each extracted 

flood event observed. Hence, these methods can be applied in two ways: 1) IPFs are estimated for all separated events in the 205 

average daily flow (MDF) series, even if these events have small daily peaks. Then, the flood frequency analysis is performed 

on the estimated event-based IPFs (after selecting maximum events for each year or season). 2) IPFs are estimated for the 

annual maximum daily peak only. This means that the event hydrograph corresponding to the annual or seasonal daily 

maximum is considered for the calculation of p/V in Eqn. 4 or the peak discharges in Eqn. 5. The obtained annual/seasonal 

maximum series is then used as a basis for the flood frequency analysis. In both cases, statistics are derived from the estimated 210 

IPF series and compared to the observed IPF ones. Procedure (1) is theoretically more accurate, since maxima in IPF and MDF 

do not necessarily occur at the same time (no temporal overlap). More precisely, events with maximum instantaneous peaks 

can have rather small mean daily peaks in some instances. Correcting only the maximum MDFs would lead to underestimation 

of the IPFs in these cases. On the other hand, procedure (2) may prove more robust in cases where smaller events are not 

properly separated, i.e. their volumes are over- or underestimated. These events would lead to unrealistic IPF estimates, when 215 

using the p/V as a primary predictor. The larger events containing the annual maximum MDF are expected to be more properly 

separated by the algorithm described above. 
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Alternatively, to the event-based estimation, the proposed p/V model can also be applied also directly to the MDF derived 

statistics with the aim to of  reproducinge the IPF statistics. These involve the estimation of flood statistics, i.e. mean annual 

and seasonal maximum flows (MHQ), sample L-moments, estimated distribution parameters, and derived flood quantiles 220 

based on averaged peak-volume ratios p/Vmean. These average p/Vs are obtained from all annual/seasonal maximum MDF 

events at each site. As described before, these maximum events are expected to be properly separated, and although the 

maximum MDF events may not necessarily be identical to the maximum IPF events, their shape may hold important 

information on local processes. The model set set-up is analogous to the event correction approach: 

IPFstat =  
 MDFstat

(𝑎+𝑏1∙∗p/Vmean+ 𝑏2∙∗CD1+⋯+ 𝑏𝑛+1∙∗CD𝑛)
,                                         (6) 225 

where stat is the desired statistic being estimated, CD the selected catchment or climate descriptors, a and b the parameters of 

the model as fitted ton the calibration set, and  p/Vmean is the average p/Vevent for annual or seasonal series. The model is expected 

to represent the average conditions that determine the average deviation of MDF from IPF estimates. The p/Vmean in itself is 

expected to be a good predictor that reflects local conditions like spatial scale, climate, geology, and other external factors that 

control flow variability obtainable from daily flow records. The additional inclusion of catchment descriptors is tested case by 230 

case and may contribute to the reproduction of spatial variability of the target variable.  

An overview of all the methods employed here together with their descriptions is given in Table 1. All methods consisting of 

the linear models based on the p/V ratio as a main predictor (p/V- methods) have been optimized based on the calibration set 

only for the period 1972-2012. For theTo selection of the best model, the coefficient of determination (R2) and the significance 

of model parameters (based on the p-value) are considered. For validation, all sites with their respective observed period are 235 

used. Through the validation we compare and assess the ability of the proposed models to capture the mean maximum flow 

(MHQ) and the probability distribution and the respective design floods. 

Table 1: Description of all the methods and their applications employed here for the estimation computation  of the IPF and 

their respective statistics. 

Application Name Description 

Reference MDF IPFs are taken directly without correction from average daily flows MDF 

Event-based  

analysis 

Slope-events eEstimates IPF for all flood events derived from MDF according to Eqn. 5 

p/VLM-events eEstimates IPF for all flood events derived from MDF according to Eqn. 4 

AMS-based 

analysis 

Slope-AMS eEstimates IPF as per Eqn. 5 only for the flood events that corresponds to MDF annual/seasonal 

maxima from MDF series 

p/V-AMS eEstimates IPF as per Eqn. 4 only forfor the flood events that corresponds to MDF annual/seasonal 

maxima from MDF series 

Statistics-based 

analysis 

p/V-Lmoms Eestimates IPF L-moments as per Eqn. 6 based on the MDF L-moments derived from the 

annual/seasonal maximum series of MDF data set 

Formatiert: Schriftart: Nicht Fett
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p/V-params eEstimates the IPF GEV parameters as per Eqn. 6 based on the MEF GEV parameters derived from 

annual/seasonal maximum series of MDF data set 

p/V-quants eEstimates IPF quantiles as per Eqn. 6 based on MDF quantiles derived from annual/seasonal 

maximum series of MDF data set 

p/V-MHQ IPF mean maxima (MHQ) estimated as per Eqn. 6 based on MHQ extracted from MDF 

annual/seasonal maximum seriesaverage daily MHQ. 

 240 

3.2.3 Analysis of the instantaneous peak flows 

Since the IPF data series  are not continuous but rather a maximum for each month (see Section 2), a direct comparison for 

each flood event is not possible. Instead, we focus on the analysis of flood statistics. For this purpose, the percentage 

deviationgeneral difference between  the IPF statistic IPFstat andof the MDF-estimated flood  statistic MDFstat from the IPF 

statistic IPFstat is are calculated as following: 245 

𝐸𝑟𝑟𝑜𝑟 (%) =  
MDFstat−IPFstat

IPFstat
∙∗ 100 %                 (7) 

where eError is computed at each site for any desired statistical quantity stat, like the mean annual maximum flow (MHQ), 

L-moments (Hosking, 1990), distribution parameters and flood quantiles. 

Apart from the Eerror (%) at each site, two additional performance criteria are calculated over all sites: the normalized root 

mean square error nRMSE (%) as per Eqn. 8 and the percent pBIAS (%) as per Eqn. 9. 250 

𝑛𝑅𝑀𝑆𝐸 (%) =  

√∑ (MDFstat,i−IPFstat,i)
2

𝑁
𝑖=1

𝑁

sd(IPFstat)
∙∗ 100 %,                (8) 

𝑝𝐵𝐼𝐴𝑆  (%) =  
∑ MDFstat,i−IPFstat,i

𝑁
𝑖=1

∑ IPFstat,i
𝑁
𝑖=1

∙∗ 100 %,                (9) 

where N is the number of the validation sites, MDFstat,i and IPFstat,i are the respective statistics at site i from MDF and IPF 

series, and sd(IPFstat) is the standard deviation of IPF statistics over all considered sites. These criteria are computed for each 

of the methods described in Table 1.  255 

3.3 Uncertainty Analysis 

Since both the distribution fitting and the IPF estimation via p/V models are approximations and not fully accurate, we 

eventually assess the overall level of uncertainty in the final IPF flood flood-quantile estimates. As it will be later shown later 

in Section 4.2, the best linear modelcorrection approach is chosen to be the p/V-Lmoms - the model directly correcting directly 

the L-moments of the MDF series. This is done by using simple resampling with replacement procedures; resampling in time 260 
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when selecting the maximum series for FFA, resampling in space when selecting the sites for the p/V model (either for the 

calibration or validation of the models), and resampling both in space and time. In a first step, the series of annual/seasonal 

maxima um from both MDF and IPF data sets are analogously resampled 1,000 times with replacement (temporal sample and 

parameter uncertainty). For each resampling, the desired flood quantiles are estimated using L-moments. The range of these 

estimates provides the baseline level of uncertainty due to sample and parameter uncertainty. The temporal sample uncertainty 265 

is calculated at each site for the original MDF IPF and IPF MDF series (respectively IPMDF-bs and MDIPF-bs, respectively) 

and are considered a benchmark for comparison. 

In a second step, p/V models are fitted to each pairing of temporally resampled MDF IPF and MDIPF series while considering 

all sites in the study area that have more than 30 years of observations. This means that the temporal sample uncertainty is 

propagated through the p/V model (p/V-full). To assess the uncertainty of the selected p/V model, another resampling is carried 270 

out, this time shuffling the set of considered sites, where original MDF- site specific L-moments are resampled again 1,000 

times with replacement before fitting the p/V model (p/V-bs). Lastly, the total uncertainty both in space and time is assessed 

by combining the temporal sample and parameter uncertainty with the uncertainty of the fitted models:. tThis means that the 

maximum series are resampled 1,000 times, and for each of these sets, the sites are resampled 1,000 times as well before fitting 

the p/V model. So, the total uncertainty will be derived by 1,000 x 1,000 quantile estimates (p/V-bs-bs). Of course, the 275 

uncertainty ranges might range slightly if more realizations are included. For method comparison in terms of their uncertainty 

range, the number of random resampling will influence all methods similarly. On the other hand, 1,000 realizations are enough 

to investigate the dominant sources of uncertainty. Finally, to capture the overall uncertainty previous conducted tests showed 

that 1,000,000 realizations are enough to capture the overall trends of the uncertainty. 

To assess the overall level of uncertainty, several indices are computed at each site. The first one is the relative width of the 280 

95% confidence intervals (CI95%) calculated for all aforementioned resampling estimates of the desired flood quantile: 

CI95%bs(−) =  
𝑥bs;0.975−𝑥bs;0.025

𝑥bs;0.5
,          (10) 

where xbs;0.025 and xbs;0.975 are the 2.5% and 97.5% quantile and xbs;0.5 the median of the respective sample.  

The second one is the deviation of the IPF estimated samples from the IPF original sample, which allows the assessment of 

error distributions: 285 

errorbs =  
𝑥bs− IPFbs

IPFbs
∙∗ 100%.          (11) 

where IPFbs is the temporal resample of the IPF original data and xbs is the resampled estimated either from either the original 

MDF series or from the modeled IPF series. From the resulting error vector, a variety of statistics can be computed for 

comparison. Finally, the agreement of the 95% confidence intervals of the MDF and p/V-model samples with the IPF 

confidence bands are determined as percentage overlap at each site: 290 
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overlap =  
min(𝑥bs;0.975,IPFbs;0.975)−max (𝑥bs;0.025,IPFbs;0.025)

max(𝑥bs;0.975,IPFbs;0.975)−min (𝑥bs;0.025,IPFbs;0.025)
∙∗ 100%.      (12) 

where IPFbs is the temporal resample of the IPF original data and xbs is the resampled estimated either from either the original 

MDF series or from the modelled IPF series. 

4 Results and discussion 

4.1 Mean Maximum Flow (MHQ) 295 

4.1.1 Comparison of mean daily and instantaneous peak flows 

In theory, the relative deviation between MDF and IPF peaks depends greatly on catchment size, as shown for instance in 

Fuller (1914) and Ellis and Gray (1966). The effect of the catchment size is clearly visible in our data set. Small catchments 

without appreciable buffering capacity react fast to even small rainfall, leading to short and steep flood waves that are hardly 

reproduced on coarsely averaged time scales. Factors like steep slopes, impermeable underground and short but intense rainfall 300 

contribute to the flashiness of storm events and make these even less representable through daily flow records. The effect of 

the catchment size is clearly visible in our data set. Figure. 3 demonstrates the errors of in  the mean annual maximum flow 

(MHQ) estimated by MDF instead of IPF series (as per Eqn. 7). It is clear that the larger the area, the smaller the deviation 

between MDF and IPF. This agrees well with the findings of Ellis and Gray (1966) and Chen et al. (2017) which state that for 

larger basins the peak-ration between MDF-IPF series converges to 1. Hence Iin these cases, the MDFs are a good 305 

representation of the IPFs peaks. Moreover, MHQ errors shown in Figure. 3 appear to be especially large in at  higher altitudes. 

This is as well indeed  expected, as mountainous catchments have a fast response time and are generally more heavily 

influenced by the meteorological forcing (by snowmelt processes or convective events) as also shown in Gaal et al. (2015). 

Overall, the MHQ error in our catchments seems to increase in Nnorth-Ssouth direction, which could be a secondary effect of 

both increasing altitude and decreasing catchment size. 310 
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Figure 3: Spatial distribution of the mean annual maximum flow (MHQ) error (%) between mean daily (MDF) and instantaneous peak 

(IPF) flows obtained from all sites (calculated as per Eqn. 7) 

When assessing the differences between mean daily and instantaneous peaks, it is also meaningful to take a closer look at 

different types of floods. For our German sites, the two most opposite types are a) flood events induced by short intense rainfall, 315 

especially convective events dominant mainly in summer (May-October), and b) extended flood events with significant 

volume, as caused by snowmelt and/or stratiform rain occurring mainly in winter (November-April). Presumably, the latter 

flood type is much better represented by mean daily flow than the former. In order to roughly distinguish between the two 

types, the flow records are divided into summer (May - October) and winter (November - April) half years. Due to the limited 

data availability, a clear distinction between convective, stratiform, and snow-melt events cannot be achieved here. Some 320 

snowmelt events in the high alpine catchments may still occur in May/June but are classified as summer events. However, the 

coarse division of the data into half years rather than seasons is due to the subsequent analysis of seasonal flood statistics and 

application of the mixed seasonal model. 
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Figure 4: Uupper row – error (%)  in the mean maximum flow (MHQ) (as per Eqn. 7) obtained in relation to catchment size and gauge 325 
elevation for the entire year (a), summer (b) and winter (c); lower row - percentage of peaks falsely attributed by mean daily flows (MDF) 

to the winter or summer half -year (d) and percentage of peaks in mean daily (MDF) and instantaneous peak (IPF) flows that overlap in time 

(within a 5-day buffer) (e). Results are illustrated for all sites. 

In the upper row of Figure. 4 (a-c) the MHQ error is shown for the entire year and respectively also  for summer and winter 

seasons. The relationship with to the  catchment area is clearly visible in all three cases. Also, the effect of the elevation 330 

becomes obvious, namely as  sites in at  the lowest elevations (yellow points, below 100 m) show very small errors, even for 

small catchment sizes down to approximately 100 km². This is the clearest stratification in the error due to elevation; the errors 

at higher altitudes appear less distinguishable.  

There is, however, a clear distinction between summer and winter seasons. As expected, the MHQ error is overall smaller in 

the winter months, where snowmelt and stratiform events prevail, while the convective events in summer are poorly reproduced 335 

captured  by MDF. The error in the annual peaks is a mixture of the two seasons; which season contributes more to the annual 

peaks depends on the individual flood regimes. When looking at the IPF data, at 68.8% of the considered sites the winter floods 

exceed on average their summer counterparts on average, while 29.2% of sites are dominated by summer floods. When 
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considering MDF instead, only 22.1% of the gauges sites are identified as having maximum peaks in summer. This indicates 

that the mean daily flow significantly smooths significant the summer peaks to a point where they are no longer relevant for 340 

the overall flood behavior. Figure. 4 (d) shows the percentage of annual maxima at each site that are attributed to the wrong 

season when using MDF. Each site is represented by two dots: nNegative values show the percentage of all annual maxima 

that are falsely attributed to summer, while positive values show the falsely attributed winter peaks. It is obvious that with 

decreasing catchment size an increasing number of annual maxima are falsely identified in the winter half of the year, while 

the actual instantaneous maxima occur in summer. Apart from not being able to properly identify flood magnitudes when using 345 

mean daily flows, this is a serious issue for classification of flood regimes, identification of dominating flood types and 

application of heterogeneous flood frequency analysis when daily data is the only available option.  

Another general issue highlighted by this analysis, independent of seasonality, is that the peaks of both IPFs and MDFs data 

sets do not necessarily occur onat the same day (there is no temporal overlap). In their study, Chen et al. (2017) illustrated that 

only foron 82% of the events investigated did, the peaks of both IPF and MDF series occurred on the same day. This suggests 350 

that instantaneous maxima are not always identifiable in the mean daily flows, i.e. the maxima obtained from the daily series 

are inevitably found in other places. The temporal overlap of MDF IPF-  and IPF MDF- derived peaks for our catchments are 

shown in Figure 4 (e). In general, the smaller the catchment, the smaller the temporal overlap between instantaneous and daily 

peaks. A weak relationship is also visible between high elevation and smaller temporal overlap between the two peaks. This 

problem needs to be kept in mind when attempting to estimate instantaneous peaks from daily peaks, since the two may belong 355 

to significantly different flood events (different genesis) and thus to different populations.  

4.1.2 Estimation of mean maximum flow (MHQ) 

So far, the error in the mean maximum flow (MHQ) between MDF and IPF is shown to be influenced by both catchment area 

and gauge elevation. Both of these predictors may be helpful into correcting MDF for a better agreement with the IPF data. 

Moreover, there seems to be a significant linear dependence between the peak ratios MDF/IPF, p/V ration, and the logarithm 360 

of the catchment size. We first test the suitability of various predictors to predict MHQ fromof IPF by fitting the p/V models 

to the individual events of MDFs (p/V-event), or to the MDF maximum series (p/V-AMS) or, lastly, directly to the MDF mean 

maximum flow (p/V-MHQ). Various model combinations with the available predictors (catchment area, elevation, and p/V 

ratio) are tested using the calibration data set, and their respective coefficientcoefficients of determination are shown in Table 

2. The selected models are marked in grey bold  in Table 2 and their respective full- model formulas are given in Table 3. For 365 

most models, the majority of variance in the IPF-MDF relationship is explained by the p/V ratio and the catchment area. For 

winter, including gauge elevation appeared to improve the model slightly.  

The models show a similar performance for the annual and summer peak ratios in both for the  correction of individual events 

(p/V-events) and mean maximum flow (p/V-MHQ). For winter, the model performance seems to differ, especially when 

correcting the individual events (p/V-events). It appears that the models using the p/V ratio have more difficulty to estimatinge 370 
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the winter peak ratio. This could be due to improper event separation, which will be discussed in more detail below and which 

leads to unrealistic p/V ratios. The fact that elevation is a significant predictor in the MHQ model (p/V-MHQ) may also suggest 

that the peak ratios in winter are more heterogeneous. 

 

Table 2: Coefficients of determination forof various linear model combinations (see Table 1 for description of models). Values are obtained 375 
by fitting the models only to the calibration set. Grey Bold numberscells indicate the best p/V model for each application and asterisks 

indicate at least one non-significant predictors in the p/V models.  

 Application 

Predictors            

Event-based (p/V-events) AMS-based (p/V-AMS) MHQ-based (p/V-MHQ) 

Year 
Summ

er 
Winter Year 

Summ

er 
Winter Year 

Summ

er 
Winter 

Area 0.14 0.19 0.12 0.30 0.26 0.25 0.42 0.42 0.38 

Elevation 0.01 0.01 0.01 0.04 0.01 0.03 0.06 0.02 0.08 

p/V 0.13 0.13 0.09 0.21 0.21 0.20 0.55 0.49 0.49 

p/V + Area 0.23 0.26 0.17 0.39 0.36 0.35 0.66 0.65 0.63 

p/V + Elevation 0.14 0.13 0.10 0.23 0.22 0.23 0.56* 0.51 0.56 

p/V + Area + Elevation 0.23 0.26 0.17 0.40 0.36* 0.36 0.67* 0.65* 0.68 

 

Table 3: Best p/V models (as shown with greyin bold in Table 2) fitted toon the calibration set for correction of individual events (p/V-

events), for the annual/seasonal maximaum (LM-AMS), and the MHQ (LM-MHQ). 380 

Type Model 
Events 

(p/V-events) 

Year MDF / (0.59 - 0.43 ·* p/Vevent + 0.047 ·* log(area)) 
Summer MDF / (0.44 - 0.36 ·* p/Vevent + 0.063 ·* log(area)) 
Winter MDF / (0.63 - 0.35 ·* p/Vevent + 0.044 ·* log(area)) 

Maxima 

(p/V-AMS) 

Year MAXMDF / (0.53 - 0.42 ·* p/Vmax + 0.057 ·* log(area)) 
Summer MAXMDF / (0.61 - 0.73 ·* p/Vmax + 0.061 ·* log(area)) 
Winter MAXMDF / (0.70 - 0.68 ·* p/Vmax + 0.054 ·* log(area)) 

MHQ 

(p/V-MHQ) 

Year MHQMDF / (0.74 - 0.94 ·* p/Vmean + 0.043 ·* log(area)) 
Summer MHQMDF / (0.83 - 1.19 ·* p/Vmean - 0.054 ·* log(area)) 
Winter MHQMDF / (0.99 - 1.31 ·* p/Vmean + 0.035 ·* log(area) - 0.00012 ·* elevation) 

 

Figure. 5 shows the change in mean absolute error in the annual MHQ after correction with the different methods in relation 

to catchment size and elevation: positive values indicate that the error has increased after correction, while negative values 

indicate that the error has decreased after correction. The slope method (Figure. 5 - a) applied to the individual events (slope-

events) yields a rather constant reduction of the error independent of catchment size. However, there are several outliers 385 

produced by this method, which can be attributed to improper separation of smaller events. Applying the slope method only 

to the annual maximum MDF events (slope-AMS), as done in Figure. 5 (b), shows a much smoother and more constant error 

reduction. The corrections using the p/V models proposed here (Figure. 5 (c-e)) yield a much larger improvement for the 

smaller catchments (where the original MDF error was generally larger than in the bigger catchments). Nevertheless, these 

corrections simultaneously lead to an increase of the error in several cases. This deterioration appears to affect those the  sites 390 

that werehave been highlighted before in Ssection 4.1.1, namely the onesose with the lowest elevations in the data set where 

the original MDF error was quite low.  
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The differences between correcting the individual events (p/V-events in Fig. 5 c) and only correcting the annual maxima events 

(p/V-AMS) (as illustrated respectively in Figure. 5 (c-d)) by means of the linear p/V models appear rather small. This suggests 

that even though the annual maximum from the MDF  does in many cases does not occur at the same time as the annual 395 

maximum from the IPF, the method still yields an appropriate estimate of the true IPF. On the other hand, directly correcting 

the MHQ (p/V-MHQ in Figure. 5 (e)) results in slightly lower error reduction for the smaller catchments but also appears to 

produce fewer outliers and is thus considered more robust. 

It should be noted that working with large data and automatic event separation without manual post-correction leads to 

problems that could potentially be avoided when considering individual time series more carefully. Several events are 400 

identified as too long or too short (or not at all), so their volumes are over- or understated, respectively. This results in false 

p/V ratios and in some cases to severe over- or underestimation of the peaks. The weight of such events is assumed to be 

significantly lower when correcting flood statistics based on average p/V ratios. In addition, the overall performance can only 

be assessed for events that contain the monthly instantaneous maximum flow, i.e. primarily larger events. How the event 

correction performs for minor events cannot be analyzed here. 405 

 

Figure 5: Error reduction (negative values) vs error increase (positive values) in the mean annual maximum flow (MHQ) for different IPF 

estimation methods when compared to MDF. For an overview of the methods, the reader is directed to Table 1. Values are obtained by 

applying the selected methods to the validation set. 

Figure. 6 summarizes the overall model performances for to estimate the the IPF  mean annual/seasonal maximum flow (MHQ) 410 

at all validation sites and compares the individual methods to the error in using MDF directly. It is obvious that all methods 
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give significantly better IPF estimates than the mere  MDF alones. The slope correction methods (both slope-event and slope-

AMS) have quite a large bias (median error around -10%), which is, as seen above, not only disadvantageous. Still, the overall 

error is smaller for the p/V models (p/V-events, p/V-AMS and p/V-MHQ), where the median error is at 0-2%, with fewer 

positive outliers produced by the p/V-MHQ approach.  415 

 

Figure 6: Error (%) comparison of different methods to estimate the mean maximum annual flow (MHQ) for the entire year (a), summer 

(b) and winter(c). Values are obtained by applying the selected methods to the validation set. For an overview of the methods, the reader is 

directed to Table1. 

Table 4 summarizes the normalized root mean square error (nRMSE (%)) and the percentage bias (pBIAS (%)) of the mean 420 

annual/seasonal maximum flow (MHQ) estimated via the different model variants. In terms of nRMSE, the performances of 

the slope and p/V-methods are comparable, with the slope methods being more biased. There are a number of outliers produced 

by the p/V-methods, especially positive ones, that affect the overall nRMSE. As seen in Figure. 5, this is primarily concerning 

the low elevation catchments below 100 m. The values in parentheses in Table 4 indicate the performance criteria for gauges 

with catchment areas below under  500 km². Here, the advantage of the p/V -approaches over the slope methods become 425 

apparent, even though a large number of low elevation catchments fall into  this category, which negatively affect the overall 

error. 

Table 4: Normalized root mean square error (nRMSE (in %)) and percentage bias (pBIAS (in %)) of estimated vs. observed instantaneous 

annual/seasonal mean maximum flow (MHQ)  over all validation sites for different methods . The values in parentheses show the 

performances for catchment sizes below 500 km². 430 

 Year Summer Winter 

  nRMSE [%] pBIAS [%] nRMSE [%] pBIAS [%] nRMSE [%] pBIAS [%] 

MDF 17.0 (47.9)  -18.0 (-32.4)  18.1 (49.0)  -20.6 (-38.1)  14.9 (44.1)  -16.4 (-28.7) 

Slope-events 8.4 (25.0)   -6.8 (-15.8)   7.9 (29.0)   -9.2 (-21.8)   9.2 (21.3)   -6.5 (-13.0) 

Slope-AMS 7.4 (31.2)   -8.1 (-19.3)   8.4 (33.6)  -10.5 (-25.0)   7.2 (28.0)   -7.4 (-16.1) 

p/V-events 9.3 (16.7)   -2.8 (  -1.0)   8.4 (16.6)   -2.6 (  -0.5)  10.6 (17.6)   -5.1 (  -4.1) 

p/V-AMS 10.7 (20.4)   -5.4 (  -2.9)  11.0 (19.7)   -5.4 (  -3.7)   9.4 (21.4)   -4.7 (  -2.9) 

p/V-MHQ 7.7 (19.0)   -3.9 (  -2.3)  12.5 (20.6)   -6.8 (  -5.0)   8.5 (20.8)   -3.8 (  -1.7) 
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Table 5 shows the average error between the annual MHQ predicted with by  the p/V-MHQ model with the observed 

instantaneous annual MHQ, distributed for different catchment sizes and elevations. It becomes obvious that for the smallest 

lowest  elevations, the instantaneous annual MHQ is overestimated, especially for smaller catchment sizes. Catchments in the 

range between of  100 and 200 m of altitude also show quite large errors, but these are mostly negative. It is also apparent that 435 

the catchments with outlets at higher elevations exhibit large negative errors in most cases. 

 

Table 5: Average prediction error (%) of the p/V-MHQ model for the annual MHQ calculated over the validation sites and shown here for 

different ranges of area and elevation. Red shades indicate overestimation, while blue shades underestimation. 

  Elevation [m a.s.l.] 

  <100 <200 <300 <400 <500 <600 <700 <800 <900 <1200 

C
at

ch
m

e
n
t 

a
re

a 
[k

m
²]

 <50 9.35 -10.77 -8.86 -6.77 1.17 -6.35 0.64 -3.14 -0.31 -15.33 

<100 18.59 -16.98 -9.75 1.97 4.21 0.37 1.83 -1.05 -2.74 -19.45 

<200 13.79 -10.41 1.04 1.45 8.70 -3.61 3.27 5.48 -9.16 4.96 

<500 11.43 -6.57 -0.01 4.19 5.58 3.62 -4.05 -3.93 -21.83 - 

<1000 8.12 -5.31 3.80 0.86 3.22 -4.66 3.53 - - - 

<2000 5.05 -1.94 -4.45 5.29 -1.66 -3.97 -3.68 -5.91 6.42 -13.63 

<5000 -0.61 -6.75 -1.96 -1.15 -2.73 -3.53 - - - - 

<10000 -3.47 -6.38 -0.70 -4.96 -6.50 - - - - - 

<30000 -7.48 -8.37 -5.25 -5.84 - - - - - - 

 440 

4.2 Probability distributions and derived design flows  

So far, the proposed p/V models were have been  analyszed in terms of their ability to better estimate better the mean maximum 

flow (MHQ) from MDF data. In this sub-section the focus is shifted to the ability of the methods to estimate parameter 

distribution of the IPF and the derived flood quantiles. The GEV distribution appeared to be a generally suitable distribution 

for the gauges sites  in the data set. A Cramer-von-Mises test was is  carried out for the original IPF and MDF samples, as well 445 

as for the slope and p/V- corrected samples at each site, and certified a good fit in all cases (p-value = 5%). 

4.2.1 Comparison of mean daily (MDF) with instantaneous peak (IPF) flow distributions 

A comparison between the estimated parameters for the IPF and MDF samples for the year and the seasons are shown in 

Figure. 7. As expected, the location parameters are consistently underestimated by the MDF series, with the largest errors in 

summer. This naturally leads to an overall downward shift of the “true” distribution when estimated from MDF values. The 450 

scales, here normalized by the location, appear to be primarily overestimated in summer, leading to distributions that are 

steeper for MDF than for IPF samples. For the year and winter, the errors in the scale parameters appear to be balanced in their 

directions.  
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The shape parameters differ quite substantially between the seasons. In summer, the vast majority of estimated parameter 

values areis negative, both in IPF and MDF. This indicates a heavy tail behavior for the summer floods. The fact that these 455 

negative values are in many cases smaller in the MDF than in the IPF sample, suggests that the tails are overstated in the 

former case. For the year and winter season, again, no clear trend is visible. The distribution parameters of the low-elevation 

gauges appear to be very well estimated by the MDF. For the higher elevations, especially the estimation of the shape 

parameters seems difficult. For the whole year, the IPF shape is underestimated at a lot of gauges, while it is primarily 

overestimated in winter. Overall, due to the underestimation of the location parameter leads, underestimation of both the lower 460 

and higher flood quantiles by the MDF sample is expected. 

 

Figure 7: Observed Estimated Generalized Extreme Value (GEV) parameters from the instantaneous peaks (IPF)  vs. mean daily (MDF) 

annual/seasonal maximum series. Here, only validation sites with observations longer than 30 years are shown. 

Generally, the heavy tails of the summer distributions in contrast to the flatter tails in winter let the summer floods become 465 

dominant at higher quantiles. For a return period of 100 years, the summer floods exceed the winter peaks at 61.9% of the 
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sites. For 50 and 10 years this exceedance occurs at 51.2% and 35.7% of sites, respectively. This behavior is also noticeable 

in the MDF but for fewer gauges, namely 53.4%, 43.2% and 21.0% for 100-, 50- and 10-year return periods. 

4.2.2 Estimation of instantaneous peak flow (IPF) distributions and quantiles 

Three approaches were tested for estimating IPF flood quantiles based on MDF statistics: a) correcting the sample L-moments 470 

required for parameter estimation (p/V-Lmoms), b) correcting the parameters of the fitted distribution (p/V-params), and c) 

directly correcting the desired flood quantiles (p/V-quants). Method (a) is convenient, since a single model for each L-moment 

facilitates a correction of the complete distribution and hence each desired flood quantile. Estimating the L-moments has the 

additional advantage of not being restricted to a certain type of probability distribution. A proper distribution can be selected 

and fitted locally using the corrected L-moments. Still, the other methods may prove more robust and are hence tested as well. 475 

The final models for each target variable are selected according to the procedure for the MHQ (see Table 2), using the 

calibration data set. For reasons of conciseness, only the final models are presented here with the coefficients of determination 

from the calibration (in Table 6). For further comparisons, distributions were also fitted to the annual and seasonal maxima 

that have beenwere  previously corrected using the slope (slope-events) and p/V -methods for events (p/V-events).  

Since the shape parameter is generally difficult to estimate, especially for such a short time period, and the models’ estimates 480 

are generally close to the observed MDF shape parameter, it will not be estimated using the model variants. Instead, the MDF 

shape parameter estimate will be used in all instances. 

 

Table 6: p/V models fitted on the calibration data set for correction of L-Moments (p/V-Lmoms), GEV-parameters (p/V-params), and flood 

quantiles (p/V-quants) derived from the mean daily flow (MDF) annual or seasonal maximum series. For an overview of the methods, the 485 
reader is directed to Table 1. 

Type Model R² 
L-moments 

(p/V-Lmoms) 

L1 Year L1MDF / (0.74 - 0.94 *· p/Vmean + 0.043 *· log(area)) 0.66 
Summer L1MDF / (0.83 - 1.19 *· p/Vmean + 0.054 *· log(area)) 0.65 
Winter L1MDF / (0.99 - 1.31 *· p/Vmean + 0.036 *· log(area) - 0.00012 *· elevation) 0.67 

L2 Year L2MDF / (0.64 - 0.65 *· p/Vmean + 0.048 *· log(area)) 0.45 
Summer L2MDF / (0.71 - 0.86 *· p/Vmean + 0.062 *· log(area)) 0.50 
Winter L2MDF / (0.89 - 1.09 *· p/Vmean + 0.043 *· log(area) - 0.00016 *· elevation) 0.53 

GEV 

parameters 
(p/V-params) 

ξ Year ξ MDF / (0.77 – 1.02 *· p/Vmean + 0.042 *· log(area)) 0.67 
Summer ξ MDF / (0.89 – 1.39 *· p/Vmean + 0.052 *· log(area)) 0.64 
Winter ξ MDF / (0.96 – 1.36 *· p/Vmean + 0.037 *· log(area)) 0.63 

α Year α MDF / (0.67 – 0.77 *· p/Vmean + 0.048 *· log(area)) 0.45 
Summer α MDF / (0.78 – 1.14 *· p/Vmean + 0.064 *· log(area)) 0.42 
Winter α MDF / (0.97 – 1.24 *· p/Vmean + 0.037 *· log(area) - 0.00015 *· elevation) 0.56 

Flood 

quantiles 
(p/V-quants) 

HQ10 Year HQ10MDF / (0.72 - 0.87 *· p/Vmean + 0.043 *· log(area)) 0.61 
Summer HQ10MDF / (0.79 - 1.09 *· p/Vmean + 0.058 *· log(area)) 0.60 
Winter HQ10MDF / (0.96 - 1.23 *· p/Vmean + 0.038 *· log(area) - 0.00014 *· 

elevation) 

0.63 
HQ50 Year HQ50MDF / (0.70 - 0.75 *· p/Vmean + 0.044 *· log(area)) 0.52 

Summer HQ50MDF / (0.73 - 0.83 *· p/Vmean + 0.057 *· log(area)) 0.53 
Winter HQ50MDF / (0.89 - 1.09 *· p/Vmean + 0.043 *· log(area) - 0.00016 *· 

elevation) 

0.54 
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HQ50 Year HQ100MDF / (0.69 - 0.70 *· p/Vmean + 0.044 *· log(area)) 0.46 
Summer HQ100MDF / (0.70 - 0.71 *· p/Vmean + 0.057 *· log(area)) 0.46 
Winter HQ100MDF / (0.87 - 1.03 *· p/Vmean + 0.044 *· log(area) - 0.00017 *· 

elevation) 

0.49 
 

 

Figure. 8 shows the errors (%) in GEV-parameter estimates for the different approaches in comparison to the original 

uncorrected MDF error (%) computed over the 486 validation sites with minimum of 30 -years of observations. Since the 490 

method p/V-quants method directly corrects the MDF -quantiles, it cannot be used to estimate the GEV parameters and hence 

is not illustrated in the Figure. 8. All methods shown, clearly improve the estimation for the location and scale parameters 

when compared to the original MDF estimates. All The corrections based on the p/V models proposed here (p/V-events, p/V-

Lmoms, and p/V-params) are less biased than the slope method (slope-events) proposed by Chen et al. (2017). Particularly the 

correction of the MDF sample L-Moments (p/V-Lmoms) shows the smallest error and bias.  495 

 

Figure 8: Error (%) comparison from of  various IPF-estimation methods (see Table 1 for explanation of methods) regardingin their ability 

to estimate the Generalized Extreme Value (GEV) distribution parameters based on annual and seasonal maximum series. Only validation 

sites with more than 30 years of observation are used for the boxplots. 

Figure. 9 demonstrates the quality of the different correction approaches by means of the 10-, 50-, and 100-year floods at the 500 

486 validation sites. With increasing return period, the performance of all correction methods appears to decline. Differences 

in the tails of the fitted distributions are more difficult to capture by the analyszed approaches. This turns out to be especially 
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valid for the low-altitude catchments. The over-correction that was observed for the mean is even more pronounced here, 

which leads to an average decline in model performance. Also, the general uncertainty in parameter estimation and 

extrapolation far beyond the time series length need to be kept in mind. Overall, even the estimation of the “true” IPF quantiles 505 

is potentially defective in itself, as will be discussed in the next section. 

 

Figure 9: Error (%) comparison of various IPF-estimation methods (see Table 1 for explanation of methods) regardingin their ability to 

estimate different flood quantiles based on annual maximum series. Only validation sites with more than 30 years of observation are used 

for the boxplots. 510 

Since the average p/V ratio is used for the direct correction of L-moments, parameters and flood quantiles, it is expected for, 

that the performance of these methodsto decreases with increasing return period, as the p/Vmean ratio may not relate much to 

the higher quantiles. Still, even for the 100-year flood, these approaches appear to work just as well as the p/V-event approach, 

as also indicated by the performance criteria (nRMSE (%) and pBIAS (%)) given in Table 7. The performance of all three 

methods is comparable, but due to its previously named advantages, the L-moment method (p/V-Lmoms) is considered the 515 

superior approach in this setting. 

Between Among  the event correction techniques, the slope methods perform similar to the p/V methods in terms of overall 

error but are is  again more biased. When focusing on the catchments with areas below 500 km², the superiority of the p/V-

methods becomes apparent.  

 520 

Table 7: Performances of different IPF estimation methods in terms of normalized root square mean error (nRMSE (%)) and percentage bias 

(pBIAS (%)) for different flood quantiles estimated from annual maximum series. The performance is computed over validation sites with 

more than 30 years of observations, while the values in parentheses show the performances for catchment sizes below 500 km². For a 

description of the methods shown here, see Table 1. 

  T = 10 years T = 50 years T = 100 years 

  nRMSE [%] pBIAS [%] nRMSE [%] pBIAS [%] nRMSE [%] pBIAS [%] 

MDF 17.8 (50.0)  -18.0 (-32.9)  17.8 (48.1)  -18.2 (-32.3)  17.9 (47.5)  -18.3 (-39.1) 

Slope-events 7.0 (30.3)   -5.8 (-17.5)   8.7 (27.7)   -4.7 (-15.8)  10.3 (27.8)   -4.2 (-15.2) 

p/V-events 7.7 (20.1)   -2.1 (  -1.3)   8.5 (19.1)   -0.8 (   0.8)   9.8 (21.1)   -0.3 (   1.8) 
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p/V-Lmoms 8.2 (21.1)   -4.0 (  -3.3)   8.7 (21.1)   -3.8 (  -2.8)   9.3 (22.8)   -3.7 (  -2.6) 

p/V-params 8.1 (20.6)   -3.6 (  -2.3)   8.5 (20.7)   -3.3 (  -1.6)   9.1 (22.5)   -3.1 (  -1.2) 

p/V-quants 7.8 (20.9)   -3.6 (  -3.1)   8.6 (21.4)   -4.0 (  -3.9)   9.3 (23.2)   -4.3 (  -4.4) 

 525 

The distribution of the prediction error for the correction of L-moments (p/V-Lmoms) over the different catchment areas and 

elevations can be found in Table 8. The errors are exemplarilyy shown for the 100-year flood (HQ100). The error distribution 

is comparable to of the best estimation of the  MHQ shown in Table 5. Again, especially the overestimation for the lowest 

elevations is striking, as well as the significant underestimation at higher altitudes.  

 530 

Table 8: Average prediction error (%) of the p/V-Lmoms model for the 100-year flood (HQ100) calculated over the validation sites and 

shown here for different ranges of area and gauge elevation. Red shades indicate overestimation, while blue shades underestimation. 

  Elevation [m a.s.l.] 

  <100 <200 <300 <400 <500 <600 <700 <800 <900 <1200 

C
at

ch
m

e
n
t 

a
re

a 
[k

m
²]

 <50 18.37 -34.61 -14.45 -12.68 2.66 -2.17 17.33 -6.80 -13.73 -15.58 

<100 24.81 -7.61 -8.01 6.46 4.91 0.72 3.98 5.26 7.49 -33.61 

<200 30.72 -9.97 -1.26 0.57 4.38 -4.76 3.33 5.37 -5.10 - 

<500 16.30 2.68 -1.65 2.56 4.34 8.03 5.78 2.56 -20.01 - 

<1000 7.95 1.56 -2.25 -1.93 6.88 3.36 3.43 - - - 

<2000 5.47 -8.43 -12.11 -2.63 -3.31 1.26 -6.80 1.19 16.97 -1.23 

<5000 -0.50 -7.33 -7.80 -3.66 -0.53 5.03 - - - - 

<10000 -6.63 -9.86 -6.86 -4.07 -7.26 - - - - - 

<30000 -6.40 -17.31 -5.02 -0.92 - - - - - - 

 

Finally, the model performances of the mixed models, combining summer and winter floods, isare analyszed for different flood 

quantiles. Their behavior is generally comparable to the annual maximum series approach, as shown in Figure. 10. Even though 535 

the quantiles obtained with the mixed models may be more extreme and more parameters need to be estimated and corrected, 

there is no indication that the IPF correction will not function in this case. 
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Figure 10: Error (%) comparison of various IPF-estimation methods (see Table 1 for explanation of methods) in regarding  their ability to 

estimate different flood quantiles based on a mixed -models of annual maximum series. Only validation sites with more than 30 years of 540 
observation are used for the boxplots. 

The nRMSE (%) and pBIAS (%) values for the mixed approach models  are shown in Table 9. According to these values, the 

event-based correction methods appear to perform best overall. For the smaller catchments (< 500 km²), the p/V methods 

outperform the slope methods. 

Table 29: Performances of different IPF estimation methods in terms of normalized root mean square error (nRMSE (%)) and percentage 545 
bias (pBIAS (%)) for different flood quantiles estimated from mixed models of seasonal maximum series. The performance is computed over 

validation sites with more than 30 years of observations, while the values in parentheses show the performances for catchment sizes below 

under  500 km². For a descriptions of the methods shown here, see Table1. 

  T = 10 years T = 50 years T = 100 years 

  nRMSE [%] pBIAS [%] nRMSE [%] pBIAS [%] nRMSE [%] pBIAS [%] 

MDF 17.7 (50.2) -17.9 (-32.9) 17.5 (48.3) -18.0 (-32.3) 17.6 (48.0) -18.1 (-32.1) 

Slope-events 8.1 (31.7) -6.3 (-18.6) 9.6 (28.6) -4.7 (-16.6) 10.6 (28.5) -4.1 (-15.9) 

p/V-events 8.1 (21.2) -2.5 (  -2.7) 8.5 (20.8) -0.3 (   1.2) 9.1 (23.3) 0.7 (   3.1) 

p/V-Lmoms 12.3 (23.0) -5.7 (  -3.9) 12.7 (22.1) -5.8 (  -3.0) 13.0 (22.9) -5.8 (  -2.6) 

p/V-params 12.5 (23.5) -6.2 (  -4.7) 13.4 (23.8) -7.3 (  -5.7) 14.0 (25.3) -7.9 (  -6.6) 

 

4.3 Uncertainty Analysis 550 

The results of the resampling procedure used to assess uncertainty in the of IPF estimates are exemplarilyy shown in Figure. 

11 for the 100-year flood (HQ100) at a single site with a reduced number of 100 realizsations. In panel (a), the IPF and MDF 

estimates for each temporal resampling of the annual maximum series are plotted against each other (respectively IPF-bs and 

MDF-bs, respectively). This shows the bandwidths of both the IPF and MDF estimates as a result of sample and parameter 

uncertainty. Figure. 11 (b) shows the resampled IPF flood quantiles (IPF-bs) vs. the quantiles estimated using the p/V-Lmoms 555 

model by considering different sources of uncertainty: p/V-bs illustrates the uncertainty only due to the fitting of the p/V-

Lmoms model, p/V-full indicates the sample and parameter uncertainty (MDF-bs) propagated through the p/V-Lmoms model, 
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and p/V-bs-bs combines the sample and the parameter uncertainty (MDF-bs) with the p/V-Lmoms model uncertainty (p/V-bs) 

to tackle the total uncertainty. In this example, it becomes obvious that the uncertainty from the p/V model (p/V-bs) is 

significantly smaller than the sample and parameter uncertainty (MDF-bs or even IPF-bs). This is valid for the majority of 560 

sites and is hardly affected from by  the number of realiszations.  

 

Figure 11: Example of uncertainty ranges with 100 realizations at a single site: (a) HQ100 from IFP-bs vs. MDF-bs illustrating the sample 

and parameter uncertainty, (b) HQ100 from IPF-bs vs. estimated IPF where p/V-bs illustrates the p/V-Lmoms model uncertainty (shown as 

dark blue points);, p/V-full illustrates the propagation of sample and parameter uncertainty through the p/V-Lmoms model, and the p/V-bs-565 
bs illustrates the total uncertainty that combines both sample and parameter uncertainty with the p/V-Lmoms model uncertainty. 

Figure. 12 shows the relative widths of the 95% confidence intervals for all types of uncertainty estimated. The average widths 

of the IPF-bs, MDF-bs, and p/V-full seem to be similar with to  each other, where the IPF sample and parameter uncertainty 

shows greatera larger variability. The width of the average range of the p/V-Lmoms model uncertainty (p/V-bs) is very small 

at all sites and therefore contributes little to the overall level of uncertainty (p/V-bs-bs). Thus, the overall uncertainty of the 570 

p/V-Lmoms model estimation method is mainly influenced by the sample and parameter uncertainty of the original MDF 

series.  
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Figure 12: Relative widths of the 95% confidence interval (as per Eqn. 10) of various uncertainty types for different flood quantiles, where: 

IPF-bs and MDF-bs show the sample and parameter uncertainty of the original series, p/V-fullbs shows the sample and parameter uncertainty 575 
propagated through the p/V-Lmoms model, p/V-bs shows only the uncertainty of the p/V-Lmoms model, and p/V-bs-bs shows the total 

uncertainty that combines both sample and parameter uncertainty with the p/V-Lmoms model uncertainty. The boxplots here are obtained 

for validation sites with more than 30 years of observations. 

In order to assess the full bandwidth of the errors in the linear p/V-Lmoms model estimates, they are compared to the range 

of errors in the MDF estimates. Here, the errors for the uncertainty both in MDF (MDF-bs) and p/V-Lmoms (p/V-bs-bs) 580 

estimates are computed according to Eqn.11. Figure. 13 shows the median deviations of the MDF-bs and p/V-bs-bs quantiles 

from the respective IPF-bs quantiles, as well as the lower and upper limits of the 95% confidence intervals of the errors for the 

10-, 50- and 100-year flood quantiles. The median errors from p/VLM-bs-bs are very similar over the three quantiles, but the 

higher quantiles HQ100 exhibits higher outliers. This is in agreement with the performance of the p/V-Lmoms model illustrated 

in Figure 9. This means that the median errors obtained over the 1,000,000 realizations are very similar with to  the actual 585 

model errors at each site. Moreover, it is obvious that the overall uncertainty gets larger with increasing return period, as can 

be seen by the increasing distance between lower and upper confidence limits. The p/V-Lmoms estimates appear to be slightly 

positively skewed, which is especially noticeable in the 95% confidence interval for the HQ100. At many sites, there is a 

significant overestimation of the true IPF quantile when combining the sample and parameter uncertainty with p/V-Lmoms 

model uncertainty. The MDF estimates, on the other hand, exhibit the expected persistent underestimation.  590 
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Figure 13: Error distribution obtained as per Eqn. 11 for three flood quantiles (left) from considering the sample and parameter uncertainty 

of the  mean daily flow (MDF) series (MDF-bs) and (right) total uncertainty of the p/V-Lmoms model (p/V-bs-bs). Shown are the median 

errors, as well as the lower and upper limits of the 95% confidence intervals obtained at the validation sites with more than 30 years of 

observation. 595 

Figure. 14 summarizes the general overlap of the confidence intervals of MDF and estimated IPF with the confidence intervals 

of the observed IPF for the three flood quantiles (as per Eqn. 12). It becomes obvious that the agreement between IPF and the 

p/V-Lmoms model estimates is significantly larger greater  than with the MDF values. This observation suggests that with 

high probability the p/V-Lmoms model estimates are in the range of the “true” IPF quantiles. The fact that overlaps in both 

the MDF and the models increase with increasing return period suggests again the overall level of uncertainty in the higher 600 

IPF quantiles due to sample and parameter uncertainty. 

 

Figure 14: Percentage overlap for the three flood quantiles as per Eqn. 12 computed from the 95% confidence intervals of mean daily flow 

(MDF) sample and parameter uncertainty (MDF-bs) and p/V-Lmoms total uncertainty (p/V-bs-bs). The boxplots are obtained by considering 

validation sites with more than 30 years of observations 605 
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5 Discussion 

5.1 Factors affecting the correction of mean daily (MDF) to instantaneous peak flow (IPF) statistics 

In theory, the relative deviation between MDF and IPF peaks depends greatly on catchment size, as shown, for instance, in 

Fuller (1914) and Ellis and Gray (1966). The effect of the catchment size is clearly visible in our data set. The larger the areas, 

the smaller the error between instantaneous peak and daily flows, and consequently, the respective computed statistics. For 610 

catchments smaller than 1,000 km2, this error can reach down to -80%. Small catchments without appreciable buffering 

capacity react quickly to even low rainfall, leading to short and steep flood waves that are hardly reproduced on coarsely 

averaged time scales. Factors like steep slopes, impermeable underground, and short but intense rainfall contribute to the 

flashiness of storm events and make these events even less representable through daily flow records. For areas larger than 

5,000 km2, this error becomes very small (< -20%). This agrees well with the findings of Ellis un Gray (1966) and Chen et al. 615 

(2017) which state that for basins larger than 10,000 km2, the peak ration between MDF and IPF series converges to 1. Larger 

basins area typically characterized by high base flow and long response times which translates on a good representation of IPF 

from the MDF. 

Apart from catchment size, elevation can play also an important role as shown in Canuti and Moisello (1982). Mountainous 

catchments have a fast response time and are generally more heavily influenced by meteorological forcing, such as snowmelt 620 

processes or convective events, as demonstrated by Gaal et al. (2015). Therefore, the error is expected to increase with high 

elevation. In our case study, errors at high-altitude sites seem to be particularly significant (40% to 60% underestimation). 

However, this could be a combined effect of small catchments, as mountainous basins are typically smaller in size. On the 

other hand, sites with elevation lower than 100 m a.s.l. exhibit smaller errors and are stratified according to catchment size. 

For example, basins larger than 5,000 km2 show a lower error at an elevation of 100 m compared to 300 m a.s.l.. The effect of 625 

the elevation on the higher altitudes is less visible in our dataset. Apart from the error in the peak magnitude, aA weak 

relationshiplink  is also visible between high elevation and smaller temporal overlap between the twoMDF and IPF peaks. 

Different flood genesis, considered here by separating the data in two seasons (winter and summer), also exhibit different error 

behavior. Overall, summer IPF statistics were up to 20% more underestimated than winter IPF statistics. This occurs mainly 

due to the presence of frequent convective events and moderate rainfall on snow – which enable faster catchment responses. 630 

As the summer peaks are underestimated, consequently, when performing a typical annual maximum flow series, summer 

events will be underrepresented, resulting in a non-representative fitted probability distribution. This is visible in catchments 

with areas under 5,000 km2, where up to 40% of annual peaks are falsely chosen from the winter season. Apart from not being 

able to properly identify flood magnitudes when using mean daily flows, this is a serious issue for the classification of flood 

regimes, identification of dominating flood types and application of heterogeneous flood frequency analysis when daily data 635 

are the only available option. 

Additionally, other factors such as the type and amount of precipitation, soil initial conditions and characteristics or slope and 

land use, have been shown to influence the on-site variation between instantaneous peak and daily flows. Since their combined 
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effect generates a distinctive daily flow hydrograph, the peak-to-volume (p/V) ratio becomes an important predictor to describe 

the on-site and intra-site variation when correcting MDF events or statistics. The same principle holds as well for the slope 640 

method correction suggested by Chen et al. (2017). However, in contrast to the slope method, the p/V ratio contains information 

about the direct flood volume, which may describe the variability between events and catchments better. This is shown to be 

the case mainly for catchments under 500 km2, where the proposed linear models based on the p/V ratio outperform the slope 

method. However, this can be attributed to the integration of the most important predictors (such as area, elevation or p/V 

ration), or to the poor performance of the slope methods for areas under 500 km2 as discussed in Chen et al. (2017). 645 

5.24.6 Range of applications and limitations 

All the correction methods applied here, either on the MDF peak flow events or MDF statistics, generated a better agreement 

with IPF statistics than the statistics from the pure MDF sereies. The slope methods exhibited overall a constant 

underestimation around 10 to 20% of the IPF statistics. This agrees also with the results from Chen et al. (2017), where similar 

underestimation for catchments in Iowa, USA, was also observed. On the other hand, p/V methods were leass biased than the 650 

slope method. Although all the p/V models proposed had similar performance, the L-moment method (p/V-Lmoms) is more 

preferable due to its convencience. Correcting the MDF L-moments ensures not only a complete correction of the distribution, 

including both low and high quantiles, but as well is not restricted to a type of probability distribution. The method of correcting 

the error of in  MDF floods using the p/V ratio performs well and is easily applicable in our study area. However, its great 

simplification and mere approximation of physical flood- generating processes results in some problems and limitations that 655 

will be listed and discussed here.  

The first aspect that may influence the performance of the proposed IPF correction method is the event separation technique. 

The chosen technique determines how flood events and thus the required hydrograph characteristics are defined. The choice 

of baseflow- separating algorithm can greatly affect the identification of start and end points of flood events. Strict 

independence criteria and thresholds for event recognition may lead to rejection of crucial flood events when considering daily 660 

time series. Lax criteria, on the other hand, may create unnaturally long multi-peak events and false inclusion of small events, 

both leading to unrealistic hydrograph characteristics and IPF estimates. Thus, the additional step of refining multiple peak 

events, as suggested by Tarasova et al. (2018), should be carried out, when rainfall and snowmelt information is available. In 

their study, the refinement led to a reduction of multi-peak events from more than 50% to 44.7% of all identified events. In 

this study, the ratio of multi-peak to single-peak events is 57.9% for the year, 58.2% for summer and 58.4% for winter. 665 

Using the p/Vevent in order to correct individual events and then using the corrected series for FFA poses in theory represents a 

more sensible approach than using the p/Vmean from the annual MDF maxima. As mentioned before, maximum MDF events 

do not necessarily coincide with maximum IPF events, which is why correcting all events first and then selecting the annual 

maxima should yield a more appropriate IPF sample. But again, correcting individual events depends greatly on a very careful 

event separation, which could not be achieved in this case and which led to some unrealistic IPF estimates. Nonetheless, if a 670 
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proper event separation is possible, the event correction method may have the larger greater  potential. In such a case, a single 

model would be sufficient to account for all aspects of IPF estimation, including high flood quantiles.  

A problem for IPF correction, which has been exhaustively discussed above, are has to do with gauges that exhibit little 

difference between MDF and IPF floods, even though their p/V ratio would suggest a much larger error. For our dataset 

catchments, this applies to the lowest-altitude gauges in the data set. The MDFs at these sites are over-corrected and thus 675 

exhibit severe overestimation of the true IPFs. We therefore discourage the application of the suggested correction methods at 

catchment outlets situated below 100 m a.s.l.. 

This observation may also suggest that other factors need to be considered for proper error estimation or that the parameters 

of the correction models need to be adjusted for different subsets of data. This is also relevant for the question of universality 

of the proposed method. Our data set is limited and representative of a temperate humid climate and moderate altitude. Thus, 680 

a qualitative sensitivity analysis wasis carried out on the full 648-gauge site data set in order to identify patterns that may could 

be extrapolatedable to other regions. The subsets are were selected by combinations of geographical location, catchment size, 

and gauge elevation. Target variable wais the mean annual maximum IPF. Differences in the individual models due to different 

degrees of freedom are natural, which is why only those subsets that lead to significant deviations from the original model are 

mentioned here.  685 

Two sets of sites deviate noticably from the original model. The first one includes the low-altitude gauges discussed before. 

Here, the overall error is so small that no correction yields better results than correction by via the p/V approach. The second 

group includes the catchments with areas below under 50 km². The errors for these sites appear very scattered and randomly 

distributed. Comparing the p/V ratio from the daily series with the p/V ratio obtained from instantaneous events, it becomes 

obvious that the difference increases with decreasing catchment size and becomes excessively large and random for catchment 690 

sizes below 100 km². The correction using mean daily p/V ratio only functions where unknown instantaneous flood dynamics 

are roughly approximated by observed daily flow variability. The smaller the temporal scale of an instantaneous flood event, 

the poorer it is reproduced in the daily records. If instantaneous events manifest themselves primarily on a sub-daily basis, the 

possibility to describe their dynamics via daily flows becomes ineligible. This observation is also in accordance with the 

observed temporal shifts between MDF and IPF events, which is increasingly pronounced in smaller catchments. In summary, 695 

the proposed correction method founders at smaller scales below 100 km². Even though the IPF estimation leads to a general 

improvement at this scale, the daily flood time scale poses a poor predictor in these catchments. In other cases, when the flood 

timescale is larger than a day, then the p/V predictor should be able to capture the flood dynamics. Still, attention must be paid 

to the baseflow separation, to ensure that the calculated p/V predictor is representative of the catchment behavior. 

On the other hand, for catchments between 100 to 500 km2, the p/V models showed the best results. This can be attributed to 700 

the selected predictors, whose combination is more representative for these catchments. It can also be attributed to the available 

dataset, as the majority of the sites have a catchment area und 500 km2 and the fitted linear models may favor the minimization 
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of the errors for these catchments. Although the conducted uncertainty analysis showed that the model uncertainty (due to the 

selected sites) is very low compared to the local parameter and sample uncertainty. 

Nevertheless, the effect of the data set should not be neglected, when determining which and how many locations should be 705 

grouped together for the fitting of the linear model. Even in the optical case that the p/V predictor describes the flood dynamics 

correctly at each site, the question of how well a single linear model can represent the whole group of sites arises. Although 

L-moments are considered More robust than parameters or quantiles, they may differ significantly for a particular group. 

Hence, a more reasonable approach would be to break the group down into subgroups. 

In our case, lLongitude and latitude do not appear to have any effect on the model fitting. Dividing the study area into quadrants 710 

does not result in any differences between the subsets, even when considering similar catchment size and elevation. Also, 

neither record length nor period of record appear to have an influence. 

The distinction between summer and winter for representation of the two most opposite flood types is particularly valid for 

this study area and should be adjusted where flood types are otherwise distributed. In general, even the rough distinction 

between different flood types for IPF estimation proved meaningful in our case, as it revealed different dynamics and MDF-715 

IPF relationships. This observation could be further exploited by more carefully defining and distinguishing between flood 

types, as e.g. proposed by Fischer (2018) or Tarasova et al. (2020). 

Finally, one should note that the type of distribution for flood quantile estimation can only be selected based on daily data and 

may differ from the optimal IPF distribution. For our data, the GEV proved flexible enough to be a good match in both MDF 

and IPF, but this could differ in other cases. 720 

65 Conclusions and outlook 

As in other studies before this one, it could be shown that the IPF-MDFmean daily (MDF) and instantaneous peak flow (IPF) 

relationship depends primarily on catchment size. It could also be observed that other factors, in this case gauge elevation, 

play a role in determining the difference between MDF and IPF floods. The relationship also appeared to differ between the 

two types of floods considered here, namely winter and summer floods. Since summer floods are often caused by short but 725 

intense rain events and thus exhibit steep rising and falling limbs, their sub-daily peaks are much larger than and difficult to 

estimate from the smoothed average daily peaks. Long, voluminous winter floods, on the other hand, show a much smaller 

IPF-MDF ratio and are easier to model. 

This study has also shown that hydrograph characteristics, like the peak-volume ratio of flood events can be used to estimate 

instantaneous peak flows when only average daily series are available. The p/V ratio may be used to predict both IPFs of 730 

individual events and instantaneous flood statistics, including mean annual and seasonal maximum flows and flood quantiles. 

Due to improper flood event separation, the event-based correction method produced some outliers in our case but may work 

significantly better when flood events can be defined more carefully. In general, the p/V method requires a minimum of data 
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and can be applied using mere only information from the daily series itself. The performance could be marginally improved 

by including gauge elevation as additional predictor in some of the models.  735 

The general recommendation for estimating IPF flood quantiles is to use the average p/V approach for correction of L-moments. 

This method is convenient, since L-moments can be globally corrected, while distributions may be locally fitted afterwards. It 

turned out that the first two L-moments are easily estimated using p/Vmean, while higher order L-moments or L-moment ratios 

are more difficult to model with this approach.  

There are two limitations, where the proposed method should be handled with care: a) at sites with gauge elevations below 740 

100 m, since it overestimates the true difference between IPF and MDF, and b) at catchments smaller than 100 km², where it 

underestimates the error so that the full correction potential cannot be achieved. Still, in comparison to the slope method 

proposed by Chen et al. 2017, the p/V approach works significantly better for smaller catchment areas, especially below under 

500 km². For larger catchments, the slope method appears very robust for all catchment sizes and elevations. The p/V methods 

perform better in many larger catchments but outliers might be produced where the above-named restrictions are met. 745 

For future analyses, it will be meaningful to test the universality of the proposed approach in other study regions. Also, the 

effect of the flood event separation on the IPF estimation performance should be analyszed in more detail, especially in order 

to improve the event correction technique. Finally, it will be interesting to see whetherif explicit consideration of more carefully 

defined flood types can improve the IFP estimation in mixed models. 
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Data availability 

Not all of the flow data used in this study are publicly available but have to be requested at the respective state water authorities: 

The discharge data used in this study is publicly available on the websites of the respective federal agencies.  

Lower Saxony: Niedersächsischer Landesbetrieb für Wasserwirtschaft, Küsten- und Naturschutz (NLWKN) 

http://www.wasserdaten.niedersachsen.de/cadenza/ 755 

Saxony-Anhalt: Landesbetrieb für Hochwasserschutz und Wasserwirtschaft Sachsen-Anhalt (LHW) https://gld-sa.dhi-

wasy.de/GLD-Portal/ 

Saxony: Sächsisches Landesamt für Umwelt, Landwirtschaft und Geologie (LFULG) 

https://www.umwelt.sachsen.de/umwelt/infosysteme/ida/ 

Bavaria: Bayerisches Landesamt für Umwelt (LfU) https://www.gkd.bayern.de/de/ 760 

Baden-Württemberg: Landesanstalt für Umwelt Baden Württemberg (LUBW) https://udo.lubw.baden-

wuerttemberg.de/public/ 
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