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Abstract. In northern cold-temperate countries, a large portion of annual streamflow is produced by spring snowmelt, which

often triggers floods. It is important to have spatial information about snow variables such as snow water equivalent (SWE),

which can be incorporated into hydrological models, making them more efficient tools for improved decision-making. The

present research implements a unique spatial pattern metric in a multi-objective framework for calibration of hydrological

models and attempts to determine whether raw SNODAS (SNOw Data Assimilation System) data can be utilized for hydrolog-5

ical model calibration. The SPAtial Efficiency (SPAEF) metric is explored for spatially calibrating SWE. Different calibration

experiments are performed combining Nash-Sutcliffe efficiency (NSE) for streamflow and root-mean-square error (RMSE),

and SPAEF for SWE, using the Dynamically Dimensioned Search (DDS) and Pareto Archived multi-objective optimization

(PADDS) algorithms. Results of the study demonstrate that multi-objective calibration outperforms sequential calibration in

terms of model performance (SWE and discharge simulations) . Traditional model calibration involving only streamflow pro-10

duced slightly higher NSE values; however, the spatial distribution of SWE could not be adequately maintained. This study

indicates that utilizing SPAEF for spatial calibration of snow parameters improved streamflow prediction compared to the con-

ventional practice of using RMSE for calibration. SPAEF is further implied to be a more effective metric than RMSE for both

sequential and multi-objective calibration. During validation, the calibration experiment incorporating multi-objective SPAEF

exhibits enhanced performance in terms of NSE and Kling-Gupta Efficiency (KGE) compared to calibration experiment solely15

based on NSE. This observation supports the notion that incorporating SPAEF computed on raw SNODAS data within the

calibration framework results in a more robust hydrological model.The novelty of this study is the implementation of SPAEF

with respect to spatially distributed SWE for calibrating a distributed hydrological model.

1 Introduction

Cold temperate countries like Canada are characterized by substantial spring runoff, where streamflow is generated or amplified20

by snowmelt. Indeed, spring snowmelt is one of the predominant hydrological events influencing the annual water budget of

high latitude watersheds (DeWalle and Rango, 2008; Buttle et al., 2016). Rapid melting of snow can result from a combination

of high temperatures and rainfall over frozen ground resulting in heavy runoff, which will exacerbate flooding. A reliable flow

forecast system, therefore, should provide inflow forecasts using hydrological models that can simulate the complex processes
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occurring in the watershed. These models can mimic the relationship between inflow and outflow in a watershed provided that25

they have adequate meteorological data (precipitation, temperature, relative humidity, wind speed and direction) and geograph-

ical data (digital elevation model, land cover and soil maps) (Singh and Woolhiser, 2002). Distributed hydrological models are

capable of representing the spatial variability of hydrological processes and state variables within a watershed, which cannot

be obtained by lumped models (Markhali et al., 2022).

Snow distribution, together with the frequency, duration and intensity of spring snowmelt, influences extreme runoff events30

(Marsh et al., 2008), soil water storage capacity, subsurface flow (Roach et al., 2011; Frampton et al., 2013; Jafarov et al.,

2018) and groundwater recharge (Mohammed et al., 2019; Ala-Aho et al., 2021). Owing to the dominant control of snow on

the water balance during the snow-melt season, typically from March to May, the spatial distribution of snow has received much

attention (Hiemstra et al., 2002; Woo and Young, 2004). Spatial variability of snow cover results from various processes that

occur across different spatial scales (Clark et al., 2011). At the watershed scale, it is affected by meteorological variables (e.g.,35

temperature, precipitation, evaporation) and by elevation, topography and vegetation, while at the hillslope-scale it is governed

by processes such as drifting, trapping of snow, and the nonuniform snow unloading by the forest canopy (Hojatimalekshah

et al., 2021). Methods that are available for analyzing spatial variation of the snowpack have their limitations and incorporating

them into hydrological models is difficult. For example, interpolation techniques (Harshburger et al., 2010) for generating

snow water equivalent (SWE) maps at the watershed scale require a surface network of ground SWE measurements, which are40

frequently limited in number or are absent. Passive micro-wave sensors provide appropriate information on snow in areas with

simple topography, but they do not work properly in higher elevations, typically underestimating SWE (Wrzesien et al., 2017).

Moreover, their low spatial resolution requires appropriate downscaling approaches to bring the information to the watershed

scale. GlobSnow (Luojus et al., 2020), which is currently available as a global snow monitoring system, integrates passive

microwave remote sensing data from multiple satellites to provide near-real-time information on snow cover extent at a global45

scale. This valuable resource offers insights into the spatial distribution of snow cover across diverse regions. On one hand,

and despite its easy accessibility, GlobSnow exhibits relatively coarse resolution (25 km * 25 km), thereby limiting its ability

to capture fine-scale details. On the other hand, SNODAS (SNOw Data Assimilation System) (NOHRSC, 2004) represents

a subsequent advancement that integrates passive microwave remote sensing data, ground measurements and weather data to

generate gridded snow data sets at a finer resolution (1 km* 1 km). The incorporation of various data sources and assimilation50

techniques into SNODAS enhances the quality and reliability of snow data, enabling more accurate hydrological modelling

and facilitating rigorous scientific investigation.

SNODAS is a modelling and data assimilation system that had been developed by NOHRSC (National Operational Hy-

drologic Remote Sensing Center). It uses a physically-based mass and energy balance snow model that assimilates automated

ground, airborne measurements and satellite data (Zahmatkesh et al., 2019) to provide accurate estimates of snow cover and as-55

sociated variables for hydrological modelling and analysis. The dataset includes snowpack properties such as depth and SWE,

covering variables such as liquid precipitation, snowmelt runoff, temperature, and more (Barrett, 2003). It has provided daily,

gridded data at a 1 km x 1 km spatial resolution for the USA since 2004 and for southern Canada since 2009.
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Researchers used bias-corrected SNODAS SWE data in hydrological modelling, given that it provides more accurate and

reliable input data for the models whereas raw SNODAS data may contain errors and biases Zahmatkesh et al. (2019); King60

et al. (2020). These errors and biases can adversely affect the accuracy of hydrological models that rely upon SNODAS data

as input. A study by Clow et al. (2012) concluded that SNODAS provides reasonably true estimates of SWE in forested

areas and can be used as observed data to calibrate hydrological models for moderate- to large-watersheds and for estimating

runoff forecasts. Zahmatkesh et al. (2019) demonstrated that bias-correcting SNODAS SWE products, which align with the

cumulative distribution function of interpolated SWE, improved the accuracy of the SNODAS products and enhanced model65

performance in simulating peak values during hydrological modelling and streamflow simulation. Despite the high uncertainty

that is associated with SNODAS estimates in eastern Canadian watersheds, they remain valuable in regions with limited snow

stations. Bias correction of SNODAS data may not be possible in situations where there is a lack of ground-based measurements

or observations with which to compare the SNODAS data. Given the unavailability of observed SWE data in the study area,

Leach et al. (2018) applied a bias correction technique, which was originally used for SNODAS snow depth data, to adjust the70

SNODAS SWE dataset, assuming a comparable level of relative bias between snow depth and SWE based upon their close

relationship with the observations. This paucity of data compels researchers to explore new methods that allow the use of

SNODAS data without relying upon traditional bias correction techniques.

This study addresses the need to investigate the feasibility and efficiency of employing raw SNODAS data for calibrating

hydrological models without bias correction, utilizing diverse objective functions, and evaluating the adequacy of the uncor-75

rected SNODAS data in generating satisfactory results. The current research aims to bridge this gap by examining potential

approaches that would enhance the reliability and accuracy of model outputs when working with raw SNODAS data, thereby

contributing to the advancement of hydrological modelling techniques.

Distributed hydrological models, despite their capacity to mimic the spatial distribution of hydrological state variables and

fluxes, continue to be used mainly for their temporal characteristics of the aggregated streamflow variable (Demirel et al.,80

2013; Schumann et al., 2013). Snow significantly influences the seasonal characteristics of streamflow, thereby affecting other

hydrological processes, such as erosion, water supply, and flood forecast. Given the importance of accurately representing snow

processes in snow-dominated watersheds, hydrological model calibration should not solely focus on streamflow but should

also account for snow dynamics (Troin and Caya, 2014; Hanzer et al., 2016; Tuo et al., 2018). Snow-related observations

are frequently utilized to improve hydrological model performance through calibration experiments (Roy et al., 2010; Parajka85

and Blöschl, 2008; Di Marco et al., 2021). Hydrological model calibration in snow dominated regions is complex because

calibration based on snow variables does not necessarily lead to optimal parameters for streamflow and vice versa . Commonly

used hydrological models can accurately replicate streamflow observations by calibrating them with respect to streamflow

alone. However, they might struggle to properly capture state variables, particularly related to the snowpack (Duethmann

et al., 2014; Casson et al., 2018; Liu et al., 2020; Thornton et al., 2021). For example, the models are usually calibrated using90

streamflow as the sole hydrological variable that is being simulated by the models, leaving other state variables, such as snow

and soil moisture unused in the calibration procedure. This is because spatially distributed observations traditionally have been

difficult to obtain. To improve the reliability of hydrological models, it is critical to assess the simulated patterns of model state
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variables against spatially distributed observations. It is also important to ensure that the models can accurately reproduce the

spatio-temporal dynamics of all relevant hydrological processes, leading to accurate streamflow forecasts (Kirchner, 2006).95

The increased availability of remotely sensed observations has opened new doors in hydrological model calibration (e.g.,

snow cover, Terink et al. (2015); land surface temperature, Stisen et al. (2021)). The objective of this research is to investigate

strategies that include distributed snow information in the calibration of a distributed hydrological model, with a specific focus

upon understanding the influence of different objective functions on the calibration process. The selection of an appropriate

set of objective functions is crucial, as it introduces trade-offs among model parameters that influence overall calibration100

performance and model accuracy.

A number of temporal metrics are available for comparing simulated versus observed hydrographs, but spatial distribution

comparison is occasionally used (Rees, 2008; Koch et al., 2018). Moreover, the spatial information that is contained in the

observed data is not optimally utilized, given that the model parameters are constrained against spatial observations. Spatial

metrics generally assess grid-to-grid correlation, and deviations such as bias and Pearson’s correlation coefficient R. Demirel105

et al. (2018) developed a new SPAtial EFficiency metric (SPAEF) with histogram matching to compare raster maps. The metric

was later modified to include three different components, i.e., histogram intersection, variance and correlation, which offer

bias-insensitive pattern information.

The primary objective in this study is to introduce spatial calibration with SWE data using newly developed metric SPAEF

for the calibration of the HYDROTEL hydrological model. We applied SPAEF in combination with other traditionally used110

objective functions. We conducted seven distinct calibration experiments, each employing a unique combination of objective

functions. This allowed us to assess the trade-offs and robustness of these various calibration scenarios by evaluating their

performance in terms of both streamflow and spatial SWE patterns. Notably, while SPAEF has been previously applied in

studies involving evapotranspiration (Demirel et al., 2018) and soil moisture (Eini et al., 2023), this study uses SPAEF with

SWE for the first time.115

2 Experimental Setup

2.1 Study site:

The Au Saumon watershed covers an area about 1120 km2 and is located in the Éstrie region of Québec (eastern Canada). It is

a snow-dominated watershed that is subject to different climate conditions (summers tend to be warm and humid, with heavy

rainfall; winters are cold and snowy; spring is the snowmelt season, with frequent rainfall; and autumn is drier with cooler120

temperatures). The watershed has mostly a rolling topography. Elevation ranges from 240 m at the watershed outlet, further

rising upto 1100 m in the southern and eastern portions due to presence of Mont Mégantic (Figure-1). This variation in elevation

affects the spatial distribution of snow during winter, given that it affects temperatures. While rising to higher elevations, the

temperature drops gradually, causing different patterns of melting and freezing in flat terrain and higher elevations. Vegetation

cover in the watershed consists mainly of forests, i.e., 7% conifer, 32% deciduous, and 45% mixed forest. The remaining land125

cover consists of 9% crop lands, 2% urban, and about 5% wetlands, shrub lands and grasslands (Figure-1). Winter climate
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Figure 1. Au Saumon Watershed location, elevation, stream network, streamflow outlet and land cover

dominates this watershed with snow cover usually forming in late November or early December and ending in April. Average

minimum and maximum air temperatures during winter are -12 °C and -5 °C, respectively. Annual precipitation ranges from

1000 mm to 1200 mm (https://climate.weather.gc.ca/index_e.html), with about one-third falling as snow (Bergeron et al., 2014).

The parent material yields sandstone, limestone, and shale types of soils (silty-loams) (https://sis.agr.gc.ca/cansis/) (Seiller130

et al., 2012). There is one streamflow station (030282) as shown in Figure (1) (https://www.cehq.gouv.qc.ca/hydrometrie/

historique_donnees/), with a drainage area of 769 km2. There are no SWE data observation stations within the watershed;

however, stations at Milan (station number:302060) and Bury (station number:302100) are located in close proximity to the

watershed. These stations provide point data for SWE measurements (info-climat MELCCFP, 2020).

2.2 HYDROTEL Model:135

The model that is selected for this study is a process-based, continuous, distributed hydrological model HYDROTEL, which

was developed by Fortin et al. (1995). The model has been used in a number of watersheds to study different hydrological

processes, including variation of SWE (Turcotte et al., 2007; Oreiller et al., 2014; Fossey et al., 2016; Augas et al., 2020)

and flow forecasting (Turcotte et al., 2004; Abaza et al., 2014, 2015). HYDROTEL serves as the base model for Quebec’s

operational flow forecasting system. This model discretizes the watershed in several simulation units that are referred to as140
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Table 1. .Lower and Upper Bounds of the parameters and Initial parameter values of base model

Parameters and their upper and lower bound (DDS/PADDS Algorithm) Base Model

Parameter Name Lower Bound Initial value Upper Bound Parameter Value

1. Base refreezing temperature (mm/d) -3 -1.65 2 -0.88

2. Temperature threshold for melt- Coniferous (°C) -4 0.1 4 0.61

3. Temperature threshold for melt- Deciduous (°C) -4 0.48 4 -0.08

4. Temperature threshold for melt- Open (°C) -4 0.78 4 2.00

5. Melt factor for coniferous forests (mm/d per °C) 2 9.62 15 7.83

6. Melt factor for deciduous forests (mm/d per °C) 2 8.27 15 9.69

7. Melt factor for open areas (mm/d per °C) 2 11.42 15 5.00

8. Multiplication factor for PET 0.7 0.93 1.5 1.16

9. Depth of the first soil layer (m.) 0.01 0.11 0.2 0.02

10. Depth of the second soil layer (m.) 0.1 0.45 1.5 0.42

11. Depth of the third soil layer (m.) 1 4.97 7 1.00

relatively homogeneous hydrological units (RHHUs) and river reaches (Turcotte et al., 2001). The characteristics of each

RHHU depend upon land cover, soil types and topography (Rousseau et al., 2011). HYDROTEL can be simulated on a daily

basis (opted for this study) or in 3-hour time steps. In our study, the Au Saumon Watershed is subdivided into 205 RHHUs

based upon the spatial distribution of land use, land cover, soil properties, slope and elevation. The mean surface area of the

RHHUs is 4.5 km2.145

HYDROTEL is composed of different modules, which run consecutively. The snow module uses a single-layer structure and

is based upon a mixed degree-day / energy balance hybrid approach. Snowpack characteristics (water equivalent, thickness,

mean density, liquid water content, thermal deficit, temperature) are simulated using a modified energy budget approach that

was developed by Riley et al. (1972). Empirical relationships are used to produce air-snow and ground-snow interface melt,

albedo evolution, compaction, and the liquid water that is retained by the snow cover (Turcotte et al., 2007). The modules150

selected in this study are the Thiessen polygon method for interpolation of meteorological variables (with vertical precipita-

tion gradient of 1mm/100m and vertical temperature gradient of -1°C/100m), the Rankine method for soil temperature, the

Thornthwaite equation for potential evapotranspiration and a three-layer model (BV3C) for the vertical water budget in the soil

column. The output flow is simulated using the kinematic wave equation, and the model is simulated on a daily basis.

Of all parameters that are available in different modules, a subset of 11 parameters was selected for model calibration, as155

listed in Table-1. They include seven snow-related parameters, three parameters for soil layer thickness of the 3-layer soil

column, and one parameter for converting potential evapotranspiration (PET) into actual evapotranspiration. The snow-related

parameters affect the variation of SWE in each RHHU, while the other parameters affect runoff that is generated by the model.

These parameters are selected based on sensitivity analyses done in previous studies on different watersheds (Bouda et al.,

2014; Huot et al., 2019; Lucas-Picher et al., 2020).160
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2.3 Meteorological and streamflow data

For this study, HYDROTEL is forced with spatially distributed meteorological precipitation and minimum and maximum

temperature data. For precipitation, the data that are used are from MSWEP (Multi-Source Weighted-Ensemble Precipitation),

which is a reanalysis product combining satellite data, gauge data and numerical weather model output. MSWEP is available

globally on daily and 3-hour bases from 1979 until today (http://www.gloh2o.org/mswep/). Grid cell resolution of the data165

is 0.1 degrees, which is about 10 km at the equator. Overall, MSWEP offers superior performance compared to other data

sets (e.g., ERA-5 interim, ERA-5, CHIRP, and others) (Beck et al., 2017; Xiang et al., 2021). ERA5-Land dataset is used

for maximum and minimum air temperature. ERA5-Land has been produced by numerical integrations of the global high-

resolution ECMWF land surface model with ERA5 climate reanalysis with elevation correction (Muñoz-Sabater et al., 2021)

with grid cell resolution of 0.1 degrees (about 9 km native). The gridded data for both MSWEP precipitation data and ERA5-170

Land temperature data that were used in our study range from October 2000 to September 2020 and cover 45°10’ N to 45°50’

N and 71° W to 71°30’ W. Observed daily streamflow data that were used for model calibration originate from the Ministère

de l’Environnement, de la Lutte contre les changements climatiques, de la Faune et des Parcs station 030282 (NAD83; 45°

34’ 48" // -71° 23’ 6"). The streamflow station is Au Saumon (030282), which is located 1.9 km upstream from the watershed

outlet (see Figure-1). The streamflow data is available on a daily basis from 1974 and onward.175

SWE data from SNODAS are used as observed data for model calibration. Figure 2 represents the spatial distribution

of average SWE for the month of March for the period 2015-2020 as obtained from SNODAS, together with the temporal

maximum, minimum and average of SWE across the Au Saumon Watershed. It is clearly indicated in the figure that the spatial

distribution varies from year to year, even when the spatially averaged values of SWE are in close agreement with each other.

This is the case for years 2017 and 2018 and for years 2019 and 2020, where a difference of about 10 mm in average SWE in180

March is observed. In this study, average SWE of March is selected for the spatial calibration experiment (SPAEF calculation)

as it is the month of maximum snow and maximum snow variability (transition from winter to spring, an important period

when snowmelt processes are distinct). For our study, model calibration was performed for the period spanning 2014 to 2020,

given that SNODAS data for the Au Saumon region are available from 2014 onwards, while model validation of streamflow

only was conducted for the period ranging from 2001 to 2013.185

3 Methodology

Hydrological models are typically calibrated using a single objective function, which focuses on only one aspect of the hy-

drological features, i.e., streamflow (Tolson and Shoemaker, 2007). As hydrological models have multiple outputs, this draws

attention towards using a multi-objective approach to explore the various hydrological information that is stored in hydrolog-

ical data and, thus, moving toward a multi- objective model calibration. Several studies conducted in the past suggest that190

optimizing two or more objective functions simultaneously may provides a better overall calibrated hydrological model (Ef-

stratiadis and Koutsoyiannis, 2010; Adeyeri et al., 2020; Budhathoki et al., 2020). To evaluate the added-value of calibration

taking into account spatial variation of the snow, different calibration experiments are performed using search algorithms,
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Figure 2. Spatially distributed average SWE for March, together with maximum, minimum and mean SWE for years 2015 to 2020

DDS (Dynamically Dimensioned Search) (Tolson and Shoemaker, 2007) for single objective function, and PADDS (Pareto

Archived Dynamically Dimensioned Search) (Asadzadeh and Tolson, 2013) for multi-objective functions, with the distributed195

hydrological model HYDROTEL (Fortin et al., 2001) to optimize model performance. DDS is a global optimization algorithm

for automatic calibration of hydrological models (Tolson and Shoemaker, 2007), which optimizes one objective function at

a time without requiring algorithm parameter tuning. In contrast, PADDS is a multi-objective dynamic algorithm that uses

DDS as a search engine to optimize multiple objective functions by perturbing one non-dominated solution every iteration

and archiving all non-dominated solutions throughout the search. PADDS algorithm offers multiple selection metrics function200
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for example Random selection, Crowding distance (CD), Hypervolume Contribution (HVC) and Convex Hull Contribution

(CHC). To learn more about these metrics please refer to Jahanpour et al. (2018) and Tolson and Jahanpour (2018). In this

study, the HVC selection metric was chosen for the PADDS multiobjective calibration method. The effectiveness of this metric

has been demonstrated in previous research (Asadzadeh and Tolson, 2013). When used with multi-objective functions the HVC

measures the increase in hypervolume achieved by adding a solution to an existing set and explores the Pareto front, which205

represents a range of optimal trade-off solutions, by dynamically adjusting the dimensionality of the search space. Solutions

with higher HVC values are prioritized to improve the coverage of the Pareto front, enhancing the overall quality of the cal-

ibration process. In this study, DDS is used when only one objective function is used at a time for calibration, i.e., first three

experiments, while PADDS is used to optimize the model with two or more objective functions simultaneously. This article

focuses on utilizing the spatially distributed snow information to calibrate the model to achieve better model performance210

with respect to both SWE and streamflow. A total of 1000 iterations were conducted for both DDS and PADDS to optimize

parameter values. The objective functions that are used during calibration are NSE (Nash-Sutcliffe Efficiency) for streamflow,

RMSE (Root-Mean-Square Error) for optimization of SWE over each RHHUs (relatively homogeneous hydrological units),

and SPAEF (spatial efficiency metric) for spatially distributed optimization of SWE. As NSE cannot be spatialized but can only

be calculated on the average SWE over the watershed, here we preferred RMSE as an objective function to calibrate SWE,215

because it can be applied to each RHHU (spatially) and not only on the average SWE. In addition, Kling-Gupta Efficiency

(KGE) is utilized for validation purposes. The supplementary material of this article presents a thorough analysis of the trade-

offs between different objectives: NSEQ and RMSESWE, and NSEQ and SPAEFSWE. Readers are encouraged to refer to the

supplementary section for an in-depth exploration of these trade-offs and gain valuable insights about the performance of the

algorithm with respect to the mentioned objectives.220

The objective functions selected for this study and the optimization algorithms are now presented in the next section.

3.1 Objective Functions used in the study

In this study, the NSE, RMSE and SPAEF are employed as objective functions for calibration, while the KGE is used for

validation of the model. By using these three objective functions, various calibration experiments were designed to assess the

strengths and weaknesses of each experiment in evaluating overall model performance.225

NSE (Equation-1) is used to evaluate the predictive skill of hydrological models. It basically compares error variance of the

simulated time-series, which are typically flow data, with the magnitude of the observed time-series.

NSE = 1−
∑T

t=1 (Q
t
o −Qt

m)
2∑T

t=1

(
Qt

o − Q̄o

)2 (1)

where Qo is observed discharge, Q̄o is the mean of observed discharges, and Qm is modeled discharge.

The efficiency ranges from −∞ to 1. The value of NSE is maximized during model calibration. In this study, the NSE is230

calculated between the observed flow at discharge station and the simulated flow at the corresponding RHHU.

RMSE (Equation- 2) is the standard deviation of prediction errors.
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RMSE =

√√√√ N∑
t

RHHU∑
i

(SWE_HYDROTELRHHU,t −SWE_SNODASRHHU,t)2

N ·RHHU
(2)

Where t is the time step, and N is the number of time steps when HYDROTEL or SNODAS have a non-zero SWE value.

SWE_HYDROTEL is the SWE computed by HYDROTEL for each RHHU and time step, and SWE_SNODAS is the235

average SWE of SNODAS over the RHHU for each time step. In this study, the RMSE is calculated for each of the 205 RHHUs

within the Au Saumon watershed. The spatial RMSE values are calculated by comparing the SNODAS SWE and the simulated

Hydrotel SWE. Subsequently, the RMSE is minimized to enhance the model’s performance.

SPAEF (Equation-3) is a metric that is used to assess the spatial performance of a model, as opposed to NSE and RMSE,

which are used to evaluate temporal model performance. SPAEF has been developed to calibrate distributed hydrological240

models so as to better represent the spatial variability of hydrological processes (Demirel et al., 2018; Koch et al., 2018;

Demirel, 2020). In our study, SPAEF is used for assessing spatial patterns of SWE. SPAEF is calculated according to the

following equation:

SPAEF = 1−
√
(A− 1)2 +(B− 1)2 +(C − 1)2 (3)

where245

A= ρ(obs,sim) B =

(
σsim

µsim

)
/

(
σobs

µobs

)
C =

∑n
j=1min(Kj ,Lj)∑n

j=1Kj

A is the Pearson correlation coefficient between the observed and simulated pattern, B is the fraction of the coefficient of

variation representing spatial variability, C is the histogram intersection for the histogram L of the simulated pattern and the

given histogram K of the observed pattern, each containing n bins. The value of SPAEF ranges between −∞ and 1. A SPAEF

value equal to 1 means that the simulated pattern perfectly matches the observed pattern, while a value of 0 means that there is250

no agreement between the predicted pattern and the observed pattern, which indicates that the model’s predictions are entirely

inaccurate and do not align with the observed data. An advantage of SPAEF is that it equally balances three distinct individual

metrics (A, B and C above) that individually would not appropriately characterize spatial patterns. For example, Koch et al.

(2018) show good correlations may occur between observed and simulated patterns, while a visual interpretation of the patterns

suggests this is not the case. Using a multiple-component metric, such as SPAEF, helps disentangling such inconsistencies.255

Koch et al. (2018) used SPAEF to calibrate the meso-scale Hydrological Model (mHM) for spatial distributions of actual

evapotranspiration (AET). The study highlighted the importance of incorporating spatial observations in model calibration,

since different ET patterns were obtained for similar simulated streamflow time-series, depending upon the objective function

that was used in the calibration process.

SPAEF formulation is inspired by Kling–Gupta efficiency (Equation-4) that is characterized by equally weighted components260

of variability, correlation and bias (Gupta et al., 2009), and is used frequently to evaluate streamflow simulations. In this study,
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SPAEF is used for calibrating the HYDROTEL model with respect to the spatial distribution of SWE. Given that Au Saumon

is a snow-dominated watershed during winters and the maximum snow that is accumulated during the month of March, it

was selected for spatial calibration. While calibrating the model using SPAEF, spatial grid is utilized. The SWE values from

SNODAS are in a 60*58 grid for Au Saumon watershed. For spatial calibration, the mean SWE of each grid for the month of265

March are taken into account. This resulted in 60*58 spatially distributed SWE values for each calibration year. Subsequently,

the SWE simulated by HYDROTEL for the same month (March) is transformed to match the same 60*58 spatial distribution

of SWE values. These spatial patterns, representing SWE, are then calibrated using the SPAEF

Other metric used in this study: One other metric KGE ( Kling–Gupta efficiency) is computed for all the calibration

experiments. It has been used to assess overall model performance for the various calibration scenarios that were investigated270

in this study.

KGE = 1−

√
(R− 1)2 +

(
σsim

σobs
− 1

)2

+

(
µsim

µobs
− 1

)2

(4)

KGE is calculated as Equation-4, where R is the Pearson correlation coefficient between observed and simulated streamflow

time-series, σobs is the standard deviation in observations, σsim the standard deviation in simulations, µsim is the simulated

mean streamflow, and µobs is the observed mean streamflow.275

3.2 Proposed Calibration approach

Seven different experiments were set up, with each experiment being characterized by a unique combination of objective

functions and calibration strategy (see Table 2). All calibration experiments were performed on the base model, which is

defined as model that was run with some random value without prior knowledge based upon previous studies done on similar

catchments. Initial parameter values of HYDROTEL (the base model) are presented in Table 1. HYDROTEL was calibrated280

over a 6-year period, from October 2014 to September 2020. Prior to model calibration, a 2-year warm-up period was set

up to avoid any effects of initial model conditions on its results during calibration. Validation extends from 2001 to 2014.

In addition to data availability, one important aspect for choosing the calibration period was to include winter seasons that

were characterized by low, average and high SWE values. Winters in 2019 and 2020 especially were considered as high- and

low-winter seasons, with corresponding basin-averaged SNODAS SWE values of 156.05 mm and 86.26 mm, respectively, at285

the onset of the spring melt season. The number of iterations also was fixed (1000) for each calibration for comparison. Lower

and upper bounds of the parameters that were used in all calibration experiments are presented in Table 1.

Table 2 presents all calibration experiments that were performed in this research. The first calibration experiment, hereafter

denoted as the Standard Experiment, refers to the traditional calibration process that was based upon maximizing NSEQ, which

was calculated with simulated and observed streamflow time-series. In this experiment, all 11 parameters that are listed in Table290

1 are optimized using the DDS algorithm. Experiments 2 and 3 consist of adding SWE information during the calibration

procedure. This is done by sequentially calibrating HYDROTEL, first by adjusting the snow-related parameters (parameters 1

to 7, see Table 1) to minimize RMSESWE (Experiment 2) or to maximize SPAEFSWE (Experiment 3) using DDS, after which
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Table 2. Calibration experiments with their corresponding objective functions that were used

Objective Function used−→ NSEQ RMSESWE SPAEFSWE

Calibrated Variables −→ Streamflow Average SWE Spatial SWE

Experiment- 1 (Standard) ✓

Experiment- 2 (Sequential) ✓* ✓*

Experiment- 3 (Sequential) ✓* ✓*

Experiment- 4 (Pareto) ✓ ✓

Experiment- 5 (Pareto) ✓ ✓

Experiment-6 (Pareto sequential) ✓* ✓* ✓*

Experiment- 7 (Pareto Front) ✓ ✓ ✓

✓* Streamflow is calibrated with NSE sequentially after optimizing SWE with either RMSE or SPAEF.

the runoff-related parameters (8 to 11) are adjusted with NSEQ for streamflow, again using DDS, while the snow parameters are

left unchanged. Experiment 4 and 5 consists of adding both streamflow and SWE information once with average information of295

SWE (Experiment 4) and once with spatial information of SWE (Experiment 5) in the calibration procedure. This was achieved

by maximizing NSEQ and minimizing RMSESWE at once (Experiment 4), and by maximizing both NSEQ and SPAEFSWE

(Experiment 5) using PADDS. Experiment 6 consists of adding both spatial and average SWE information in the calibration

procedure. This is done by sequentially calibrating HYDROTEL, first by adjusting the snow-related parameters to minimize

RMSESWE and maximize SPAEFSWE together using PADDS, after which NSEQ for streamflow was maximized while the300

snow parameters are left unaltered. In Experiment 7, all 11 parameters are optimized while maximizing NSEQ for streamflow

and SPAEFSWE for spatial information of SWE and minimizing RMSESWE for average information of snow.

4 Results

Values of the objective functions for each of the calibration/validation experiments are summarized in Table 3. The values of

objective functions NSEQ, RMSESWE and KGEQ corresponding to the base model are 0.630, 48.83 mm and 0.806, respec-305

tively. Using the same base model would be helpful in evaluating whether the calibration performed is adequate for the model’s

performance. When the model is calibrated with respect to SWE (for both average and spatial calibration), parameters from 1

to 7 are calibrated; when calibrating with respect to streamflow, all the 11 parameters are considered.

The first experiment is standard practice for calibrating hydrological models. The simulated streamflow in the Standard

Experiment generally follows the same temporal pattern for all calibrated years as does the observed streamflow, but the model310

has some difficulties in capturing peak streamflow (Figure 3). More specifically, the model generated more streamflow during

winter 2020 (Jan to April 2020). The observed discrepancy between the simulated and observed streamflow during different

seasons indicates potential inadequacy of the model in effectively representing the complex hydrological processes occurring

during various seasons, including snowmelt and spring runoff. For the study period, rain-on-snow events are identified based

12
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Table 4. SPAEFSWE values for each year from each experiment with best value of 0.437 (Exp 1-2017) and worst value of -0.270 (Exp

2-2020)

Year Base Model Exp- 1 Exp- 2 Exp- 3 Exp- 4 Exp- 5 Exp-6 Exp- 7

2015 0.298 0.262 0.175 0.240 -0.071 0.232 0.231 0.137

2016 0.255 0.317 0.000 0.300 0.205 0.332 0.345 0.324

2017 0.313 0.437 0.170 0.323 0.389 0.391 0.389 0.413

2018 -0.037 0.051 0.080 0.138 0.093 0.062 0.130 0.081

2019 0.100 0.116 0.275 0.252 0.147 0.223 0.278 0.217

2020 -0.057 -0.030 -0.270 0.137 -0.216 0.134 0.091 0.123

upon the occurrence of precipitation during winter months, along with a decrease in snow depth, coupled with a maximum315

temperature that exceeds 0°C. Within this experiment, the model demonstrates the capability to identify melting patterns during

rain-on-snow events. However, it exhibits limitations in accurately capturing both high and low peaks of SWE (Figure 4). As

rain-on-snow events during winter produce runoff, the model tends to interpret these as streamflow. Simulated streamflow is

relatively similar to the observed streamflow after the events. For the calibration period, values of 0.762 and 0.772 are obtained

in this experiment for NSEQ and KGEQ, respectively. When compared with the base model, the NSEQ value is improved (from320

0.630 to 0.762), which is expected given that NSEQ is the objective function. The KGEQ value slightly declined from 0.806

to 0.772, suggesting a slight decrease in hydrological model simulation accuracy, indicating a potential mismatch between

observed and simulated hydrographs. The model is validated for the 2001-2013 period, and the NSEQ value that was obtained

is 0.735, thereby indicating good agreement between observed and simulated streamflow values. The KGEQ value that was

obtained is 0.684, which suggests moderate agreement during the validation period. The spatially averaged RMSESWE value of325

SWE for the watershed with respect to SNODAS-SWE is 45.35 mm. Figure 4 indicates that HYDROTEL tends to overestimate

SWE compared to SNODAS, except for year 2020. During this year, the model generates notably higher streamflow in winter

(Figure 3) compared to the observed data. Either insufficient winter precipitation in the hydrological model or inaccurate

temperature data for the year 2020 could be contributing factors to this issue. Upon comparing precipitation data for 2020

with precipitation that was obtained from meteorological stations, discrepancies were observed in the MSWEP precipitation330

data, particularly some missing peaks during the winter season. These discrepancies in the precipitation data could potentially

contribute to the unusual output that was observed in the study. Through the comparative analysis of SWE data that were

collected from the Milan (elevation: 496 m) and Bury (elevation: 340 m) stations, it suggests that the calibrated model exhibits

a tendency to closely correspond with the values that were obtained from Milan, a station that was characterized by a higher

elevation. This response suggests the substantial influence of the elevation factor on the model simulations. SPAEF is computed335

for SWE for the month of March for each year of the calibration period and varies from -0.030 for 2020 to 0.437 for 2017

(Table 4), indicating that the success at simulating the spatial SWE patterns by HYDROTEL is highly variable from year to

year.
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Figure 3. Comparison of observed streamflow with simulated streamflow for Experiment 1

Figure 4. Comparison of SNODAS SWE with simulated SWE for Experiment 1 along with station data

In Experiment 2, all snow-related parameters are first calibrated using RMSESWE with spatially averaged (considering

the SWE values for each RHHUs for whole calibration period then averaging), modelled and SNODAS SWE followed by340

calibration of the remaining parameters with NSEQ applied to streamflow. The average RMSESWE value after calibration is
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Figure 5. Comparison of SNODAS SWE with simulated SWE for Experiment 2 along with station data

35.74 mm, which is considerably improved compared with the Standard Calibration experiment. Indeed, Figure 5 effectively

shows that simulated SWE more closely matches SNODAS SWE compared to the Standard Experiment. Note that for both

experiments, HYDROTEL significantly underestimates snow accumulation for winter 2020. The cause for this discrepancy

remains consistent with the previously discussed reasons. NSEQ for streamflow after sequential calibration is 0.575 and KGEQ345

value is 0.658, which are considerably lower than corresponding values for the Standard Experiment. The model was thus able

to improve simulated basin average SWE, but at the expense of a deterioration of the simulated streamflow. During rain on

snow events in winter, the model is able to produce the peaks of SWE, but it is unable to capture accurately the associated

melting patterns. Moreover, spatial distribution values of SWE varied from -0.270 (for March 2020) to 0.275 (for March 2019)

(Table 4). The average SPAEFSWE value is much lower compared to values obtained with the Standard Experiment. In other350

words, spatial heterogeneity of the snowpack deteriorates when calibration is performed with the average SWE value.

Instead of trying to preserve the best temporal dynamics of basin-averaged SWE, Experiment 3 attempts to maintain its

spatial distribution at the end of the snow-accumulation season using SNODAS-SWE. This is accomplished by incorporating

SPAEFSWE as the objective function for SWE for calibrating snow-related parameters, followed NSEQ for streamflow to

adjust the remaining parameters. Unsurprisingly, the March SPAEFSWE value averaged over years 2015-2020 increased to355

0.232, when compared to 0.192 and 0.072 for experiments 1 and 2, respectively (Table 3). Figure 6 depicts the relationship

between the spatial distribution of SNODAS and HYDROTEL and the corresponding SPAEFSWE value. The results indicate

that a greater spatial difference between SNODAS and HYDROTEL leads to a negative SPAEFSWE value. Conversely, when

the spatial distribution of both datasets is similar, SPAEFSWE approaches 1. The figure displays the maximum 0.437 (year-

16



Figure 6. Spatially distributed SWE values of SNODAS and HYDROTEL, along with corresponding SWE differences for minimum (-0.270

Experiment- 2 year 2020)and maximum (0.437 Experiment- 1 year 2017) SPAEFSWE values for Au Saumon Watershed.

2017- Experiment 1) and minimum -0.270 (year-2020- Experiment 2) values of SPAEFSWE that were obtained during the360

calibration experiment.

Overall, calibrating HYDROTEL using SPAEFSWE helped preserve SWE spatial heterogeneity that was simulated by the

model. Also, year-to year variability in SPAEFSWE is reduced, as SPAEFSWE varied from 0.137 (Mar 2020) to 0.323 (March

2017). A year-to-year comparison of spatial SWE reveals that calibrating the model with SPAEFSWE degraded SWE distribu-

tion in some years, e.g., 0.300 (March 2016) and 0.240 (March 2015). This means that spatial integrity of the SWE value is365

occasionally compromised using the calibration strategy. A detrimental effect of calibrating the model with SPAEFSWE is that

average SWE value is overestimated by model as compared to observed average value (Figure 7). Correspondingly, average

RMSESWE is 39.38 mm, which is higher than the value that is obtained when the model is calibrated using RMSESWE as the

objective function. The sequential calibration with NSEQ yields a value of 0.737. The KGEQ value is 0.764, which is better

than what is achieved in Experiment 2. This suggests that using spatial distribution to calibrate snow parameters apparently pro-370

vides better results for streamflow than using average SWE value to calibrate snow parameters. Interestingly, both experiments
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Figure 7. Comparison of SNODAS SWE with simulated SWE for Experiment 3 along with station data

1 and 3 overestimated spatially averaged SWE, but the sequential calibration strategy provided a good match between simu-

lated versus observed flows, given that NSEQ and KGEQ values for experiments 3 and 1 are comparable. From an experimental

perspective, it is worth noting that in Experiment 3, the spatial distribution of SWE, i.e., the SPAEFSWE value, exhibits better

improvement when compared to the standard practice. Although the temporal dynamics of spatially averaged SWE are well375

preserved in Experiment 2, the flow-related model parameters could not be properly calibrated to obtain a good fit between

observed and simulated flows. Perhaps this is due to the spatial invariance of these parameters, to the sequential modelling

strategy, or both. In order to investigate the latter, experiments were performed in which NSEQ, RMSESWE or SPAEFSWE are

simultaneously optimized with multi-objective calibrations (experiments 4 to 7).

In Experiment 4, NSEQ for streamflow and RMSESWE for SWE are optimized together using PADDS. The maximum380

value of NSEQ is 0.721, while RMSESWE is 39.09 mm, which shows improvement compared to the Standard Experiment

(Experiment 1) in terms of RMSESWE. Upon comparison with the sequentially calibrated Experiment 2, an improvement was

observed in the NSEQ and SPAEFSWE values, coupled with a decrease in RMSESWE. Surprisingly, the comparison between

Experiment 3 and 4 suggests that sequential calibration of the hydrological model using SPAEFSWE results in better model

performance in terms of NSEQ, SPAEFSWE, and KGEQ, in contrast to multi-objective calibration with NSEQ and RMSESWE.385

SPAEFSWE of SWE varied from -0.216 (for March 2020) to 0.389 (for March 2017), with an average 0.091 for all calibrated

years, which is higher than the value that was obtained using RMSESWE and NSEQ in a sequential calibration strategy (0.072).

In other words, opting for a simultaneous RMSESWE-NSEQ calibration improved the spatial SWE distribution compared to a

sequential calibration strategy. The value remains below that obtained in Experiment 3 (0.232).
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In Experiment 5, NSEQ is used to optimize streamflow and SPAEFSWE for spatial SWE together. The optimized solution390

yields NSEQ of 0.750 and a KGEQ of 0.775. Spatial distribution of SWE varied from 0.062 (for March 2018) to 0.391 (for

March 2017). The average SPAEFSWE value that was obtained for all calibrated years is 0.229. When compared with standard

calibration (Experiment 1), the spatial distribution of SWE is improved (from 0.192 to 0.229), together with RMSESWE (from

45.35 mm to 40.53 mm), while NSEQ of Experiment 5 is comparable with standard calibration with an improved KGEQ value.

Upon comparing experiments 5 and 3, where SPAEFSWE is calibrated followed sequentially by NSEQ, a slight improvement395

in NSEQ is noted. Yet, SPAEFSWE and RMSESWE appear to be compromised. Here, sequential calibration using SPAEFSWE

results in superior performance for RMSESWE and SPAEFSWE, whereas multi-objective calibration jointly yields a better

performance measure for NSEQ. Comparing the results to Experiment 4, where NSEQ is calibrated with RMSESWE, it is

observed that NSEQ, KGEQ and SPAEFSWE are improved in Experiment 5, while RMSESWE results are comparable. This

again suggests that using SPAEFSWE to calibrate spatially distributed SWE is more advantageous than using RMSESWE to400

calibrate spatially averaged SWE when employing multi-objective functions with NSEQ.

In Experiment 6, both RMSESWE for spatially averaged SWE and SPAEFSWE for spatial distributed SWE are first opti-

mized simultaneously using PADDS to calibrate HYDROTEL’s snow-related parameters, followed by maximizing NSEQ for

streamflow to calibrate the remaining flow-related parameters. After calibration, the best value for RMSESWE is 38.89 mm,

while SPAEFSWE values ranged from 0.091 (for March 2020) to 0.389 (for March 2017), with an average value of 0.244.405

Sequential calibration with NSEQ provided NSEQ value of 0.687 for streamflow and a KGEQ value of 0.820. In comparison to

experiments 4 and 5, NSEQ has decreased substantially while the KGEQ value has increased substantially. This suggests that

model performance has improved in terms of capturing the overall pattern of the observed data, although the accuracy in fitting

individual data points may have declined slightly. In Experiment 6, a significant improvement is noted for SPAEFSWE, with a

slight decrease in RMSESWE compared to Experiment 4. This suggests that by sequentially calibrating both SPAEFSWE and410

RMSESWE followed by NSEQ, the model is able to capture the spatial distribution of both SWE and streamflow. Yet, it should

be noted that model’s fitness to individual data points might not be captured accurately. In Experiment 6, slight improvement in

SPAEFSWE was noted, with a slight decrease in RMSESWE, but a significant reduction in NSEQ as compared to Experiment

5. This implies that calibrating SPAEFSWE and NSEQ together is a better approach than sequential calibration of SPAEFSWE

and RMSESWE, followed by NSEQ under the considered model setting.415

As the last step in calibration trial, all objective functions were calibrated together using the PADDS algorithm. NSEQ

after optimization is 0.754, KGEQ is 0.805, and RMSESWE is 40.15 mm. Spatial distribution of SWE varied from 0.081 (for

March 2018) to 0.413 (for March 2017). The average SPAEFSWE value for all calibrated years is 0.216. When compared to

the standard experiment, Experiment 7 outperforms in terms of RMSESWE, SPAEFSWE and KGEQ, while NSEQ remains

comparable in both cases. Among other experiments, Experiment 7 shows better performance when compared to experiments420

2 and 4, while results from experiment, 3 and 5 are comparable to Experiment 7. By comparing Experiment 6 where NSEQ is

sequentially calibrated with RMSESWE and SPAEFSWE, and Experiment 7 where all three functions are calibrated together,

we conclude that calibrating together provides better results for NSEQ and comparable results for other objective functions.
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In comparing all calibration strategies during validation, NSEQ values for the experiments could be ordered: 5, 7, 1, 3, 4, 6,

and 2. KGE values > 0.75 are generally considered to be indicative of good model performance, as noted in previous studies425

(Towner et al., 2019). Upon analyzing the results in calibration experiments, most are found to have KGE values greater than

0.75 for the calibration period; the exceptions are the second (calibration with RMSESWE and sequential NSEQ) and fourth

(calibration with RMSESWE and NSEQ simultaneously) experiments. This suggests that calibration in these experiments is

satisfactory, and the model is expected to perform well. The validation results from the years 2001-2013 were analyzed for the

best model performance with respect to KGEQ. Experiment 5 had the highest KGEQ indicating the best model performance.430

Experiment 3 followed closely behind, while experiments 1, 4 and 7 produced nearly identical results. In contrast, experiments

2 and 6 had poor performance in terms of KGEQ. A noticeable feature of SPAEFSWE is the amount of time that is required for

calibration, together with the number of iterations to reach the best value. In this study, iterations were set at same number to

maintain comparable scenarios, while the duration of spatial calibration was twice as long as the remaining experiments.

5 Discussion435

Analysis of parameter variations following calibration revealed consistent values for the base refreezing temperature, the PET

parameter, and depth of the first two soil layers across multiple calibrations. Yet, variation was observed in the temperature

thresholds for melt, melt factor, and thickness of the third soil layer among experiments, particularly for Experiment 2. In the

initial phase of calibration experiments, several trial and error runs were conducted to determine parameter boundaries, while

simultaneously reviewing relevant literature, which enhanced understanding and accuracy through comprehensive parameter440

exploration. Experiment 2, which used RMSESWE and NSEQ sequentially, consistently reached the parameter bounds for

temperature thresholds and melt factors. Depending upon the land use, temperature threshold values also show opposite values,

i.e., -4 °C for conifers versus 4 °C for deciduous and open areas. This means that there are areas with a lot of snow and others

with very little snow in the watershed based on land use, which does not represent the accurate spatial distribution of snow

for this watershed. The watershed exhibits a significant predominance of coniferous vegetation, leading to a lower temperature445

threshold in Experiment 2 compared to the other experiments. Experiment 1 overestimates SWE compared to SNODAS. By

decreasing the temperature at which melting begins for a large portion of the watershed, Experiment 2 decreases the overall

quantity of snow to levels closer to SNODAS values. Yet, the spatial distribution of snow is not respected. Therefore, it is not

recommended that parameters using RMSESWE and NSEQ be calibrated sequentially.

As the research objective, this study evaluated the practicality of using raw SNODAS data for hydrological model calibra-450

tion. A number of researches have been done previously using bias corrected SNODAS and raw SNODAS information. King

et al. (2020) revealed a significant enhancement in area melt estimates during the spring melt when utilizing bias-corrected

SNODAS-SWE data compared to raw SNODAS estimates, which exhibited unrealistic melt volumes. The study’s compar-

isons with in situ SWE measurements demonstrated that nonlinear bias-correction techniques notably improve the accuracy

of SNODAS SWE estimates. Zahmatkesh et al. (2019) showcased that bias-correcting SNODAS SWE significantly enhanced455

the accuracy of lumped models, contrasting with raw SNODAS SWE, which resulted in overestimated streamflow and peak
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flow values. A significant limitation in bias correcting SNODAS data lies in the absence of substantial data (Zahmatkesh et al.,

2019). Given its specific focus, bias correction of the SNODAS data was not within the scope of the study. As a result, raw

SNODAS data were employed for analysis of SWE, and both RMSE and SPAEF were utilized as objective functions to cali-

brate SWE in the model. In Experiment 2, RMSESWE can drive the parameters to extreme values, given that it treats all data460

points equally irrespective of their location in the distribution. If there are extreme values in the observed data, the model can

be calibrated to fit those values, even if they do not represent the overall distribution. This can lead to poor model performance

when applied to new data or different conditions. The sensitivity of RMSE to outliers is a common concern while using it

in calibration. Outliers can significantly impact RMSE calculations, and their likelihood of occurrence aligns with the normal

distribution that underlies RMSE (Chai and Draxler, 2014). When model biases are pronounced, it may be necessary to address465

these systematic errors before calculating RMSE. However, the bias insensitivity of SPAEF offers a valuable solution to this

challenge (Koch et al., 2018). SPAEF mitigates the impact of uncertainties in observations, providing a more robust and stable

approach to model calibration and evaluation. In such situations, SPAEF may be a more reasonable option to achieve good

calibration of SWE when bias correction of data is not feasible.

Our study focuses to incorporate snow spatial information for hydrological model calibration. A novel spatial efficiency470

metric called SPAEF was utilized in conjunction with other objective functions, i.e., RMSE and NSE. NSE was employed as

an objective function for streamflow. It enables direct evaluation of model performance against the inherent benchmark of NSE

= 0, which corresponds to the mean flow. Alongside other metrics, KGE was computed for both calibration and validation.

Knoben et al. (2019) suggested that KGE values falling within the range of -0.41 < KGE ≤ 1 can be considered reasonable

for hydrological modelling. This indicated a satisfactory representation of the observed data, taking into account the limi-475

tations and uncertainties that were associated with the model and data. Consequently, KGE was utilized as a performance

metric to compare validation results, with Table 3 summarizing the corresponding parameter values for each calibration exper-

iment. Based upon the comparison of validation results using KGEQ, it is evident that incorporating spatial calibration with

SPAEFSWE in conjunction with NSEQ (in both simultaneous and sequential calibrations) yields better outcomes compared to

utilizing RMSESWE as one of the objective functions or using NSEQ as only objective function.480

Looking at first three experiments, it can be inferred that the sequential calibration of NSE following the calibration of

spatially distributed SWE with SPAEFSWE yields outcomes that exhibit better acceptability as the overall model performance

is enhanced. The reason for this is that calibrating SWE captures the spatial variability of the snowpack, which is a crucial

factor in hydrological processes. Calibrating NSEQ subsequently ensures that the model can capture temporal variation of

the flow. Therefore, the sequential calibration approach leads to better results that are acceptable in terms of overall model485

performance. When comparing results of calibration with RMSESWE and calibration with SPAEFSWE, followed by sequential

NSEQ calibration, it is evident that SPAEFSWE yields better results than RMSESWE. The distribution of snow is not uniform

everywhere; therefore, spatially distributed SWE calibration captures the heterogeneity of the snow distribution within the

basin, whereas spatially averaged snow calibration assumes that snow is uniformly distributed throughout the basin, which

is not always the case in mountainous terrain where snow can accumulate in complex patterns. Thus, spatially distributed490
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SWE calibration provides a more accurate estimate of the actual snow distribution in the basin, which leads to better model

performance in predicting streamflow.

In a comparative analysis of hydrological model calibration procedures, (Tuo et al., 2018) examined the effectiveness of

different calibration approaches. Their study focused upon the multi-objective calibration method, specifically incorporating

the optimization of sub-basin average snow water equivalent (SWE) and streamflow. The results demonstrated that this multi-495

objective approach outperformed single-objective procedures in accurately simulating snow dynamics, which aligns with our

study. Building upon these findings, our study extended the calibration process by further incorporating both spatially averaged

and spatially distributed data for SWE. Notably, our results highlighted the superiority of calibrating the model using spatially

distributed information rather than relying solely upon average information. Considering the spatial distribution of SWE data

leads to improved model performance and more accurate simulations.500

Focusing upon multi-objective calibrations, experiments 4 and 5 also backs up the aforementioned argument that using

SPAEFSWE with NSEQ yields better results than using RMSESWE with NSEQ. Based upon the comparisons made between

experiments 2 vs. 4, 3 vs. 5, and 6 vs. 7, it is evident that calibrating the objective functions simultaneously yields superior

model performance compared to the sequential calibration of the objectives. Specifically, experiments 4, 5 and 7, which employ

the simultaneous calibration of objective functions that were considered, exhibit improved model performance when compared505

to experiments 2, 3 and 6, which adopt a sequential calibration approach. The study that was conducted by Finger et al. (2015)

showcased the benefits of calibrating a hydrological model using multiple data sets, thereby leading to improved estimation of

runoff contribution. This finding is consistent with the current study, which highlights calibrating both SWE and streamflow as

yielding superior results. From our study, it can be concluded that simultaneous calibration of objective functions is a superior

approach to sequential calibration, given that sequential calibration can lead to overfitting of the model to the specific objective510

function being calibrated. In turn, this can result in poor model performance when evaluating other objective functions. Fur-

thermore, sequential calibration may result in a trade-off between objective functions, which may not be optimal for overall

model performance. When all objective functions are calibrated simultaneously, it allows for a more balanced calibration and

can provide better overall model performance. It also helps avoiding overfitting to any single objective function and provides a

more comprehensive understanding of the model’s behaviour.515

For this study, March was selected for SPAEF calibration as it is the month with the highest SWE. Our objective was to

leverage the maximum SWE information available during this period. However, we recognize that March, despite having the

highest SWE, also overlaps with the snow melting period, which could potentially influence the calibration of our analysis.

We performed additional analyses using data from January and February, and the results demonstrated that SPAEF performs

well with data from both these months. We believe that further research is necessary, with different watersheds and periods520

used to compute SPAEF, to more accurately understand SPAEF’s performance during the onset of snow accumulation and the

snowmelt period. The detailed results of these additional calibrations can be found in the supplementary material, providing a

comprehensive view of the model’s performance.
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6 Conclusions

Hydrological models are subject to continuous development, becoming more sophisticated over time, as a result of advance-525

ments in computational resources, and a better understanding of hydrological processes. These models are not merely tools

for estimating runoff; rather, they encompass simulation of complex processes that involve state variables contributing to the

generation of runoff. The satellite input data, which is used to drive these models, is available at high temporal (ranging from

daily to hourly) and spatial resolutions (up to a kilometer scale). Integration of comprehensive spatial data that are acquired

from remote sensing platforms offers tremendous opportunities for further advancements in hydrological modelling.530

This article analyzes different calibration experiments of the HYDROTEL distributed hydrological model for the Au Saumon

Watershed. HYDROTEL includes modules that permit high-resolution discretization of the basin, river streams, lake inflow,

river flow, and gridded observed meteorological data, making it a suitable model for the calibration experiment. The key aspect

of this calibration experiment is the incorporation of the spatial efficiency metric SPAEF as an objective function. The study

explored this newly developed spatial distribution metric in the calibration and validation of distributed hydrological models535

and compared results with previously used calibration strategies. SPAEF has been used previously with evapotranspiration in

various studies, but this study introduces SPAEF with SWE for the first time. The comparison of different calibration strategies

on the Au Saumon Watershed highlights these important findings.

• Calibrating only streamflow is not ideal for distributed hydrological model. It is recommended that snow variables

such as snow water equivalent (SWE) also be calibrated, especially in areas where snow accumulation can be spatially540

heterogeneous.

• Sequential calibration of objective functions (e.g., calibrating using NSE after calibrating with SPAEF) may not always

result in better model performance compared to calibrating all objective functions simultaneously, especially when con-

sidering multiple objective functions. Sequential calibration of objective functions is not recommended, as it may result

in sub-optimal model performance.545

• Spatially distributed SWE calibration is preferred over spatially averaged calibration, given that the former captures

heterogeneity of snow distribution in different land covers and provides more accurate estimates of SWE across the

basin.

• Raw SNODAS data has the potential for enhancing the model’s accuracy and reliability by incorporating the spatial

variability of snow distribution.550

The present experiments demonstrate that although researchers tend to focus upon obtaining decent model output by opti-

mizing a single objective function, this approach may not provide entirely reliable results. Therefore, using multiple objective

functions to optimize different processes simultaneously can lead to better results. In this study, the importance of incorpo-

rating the spatial calibration metric SPAEF is highlighted. Spatial calibration of snow variables provides better results when

compared to averaging the variables. To further understand the spatial metric, it is necessary to investigate spatial variability555
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and SPAEF by applying and comparing it to other catchments or models. Calibrating a distributed model and increasing its

spatial predictability requires more than just an appropriate spatial performance indicator. It necessitates the use of a flexible

model structure and parameterization in conjunction with other metrics to enable simulated patterns to be modified meaning-

fully. Achieving this requires reliable geographic measurements at an appropriate scale, thorough assessment of catchment

morphology, and high-quality forcing data.560

Based upon our findings, it is evident that spatial calibration of a distributed hydrological model, HYDROTEL, yields sat-

isfactory results and enhances its robustness and coherence with other hydrological processes. Our study aims to encourage

the modelling community to reconsider their methodologies by focusing upon relevant metrics that emphasize spatial patterns

characterizing hydrological processes during calibration or validation studies. The upcoming Terrestrial Snow Mass Mission

(TSMM) satellite mission (low-cost, low-mass, spaceborne Ku-band SAR system that is being developed by the Canadian565

Space Agency (Derksen et al., 2021)) seeks to offer high-resolution and spatially distributed information on SWE. Conse-

quently, to optimize hydrological model performance, calibration procedures that account for both conventional streamflow

and spatial SWE should be considered.

The study, while conducted for a single watershed, contributes in our understanding of SPAEF’s performance in hydrological

modeling of snow-dominated watershed. However, it also reveals the need for further research. The utilization of different570

precipitation and temperature datasets as input data can significantly impact the performance of hydrological models. Variations

in these datasets, which may arise from differences in data collection methods, spatial resolution, and temporal coverage,

can affect the reliability and accuracy of hydrological predictions. The distinct characteristics of each watershed, including

size, slope, altitude and land used can have a substantial impact on the snow accumulation and melt processes. Therefore,

it is essential to broaden this research to include different watersheds and various input data to validate and generalize our575

findings. Moreover, snow accumulation and melt do not occur uniformly throughout the year but happen in distinct periods.

Our study focused on the month of maximum SWE (March), but the accumulation and melt periods of the snow season are

both important. Future studies should consider different snow periods to gain a better understanding of SPAEF’s performance.

Finally, the choice of input data (precipitation and temperature) can have impact of the spatial distribution of snow variables

simulated by the model.580
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