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Abstract. In northern cold-temperate countries, a large portion of annual streamflow is produced by spring snowmelt, which

often triggers floods. It is important to have spatial information about snow parameters
:::::::
variables

:
such as snow water equivalent

(SWE), which can be incorporated into hydrological models, making them more efficient tools for improved decision-making.

The future Terrestrial Snow Mass Mission (TSMM) aims to provide high-resolution spatially distributed SWE information;

thus, spatial SWE calibration should be considered along with conventional streamflow calibration for model optimization5

since the overall water balance is often a key objective in the hydrological modelling. The present research implements a

unique spatial pattern metric in a multi-objective framework for calibration approach of hydrological models and attempts to

determine whether raw SNODAS
::::::
(SNOw

::::
Data

:::::::::::
Assimilation

:::::::
System) data can be utilized for hydrological model calibration.

The SPAtial Efficiency (SPAEF) metric is explored for spatially calibrating SWE. The HYDROTEL hydrological model is

applied to the Au Saumon River Watershed (∽1120 km2) in Eastern Canada using MSWEP precipitation data and ERA-510

land reanalysis temperature data as input to generate high-resolution SWE and streamflow. Different calibration experiments

are performed combining Nash-Sutcliffe efficiency (NSE) for streamflow and root-mean-square error (RMSE), and SPAEF

for SWE, using the Dynamically Dimensioned Search (DDS) and Pareto Archived multi-objective optimization (PADDS)

algorithms. Results of the study demonstrate that multi-objective calibration outperforms sequential calibration in terms of

model performance
:::::
(SWE

:::
and

:::::::::
discharge

::::::::::
simulations)

:
. Traditional model calibration involving only streamflow produced15

slightly higher NSE values; however, the spatial distribution of SWE could not be adequately maintained. This study indicates

that utilizing SPAEF for spatial calibration of snow parameters improved streamflow prediction compared to the conventional

practice of using RMSE for calibration. SPAEF is further implied to be a more effective metric than RMSE for both sequential

and multi-objective calibration. During validation, the calibration experiment incorporating multi-objective SPAEF exhibits

enhanced performance in terms of NSE and Kling-Gupta Efficiency (KGE) compared to calibration experiment solely based20

on NSE. This observation supports the notion that incorporating SPAEF computed on raw SNODAS data within the calibration

framework results in a more robust hydrological model.
::::
The

::::::
novelty

::
of

:::
this

:::::
study

::
is

:::
the

:::::::::::::
implementation

::
of

:::::::
SPAEF

::::
with

::::::
respect

::
to

:::::::
spatially

:::::::::
distributed

:::::
SWE

::
for

:::::::::
calibrating

::
a
:::::::::
distributed

::::::::::
hydrological

::::::
model.

:
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1 Introduction

Cold temperate countries like Canada are characterized by substantial spring runoff, where streamflow is generated or amplified25

by snowmelt. Indeed, spring snowmelt is one of the predominant hydrological event
:::::
events

:
influencing the annual water

budget of high latitude watersheds (DeWalle and Rango, 2008; Buttle et al., 2016). Rapid melting of snow can result from

a combination of high temperatures and rainfall over frozen ground resulting in heavy runoff, which will exacerbate flooding.

A reliable flow forecast system, therefore, should provide inflow forecasts using hydrological models that can simulate the

complex processes occurring in the watershed. These models can mimic the relationship between inflow and outflow in a30

watershed provided that they have adequate meteorological data (precipitation, temperature, relative humidity, wind speed and

direction) and geographical data (digital elevation model, land cover and soil maps) (Singh and Woolhiser, 2002). Distributed

hydrological models are capable of representing the spatial variability of hydrological processes and state variables within a

watershed, which cannot be obtained by lumped models (Markhali et al., 2022).

Snow distribution, together with the frequency, duration and intensity of spring snowmelt, influences extreme runoff events35

(Marsh et al., 2008), soil water storage capacity, subsurface flow (Roach et al., 2011; Frampton et al., 2013; Jafarov et al., 2018)

and groundwater recharge (Mohammed et al., 2019; Ala-Aho et al., 2021). Owing to the dominant control of snow on the water

balance during spring, the
:::::::::
snow-melt

::::::
season,

::::::::
typically

::::
from

::::::
March

::
to

::::
May,

:::
the

:
spatial distribution of snow has received much

attention (Hiemstra et al., 2002; Woo and Young, 2004). Spatial variability of snow cover results from various processes that

occur across different spatial scales (Clark et al., 2011). At the watershed scale, it is affected by meteorological variables (e.g.,40

temperature, precipitation, evaporation) and by elevation, topography and vegetation, while at the hillslope-scale it is governed

by processes such as drifting, trapping of snow, and the nonuniform snow unloading by the forest canopy (Hojatimalekshah

et al., 2021). Methods that are available for analyzing spatial variation of the snowpack have their limitations and incorporating

them into hydrological models is difficult. For example, interpolation techniques (Harshburger et al., 2010) for generating

snow water equivalent (SWE) maps at the watershed scale require a surface network of ground SWE measurements, which are45

frequently limited in number or are absent. Passive micro-wave sensors provide appropriate information on snow in areas with

simple topography, but they do not work properly in hilly terrain
:::::
higher

:::::::::
elevations, typically underestimating SWE (Wrzesien

et al., 2017). Moreover, their low spatial resolution requires appropriate downscaling approaches to bring the information to the

watershed scale. GlobSnow (Luojus et al., 2020), which is currently available as a global snow monitoring system, integrates

passive microwave remote sensing data from multiple satellites to provide near-real-time information on snow cover extent50

at a global scale. This valuable resource offers insights into the spatial distribution of snow cover across diverse regions.

On one hand, and despite its easy accessibility, GlobSnow exhibits relatively coarse resolution
:::
(25

:::
km

::
*

:::
25

:::
km), thereby

limiting its ability to capture fine-scale details. On the other hand, SNODAS (SNOw Data Assimilation System) (NOHRSC,

2004) represents a subsequent advancement that integrates passive microwave remote sensing data, ground measurements and

weather data to generate gridded snow data sets at a finer resolution
::
(1

::::
km*

:
1
::::
km). The incorporation of various data sources and55

assimilation techniques into SNODAS enhances the quality and reliability of snow data, enabling more accurate hydrological

modelling and facilitating rigorous scientific investigation. The future Terrestrial Snow Mass Mission (TSMM) is a low-cost,
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low-mass, spaceborne Ku-band SAR system that is being developed by the Canadian Space Agency (Derksen et al., 2021), and

which is expected to provide high spatial resolution SWE data. In preparation for this mission, together with existing remotely

sensed SWE products such as SNODAS, it is essential that the possibilities of these products be investigated for operational60

environmental prediction, such as spring flood forecasting.

SNODAS is a modelling and data assimilation system that had been developed by NOHRSC (National Operational Hy-

drologic Remote Sensing Center). It uses a physically-based mass and energy balance snow model that assimilates automated

ground, airborne measurements and satellite data (Zahmatkesh et al., 2019) to provide accurate estimates of snow cover and

associated parameters
::::::::
variables for hydrological modelling and analysis. The dataset includes snowpack properties such as65

depth and snow water equivalent (SWE), covering parameters
:::::
SWE,

:::::::
covering

::::::::
variables such as liquid precipitation, snowmelt

runoff, temperature, and more (Barrett, 2003). It has provided daily, gridded data at a 1 km x 1 km spatial resolution for the

USA since 2004 and for southern Canada since 2009.

Researchers used bias-corrected SNODAS SWE data in hydrological modelling, given that it provides more

accurate and reliable input data for the models whereas raw SNODAS data may contain errors and biases70

:::::::::::::::::::::::::::::::::::
Zahmatkesh et al. (2019); King et al. (2020). These errors and biases can adversely affect the accuracy of hydrological mod-

els that rely upon SNODAS data as input. A study by Clow et al. (2012) concluded that SNODAS provides reasonably true

estimates of SWE in forested areas and can be used as observed data to calibrate hydrological models for moderate- to large-

watersheds and for estimating runoff forecasts. Zahmatkesh et al. (2019) demonstrated that bias-correcting SNODAS SWE

products, which align with the cumulative distribution function of interpolated SWE, improved the accuracy of the SNODAS75

products and enhanced model performance in simulating peak values during hydrological modelling and streamflow simu-

lation. Despite the high uncertainty that is associated with SNODAS estimates in eastern Canadian watersheds, they remain

valuable in regions with limited snow stations. Bias correction of SNODAS data may not be possible in situations where there

is a lack of ground-based measurements or observations with which to compare the SNODAS data. Given the unavailability

of observed SWE data in the study area, Leach et al. (2018) applied a bias correction technique, which was originally used for80

SNODAS snow depth data, to adjust the SNODAS SWE dataset, assuming a comparable level of relative bias between snow

depth and SWE based upon their close relationship with the observations. This paucity of data compels researchers to explore

new methods that allow the use of SNODAS data without relying upon traditional bias correction techniques.

This study addresses the need to investigate the feasibility and efficiency of employing raw SNODAS data for calibrating

hydrological models without bias correction, utilizing diverse objective functions, and evaluating the adequacy of the uncor-85

rected SNODAS data in generating satisfactory results. The current research aims to bridge this gap by examining potential

approaches that would enhance the reliability and accuracy of model outputs when working with raw SNODAS data, thereby

contributing to the advancement of hydrological modelling techniques.

Distributed hydrological models, despite their capacity to mimic the spatial distribution of hydrological state variables and

fluxes, continue to be used mainly for their temporal characteristics of the aggregated streamflow variable (Demirel et al., 2013;90

Schumann et al., 2013). Snow significantly influences the seasonal characteristics of streamflow, thereby affecting other hy-

drological processes, such as erosion, water supply, and flood forecast. Given the importance of accurately representing snow
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processes in snow-dominated watersheds, hydrological model calibration should not solely focus on streamflow but should

also account for snow dynamics (Troin and Caya, 2014; Hanzer et al., 2016; Tuo et al., 2018). Snow-related observations

are frequently utilized to improve hydrological model performance through calibration experiments (Roy et al., 2010; Parajka95

and Blöschl, 2008; Di Marco et al., 2021). Hydrological model calibration in snow dominated regions is complex because

calibration based on snow parameters
:::::::
variables does not necessarily lead to optimal parameters for streamflow and vice versa

. Commonly used hydrological models can accurately replicate streamflow observations by calibrating them with respect to

streamflow alone. However, they might struggle to properly capture state variables, particularly related to the snowpack (Dueth-

mann et al., 2014; Casson et al., 2018; Liu et al., 2020; Thornton et al., 2021). For example, the models are usually calibrated100

using streamflow as the sole hydrological variable that is being simulated by the models, leaving other state variables, such

as snow and soil moisture unused in the calibration procedure. This is because spatially distributed observations traditionally

have been difficult to obtain. To improve the reliability of hydrological models, it is critical to assess the simulated patterns of

model state variables against spatially distributed observations. Ensuring
:
It
::
is

::::
also

::::::::
important

::
to

:::::
ensure

:
that the models can accu-

rately reproduce the spatio-temporal dynamics of all relevant hydrological processes, leading to accurate streamflow forecasts105

(Kirchner, 2006).

The increased availability of remotely sensed observations has opened new doors in hydrological model calibration (e.g.,

snow cover, Terink et al. (2015); land surface temperature, Stisen et al. (2021)). The objective of this research is to investigate

strategies that include distributed snow information in the calibration of a distributed hydrological model, with a specific focus

upon understanding the influence of different objective functions on the calibration process. The selection of an appropriate110

set of objective functions is crucial, as it introduces trade-offs among model parameters that influence overall calibration

performance and model accuracy.

A number of temporal metrics are available for comparing simulated versus observed hydrographs, but spatial distribution

comparison is occasionally used (Rees, 2008; Koch et al., 2018). Moreover, the spatial information that is contained in the

observed data is not optimally utilized, given that the model parameters are constrained against spatial observations. Spatial115

metrics generally assess grid-to-grid correlation, and deviations such as bias and Pearson’s correlation coefficient R. Demirel

et al. (2018) developed a new SPAtial EFficiency metric (SPAEF) with histogram matching to compare raster maps. The metric

was later modified to include three different components, i.e., histogram intersection, variance and correlation, which offer

bias-insensitive pattern information. This new objective function SPAEF is used

:::
The

:::::::
primary

::::::::
objective in this study to calibrate SWE spatially.120

To evaluate the added-value of calibration taking into account spatial variation of the snow, different calibration

experiments are performed using search algorithms, DDS (Dynamically Dimensioned Search) (Tolson and Shoemaker, 2007)

for single objective function, and PADDS (Pareto Archived Dynamically Dimensioned Search) (Asadzadeh and Tolson, 2013)

for multi-objective functions, with the distributed hydrological model HYDROTEL (Fortin et al., 2001) to optimize

model performance. DDS is a global optimization algorithm for automatic calibration of hydrological models125

(Tolson and Shoemaker, 2007), which optimizes one objective function at a time without requiring algorithm parameter tuning.

In contrast, PADDS is a multi-objective dynamic algorithm that uses DDS as a search engine to optimize multiple objective
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functionsby perturbing one non-dominated solution every iteration and archiving all non-dominated solutions throughout

the search. PADDS algorithm offers multiple selection metrics function for example Random selection, Crowding distance

(CD), Hypervolume Contribution (HVC) and Convex Hull Contribution (CHC). To learn more about these metrics please130

refer to Jahanpour et al. (2018) and Tolson and Jahanpour (2018). In this study, the HVC selection metric was chosen for

the PADDS multiobjective calibration method. The effectiveness of this metric has been demonstrated in previous research

(Asadzadeh and Tolson, 2013). When used with multi-objective functions the HVC measures the increase in hypervolume

achieved by adding a solution to an existing set and explores the Pareto front, which represents a range of optimal trade-off

solutions, by dynamically adjusting the dimensionality of the search space. Solutions with higher HVC values are prioritized135

to improve the coverage of the Pareto front, enhancing the overall quality of the calibration process. In this study, DDS is used

when only one objective function is used at a time for calibration, i.e., first three experiments, while PADDS is used to optimize

the model with two or more objective functionssimultaneously. This article focuses on utilizing the spatially distributed snow

information to calibrate the model to achieve better model performance with respect to both SWE and streamflow. The objective

functions that are used during calibration are NSE (Nash-Sutcliffe Efficiency) for streamflow, RMSE (Root-Mean-Square140

Error) for optimization of SWE over each RHHUs (relatively homogeneous hydrological units), and SPAEF (spatial efficiency

metric) for spatially distributed optimization of SWE
:
is
::
to
::::::::
introduce

::::::
spatial

:::::::::
calibration

::::
with

:::::
SWE

::::
data

:::::
using

:::::
newly

:::::::::
developed

:::::
metric

:::::::
SPAEF

:::
for

:::
the

:::::::::
calibration

:::
of

:::
the

:::::::::::
HYDROTEL

:::::::::::
hydrological

:::::::
model.

:::
We

:::::::
applied

::::::
SPAEF

:::
in

::::::::::
combination

:::::
with

:::::
other

::::::::::
traditionally

::::
used

::::::::
objective

::::::::
functions. As NSE cannot be spatialize but can only be calculated on the average SWE over the

watershed, here we preferred RMSE as an objective function to calibrate SWE, because it can be applied to each RHHU145

(spatially) and not only on the average SWE. In addition, Kling-Gupta Efficiency (KGE) is utilized for validation purposes.

The supplementary material of this article presents a thorough analysis of the trade-offs between different objectives: NSEQ

and RMSESWE, and NSEQ and SPAEF SWE. Readers are encouraged to refer to the supplementary section for an in-depth

exploration of these trade-offs and gain valuable insights about the performance of the algorithm with respect to the mentioned

objectives
:::
We

::::::::
conducted

:::::
seven

:::::::
distinct

:::::::::
calibration

:::::::::::
experiments,

::::
each

:::::::::
employing

::
a

::::::
unique

::::::::::
combination

::
of

::::::::
objective

::::::::
functions.150

::::
This

::::::
allowed

:::
us

::
to

:::::
assess

:::
the

:::::::::
trade-offs

:::
and

:::::::::
robustness

::
of

:::::
these

::::::
various

:::::::::
calibration

::::::::
scenarios

:::
by

:::::::::
evaluating

::::
their

:::::::::::
performance

::
in

:::::
terms

::
of

::::
both

:::::::::
streamflow

:::
and

::::::
spatial

:::::
SWE

:::::::
patterns.

::::::::
Notably,

:::::
while

::::::
SPAEF

:::
has

::::
been

:::::::::
previously

:::::::
applied

::
in

::::::
studies

::::::::
involving

:::::::::::::::
evapotranspiration

::::::::::::::::::
(Demirel et al., 2018)

:::
and

::::
soil

:::::::
moisture

:::::::::::::::
(Eini et al., 2023)

:
,
:::
this

:::::
study

::::
uses

:::::::
SPAEF

::::
with

:::::
SWE

:::
for

:::
the

::::
first

::::
time.

:

2 Experimental Setup155

2.1 Study site:

The Au Saumon watershed covers an area about 1120 km2 and is located in the Éstrie region of Québec (eastern Canada).

It is a snow-dominated watershed that is subject to different climate conditions (summers tend to be warm and humid, with

heavy rainfall; winters are cold and snowy; spring is the snowmelt season, with frequent rainfall; and autumn is drier with

cooler temperatures). The watershed has mostly a rolling topography. Elevation ranges from 240 m at the watershed outlet,160
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Figure 1. Au Saumon Watershed location, elevation, stream network, streamflow outlet and land cover

further rising upto 1100 m in the southern and eastern portions due to presence of Mont Mégantic (Figure-1). This variation

in elevation affects the spatial distribution of snow during winter, given that it affects temperatures. While rising to higher

elevations, the temperature drops gradually, causing different patterns of melting and freezing in flat and hilly places
:::::
terrain

:::
and

::::::
higher

:::::::::
elevations. Vegetation cover in the watershed consists mainly of forests, i.e., 7% conifer, 32% deciduous, and

45% mixed forest. The remaining land cover consists of 9% crop lands, 2% urban, and about 5% wetlands, shrub lands165

and grasslands (Figure-1). Winter climate dominates this watershed with snow cover usually forming in late November or

early December and ending in April. Average minimum and maximum air temperatures during winter are -12 °C and -5

°C, respectively. Annual precipitation ranges from 1000 mm to 1200 mm (https://climate.weather.gc.ca/index_e.html), with

about one-third falling as snow (Bergeron et al., 2014). The parent material yields sandstone, limestone, and shale types of

soils (silty-loams) (https://sis.agr.gc.ca/cansis/) (Seiller et al., 2012). There is one streamflow station (030282) as shown in170

Figure (1) (https://www.cehq.gouv.qc.ca/hydrometrie/historique_donnees/), with a drainage area of 769 km2. There are no

SWE data observation stations within the watershed; however, stations at Milan (station number:302060) and Bury (station

number:302100) are located in close proximity to the watershed. These stations provide point data for SWE measurements

(info-climat MELCCFP, 2020).
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2.2 HYDROTEL Model:175

The model that is selected for this study is a process-based, continuous, distributed hydrological model HYDROTEL, which

was developed by Fortin et al. (1995). The model has been used in a number of watersheds to study different hydrological

processes, including snow water equivalent
:::::::
variation

:::
of

::::
SWE

:
(Turcotte et al., 2007; Oreiller et al., 2014; Fossey et al., 2016;

Augas et al., 2020) and flow forecasting (Turcotte et al., 2004; Abaza et al., 2014, 2015). HYDROTEL serves as the base model

for Quebec’s operational flow forecasting system. This model discretizes the watershed in several simulation units that are180

referred to as relatively homogeneous hydrological units (RHHUs) and river reaches (Turcotte et al., 2001). The characteristics

of each RHHU depend upon land cover, soil types and topography (Rousseau et al., 2011). HYDROTEL can be simulated on

a daily basis
:::::
(opted

:::
for

::::
this

:::::
study)

:
or in 3-hour time steps. In our study, the Au Saumon Watershed is subdivided into 205

RHHUs based upon the spatial distribution of land use, land cover, soil properties, slope and elevation. The mean surface area

of the RHHUs is 4.5 km2.185

HYDROTEL is composed of different modules, which run consecutively. The snow module uses a single-layer structure and

is based upon a mixed degree-day / energy balance hybrid approach. Snowpack characteristics (water equivalent, thickness,

mean density, liquid water content, thermal deficit, temperature) are simulated using a modified energy budget approach that

was developed by Riley et al. (1972). Empirical relationships are used to produce air-snow and ground-snow interface melt,

albedo evolution, compaction, and the liquid water that is retained by the snow cover (Turcotte et al., 2007). The other modules190

selected in this study are the Thiessen polygon method for interpolation of meteorological variables
::::
(with

::::::
vertical

:::::::::::
precipitation

:::::::
gradient

::
of

:::::::::
1mm/100m

::::
and

::::::
vertical

::::::::::
temperature

:::::::
gradient

:::
of

::::::::::
-1°C/100m), the Rankine method for soil temperature, the Thorn-

thwaite equation for potential evapotranspiration and a three-layer model (BV3C) for the vertical water budget in the soil

column. The output flow is modeled
::::::::
simulated

:
using the kinematic wave equation, and the model is simulated on a daily basis.

Of all parameters that are available in different modules, a subset of 11 parameters was selected for model calibration, as195

listed in Table-1. They include seven snow-related parameters, three parameters for soil layer thickness of the 3-layer soil

column, and one parameter for converting potential evapotranspiration (PET) into actual evapotranspiration. The snow-related

parameters affect the evolution
:::::::
variation

:
of SWE in each RHHU, while the other parameters affect runoff that is generated by

the model. These parameters are selected based on sensitivity analyses done in previous studies on different watersheds (Bouda

et al., 2014; Huot et al., 2019; Lucas-Picher et al., 2020).200

2.3 Meteorological and streamflow data

For this study, HYDROTEL is forced with spatially distributed meteorological precipitation and minimum and maximum

temperature data. For precipitation, the data that are used are from MSWEP (Multi-Source Weighted-Ensemble Precipitation),

which is a reanalysis product combining satellite data, gauge data and numerical weather model output. MSWEP is available

globally on daily and 3-hour bases from 1979 until today (http://www.gloh2o.org/mswep/). Grid cell resolution of the data205

is 0.1 degrees, which is about 10 km at the equator. Overall, MSWEP offers superior performance compared to other data

sets (e.g., ERA-5 interim, ERA-5, CHIRP, and others) (Beck et al., 2017; Xiang et al., 2021). ERA5-Land dataset is used

7
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Table 1. .Lower and Upper Bounds of the parameters and Initial parameter values of base model

Parameters and their upper and lower bound (DDS/PADDS Algorithm) Base Model

Parameter Name Lower Bound Initial value Upper Bound Parameter Value

1. Base refreezing temperature (mm/d) -3 -1.65 2 -0.88

2. Temperature threshold for melt- Coniferous (°C) -4 0.1 4 0.61

3. Temperature threshold for melt- Deciduous (°C) -4 0.48 4 -0.08

4. Temperature threshold for melt- Open (°C) -4 0.78 4 2.00

5. Melt factor for coniferous forests (mm/d per °C) 2 9.62 15 7.83

6. Melt factor for deciduous forests (mm/d per °C) 2 8.27 15 9.69

7. Melt factor for open areas (mm/d per °C) 2 11.42 15 5.00

8. Multiplication factor for PET 0.7 0.93 1.5 1.16

9. Depth of the first soil layer (m.) 0.01 0.11 0.2 0.02

10. Depth of the second soil layer (m.) 0.1 0.45 1.5 0.42

11. Depth of the third soil layer (m.) 1 4.97 7 1.00

for maximum and minimum air temperature. ERA5-Land has been produced by numerical integrations of the global high-

resolution ECMWF land surface model with ERA5 climate reanalysis with elevation correction (Muñoz-Sabater et al., 2021)

with grid cell resolution of 0.1 degrees (about 9 km native). The gridded data for both MSWEP precipitation data and ERA5-210

Land temperature data that were used in our study range from October 2000 to September 2020 and cover 45°10’ N to 45°50’

N and 71° W to 71°30’ W. Observed daily streamflow data that were used for model calibration originate from the Ministère

de l’Environnement, de la Lutte contre les changements climatiques, de la Faune et des Parcs station 030282 (NAD83; 45°

34’ 48" // -71° 23’ 6"). The streamflow station is Au Saumon (030282), which is located 1.9 km upstream from the watershed

outlet (see Figure-1). The availability of streamflow data is
:::::::
available

::
on

::
a

::::
daily

:::::
basis from 1974 and onward.215

SWE data from SNODAS are used as observed data for model calibration. Figure 2 represents the spatial distribution of

average SWE for the month of March for the period 2014-2020
::::::::
2015-2020

:
as obtained from SNODAS, together with the

temporal maximum, minimum and average of SWE across the Au Saumon Watershed. It is clearly indicated in the figure that

the spatial distribution varies from year to year, even when the spatially averaged values of SWE are in close agreement with

each other. This is the case for years 2017 and 2018 and for years 2019 and 2020, where a difference of about 10 mm in220

average SWE in March is observed. In this study,
:::::::
average

:::::
SWE

::
of

:
March is selected for the spatial calibration experiment

, given that the most accumulated snow during the winter season typically occurred in this month
:::::::
(SPAEF

::::::::::
calculation)

::
as

::
it

:
is
:::
the

::::::
month

::
of

:::::::::
maximum

:::::
snow

:::
and

:::::::::
maximum

:::::
snow

:::::::::
variability

:::::::::
(transition

::::
from

::::::
winter

::
to

::::::
spring,

:::
an

::::::::
important

::::::
period

:::::
when

::::::::
snowmelt

::::::::
processes

:::
are

:::::::
distinct). For our study, model calibration was performed for the period spanning 2014 to 2020, given

that SNODAS data for the Au Saumon region are available from 2014 onwards, while model validation of streamflow only225

was conducted for the period ranging from 2001 to 2013.
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Figure 2. Spatially distributed average SWE for March, together with maximum, minimum and mean SWE for years 2015 to 2020

3 Methodology

Hydrological models are typically calibrated using a single objective function, which focuses on only one as-

pect of the hydrological features, i.e., streamflow (Tolson and Shoemaker, 2007). As hydrological models have

multiple outputs, this draws attention towards using a multi-objective approach to explore the various hydrologi-230

cal feature information that is stored in hydrological data and, thus, moving toward a multi- objective model cal-

ibration. Optimizing
:::::
Several

:::::::
studies

::::::::::
conducted

:::
in

::::
the

::::
past

:::::::
suggest

:::::
that

::::::::::
optimizing

:
two or more objective func-

9



tions simultaneously
::::
may

:
provides a better overall calibrated hydrological model (Adeyeri et al., 2020). The objective

functions
::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Efstratiadis and Koutsoyiannis, 2010; Adeyeri et al., 2020; Budhathoki et al., 2020).

:::
To

::::::::
evaluate

:::
the

:::::::::::
added-value

::
of

:::::::::
calibration

::::::
taking

::::
into

::::::::
account

::::::
spatial

::::::::
variation

::
of
::::

the
:::::
snow,

::::::::
different

::::::::::
calibration

:::::::::::
experiments

:::
are

:::::::::
performed

::::::
using235

:::::
search

::::::::::
algorithms,

::::
DDS

::::::::::::
(Dynamically

:::::::::::
Dimensioned

:::::::
Search)

:::::::::::::::::::::::::
(Tolson and Shoemaker, 2007)

:::
for

:::::
single

::::::::
objective

:::::::
function,

::::
and

::::::
PADDS

:::::::
(Pareto

::::::::
Archived

:::::::::::
Dynamically

::::::::::::
Dimensioned

:::::::
Search)

::::::::::::::::::::::::::
(Asadzadeh and Tolson, 2013)

::
for

:::::::::::::
multi-objective

:::::::::
functions,

::::
with

:::
the

:::::::::
distributed

:::::::::::
hydrological

:::::
model

::::::::::::
HYDROTEL

::::::::::::::::
(Fortin et al., 2001)

::
to

::::::::
optimize

:::::
model

::::::::::::
performance.

::::
DDS

::
is
::

a
::::::
global

::::::::::
optimization

::::::::
algorithm

:::
for

:::::::::
automatic

:::::::::
calibration

::
of

:::::::::::
hydrological

::::::
models

:::::::::::::::::::::::::
(Tolson and Shoemaker, 2007)

:
,
:::::
which

::::::::
optimizes

::::
one

:::::::
objective

::::::::
function

::
at

:
a
::::
time

:::::::
without

::::::::
requiring

::::::::
algorithm

:::::::::
parameter

::::::
tuning.

:::
In

:::::::
contrast,

:::::::
PADDS

::
is

:
a
:::::::::::::

multi-objective
::::::::
dynamic240

::::::::
algorithm

::::
that

::::
uses

:::::
DDS

::
as

::
a
::::::

search
::::::

engine
:::

to
::::::::
optimize

:::::::
multiple

::::::::
objective

:::::::::
functions

:::
by

:::::::::
perturbing

::::
one

:::::::::::::
non-dominated

::::::
solution

:::::
every

::::::::
iteration

:::
and

:::::::::
archiving

::
all

:::::::::::::
non-dominated

::::::::
solutions

:::::::::
throughout

:::
the

:::::::
search.

:::::::
PADDS

::::::::
algorithm

:::::
offers

::::::::
multiple

:::::::
selection

:::::::
metrics

::::::::
function

:::
for

::::::::
example

:::::::
Random

:::::::::
selection,

:::::::::
Crowding

:::::::
distance

::::::
(CD),

::::::::::::
Hypervolume

:::::::::::
Contribution

:::::::
(HVC)

:::
and

:::::::
Convex

:::::
Hull

:::::::::::
Contribution

:::::::
(CHC).

:::
To

:::::
learn

:::::
more

::::::
about

:::::
these

:::::::
metrics

::::::
please

:::::
refer

:::
to

::::::::::::::::::::
Jahanpour et al. (2018)

:::
and

:::::::::::::::::::::::
Tolson and Jahanpour (2018)

:
.
::
In

::::
this

:::::
study,

:::
the

:::::
HVC

::::::::
selection

:::::
metric

::::
was

::::::
chosen

:::
for

:::
the

:::::::
PADDS

:::::::::::::
multiobjective

:::::::::
calibration245

:::::::
method.

::::
The

:::::::::::
effectiveness

:::
of

:::
this

::::::
metric

:::
has

:::::
been

:::::::::::
demonstrated

:::
in

:::::::
previous

::::::::
research

:::::::::::::::::::::::::
(Asadzadeh and Tolson, 2013).

::::::
When

::::
used

::::
with

:::::::::::::
multi-objective

::::::::
functions

:::
the

:::::
HVC

:::::::::
measures

:::
the

:::::::
increase

:::
in

:::::::::::
hypervolume

::::::::
achieved

:::
by

::::::
adding

:
a
::::::::

solution
::
to

:::
an

::::::
existing

:::
set

::::
and

:::::::
explores

:::
the

::::::
Pareto

:::::
front,

:::::
which

:::::::::
represents

::
a

:::::
range

::
of

:::::::
optimal

:::::::
trade-off

:::::::::
solutions,

::
by

:::::::::::
dynamically

::::::::
adjusting

::
the

:::::::::::::
dimensionality

::
of

:::
the

:::::
search

::::::
space.

::::::::
Solutions

::::
with

::::::
higher

::::
HVC

::::::
values

:::
are

::::::::
prioritized

::
to
::::::::
improve

::
the

::::::::
coverage

::
of

:::
the

::::::
Pareto

::::
front,

:::::::::
enhancing

:::
the

:::::::
overall

::::::
quality

::
of

:::
the

:::::::::
calibration

::::::::
process.

::
In

:::
this

::::::
study,

::::
DDS

::
is
:::::

used
:::::
when

::::
only

:::
one

::::::::
objective

::::::::
function250

:
is
:::::
used

::
at

:
a
::::
time

:::
for

::::::::::
calibration,

::::
i.e.,

:::
first

:::::
three

:::::::::::
experiments,

:::::
while

:::::::
PADDS

::
is

::::
used

:::
to

:::::::
optimize

:::
the

::::::
model

::::
with

::::
two

::
or

:::::
more

:::::::
objective

::::::::
functions

::::::::::::::
simultaneously.

::::
This

::::::
article

::::::
focuses

:::
on

::::::::
utilizing

:::
the

:::::::
spatially

::::::::::
distributed

:::::
snow

::::::::::
information

::
to

::::::::
calibrate

::
the

::::::
model

::
to
:::::::

achieve
:::::
better

::::::
model

:::::::::::
performance

::::
with

:::::::
respect

::
to

::::
both

:::::
SWE

::::
and

:::::::::
streamflow.

:::
A

::::
total

::
of

:::::
1000

::::::::
iterations

:::::
were

::::::::
conducted

:::
for

::::
both

::::
DDS

::::
and

:::::::
PADDS

::
to

:::::::
optimize

:::::::::
parameter

::::::
values.

:::
The

::::::::
objective

::::::::
functions

:::
that

:::
are

::::
used

::::::
during

:::::::::
calibration

:::
are

::::
NSE

::::::::::::
(Nash-Sutcliffe

::::::::::
Efficiency)

::
for

::::::::::
streamflow,

::::::
RMSE

::::::::::::::::
(Root-Mean-Square

::::::
Error)

:::
for

::::::::::
optimization

::
of

:::::
SWE

::::
over

::::
each

:::::::
RHHUs255

::::::::
(relatively

::::::::::::
homogeneous

:::::::::::
hydrological

:::::
units),

::::
and

::::::
SPAEF

:::::::
(spatial

:::::::::
efficiency

::::::
metric)

:::
for

:::::::
spatially

::::::::::
distributed

::::::::::
optimization

:::
of

:::::
SWE.

:::
As

::::
NSE

::::::
cannot

:::
be

:::::::::
spatialized

:::
but

:::
can

:::::
only

::
be

:::::::::
calculated

::
on

::::
the

::::::
average

:::::
SWE

::::
over

:::
the

::::::::::
watershed,

::::
here

:::
we

::::::::
preferred

:::::
RMSE

:::
as

::
an

::::::::
objective

::::::::
function

::
to

:::::::
calibrate

::::::
SWE,

:::::::
because

::
it

:::
can

:::
be

::::::
applied

::
to
:::::

each
::::::
RHHU

:::::::::
(spatially)

:::
and

::::
not

::::
only

:::
on

:::
the

::::::
average

:::::
SWE.

:::
In

:::::::
addition,

:::::::::::
Kling-Gupta

:::::::::
Efficiency

::::::
(KGE)

::
is

::::::
utilized

:::
for

:::::::::
validation

::::::::
purposes.

::::
The

::::::::::::
supplementary

:::::::
material

:::
of

:::
this

:::::
article

:::::::
presents

::
a
::::::::
thorough

:::::::
analysis

::
of

:::
the

::::::::
trade-offs

:::::::
between

:::::::
different

:::::::::
objectives:

::::::
NSEQ::::

and
::::::::::
RMSESWE,

::::
and

:::::
NSEQ::::

and260

::::::::::
SPAEFSWE.

:::::::
Readers

:::
are

::::::::::
encouraged

::
to

:::::
refer

::
to

:::
the

::::::::::::
supplementary

::::::
section

:::
for

::
an

::::::::
in-depth

:::::::::
exploration

::
of

:::::
these

::::::::
trade-offs

::::
and

:::
gain

::::::::
valuable

::::::
insights

:::::
about

:::
the

:::::::::::
performance

::
of

:::
the

::::::::
algorithm

::::
with

::::::
respect

:::
to

::
the

:::::::::
mentioned

:::::::::
objectives.

:

:::
The

::::::::
objective

::::::::
functions selected for this study and the optimization algorithms are now presented in the next section.
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3.1 Objective Functions used in the study

In this study, the NSE, RMSE and SPAEF are employed as objective functions for calibration, while the KGE is used for265

validation of the model. By using these three objective functions, various calibration experiments were designed to assess the

strengths and weaknesses of each experiment in evaluating overall model performance.

NSE (Equation-1) is used to evaluate the predictive skill of hydrological models. It basically compares error variance of the

simulated time-series, which are typically flow data, with the magnitude of the observed time-series.

NSE = 1−
∑T

t=1 (Q
t
o −Qt

m)
2∑T

t=1

(
Qt

o − Q̄o

)2 (1)270

where Qo is observed discharge, Q̄o is the mean of observed discharges, and Qm is modeled discharge.

The efficiency ranges from −∞ to 1. The value of NSE is maximized during model calibration. For a perfect hydrological

model, the estimated error variance is zero and the resulting NSE is 1, whereas NSE is 0 when an estimated error variance

is equal to the variance of the observed time series. If the NSE value is close to 1, it suggests that the model will have more

predictive skill. Krause et al. (2005) specified that drawback of using NSE as objective function is that it uses squares values275

to calculate difference between the simulated values and observed values which results in overestimation of larger values

while underestimation of smaller values. So, this results in underestimation of flow during low flow conditions, yet it is the

best objective function to replicate the peak runoff discharge matching on a hydrograph. In this study, the NSE is calculated

between the observed flow at discharge station and the simulated flow at the corresponding RHHU.

RMSE (Equation- 2) is the standard deviation of prediction errors. In other words, it measures280

how far do the data points move away from the regression line. The smaller the value of

RMSE, the better is model performance. RMSE has been used widely for SWE optimization

(Larue et al., 2018; Follum et al., 2019; Koch et al., 2019; Sleziak et al., 2020; van Tiel et al., 2020; Yang et al., 2020).

RMSE =

√√√√ N∑
t

RHHU∑
i

(SWE_HYDROTELRHHU,t −SWE_SNODASRHHU,t)2

N ·RHHU
(2)

Where t is the time step, and N is the number of time steps when HYDROTEL or SNODAS have a non-zero SWE value.285

SWE_HYDROTEL is the SWE computed by HYDROTEL for each RHHU and time step, and SWE_SNODAS is the

average SWE of SNODAS over the RHHU for each time step. In this study, the RMSE is calculated for each of the 205 RHHUs

within the Au Saumon watershed. The spatial RMSE values are calculated by comparing the SNODAS SWE and the simulated

Hydrotel SWE. Subsequently, the RMSE is minimized to enhance the model’s performance.

SPAEF (Equation-3) is a metric that is used to assess the spatial performance of a model, as opposed to NSE and RMSE,290

which are used to evaluate temporal model performance. SPAEF has been developed to calibrate distributed hydrological

models so as to better represent the spatial variability of hydrological processes (Demirel et al., 2018; Koch et al., 2018;

Demirel, 2020). In our study, SPAEF is used for assessing spatial patterns of SWE. SPAEF is calculated according to the

following equation:

11



SPAEF = 1−
√
(A− 1)2 +(B− 1)2 +(C − 1)2 (3)295

where

A= ρ(obs,sim) B =

(
σsim

µsim

)
/

(
σobs

µobs

)
C =

∑n
j=1min(Kj ,Lj)∑n

j=1Kj

A is the Pearson correlation coefficient between the observed and simulated pattern, B is the fraction of the coefficient of

variation representing spatial variability, C is the histogram intersection for the histogram L of the simulated pattern and the

given histogram K of the observed pattern, each containing n bins. The value of SPAEF ranges between −∞ and 1. A SPAEF300

value equal to 1 means that the simulated pattern perfectly matches the observed pattern, while a value of 0 means that there is

no agreement between the predicted pattern and the observed pattern, which indicates that the model’s predictions are entirely

inaccurate and do not align with the observed data. An advantage of SPAEF is that it equally balances three distinct individual

metrics (A, B and C above) that individually would not appropriately characterize spatial patterns. For example, Koch et al.

(2018) show good correlations may occur between observed and simulated patterns, while a visual interpretation of the patterns305

suggests this is not the case. Using a multiple-component metric, such as SPAEF, helps disentangling such inconsistencies.

Koch et al. (2018) used SPAEF to calibrate the meso-scale Hydrological Model (mHM) for spatial distributions of actual

evapotranspiration (AET). The study highlighted the importance of incorporating spatial observations in model calibration,

since different ET patterns were obtained for similar simulated streamflow time-series, depending upon the objective function

that was used in the calibration process.310

SPAEF formulation is inspired by Kling–Gupta efficiency (Equation-4) that is characterized by equally weighted components

of variability, correlation and bias (Gupta et al., 2009), and is used frequently to evaluate streamflow simulations. In this study,

SPAEF is used for calibrating the HYDROTEL model with respect to the spatial distribution of SWE. Given that Au Saumon

is a snow-dominated watershed during winters and the maximum snow that is accumulated during the month of March, it

was selected for spatial calibration. First, the gridded SWE value from SNODAS is taken and the average of SWE per grid is315

defined for March. In this case, it produced
:::::
While

:::::::::
calibrating

:::
the

:::::
model

:::::
using

:::::::
SPAEF,

:::::
spatial

::::
grid

::
is

:::::::
utilized.

:::
The

:::::
SWE

::::::
values

::::
from

::::::::
SNODAS

::::
are

::
in

:
a
:
60*58 (spatial)

:::
grid

:::
for

:::
Au

:::::::
Saumon

:::::::::
watershed.

::::
For

::::::
spatial

:::::::::
calibration,

:::
the

:::::
mean

:::::
SWE

:::
of

::::
each

::::
grid

::
for

:::
the

::::::
month

::
of

::::::
March

:::
are

:::::
taken

::::
into

:::::::
account.

:::::
This

::::::
resulted

:::
in

:::::
60*58

::::::::
spatially distributed SWE values for each calibration

year. The SWE that is
::::::::::::
Subsequently,

:::
the

::::
SWE

:
simulated by HYDROTEL for the same month is transformed into

:::::::
(March)

::
is

::::::::::
transformed

::
to

:::::
match

:::
the

:
same 60*58 (spatial ) distributed

:::::
spatial

::::::::::
distribution

::
of

:
SWE values. These spatial patternscan then320

be calibrated using SPAEF.
:
,
::::::::::
representing

:::::
SWE,

:::
are

::::
then

:::::::::
calibrated

::::
using

:::
the

:::::::
SPAEF

:::::
Other

::::::
metric

:::::
used

::
in

::::
this

::::::
study:

:::
One

:::::
other

::::::
metric

:::::
KGE

:
(
::::::::::::

Kling–Gupta
:::::::::
efficiency)

::
is

::::::::
computed

::::
for

::
all

:::
the

::::::::::
calibration

::::::::::
experiments.

::
It

:::
has

:::::
been

::::
used

::
to

:::::
assess

::::::
overall

::::::
model

::::::::::
performance

:::
for

:::
the

:::::::
various

:::::::::
calibration

::::::::
scenarios

:::
that

:::::
were

::::::::::
investigated

::
in

:::
this

:::::
study.

:

KGE = 1−

√
(R− 1)2 +

(
σsim

σobs
− 1

)2

+

(
µsim

µobs
− 1

)2

(4)325
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Table 2. Calibration experiments with their corresponding objective functions that were used

Objective Function used−→ NSEQ RMSESWE SPAEFSWE

Calibrated Parameter
:::::::
Variables −→ Streamflow Average SWE Spatial SWE

Experiment- 1 (Standard) ✓

Experiment- 2 (Sequential) ✓* ✓*

Experiment- 3 (Sequential) ✓* ✓*

Experiment- 4 (Pareto) ✓ ✓

Experiment- 5 (Pareto) ✓ ✓

Experiment-6 (Pareto sequential) ✓* ✓* ✓*

Experiment- 7 (Pareto Front) ✓ ✓ ✓

✓* Streamflow is calibrated with NSE sequentially after optimizing SWE with either RMSE or SPAEF.

KGE is calculated as Equation-4, where R is the Pearson correlation coefficient between observed and simulated streamflow

time-series, σobs is the standard deviation in observations, σsim the standard deviation in simulations, µsim is the simulated

mean streamflow, and µobs is the observed mean streamflow. KGE has been used to assess overall model performance for the

various calibration scenarios that were investigated in this study.

3.2 Proposed Calibration approach330

Seven different experiments were set up, with each experiment being characterized by a unique combination of objective

functions and calibration strategy (see Table 2). All calibration experiments were performed on the base model, which is

defined as model that was ran
:::
run

:
with some random value without prior knowledge based upon previous studies done on

similar catchments. Initial parameter values of HYDROTEL (the base model) are presented in Table 1. HYDROTEL was

calibrated over a 6-year period, from October 2014 to September 2020. Prior to model calibration, a 2-year warm-up period335

was set up to avoid any effects of initial model conditions on its results during calibration. Validation extends from 2001 to

2014. In addition to data availability, one important aspect for choosing the calibration period was to include winter seasons

that were characterized by low, average and high SWE values. Winters in 2019 and 2020 especially were considered as high-

and low-winter seasons, with corresponding basin-averaged SNODAS SWE values of 156.05 mm and 86.26 mm, respectively,

at the onset of the spring melt season. The number of iterations also was fixed (1000) for each calibration for comparison.340

Lower and upper bounds of the parameters that were used in all calibration experiments are presented in Table 1.

Table 2 presents all calibration experiments that were performed in this research. The first calibration experiment, hereafter

denoted as the Standard Experiment, refers to the traditional calibration process that was based upon maximizing NSEQ, which

was calculated with simulated and observed streamflow time-series. In this experiment, all 11 parameters that are listed in Table

1 are optimized using the DDS algorithm. Experiments 2 and 3 consist of adding SWE information during the calibration345

procedure. This is done by sequentially calibrating HYDROTEL, first by adjusting the snow-related parameters (parameters 1

to 7, see Table 1) to minimize RMSESWE (Experiment 2) or to maximize SPAEFSWE (Experiment 3) using DDS, after which
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the runoff-related parameters (8 to 11) are adjusted with NSEQ for streamflow, again using DDS, while the snow parameters are

left unchanged. Experiment 4 and 5 consists of adding both streamflow and SWE information once with average information of

SWE (Experiment 4) and once with spatial information of SWE (Experiment 5) in the calibration procedure. This was achieved350

by maximizing NSEQ and minimizing RMSESWE at once (Experiment 4), and by maximizing both NSEQ and SPAEFSWE

(Experiment 5) using PADDS. Experiment 6 consists of adding both spatial and average SWE information in the calibration

procedure. This is done by sequentially calibrating HYDROTEL, first by adjusting the snow-related parameters to minimize

RMSESWE and maximize SPAEFSWE together using PADDS, after which NSEQ for streamflow was maximized while the

snow parameters are left unaltered. In Experiment 7, all 11 parameters are optimized while maximizing NSEQ for streamflow355

and SPAEFSWE for spatial information of SWE and minimizing RMSESWE for average information of snow.

4 Results

Values of the objective functions for each of the calibration/validation experiments are summarized in Table 3. The values of

objective functions NSEQ, RMSESWE and KGEQ corresponding to the base model are 0.630, 48.83 mm and 0.806, respec-

tively. Using the same base model would be helpful in evaluating whether the calibration performed is adequate for the model’s360

performance. When the model is calibrated with respect to SWE (for both average and spatial calibration), parameters from 1

to 7 are calibrated; when calibrating with respect to streamflow, all the 11 parameters are considered.

The first experiment is standard practice for calibrating hydrological models. The simulated streamflow in the Standard

Experiment generally follows the same temporal pattern for all calibrated years as does the observed streamflow, but the model

has some difficulties in capturing peak streamflow (Figure 3). More specifically, the model generated more streamflow during365

winter 2020 (Jan to April 2020). The observed discrepancy between the simulated and observed streamflow during different

seasons indicates potential inadequacy of the model in effectively representing the complex hydrological processes occurring

during various seasons, including snowmelt and spring runoff. For the study period, rain-on-snow events are identified based

upon the occurrence of precipitation during winter months, along with a decrease in snow depth, coupled with a maximum

temperature that exceeds 0°C. In
:::::
Within

:
this experiment, the model can detect

:::::::::::
demonstrates

:::
the

::::::::
capability

::
to

:::::::
identify

:
melting370

patterns during these events, but
::::::::::
rain-on-snow

::::::
events.

:::::::::
However, it exhibits limitations in capturing

::::::::
accurately

:::::::::
capturing

::::
both

high and low peaks
:
of

:::::
SWE (Figure 4). As rain-on-snow events during winter produce runoff, the model tends to interpret these

as streamflow. Simulated streamflow is relatively similar to the observed streamflow after the events. For the calibration period,

values of 0.762 and 0.772 are obtained in this experiment for NSEQ and KGEQ, respectively. When compared with the base

model, the NSEQ value is improved (from 0.630 to 0.762), which is expected given that NSEQ is the objective function. The375

KGEQ value slightly declined from 0.806 to 0.772, suggesting a slight decrease in hydrological model simulation accuracy,

indicating a potential mismatch between observed and simulated hydrographs. The model is validated for the 2001-2013 period,

and the NSEQ value that was obtained is 0.735, thereby indicating good agreement between observed and simulated streamflow

values. The KGEQ value that was obtained is 0.684, which suggests moderate agreement during the validation period. The

spatially averaged RMSESWE value of SWE for the watershed with respect to SNODAS-SWE is 45.35 mm. Figure 4 indicates380

14



Ta
bl

e
3.

A
ll

C
al

ib
ra

tio
n

E
xp

er
im

en
ts

w
ith

th
ei

rc
or

re
sp

on
di

ng
pa

ra
m

et
er

s
an

d
ob

je
ct

iv
e

fu
nc

tio
n

va
lu

es

C
al

ib
ra

tio
n

E
xp

er
im

en
ts

(2
01

4-
20

20
)

Pa
ra

m
et

er
s

D
D

S
PA

D
D

S

1.

N
SE

Q

2.

R
M

SE
S
W

E

3.

SP
A

E
F S

W
E

4.

N
SE

Q
,

R
M

SE
S
W

E

5.

N
SE

Q
,

SP
A

E
F S

W
E

6.

R
M

SE
S
W

E
,

SP
A

E
F S

W
E

7.

N
SE

Q
,

R
M

SE
S
W

E
,

SP
A

E
F S

W
E

1.
B

as
e

re
fr

ee
zi

ng
te

m
pe

ra
tu

re

(m
m

/d
)

-1
.0

49
-1

.1
38

-1
.8

79
-2

.1
74

-1
.7

37
-1

.7
82

-1
.8

96

2.
Te

m
pe

ra
tu

re
th

re
sh

ol
d

fo
r

m
el

t-

C
on

ife
ro

us
(°

C
)

0.
82

7
-4

3.
37

4
0.

69
5

2.
81

7
2.

48
3

1.
80

6

3.
Te

m
pe

ra
tu

re
th

re
sh

ol
d

fo
r

m
el

t-

D
ec

id
uo

us
(°

C
)

0.
24

1
4

-1
.7

97
-0

.8
38

-3
.3

91
-3

.1
16

-1
.7

78

4.
Te

m
pe

ra
tu

re
th

re
sh

ol
d

fo
r

m
el

t-

O
pe

n
(°

C
)

-1
.2

8
4

-2
.2

24
-2

.7
67

-2
.9

87
-3

.9
13

0.
54

2

5.
M

el
t

fa
ct

or
fo

r
co

ni
fe

ro
us

fo
re

st
s

(m
m

/d
pe

r
°C

)

13
.5

91
15

13
.7

32
5.

51
5

11
.4

43
13

.0
55

9.
44

5

6.
M

el
t

fa
ct

or
fo

r
de

ci
du

ou
s

fo
re

st
s

(m
m

/d
pe

r
°C

)

3.
91

3
15

11
.4

65
10

.3
50

6.
31

2
7.

85
9

10
.9

16

7.
M

el
tf

ac
to

r
fo

r

op
en

ar
ea

s(
m

m
/d

pe
r

°C
)

9.
84

1
15

13
.3

95
9.

89
1

4.
92

9
13

.9
50

13
.3

40

8.
M

ul
tip

lic
at

io
n

fa
ct

or
fo

r
PE

T
1.

03
1

1.
16

6*
1.

03
9*

1.
04

7
1.

03
4

1.
32

2*
1.

08
6

9.
D

ep
th

of
th

e
fir

st
so

il
la

ye
r

(m
.)

0.
00

3
0.

00
3*

0.
00

3*
0.

00
3

0.
00

3
0.

00
3*

0.
00

1

10
.D

ep
th

of
th

e
se

co
nd

so
il

la
ye

r
(m

.)
0.

50
1

0.
47

4*
0.

33
9*

0.
25

1
0.

26
1

0.
40

1*
0.

43
3

11
.D

ep
th

of
th

e
th

ir
d

so
il

la
ye

r
(m

.)
2.

09
5

3.
93

2*
1.

00
0*

1.
06

8
1.

00
0

3.
17

5*
7.

00
0

N
SE

Q
0.

76
2

0.
57

5
0.

73
7

0.
72

1
0.

75
0

0.
68

7
0.

75
4

R
M

SE
S
W

E
(m

m
)

45
.3

5
35

.7
4

39
.3

8
39

.0
9

40
.5

3
38

.8
9

40
.1

5

SP
A

E
F

S
W

E
0.

19
2

0.
07

2
0.

23
2

0.
09

1
0.

22
9

0.
24

4
0.

21
6

K
G

E
Q

0.
77

2
0.

65
8

0.
76

4
0.

72
1

0.
77

5
0.

82
0

0.
80

5

*
T

he
se

va
lu

es
ar

e
ob

ta
in

ed
af

te
r

se
qu

en
tia

lc
al

ib
ra

tio
n

w
ith

N
SE

Va
lid

at
io

n
(2

00
1-

20
13

)

N
SE

Q
0.

73
5

0.
59

5
0.

72
6

0.
71

9
0.

74
9

0.
67

9
0.

74
1

K
G

E
Q

0.
68

4
0.

50
4

0.
70

8
0.

68
7

0.
76

6
0.

65
9

0.
67

6

15



Table 4. SPAEFSWE values for each year from each experiment with best value of 0.437 (Exp 1-2017) and worst value of -0.270 (Exp

2-2020)

Year
::::
Base

:::::
Model Exp- 1 Exp- 2 Exp- 3 Exp- 4 Exp- 5 Exp-6 Exp- 7

2015
::::
0.298

:
0.262 0.175 0.240 -0.071 0.232 0.231 0.137

2016
::::
0.255

:
0.317 0.000 0.300 0.205 0.332 0.345 0.324

2017
::::
0.313

:
0.437 0.170 0.323 0.389 0.391 0.389 0.413

2018
:::::
-0.037 0.051 0.080 0.138 0.093 0.062 0.130 0.081

2019
::::
0.100

:
0.116 0.275 0.252 0.147 0.223 0.278 0.217

2020
:::::
-0.057 -0.030 -0.270 0.137 -0.216 0.134 0.091 0.123

that HYDROTEL tends to overestimate SWE compared to SNODAS, except for year 2020, where the model produces a

substantial amount of streamflow during
:::::
2020.

::::::
During

::::
this

::::
year,

:::
the

::::::
model

::::::::
generates

:::::::
notably

::::::
higher

::::::::::
streamflow

::
in

:
winter

(Figure 3) as compared to SNODAS
::::::::
compared

::
to

:::
the

::::::::
observed data. Either insufficient winter precipitation in the hydrological

model or inaccurate temperature data for the year 2020 could be contributing factors to this issue. Upon comparing precipitation

data for 2020 with precipitation that was obtained from meteorological stations, discrepancies were observed in the MSWEP385

precipitation data, particularly some missing peaks during the winter season. These discrepancies in the precipitation data could

potentially contribute to the unusual output that was observed in the study. Through the comparative analysis of SWE data that

were collected from the Milan (elevation: 496 m) and Bury (elevation: 340 m) stations, it suggests that the calibrated model

exhibits a tendency to closely correspond with the values that were obtained from Milan, a station that was characterized by a

higher elevation. This response suggests the substantial influence of the elevation factor on the model simulations. SPAEF is390

computed for SWE for the month of March for each year of the calibration period and varies from -0.030 for 2020 to 0.437 for

2017 (Table 4), indicating that the success at simulating the spatial SWE patterns by HYDROTEL is highly variable from year

to year.

In Experiment 2, all snow-related parameters are first calibrated using RMSESWE with spatially averaged (considering

the SWE values for each RHHUs for whole calibration period then averaging), modelled and SNODAS SWE followed by395

calibration of the remaining parameters with NSEQ applied to streamflow. The average RMSESWE value after calibration is

35.74 mm, which is considerably improved compared with the Standard Calibration experiment. Indeed, Figure 5 effectively

shows that simulated SWE more closely matches SNODAS SWE compared to the Standard Experiment. Note that for both

experiments, HYDROTEL significantly underestimates snow accumulation for winter 2020. The cause for this discrepancy

remains consistent with the previously discussed reasons. NSEQ for streamflow after sequential calibration is 0.575 and KGEQ400

value is 0.658, which are considerably lower than corresponding values for the Standard Experiment. The model was thus able

to improve simulated basin average SWE, but at the expense of a deterioration of the simulated streamflow. During rain on

snow events in winter, the model is able to produce the peaks of SWE, but it is unable to capture accurately the associated

melting patterns. Moreover, spatial distribution values of SWE varied from -0.270 (for March 2020) to 0.275 (for March 2019)
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Figure 3. Comparison of observed streamflow with simulated streamflow for Experiment 1

Figure 4. Comparison of SNODAS SWE with simulated SWE for Experiment 1 along with station data

(Table 4). The average SPAEFSWE value is much lower compared to values obtained with the Standard Experiment. In other405

words, spatial heterogeneity of the snowpack deteriorates when calibration is performed with the average SWE value.
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Figure 5. Comparison of SNODAS SWE with simulated SWE for Experiment 2 along with station data

Instead of trying to preserve the best temporal dynamics of basin-averaged SWE, Experiment 3 attempts to maintain its

spatial distribution at the end of the snow-accumulation season using SNODAS-SWE. This is accomplished by incorporating

SPAEFSWE as the objective function for SWE for calibrating snow-related parameters, followed NSEQ for streamflow to

adjust the remaining parameters. Unsurprisingly, the March SPAEFSWE value averaged over years 2015-2020 increased to410

0.232, when compared to 0.192 and 0.072 for experiments 1 and 2, respectively (Table 3). Figure 6 depicts the relationship

between the spatial distribution of SNODAS and HYDROTEL and the corresponding SPAEFSWE value. The results indicate

that a greater spatial difference between SNODAS and HYDROTEL leads to a negative SPAEFSWE value. Conversely, when

the spatial distribution of both datasets is similar, SPAEFSWE approaches 1. The figure displays the maximum 0.437 (year-

2017- Experiment 1) and minimum -0.270 (year-2020- Experiment 2) values of SPAEFSWE that were obtained during the415

calibration experiment.

Overall, calibrating HYDROTEL using SPAEFSWE helped preserve SWE spatial heterogeneity that was simulated by the

model. Also, year-to year variability in SPAEFSWE is reduced, as SPAEFSWE varied from 0.137 (Mar 2020) to 0.323 (March

2017). A year-to-year comparison of spatial SWE reveals that calibrating the model with SPAEFSWE degraded SWE distribu-

tion in some years, e.g., 0.300 (March 2016) and 0.240 (March 2015). This means that spatial integrity of the SWE value is420

occasionally compromised using the calibration strategy. A detrimental effect of calibrating the model with SPAEFSWE is that

average SWE value is overestimated by model as compared to observed average value (Figure 7). Correspondingly, average

RMSESWE is 39.38 mm, which is higher than the value that is obtained when the model is calibrated using RMSESWE as the

objective function. The sequential calibration with NSEQ yields a value of 0.737. The KGEQ value is 0.764, which is better

than what is achieved in Experiment 2. This suggests that using spatial distribution to calibrate snow parameters apparently pro-425
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Figure 6. Spatially distributed SWE values of SNODAS and HYDROTEL, along with corresponding SWE differences for minimum
::::::
(-0.270

:::::::::
Experiment-

:
2
::::
year

:::::
2020)and maximum

:::::
(0.437

:::::::::
Experiment-

::
1
:::
year

:::::
2017) SPAEFSWE values for Au Saumon Watershed.

vides better results for streamflow than using average SWE value to calibrate snow parameters. Interestingly, both experiments

1 and 3 overestimated spatially averaged SWE, but the sequential calibration strategy provided a good match between simu-

lated versus observed flows, given that NSEQ and KGEQ values for experiments 3 and 1 are comparable. From an experimental

perspective, it is worth noting that in Experiment 3, the spatial distribution of SWE, i.e., the SPAEFSWE value, exhibits better

improvement when compared to the standard practice. Although the temporal dynamics of spatially averaged SWE are well430

preserved in Experiment 2, the flow-related model parameters could not be properly calibrated to obtain a good fit between

observed and simulated flows. Perhaps this is due to the spatial invariance of these parameters, to the sequential modelling

strategy, or both. In order to investigate the latter, experiments were performed in which NSEQ, RMSESWE or SPAEFSWE are

simultaneously optimized with multi-objective calibrations (experiments 4 to 7).

In Experiment 4, NSEQ for streamflow and RMSESWE for SWE are optimized together using PADDS. The maximum435

value of NSEQ is 0.721, while RMSESWE is 39.09 mm, which shows improvement compared to the Standard Experiment

(Experiment 1) in terms of RMSESWE. Upon comparison with the sequentially calibrated Experiment 2, an improvement was
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Figure 7. Comparison of SNODAS SWE with simulated SWE for Experiment 3 along with station data

observed in the NSEQ and SPAEFSWE values, coupled with a decrease in RMSESWE. Surprisingly, the comparison between

Experiment 3 and 4 suggests that sequential calibration of the hydrological model using SPAEFSWE results in better model

performance in terms of NSEQ, SPAEFSWE, and KGEQ, in contrast to multi-objective calibration with NSEQ and RMSESWE.440

SPAEFSWE of SWE varied from -0.216 (for March 2020) to 0.389 (for March 2017), with an average 0.091 for all calibrated

years, which is higher than the value that was obtained using RMSESWE and NSEQ in a sequential calibration strategy (0.072).

In other words, opting for a simultaneous RMSESWE-NSEQ calibration improved the spatial SWE distribution compared to a

sequential calibration strategy. The value remains below that obtained in Experiment 3 (0.232).

In Experiment 5, NSEQ is used to optimize streamflow and SPAEFSWE for spatial SWE together. The optimized solution445

yields NSEQ of 0.750 and a KGEQ of 0.775. Spatial distribution of SWE varied from 0.062 (for March 2018) to 0.391 (for

March 2017). The average SPAEFSWE value that was obtained for all calibrated years is 0.229. When compared with standard

calibration (Experiment 1), the spatial distribution of SWE is improved (from 0.192 to 0.229), together with RMSESWE (from

45.35 mm to 40.53 mm), while NSEQ of Experiment 5 is comparable with standard calibration with an improved KGEQ value.

Upon comparing experiments 5 and 3, where SPAEFSWE is calibrated sequentially following
:::::::
followed

::::::::::
sequentially

:::
by NSEQ,450

a slight improvement in NSEQ is noted. Yet, SPAEFSWE and RMSESWE appear to be compromised. Here, sequential cali-

bration using SPAEFSWE results in superior performance for RMSESWE and SPAEFSWE, whereas multi-objective calibration

jointly yields a better performance measure for NSEQ. Comparing the results to Experiment 4, where NSEQ is calibrated with

RMSESWE, it is observed that NSEQ, KGEQ and SPAEFSWE are improved in Experiment 5, while RMSESWE results are

comparable. This again suggests that using SPAEFSWE to calibrate spatially distributed SWE is more advantageous than using455

RMSESWE to calibrate spatially averaged SWE when employing multi-objective functions with NSEQ.
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In Experiment 6, both RMSESWE for spatially averaged SWE and SPAEFSWE for spatial distributed SWE are first opti-

mized simultaneously using PADDS to calibrate HYDROTEL’s snow-related parameters, followed by maximizing NSEQ for

streamflow to calibrate the remaining flow-related parameters. After calibration, the best value for RMSESWE is 38.89 mm,

while SPAEFSWE values ranged from 0.091 (for March 2020) to 0.389 (for March 2017), with an average value of 0.244.460

Sequential calibration with NSEQ provided NSEQ value of 0.687 for streamflow and a KGEQ value of 0.820. In comparison to

experiments 4 and 5, NSEQ has decreased substantially while the KGEQ value has increased substantially. This suggests that

model performance has improved in terms of capturing the overall pattern of the observed data, although the accuracy in fitting

individual data points may have declined slightly. In Experiment 6, a significant improvement is noted for SPAEFSWE, with a

slight decrease in RMSESWE compared to Experiment 4. This suggests that by sequentially calibrating both SPAEFSWE and465

RMSESWE followed by NSEQ, the model is able to capture the spatial distribution of both SWE and streamflow. Yet, it should

be noted that model’s fitness to individual data points might not be captured accurately. In Experiment 6, slight improvement in

SPAEFSWE was noted, with a slight decrease in RMSESWE, but a significant reduction in NSEQ as compared to Experiment

5. This implies that calibrating SPAEFSWE and NSEQ together is a better approach than sequential calibration of SPAEFSWE

and RMSESWE, followed by NSEQ :::::
under

:::
the

:::::::::
considered

:::::
model

::::::
setting.470

As the last step in calibration trial, all objective functions were calibrated together using the PADDS algorithm. NSEQ

after optimization is 0.754, KGEQ is 0.805, and RMSESWE is 40.15 mm. Spatial distribution of SWE varied from 0.081 (for

March 2018) to 0.413 (for March 2017). The average SPAEFSWE value for all calibrated years is 0.216. When compared to

the standard experiment, Experiment 7 outperforms in terms of RMSESWE, SPAEFSWE and KGEQ, while NSEQ remains

comparable in both cases. Among other experiments, Experiment 7 shows better performance when compared to experiments475

2 and 4, while results from experiment, 3 and 5 are comparable to Experiment 7. By comparing Experiment 6 where NSEQ is

sequentially calibrated with RMSESWE and SPAEFSWE, and Experiment 7 where all three functions are calibrated together,

we conclude that calibrating together provides better results for NSEQ and comparable results for other objective functions.

In comparing all calibration strategies during validation, NSEQ values for the experiments could be ordered: 5, 7, 1, 3, 4, 6,

and 2. KGE values > 0.75 are generally considered to be indicative of good model performance, as noted in previous studies480

(Towner et al., 2019). Upon analyzing the results in calibration experiments, most are found to have KGE values greater than

0.75 for the calibration period; the exceptions are the second (calibration with RMSESWE and sequential NSEQ) and fourth

(calibration with RMSESWE and NSEQ simultaneously) experiments. This suggests that calibration in these experiments is

satisfactory, and the model is expected to perform well. The validation results from the years 2001-2013 were analyzed for

the best model performance with respect to KGEQ. Experiment 5 had the highest KGEQ (> 0.75), indicating the best model485

performance. Experiment 3 followed closely behind, while experiments 1, 4 and 7 produced nearly identical results. In contrast,

experiments 2 and 6 had poor performance in terms of KGEQ. A noticeable feature of SPAEFSWE er is the amount of time

that is required for calibration, together with the number of iterations to reach the best value. In this study, iterations were set

at same number to maintain comparable scenarios, while the duration of spatial calibration was twice as long as the remaining

experiments.490
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5 Discussion

Analysis of parameter variations following calibration revealed consistent values for the base refreezing temperature, the PET

parameter, and depth of the first two soil layers across multiple calibrations. Yet, variation was observed in the temperature

thresholds for melt, melt factor, and thickness of the third soil layer among experiments, particularly for Experiment 2. In the

initial phase of calibration experiments, several trial and error runs were conducted to determine parameter boundaries, while495

simultaneously reviewing relevant literature, which enhanced understanding and accuracy through comprehensive parameter

exploration. Experiment 2, which used RMSESWE and NSEQ sequentially, consistently reached the parameter bounds for

temperature thresholds and melt factors. Depending upon the land use, temperature threshold values also show opposite values,

i.e., -4 °C for conifers versus 4 °C for deciduous and open areas. This means that there are areas with a lot of snow and others

with very little snow in the watershed based on land use, which does not represent the accurate spatial distribution of snow500

for this watershed. The watershed exhibits a significant predominance of coniferous vegetation, leading to a lower temperature

threshold in Experiment 2 compared to the other experiments. Experiment 1 overestimates SWE compared to SNODAS. By

decreasing the temperature at which melting begins for a large portion of the watershed, Experiment 2 decreases the overall

quantity of snow to levels closer to SNODAS values. Yet, the spatial distribution of snow is not respected. Therefore, it is not

recommended that parameters using RMSESWE and NSEQ be calibrated sequentially.505

As the research objective, this study evaluated the practicality of using raw SNODAS data for hydrological model

calibration.
::
A

:::::::
number

:::
of

:::::::::
researches

:::::
have

:::::
been

:::::
done

::::::::::
previously

:::::
using

:::::
bias

::::::::
corrected

:::::::::
SNODAS

::::
and

:::::
raw

:::::::::
SNODAS

::::::::::
information.

::::::::::::::::
King et al. (2020)

::::::
revealed

::
a
::::::::::

significant
:::::::::::
enhancement

:::
in

::::
area

:::::
melt

::::::::
estimates

::::::
during

::::
the

::::::
spring

::::
melt

::::::
when

:::::::
utilizing

::::::::::::
bias-corrected

:::::::::::::
SNODAS-SWE

::::
data

::::::::
compared

::
to

::::
raw

::::::::
SNODAS

:::::::::
estimates,

:::::
which

::::::::
exhibited

:::::::::
unrealistic

::::
melt

::::::::
volumes.

:::
The

:::::::
study’s

::::::::::
comparisons

:::::
with

::
in

::::
situ

:::::
SWE

::::::::::::
measurements

::::::::::::
demonstrated

:::
that

:::::::::
nonlinear

:::::::::::::
bias-correction

:::::::::
techniques

:::::::
notably510

:::::::
improve

:::
the

:::::::
accuracy

:::
of

::::::::
SNODAS

:::::
SWE

::::::::
estimates.

::::::::::::::::::::::
Zahmatkesh et al. (2019)

::::::::
showcased

::::
that

::::::::::::
bias-correcting

:::::::::
SNODAS

:::::
SWE

::::::::::
significantly

::::::::
enhanced

:::
the

::::::::
accuracy

::
of

::::::
lumped

:::::::
models,

:::::::::
contrasting

:::::
with

:::
raw

::::::::
SNODAS

::::::
SWE,

:::::
which

:::::::
resulted

::
in

::::::::::::
overestimated

:::::::::
streamflow

:::
and

:::::
peak

::::
flow

::::::
values.

::
A

:::::::::
significant

::::::::
limitation

:::
in

:::
bias

:::::::::
correcting

:::::::::
SNODAS

::::
data

:::
lies

::
in

:::
the

:::::::
absence

:::
of

:::::::::
substantial

:::
data

::::::::::::::::::::::
(Zahmatkesh et al., 2019).

:
Given its specific focus, bias correction of the SNODAS data was not within the scope of

the study. As a result, raw SNODAS data were employed for analysis of SWE, and both RMSE and SPAEF were utilized515

as objective functions to calibrate SWE in the model. In Experiment 2, RMSESWE can drive the parameters to extreme val-

ues, given that it treats all data points equally irrespective of their location in the distribution. If there are extreme values in

the observed data, the model can be calibrated to fit those values, even if they do not represent the overall distribution. This

can lead to poor model performance when applied to new data or different conditions. Furthermore, if there is bias in the

observed data, it will result in high RMSEvalues.
:::
The

:::::::::
sensitivity

:::
of

::::::
RMSE

::
to

:::::::
outliers

::
is

:
a
::::::::
common

:::::::
concern

:::::
while

:::::
using

::
it520

::
in

:::::::::
calibration.

:::::::
Outliers

:::
can

:::::::::::
significantly

::::::
impact

::::::
RMSE

::::::::::
calculations,

::::
and

::::
their

:::::::::
likelihood

::
of

:::::::::
occurrence

:::::
aligns

:::::
with

:::
the

::::::
normal

:::::::::
distribution

::::
that

:::::::
underlies

::::::
RMSE

:::::::::::::::::::::
(Chai and Draxler, 2014).

:::::
When

::::::
model

:::::
biases

:::
are

::::::::::
pronounced,

::
it
::::
may

::
be

::::::::
necessary

::
to

:::::::
address

::::
these

:::::::::
systematic

:::::
errors

::::::
before

:::::::::
calculating

:::::::
RMSE.

::::::::
However,

:::
the

::::
bias

::::::::::
insensitivity

:::
of

::::::
SPAEF

:::::
offers

::
a
:::::::
valuable

:::::::
solution

::
to

::::
this

::::::::
challenge

:::::::::::::::
(Koch et al., 2018)

:
.
::::::
SPAEF

::::::::
mitigates

:::
the

::::::
impact

::
of

::::::::::
uncertainties

:::
in

:::::::::::
observations,

::::::::
providing

:
a
:::::
more

:::::
robust

::::
and

:::::
stable
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:::::::
approach

:::
to

:::::
model

:::::::::
calibration

::::
and

:::::::::
evaluation.

:
In such situations, SPAEF may be a more reasonable option to achieve good525

calibration of SWE when bias correction of data is not feasible.

The calibration of streamflow alone may not be sufficient for accurately simulating the hydrological processes in a watershed,

given that it is affected by various factors, such as snow accumulation, snowmelt, evapotranspiration, infiltration and soil

moisture. Therefore, considering the calibration of SWE is crucial in watersheds that receive substantial snowfall, such as

the Au Saumon River Watershed, where snow accumulation and melt are major contributors to the streamflow. Calibrating530

only streamflow may not capture the snow accumulation and melt dynamics and can lead to inaccurate simulation results,

which in turn can affect water resources management decisions. In their study, Nemri and Kinnard (2020) investigated the

integration of snow observations into improving calibration of hydrological models in forested catchments. They found that

employing multi-objective calibration, which incorporates both streamflow and SWE (both calibrated using NSE), resulted in

SWE simulations that were comparable to a separate calibration method with a small decline in streamflow simulations. The535

researchers emphasized the importance of considering the spatial distribution of the data when calibrating the models.

Our study ’s focus aimed
::::::
focuses to incorporate snow spatial information for hydrological model calibration. A novel spa-

tial efficiency metric called SPAEF was utilized in conjunction with other objective functions, i.e., RMSE and NSE. NSE

was employed as an objective function for streamflow. It enables direct evaluation of model performance against the inherent

benchmark of NSE = 0, which corresponds to the mean flow. Alongside other metrics, KGE was computed for both calibration540

and validation. Knoben et al. (2019) suggested that KGE values falling within the range of -0.41 < KGE ≤ 1 can be considered

reasonable for hydrological modelling. This indicated a satisfactory representation of the observed data, taking into account the

limitations and uncertainties that were associated with the model and data. Consequently, KGE was utilized as a performance

metric to compare validation results, with Table 3 summarizing the corresponding parameter values for each calibration exper-

iment. Based upon the comparison of validation results using KGEQ, it is evident that incorporating spatial calibration with545

SPAEFSWE in conjunction with NSEQ (in both simultaneous and sequential calibrations) yields better outcomes compared to

utilizing RMSESWE as one of the objective functions or using NSEQ as only objective function.

Looking at first three experiments, it can be inferred that the sequential calibration of NSE following the calibration of

spatially distributed SWE with SPAEFSWE yields outcomes that exhibit better acceptability as the overall model performance

is enhanced. The reason for this is that calibrating SWE captures the spatial variability of the snowpack, which is a crucial550

factor in hydrological processes. Calibrating NSEQ subsequently ensures that the model can capture temporal variation of

the flow. Therefore, the sequential calibration approach leads to better results that are acceptable in terms of overall model

performance. When comparing results of calibration with RMSESWE and calibration with SPAEFSWE, followed by sequential

NSEQ calibration, it is evident that SPAEFSWE yields better results than RMSESWE. The distribution of snow is not uniform

everywhere; therefore, spatially distributed SWE calibration captures the heterogeneity of the snow distribution within the555

basin, whereas spatially averaged snow calibration assumes that snow is uniformly distributed throughout the basin, which

is not always the case in mountainous terrain where snow can accumulate in complex patterns. Thus, spatially distributed

SWE calibration provides a more accurate estimate of the actual snow distribution in the basin, which leads to better model

performance in predicting streamflow.
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In a comparative analysis of hydrological model calibration procedures, (Tuo et al., 2018) examined the effectiveness of560

different calibration approaches. Their study focused upon the multi-objective calibration method, specifically incorporating

the optimization of sub-basin average snow water equivalent (SWE) and streamflow. The results demonstrated that this multi-

objective approach outperformed single-objective procedures in accurately simulating snow dynamics, which aligns with our

study. Building upon these findings, our study extended the calibration process by further incorporating both spatially averaged

and spatially distributed data for SWE. Notably, our results highlighted the superiority of calibrating the model using spatially565

distributed information rather than relying solely upon average information. Considering the spatial distribution of SWE data

leads to improved model performance and more accurate simulations.

Focusing upon multi-objective calibrations, experiments 4 and 5 also backs up the aforementioned argument that using

SPAEFSWE with NSEQ yields better results than using RMSESWE with NSEQ. Based upon the comparisons made between

experiments 2 vs. 4, 3 vs. 5, and 6 vs. 7, it is evident that calibrating the objective functions simultaneously yields superior570

model performance compared to the sequential calibration of the objectives. Specifically, experiments 4, 5 and 7, which employ

the simultaneous calibration of objective functions that were considered, exhibit improved model performance when compared

to experiments 2, 3 and 6, which adopt a sequential calibration approach. The study that was conducted by Finger et al. (2015)

showcased the benefits of calibrating a hydrological model using multiple data sets, thereby leading to improved estimation of

runoff contribution. This finding is consistent with the current study, which highlights calibrating both SWE and streamflow as575

yielding superior results. From our study, it can be concluded that simultaneous calibration of objective functions is a superior

approach to sequential calibration, given that sequential calibration can lead to overfitting of the model to the specific objective

function being calibrated. In turn, this can result in poor model performance when evaluating other objective functions. Fur-

thermore, sequential calibration may result in a trade-off between objective functions, which may not be optimal for overall

model performance. When all objective functions are calibrated simultaneously, it allows for a more balanced calibration and580

can provide better overall model performance. It also helps avoiding overfitting to any single objective function and provides a

more comprehensive understanding of the model’s behaviour.

:::
For

:::
this

::::::
study,

::::::
March

:::
was

:::::::
selected

:::
for

:::::::
SPAEF

:::::::::
calibration

::
as

::
it
::
is

:::
the

::::::
month

::::
with

:::
the

:::::::
highest

:::::
SWE.

::::
Our

::::::::
objective

::::
was

::
to

:::::::
leverage

:::
the

::::::::
maximum

:::::
SWE

::::::::::
information

::::::::
available

::::::
during

:::
this

::::::
period.

::::::::
However,

:::
we

:::::::::
recognize

:::
that

:::::::
March,

::::::
despite

::::::
having

:::
the

::::::
highest

:::::
SWE,

::::
also

:::::::
overlaps

:::::
with

:::
the

::::
snow

:::::::
melting

::::::
period,

::::::
which

:::::
could

:::::::::
potentially

::::::::
influence

:::
the

::::::::::
calibration

::
of

:::
our

::::::::
analysis.585

:::
We

:::::::::
performed

::::::::
additional

:::::::
analyses

:::::
using

::::
data

:::::
from

:::::::
January

:::
and

::::::::
February,

::::
and

:::
the

::::::
results

:::::::::::
demonstrated

::::
that

::::::
SPAEF

::::::::
performs

:::
well

:::::
with

::::
data

::::
from

::::
both

:::::
these

:::::::
months.

:::
We

:::::::
believe

:::
that

::::::
further

::::::::
research

::
is

::::::::
necessary,

:::::
with

:::::::
different

::::::::::
watersheds

:::
and

:::::::
periods

::::
used

::
to

:::::::
compute

:::::::
SPAEF,

::
to

::::
more

:::::::::
accurately

::::::::::
understand

:::::::
SPAEF’s

:::::::::::
performance

::::::
during

::
the

:::::
onset

::
of

:::::
snow

:::::::::::
accumulation

::::
and

:::
the

::::::::
snowmelt

::::::
period.

:::
The

:::::::
detailed

::::::
results

::
of

:::::
these

::::::::
additional

::::::::::
calibrations

::::
can

::
be

:::::
found

::
in

:::
the

::::::::::::
supplementary

::::::::
material,

::::::::
providing

::
a

::::::::::::
comprehensive

::::
view

:::
of

::
the

:::::::
model’s

::::::::::::
performance.”

:
590
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6 Conclusions

Hydrological models are subject to continuous development, which has led to increased complexity
:::::::
becoming

::::::
more

::::::::::
sophisticated

:::::
over

::::
time,

:::
as

:
a
:::::
result

:::
of

:::::::::::
advancements

:::
in

::::::::::::
computational

::::::::
resources,

::::
and

:
a
::::::

better
::::::::::::
understanding

::
of

:::::::::::
hydrological

::::::::
processes. These models are not merely tools for estimating runoff; rather, they encompass

:::::::::
simulation

::
of

:
complex processes

that involve state variables contributing to the generation of runoff. The satellite input data, which is used to drive these mod-595

els, is available at high temporal
:::::::
(ranging

::::
from

:::::
daily

::
to

:::::::
hourly) and spatial resolutions

:::
(up

::
to

:
a
:::::::::
kilometer

:::::
scale). Integration

of comprehensive spatial data that are acquired from remote sensing platforms offers tremendous opportunities for further

advancements in hydrological modelling.

This article analyzes different calibration experiments of the HYDROTEL distributed hydrological model for the Au Saumon

Watershed. HYDROTEL includes modules that permit high-resolution discretization of the basin, river streams, lake inflow,600

river flow, and gridded observed meteorological data, making it a suitable model for the calibration experiment. The key aspect

of this calibration experiment is the incorporation of the spatial efficiency metric SPAEF as an objective function. The study

explored this newly developed spatial distribution metric in the calibration and validation of distributed hydrological models

and compared results with previously used calibration strategies. SPAEF has been used previously with evapotranspiration in

various studies, but this study introduces SPAEF with SWE for the first time. The comparison of different calibration strategies605

on the Au Saumon Watershed highlights these important findings.

• Calibrating only streamflow is not ideal for any
:::::::::
distributed hydrological model. It is recommended that snow parameters

:::::::
variables

:
such as snow water equivalent (SWE) also be calibrated, especially in areas where snow accumulation can be

spatially heterogeneous.

• Sequential calibration of objective functions (e.g., calibrating using NSE after calibrating with SPAEF) may not always610

result in better model performance compared to calibrating all objective functions simultaneously, especially when con-

sidering multiple objective functions. Sequential calibration of objective functions is not recommended, as it may result

in sub-optimal model performance.

• Spatially distributed SWE calibration is preferred over spatially averaged calibration, given that the former captures

heterogeneity of snow distribution in different land covers and provides more accurate estimates of SWE across the615

basin.

• Raw SNODAS data has the potential for enhancing the model’s accuracy and reliability by incorporating the spatial

variability of snow distribution.

The present experiments demonstrate that although researchers tend to focus upon obtaining decent model output by opti-

mizing a single objective function, this approach may not provide entirely reliable results. Therefore, using multiple objective620

functions to optimize different processes simultaneously can lead to better results. In this study, the importance of incorporat-

ing the spatial calibration metric SPAEF is highlighted. Spatial calibration of snow parameters
:::::::
variables provides better results

25



when compared to averaging the parameters
:::::::
variables. To further understand the spatial metric, it is necessary to investigate

spatial variability and SPAEF by applying and comparing it to other catchments or models. Calibrating a distributed model

and increasing its spatial predictability requires more than just an appropriate spatial performance indicator. It necessitates625

the use of a flexible model structure and parameterization in conjunction with other metrics to enable simulated patterns to be

modified meaningfully. Achieving this requires reliable geographic measurements at an appropriate scale, thorough assessment

of catchment morphology, and high-quality forcing data.

Based upon our findings, it is evident that spatial calibration of a distributed hydrological model, HYDROTEL, yields

satisfactory results and enhances its robustness and coherence with other hydrological processes. Our study aims to encour-630

age the modelling community to reconsider their methodologies by focusing upon relevant metrics that emphasize spatial

patterns characterizing hydrological processes during calibration or validation studies. The upcoming Terrestrial Snow Mass

Mission (TSMM) satellite mission
::::::::
(low-cost,

:::::::::
low-mass,

::::::::::
spaceborne

::::::::
Ku-band

::::
SAR

:::::::
system

:::
that

:::
is

:::::
being

:::::::::
developed

::
by

::::
the

::::::::
Canadian

:::::
Space

:::::::
Agency

::::::::::::::::::
(Derksen et al., 2021)

:
) seeks to offer high-resolution and spatially distributed information on snow

water equivalent (SWE)
::::
SWE. Consequently, to optimize hydrological model performance, calibration procedures that account635

for both conventional streamflow and spatial SWE should be considered.

:::
The

:::::
study,

:::::
while

:::::::::
conducted

::
for

::
a
:::::
single

:::::::::
watershed,

:::::::::
contributes

::
in

:::
our

::::::::::::
understanding

::
of

::::::::
SPAEF’s

::::::::::
performance

::
in

:::::::::::
hydrological

::::::::
modeling

::
of

::::::::::::::
snow-dominated

:::::::::
watershed.

:::::::::
However,

:
it
::::

also
:::::::
reveals

:::
the

::::
need

:::
for

::::::
further

::::::::
research.

::::
The

:::::::::
utilization

::
of

::::::::
different

::::::::::
precipitation

:::
and

::::::::::
temperature

:::::::
datasets

::
as

:::::
input

:::
data

::::
can

::::::::::
significantly

::::::
impact

::
the

:::::::::::
performance

::
of

:::::::::::
hydrological

::::::
models.

:::::::::
Variations

::
in

::::
these

::::::::
datasets,

::::::
which

::::
may

::::
arise

:::::
from

::::::::::
differences

::
in

::::
data

:::::::::
collection

::::::::
methods,

::::::
spatial

:::::::::
resolution,

:::
and

::::::::
temporal

:::::::::
coverage,640

:::
can

:::::
affect

:::
the

:::::::::
reliability

:::
and

::::::::
accuracy

::
of

:::::::::::
hydrological

::::::::::
predictions.

::::
The

::::::
distinct

:::::::::::::
characteristics

::
of

::::
each

:::::::::
watershed,

:::::::::
including

::::
size,

:::::
slope,

:::::::
altitude

:::
and

::::
land

:::::
used

:::
can

:::::
have

:
a
::::::::::

substantial
::::::
impact

::
on

::::
the

::::
snow

::::::::::::
accumulation

::::
and

::::
melt

:::::::::
processes.

:::::::::
Therefore,

:
it
::
is

::::::::
essential

::
to

:::::::
broaden

::::
this

:::::::
research

::
to

:::::::
include

:::::::
different

::::::::::
watersheds

:::
and

:::::::
various

:::::
input

::::
data

::
to

:::::::
validate

:::
and

:::::::::
generalize

::::
our

:::::::
findings.

:::::::::
Moreover,

:::::
snow

:::::::::::
accumulation

:::
and

:::::
melt

::
do

:::
not

:::::
occur

:::::::::
uniformly

:::::::::
throughout

::::
the

::::
year

:::
but

::::::
happen

::
in

:::::::
distinct

:::::::
periods.

:::
Our

:::::
study

:::::::
focused

:::
on

:::
the

:::::
month

:::
of

::::::::
maximum

:::::
SWE

::::::::
(March),

:::
but

:::
the

:::::::::::
accumulation

::::
and

::::
melt

:::::::
periods

::
of

:::
the

:::::
snow

::::::
season

:::
are645

::::
both

::::::::
important.

::::::
Future

::::::
studies

::::::
should

:::::::
consider

::::::::
different

::::
snow

:::::::
periods

::
to

::::
gain

:
a
:::::
better

::::::::::::
understanding

::
of

::::::::
SPAEF’s

:::::::::::
performance.

::::::
Finally,

:::
the

::::::
choice

::
of

:::::
input

::::
data

:::::::::::
(precipitation

::::
and

::::::::::
temperature)

::::
can

::::
have

::::::
impact

::
of

:::
the

::::::
spatial

::::::::::
distribution

::
of

:::::
snow

::::::::
variables

::::::::
simulated

::
by

:::
the

::::::
model.

:

Code and data availability. The SPAEF code that is used in this study for spatial performance metrics is available at https://github.com/

cuneyd/spaef. The data that are used in this study are openly available for download from the respective websites: https://cds.climate.650

copernicus.eu,https://www.gloh2o.org/mswep/, and https://nsidc.org/data/g02158/versions/1.
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