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Abstract  

This study provides the first inter-comparison of different state-of-the-art approaches and frameworks that share a commonality 

in their utilization of satellite remote sensing data to quantify irrigation at a regional scale. The compared approaches vary in 

their reliance on either soil moisture or evapotranspiration data, or their joint utilization of both. The two compared frameworks 15 

either extract irrigation information from residuals between satellite observations and rainfed hydrological models in a baseline 

framework combine satellite and rainfed hydrological models in a baseline framework or use soil water balance modeling in 

a soil moisture-based inversion framework. The inter-comparison is conducted over the lower Ebro catchment in Spain where 

observed irrigation amounts are available for benchmarking. Our results showed that within the baseline framework, the joint 

approach using both soil moisture and ET remote sensing data, only differed by +17 +37 mm from the irrigation benchmark 20 

(922 mm) during the main irrigation season over two years, and by +41 +47 mm and -228-208 mm for approaches relying 

solely on soil moisture and ET, respectively. A comparison of the different frameworks showed that the main advantage of the 

more complex baseline framework was the consistency between soil moisture and ET components within the hydrological 

model, which made it unlikely that either one ended up representing all irrigation water use. However, the simplicity of the 

soil moisture-based inversion framework, coupled with its direct conversion of soil moisture changes into actual water 25 

volumes, effectively addresses the key challenges inherent in the baseline framework, which are associated with uncertainties 

related to an unknown remote sensing observation depth and the static depth of the soil layers in a conceptual model. The 

performance of the baseline framework came closest to the irrigation benchmark and was able to account for the precipitation 

input, which resulted in more plausible temporal distributions of irrigation than what was expected from the benchmark 

observations.  30 
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1 Introduction 

As illustrated in the newly updated version of the water cycle by the USGS (Corson-Dosch et al., 2023) the role of irrigation 

is now manifested as one of the major hydrological fluxes, which in many regions cannot be ignored when resolving the water 

balance (Döll and Siebert, 2002). Further, with future projections of climate change, population growth, and food demand 

(Hunter et al., 2017), irrigation-based agriculture is expected to become an even more vital part of the water cycle that needs 35 

to be managed sustainably to secure global food security and livelihoods for the billions of people living in arid regions  

(Ferguson et al., 2018; Jain et al., 2021; Mujumdar, 2013). The main obstacle in managing this major flux component is the 

lack of knowledge about where, when, and how much irrigation is applied. 

 Large-scale irrigation mapping and quantification from satellite data have commonly been studied by the hydrological 

community and the number of studies addressing these questions has rapidly increased over the last decade (Massari et al., 40 

2021). Two of the major branches of proposed frameworks are the soil moisture inversion frameworks (SM-based inversion 

framework) (Brocca et al., 2018) hypothesizing that irrigation can be estimated by backward calculation of total water input 

from an inversion of the soil water balance equation by using remote sensing soil moisture observations. The other branch is 

the baseline frameworks, hypothesizing that differences between purely rainfed hydrological models and satellite remote 

sensing products of soil moisture and evapotranspiration (ET) are contributed to by a non-precipitation source of water. 45 

 The SM-based inversion framework is rooted in the soil moisture to rain algorithm (Brocca et al., 2014) intended to 

estimate global precipitation from soil moisture satellite observations. The documented alteration of the soil moisture signal 

by irrigation practices (Filippucci et al., 2020) is leveraged to estimate irrigation as a distinct precipitation component using 

soil moisture inversion techniques, which is subsequently isolated by subtracting the measured precipitation. The framework 

has successfully been applied in studies focusing on mapping and quantifying irrigation in various regions as well as on a 50 

global scale, and several studies have been aiming at validating the framework by testing different soil moisture remote sensing 

products, refining the ET contribution and calibration strategies (Dari et al., 2020, 2021, 2022b, 2023; Filippucci et al., 2020; 

Jalilvand et al., 2019; Zhang et al., 2022). One of the main challenges within the SM-based inversion framework is to assure 

ensure the right magnitude of contributions between soil moisture, drainage, and ET by targeting the precipitation input through 

calibration. As pointed out by (Jalilvand et al., 2019) and Dari et al. (2022), a simple soil water stress approach to quantify the 55 

actual ET is a crucial part of the framework that potentially can restrain the calibration parameters. 

 The baseline frameworks can be found in many varieties but overall, they aim to quantify irrigation from soil moisture 

or ET residuals between retrieved changes from satellite remote sensing models and a rainfed baseline, typically a hydrological 

model without an explicit representation of irrigation. Lawston et al. (2017) used satellite soil moisture observations to estimate 

irrigation patterns by comparing soil moisture dynamics of irrigated and rainfed satellite pixels in the western United States. 60 

Similarly, Brombacher et al. (2022) compared irrigated actual ET with a rainfed reference ET through a hydrological similar 

pixels algorithm in three irrigated regions in Africa, Spain, and Australia. In both studies, the latter acted as a baseline. Zappa 

et al. (2021) combined a comparison of local and regional surface soil moisture changes with independent ET and drainage 
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loss estimates to quantify irrigation in Germany. Other studies have compared satellite remote sensing models and hydrological 

models to extract soil moisture changes associated with a non-precipitation source of water to estimate irrigation (Zaussinger 65 

et al., 2019; Zohaib and Choi, 2020). Koch et al. (2020) and (Kragh et al., 2023) further compared remote sensing model 

retrievals of actual ET from irrigated cropland areas with a rainfed hydrological model calibrated against the remote sensing 

model retrieval of actual ET over rainfed cropland (hence with natural vegetation) to counteract the influence of a possible 

rainfed bias between the remote sensing and hydrological models. The main challenge within this framework relates to the 

uncertainty of the remote sensing products used and the estimation of a rainfed baseline when combining satellite remote 70 

sensing models and hydrological models. Especially the soil moisture-based approaches are faced with the need for bias 

corrections or rescaling between independent satellite remote sensing and hydrological model estimates to assure coherence 

between the magnitudes of the rainfed estimates (Reichle and Koster, 2004). 

Another branch of irrigation quantification frameworks involves the assimilation of satellite data into 

hydrological/land surface models. Modanesi et al. (2022) used the Noah-MP model with an irrigation scheme and assimilated 75 

vegetation-sensitive Sentinel 1 VH polarization backscatter to improve irrigation simulations. Abolafia-Rosenzweig et al. 

(2019) proposed an ensemble methodology where satellite soil moisture data was assimilated with a model ensemble forced 

with precipitation and superimposed irrigation signals to extract the total water input and hence irrigation by subtracting 

precipitation. Further work has lately been conducted on evaluating the framework sensitivity and incorporating a rainfed bias 

correction to address the challenge of simulating a correct soil moisture state (Jalilvand et al., 2023), which is a challenge for 80 

all frameworks that try to combine satellite data and hydrological models.  

An inter-comparison is needed to further advance the fast-evolving development of irrigation quantification 

methodologies toward more robust estimates by elucidating the assets and shortcomings within the framework structures. 

However, an in-depth inter-comparison is challenging due to the general absence of in-situ irrigation observations (Massari et 

al., 2021) needed to go a step beyond the validation of area-averaged (e.g., at the district scale) irrigation estimates. 85 

Furthermore, many irrigation studies exhibit a unidirectional emphasis, either relying solely on soil moisture or ET remote 

sensing data. Consequently, they overlook the potential synergy that can be derived from an integrated approach capable of 

capturing the characteristics of both equally important components. 

This study applies a novel baseline methodology to quantify irrigation from a joint approach using both soil moisture 

and ET in a dual component calibration for a rainfed model baseline and compares the results with approaches focusing on 90 

either soil moisture or ET in isolation within the same framework. This extends to previous work (Koch et al., 2020; Romaguera 

et al., 2014) and aims to showcase the potential advantages of moving toward joint soil moisture and ET-based approaches. 

Also, a stand-alone near-surface soil moisture approach within a baseline framework is included aiming at quantifying 

irrigation solely from soil moisture residuals. The analysis is carried out in a well-studied irrigation hot spot area situated in 

the lower Ebro catchment in Spain and covers the period 2016 - 2017. The three main objectives of this paper are: 1) to extend 95 

an earlier ET-based baseline framework to also include soil moisture, 2) to compare irrigation estimates from a soil moisture-

based, ET-based, and joint use of soil moisture and ET satellite datasets to explore any gains, and 3) attempt to compare and 
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validate irrigation estimates from baseline frameworks and SM-based inversion frameworks to uncover strengths and 

weaknesses of each framework. 

2 Study area and benchmark data 100 

The study area is situated in the North Eastern part of Spain (Figure 1a) and constitutes a smaller part of the lower Ebro River 

basin. The area is characterized by a semi-arid climate with yearly mean temperatures of around 15 °C and precipitation of 

approximately 400 mm/year (La Agencia Estatal de Meteorología: https://www.aemet.es/, last access: 31 May 2023). 

Precipitation mainly occurs in April–May and October–November, and summer is characterized by sporadic precipitation and 

high temperatures. The plains in the lower part of the sub-catchment are covered by cropland (Figure 1b) that is further 105 

subdivided into four central irrigated districts, mainly with summer cereal, forage, and fruit trees, and surrounded by drylands 

with cereals and olive groves. Yearly crop and irrigation practice maps from Catalonia are available via the Geographic 

Information System for Agricultural Parcels (SIGPAC), provided by the Department d’Agricultura, Ramaderi, Pesca i 

Almentació.  https://analisi.transparenciacatalunya.cat. 

The irrigation districts are of varying sizes and are linked to specific reservoirs connected, in turn, to a network of 110 

canals that deliver water to the fields. The districts included in this study are; : 1) The Urgell district (887.62 km2) is the oldest 

irrigation district and largely applies biweekly flood irrigation, supplied by the Rialb (measured at canel C116) and Sant 

Llorenç de Montgai reservoirs (measured at canel C117) (Figure 1b). 2) The Algerri Balaguer district (70.79 km2) is supplied 

with irrigation water from the Santa Ana reservoir (measured at pump E271) and mainly applies sprinkler and drip irrigation 

techniques, which can occur daily. 3) The Catalan Aragonese district  (1161.52 km2) irrigation water is supplied by the 115 

Barasona (measured at canel C081) and Santa Ana reservoirs (measured at canel C101). The water is applied by different 

irrigation techniques; Flood irrigation (18%), drip irrigation (28%), and sprinkler irrigation (54%) (Dari et al., 2020). We 

assume that most irrigation water to the Northern part of the district is supplied by the Barasona Reservoir and the Southern 

part by the Santa Ana Reservoir (Figure 1b). Data on irrigation water use from each of the main reservoirs are collected by the 

Automatic Hydrologic Information System of the Ebro River basin (SAIH Ebro) (available at: http://www.saihebro.com). The 120 

data is used as a benchmark for the period 2016 – 2017.  

Dari et al. (2020) estimated expected water losses due to irrigation efficiency based on literature and irrigation 

techniques adopted within each district that were applied to the benchmark irrigation volumes: Urgell (30% loss), Algerri 

Balaguer (10%), North and South Catalan Aragonese (15%). In the Urgell, irrigation still occurs through a traditional flood 

irrigation network, which explains the highest loss rate adopted for such districts. Algerri Balaguer is equipped with a modern 125 

system in which drip irrigation is employed for fruit trees and sprinkler irrigation is adopted for herbaceous crops (Dari et al., 

2021); hence, a lower loss rate (10%) has been adopted here. Finally, mixed techniques are employed over the Catalan and 

Aragonese districts (with sprinkler irrigation predominating), and thus an intermediate loss rate has been considered. For the 

http://www.saihebro.com/
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Urgell district, data are missing from July 2016 to February 2017 and data are missing for the North Catalan Aragonese district 

for September and October. 130 

3 Method and data 

With this study, we aim at comparingto compare irrigation estimates from soil moisture- and ET-based approaches. The 

framework used herein aims at isolatingto isolate a non-precipitation source of water (either soil moisture or ET) from satellite 

observations by subtracting a hydrological modeled rainfed baseline (Koch et al., 2020; Zaussinger et al., 2019). We present 

results based on four baseline models; one calibrated solely against rainfed ET, two calibrated against rainfed soil moisture 135 

with different adjustments (further described in section 3.1), and one model calibrated jointly against ET and soil moisture. 

The aim is to keep the framework as similar as possible for all four approaches. Figure 2 presents the overall approach for the 

four model calibrations and irrigation quantification steps and similarities and differences are highlighted. The differences will 

be further described in Section 3. We also include published irrigation estimates over the same study site obtained through an 

SM-based inversion framework forced with different soil moisture data sets as described in Dari et al. (2020, 2023) 140 

 

3.1 Evapotranspiration and soil moisture data 

Information on ET and soil moisture quantities and patterns are available from a variety of satellite remote sensing systems. 

In this study, we choose the MODIS 16 ET product (Mu et al., 2007, 2011) that among other products was found to provide 

valid ET estimates across several European catchments and to be influenced by irrigation (Dari et al., 2022b; Stisen et al., 145 

2021). We also used a SMOS soil moisture dataset downscaled by the DISPATCH algorithm (Merlin et al., 2013), that have 

been evaluated and used within an SM-based inversion framework to quantify irrigation amounts and patterns within the study 

area (Dari et al., 2020, 2021). 

 The MODIS 16 ET product estimates ET at 500 m spatial resolution as an 8-day total flux [mm] of soil-canopy 

evaporation and plant transpiration. The estimates are vegetation-based as the surface energy balance is constrained by both 150 

meteorological reanalysis data and MODIS vegetation properties, albedo, and land cover (Cleugh et al., 2007) as input within 

the Penman-Monteith equation (Monteith, 1965). The ET fluxes were aggregated from 8-day to monthly estimates by 

multiplying the mean daily flux for each month by the number of days. 

 The SMOS product estimates soil moisture at a 35 – 50 km spatial resolution as a daily volumetric water storage 

[m3/m3] of the topsoil (Kerr et al., 2012). The estimates are based on the soil emissivity of microwaves that depend on the soil 155 

moisture content due to the large dielectric difference between dry soil and water (Kerr et al., 2001). The SMOS product has 

been downscaled by using soil evaporative efficiency (SEE) at 1 km resolution, estimated from MODIS NDVI and LST, to 

disaggregate the original SMOS pixel by redistributing the values according to SEE but maintaining the original volumetric 

water content by averaging the downscaled product to SMOS’ native resolution (Merlin et al., 2013). Due to its low resolution, 
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the original SMOS dataset cannot effectively capture the irrigation signal (Kumar et al., 2015), which was first introduced 160 

through the DISPATCH downscaling algorithm. To convert the product from volumetric water storage to water depth, we 

assumed a constant sensing depth of 5 cm (Kerr et al., 2001). The original SMOS DISPATCH near-surface soil moisture was 

used, and a root zone soil moisture estimate was derived by applying a recursive exponential filter equation proposed by 

Albergel et al. (2008). To convert the product from volumetric water storage to water depth, we assumed a constant sensing 

depth of 5 cm (Kerr et al., 2001). The soil moisture products were used at a daily resolution to quantify irrigation although less 165 

robust than monthly because the aggregation of the daily soil moisture storage, compared to ET flux, proved to be very 

uncertain. 

 

3.2 Hydrological models 

The grid-based mesoscale Hydrological Model (mHM, Kumar et al., 2013; Samaniego et al., 2010; Thober et al., 2019) version 170 

5.11.0 (Samaniego et al., 2021) was used to model rainfed ET and soil moisture baselines. mHM yields consistent spatial 

parameter distributions across scales using the multiscale parameter regionalization technique (Schweppe et al., 2022) that, 

via nonlinear transfer functions, links parameter distributions at an intermediate model scale to a fine-scale variability of 

spatially distributed catchment attributes. Seamless model parameter distributions are connected to a low number of global 

parameters that allow for a simple and powerful calibration (Samaniego et al., 2021, 2017). For this study, the hydrological 175 

models were calibrated and executed at 500 m spatial resolution for the period 2016 -2017, using 1 km gridded meteorological 

forcing and 250 m morphological input data. Soil moisture for each model layer is calculated as the effective precipitation 

minus the actual evaporation from open water bodies and infiltration to deeper layers or recharge to groundwater. The actual 

ET is deduced from a reduction of PET by the Feddes soil water stress factor (Feddes et al., 1976) and a root fraction 

distribution factor over the defined number of soil layers. 180 

Precipitation data were acquired from ERA5-Land (Muñoz Sabater, 2019), the daily average air temperature was 

acquired from Eobs (Cornes et al., 2018), and potential ET was calculated by the Hargraves equation (Hargreaves and Samani, 

1985) from Eobs daily average, minimum and maximum air temperature and downscaled to model resolution by monthly 

climatologies of leaf area index (retrieved from MODIS MCD15A2H.v006) (Demirel et al., 2018). Hargraves were chosen to 

estimate potential ET due to their simplicity and based on results from Dari et al. (2022) that who found Hargraves to be a 185 

good approximation, compared to the more complex Penman-Monteith when estimating actual ET from irrigation. All 

meteorological forcing data were resampled to a spatial resolution of 1 km using a bilinear function. The DEM was acquired 

from NASA's Shuttle Radar Topography Mission data (Jarvis et al., 2016), and soil texture was acquired from the SoilGridTM 

database (ISRIC, 2020) for six horizons (layer thickness from top: 5 cm, 10 cm, 15 cm, 30 cm, 40 cm, and 1 m). All 

morphological data were resampled to a spatial resolution of 250 m using the mean function. Land use, classified as pervious, 190 

impervious, and forest, was acquired from CORINE land use and Copernicus Land monitoring imperviousness datasets from 
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(https://land.copernicus.eu/pan-european) (© European Union, Copernicus Land Monitoring Service 2018, European 

Environment Agency (EEA)) and was resampled to a spatial resolution of 250 m using mode function.  

 

3.3 Calibration strategy 195 

The calibration framework is designed to obtain hydrological models that simulate robust baselines of rainfed ET and soil 

moisture. The Optimization Software Toolkit – OSTRICH (Matott, 2017) includes a Pareto Archived Dynamically 

Dimensioned Search (PADDS) algorithm (Asadzadeh and Tolson, 2009) that was used to calibrate the four hydrological 

baseline models. An initial sensitivity analysis determined that ten parameters were needed to be included in the one model 

calibration solely against ET, and 14 parameters were needed in the three other model calibrations that were either partly or 200 

fully calibrated against soil moisture. The three calibrations with soil moisture as the target included the same 10 parameters 

as the ET calibration and an additional four parameters related to soil and root fraction characteristics.  

The objective functions were used to target the magnitude and temporal dynamic of ET and soil moisture over rainfed 

cropland. The rainfed cropland used as calibration target area was mapped in two steps: first, separate temporal stability 

analyses (Vachaud et al., 1985) were performed on the MODIS 16 ET and SMOS DISPATCH products to map areas drier 205 

than average (rainfed cropland), and second, the two maps were compared and pixels appearing as rainfed cropland in both 

maps were included as calibration target areas. Results from the temporal stability analysis can be found in supplementary 

materials (Figure S1). Only year-round rainfed cropland was included in the calibration because some irrigation is known to 

occur in the irrigation districts in between the main irrigation season. First, the magnitude was targeted by minimizing the 

mean absolute error (MAE) over all rainfed cells for each timestep during the entire two-year calibration period, Eq. (1). 210 

𝑀𝐴𝐸 =
∑ |𝑥𝑖−𝑦𝑖|𝑛

𝑖=1

𝑛
 ,                   (1) 

𝑟 =  𝜌(𝑥, 𝑦),                                                                                  (2) 

Where 𝑥𝑖 and 𝑦
𝑖
 represent observed and simulated values at cell i, and n is the number of observations. MAE varies between 

an optimal value of 0 to positive infinity. Second, dynamics were targeted by maximizing Pearson’s correlation coefficient (r) 

on mean monthly quantities, Eq. (2), where x and y denote observed and simulated values. Pearson’s correlation coefficient 215 

varies between an optimal value of -1 to 1. To select the best parametrization from the Pareto front the solution with the lowest 

normalized sum, concerning best-performing solutions, of the objective functions was chosen. 

 For the soil moisture-based and joint soil moisture and ET-based approaches, the soil moisture model outputs were 

rescaled within each iteration of the calibration by first subtracting the modeled mean soil moisture content and then adding 

the satellite reference mean soil moisture content for each parameter set tested in the calibration. This was done to account for 220 

the systematic differences in how satellites with varying sensing depths and the hydrological model with a fixed top layer 

depth may respond to precipitation (Brocca et al., 2013; Zaussinger et al., 2019). The rescaling also shifts the focus of the 
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model calibration towards parameters controlling the soil moisture variation rather than the average content, this is further 

important for reasons discussed in section 4.2. 

 225 

3.4 Estimation of irrigation within a baseline framework 

The hypothesis is that soil moisture and ET residuals between a remote sensing model and a hydrological-modeled rainfed 

baseline can be used to quantify irrigation (Koch et al., 2020; Zaussinger et al., 2019). The hydrological model parameters are 

calibrated for rainfed cropland and the seamless parameter fields generated by the parameter regionalization technique in mHM 

allow for a meaningful parameter transfer, which enables the model to simulate a robust rainfed baseline for irrigated cropland.  230 

When calculating irrigation volumes, both ET and soil moisture residuals must be considered as none of the two 

components alone can fully capture the irrigation input. Earlier studies using the same baseline framework have been focussing 

on the quantification of net irrigation from ET residuals, which is the irrigation water loss to the atmosphere (Koch et al., 2020; 

Kragh et al., 2023). The total irrigation amount cannot be quantified from ET residuals alone as some of the water is bound 

within the soil column. Moreover, Ssome irrigation water potentially infiltrates to deeper soil layers, or recharges to 235 

groundwater, or generates overland flow. This, however, is thought to be a minor part of the total irrigated water amount, 

demonstrated by Dari et al. (2020) from the SM-based inversion framework and therefore not considered in this framework. 

Zaussinger et al. (2019) used the soil water balance equation to quantify irrigation by assuming all terms to be equal when 

comparing soil moisture changes from a rainfed hydrological model with a satellite reference except for the irrigation input 

measured by the satellite system. The method underestimated the irrigation amounts which could be a consequence of ignoring 240 

the fact that the actual ET also is higher enhanced under irrigated conditions when irrigation occurs, thus missing a part of the 

irrigation signal.  

This study proposes an extension of the baseline framework to quantify irrigation as the sum of soil moisture and ET 

residuals by subtracting rainfed model baselines from satellite references, Eq. (3). 

𝑖𝑟𝑟𝑖𝑔𝑎𝑡𝑖𝑜𝑛 = (𝑆𝑀𝑠𝑎𝑡𝑒𝑙𝑙𝑖𝑡𝑒 𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 −  𝑆𝑀𝑟𝑎𝑖𝑛𝑓𝑒𝑑 𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒) + (𝐸𝑇𝑠𝑎𝑡𝑒𝑙𝑙𝑖𝑡𝑒 𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 −  𝐸𝑇𝑟𝑎𝑖𝑛𝑓𝑒𝑑 𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒)                        (3) 245 

Where SM and ET denote soil moisture water depth and ET flux in mm per month, respectively. For the ET 

residualscomponent, monthly irrigation amounts for each district are estimated by calculating the mean across grid-specific 

ET residuals for each district. For the soil moisture residualscomponent, monthly irrigation amounts for each district are 

estimated, by first calculating daily mean soil moisture for each district (days with less than 50% coverage were excluded), 

followed by calculated daily district-specific soil moisture residuals and then summing the mean daily irrigation soil moisture 250 

residuals to monthly estimates. The spatial distribution of the soil moisture component is calculated by summing daily to 

monthly residuals to extract irrigation patterns, which are then rescaled to the monthly estimates for each district. Soil moisture 

and ET processes are interconnected and summing both components in Eq.3 may cause a double counting of water when 

estimating irrigation, leading to an overestimation of irrigation. However, due to the conversion from near-surface to root-zone 
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soil moisture and the spatial aggregation of soil moisture, described in more detail below, we have alleviated the effect of 255 

double counting. Moreover, with the available benchmark data, described in section 2, we have the possibility to evaluate the 

estimated irrigation amounts which allows us to rule out a substantial deterioration of the estimated irrigation by double 

counting.     

In theory, the SMOS DISPATCH near-surface soil moisture residuals capture most of the irrigated water use as most 

of the water will pass the soil surface before returning to the atmosphere. However, near-surface soil moisture is difficult to 260 

represent via hydrological modeling because satellite observations provide simply a ‘snapshot’ of the hydrological state, which 

could have been measured during or just after a rainfall event. In the case of a satellite overpass just after a rainfall event, most 

of the soil water will be present in the near-surface, and during the following days, it will separate into deeper infiltration or 

evapotranspiration. Similarly, when a hydrological model simulates soil moisture during a rainfall event, the model will 

distribute the input between all soil layers and outgoing fluxes within a single timestep (one day in our study), which makes it 265 

challenging to directly compare model estimates with satellite observations.  

We addressed this limitation by converting the SMOS DISPATCH near-surface soil moisture observation to a root 

zone estimate as proposed by Albergel et al. (2008) which is an attempt to account for the temporal processes that affect the 

distribution of soil moisture. Consequently, this will make the satellite observation more comparable with the hydrological 

model. During this conversion, we have removed around 40% of the summed near-surface soil moisture increases. Since 270 

evaporative losses from the near-surface soil layer are being removed from the SMOS DISPATCH dataset, we additionally 

need to consider ET contributions in Eq 3. Further, due to the spatial aggregation of daily mean soil moisture residuals at the 

district scale, the soil moisture component will represent a more conservative estimate of the applied irrigation. This is because 

the districts are not uniformly irrigated at the same time, and at the grid level, daily soil moisture residuals can be both negative 

and positive. Also considering negative soil moisture residuals in the calculation of the soil moisture component in Eq.3 275 

captures to some degree the interconnection between soil moisture and evapotranspiration  Due to the substantial removal of 

near-surface soil moisture input (40%) from the conversion to root zone soil moisture and the spatial district aggregation, we 

do not expect that our irrigation estimates will be severely affected by double counting of water through the joint analysis of 

ET and soil moisture residuals. We do acknowledge that if this method were to be used in an area with known over-irrigation 

issues, drainage, and overland flow terms would need to be added to Eq (3) to fully represent irrigation water use. 280 

In theory, soil moisture residuals should capture most of the irrigation as it passes the soil before returning to the 

atmosphere, but ET residuals also have to be considered as the conversion to root-zone soil moisture has removed some of the 

near-surface water input to account for processes that affect the temporal dynamic. To assure that water was not counted twice, 

we tested the model with a synthetic irrigation input to confirm that ET water did not appear within the soil layers as storage 

change. As a stand-alone approach, to quantify irrigation volumes solely from soil moisture residuals, a hydrological baseline 285 

model calibrated on near-surface soil moisture was also tested. The hypothesis for using near-surface soil moisture instead of 

root-zone soil moisture is that by preserving the original raw observations that potentially contain all water entering the soil, 

we can calculate the irrigation volume from soil moisture residuals without having to consider the ET component.    
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 290 

3.5 Other irrigation estimates and frameworks 

Three irrigation estimates from an SM-based inversion framework (Brocca et al., 2018) are included, which use soil moisture 

observations from DISPATCH downscaled observations from SMOS and SMAP satellites (SMOS_if and SMAP_if) (Dari et 

al., 2020) and first-order radiative transfer modelling (Quast et al., 2019, 2023) of Sentinel-1 backscatter (S1RT_if) (Dari et 

al., 2023) (Table 1). Within both studies (Dari et al., 2021, 2023), the soil moisture observations were referred to as surface 295 

soil moisture. In this study, we refer to all soil moisture observations filtered with the recursive exponential filter equation 

proposed by Albergel et al. (2008) as root zone soil moisture and original observations as near-surface soil moisture. These 

studies took place at the same study site and are a display of already published datasets. 

Here, is a short description of the SM-based inversion framework as a foundation to understand the irrigation 

estimates, and we refer to Dari et al. (2020, 2023) for in-depth method descriptions. First, the SM-based inversion framework 300 

builds on rearranging the soil water balance equation to enable backward calculation of total water input (precipitation plus 

irrigation) from soil moisture observations and isolate the irrigation signal from the estimated total water input by subtraction 

of precipitation. The prevailing part of the total water input in the SM-based inversion framework is expressed by changes in 

soil moisture storage and ET flux, which are the same two components describing the irrigation-induced residuals between 

reference and baseline models within the baseline framework.  305 

In both Dari et al. (2020, 2023) calculations of water input from changes in soil moisture storage and drainage are 

similar but differ regarding the ET flux term. Dari et al. (2020) follow guidelines provided by the FAO paper 56 (Allen et al., 

1998) and use crop coefficients that incorporate the influence of soil moisture stress on transpiration. Dari et al. (2023) follow 

a soil moisture limiting approach and combine the soil moisture index and a bias correction factor to estimate ET from PET. 

To calibrate the SM-based inversion framework, Dari et al. (2020) calibrated the soil parameters of the three algorithms against 310 

precipitation at rainfed cropland and transferred the median of spatially distributed parameters to irrigated cropland. 

Conversely, Dari et al. (2023) implemented an iterative strategy to obtain spatially distributed soil parameter values calibrated 

against rainfall and a fixed value for the ET adjusting factor calibrated by considering, as a benchmark, rainfall plus irrigation 

over selected sites. 

4 Results and Discussion 315 

4.1. Calibration results 

The analysis of soil moisture and ET approaches within the rainfed baseline framework builds upon results from four 

approaches: the ET approach by calibration against MOD16 ET (ET_bf), two representing the soil moisture approach by 

calibration against SMOS DISPATCH near-surface (NS-SM_bf) and root-zone soil moisture (RZ-SM_bf), and one 
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representing a joint root-zone soil moisture and ET approach (joint_bf) calibrated against both references (Table 1). All models 320 

were separately calibrated for rainfed cropland conditions. Based on the four Pareto fronts, the four solutions with the lowest 

normalized sum were selected (Table 2). 

 

Table 1: Overview of investigated frameworks and approaches 

abbreviation framework / approach calibration target 
   

RZ_SM_bf baseline framework / soil moisture root zone soil moisture (from SMOS DISPATCH) 

joint_bf baseline framework / soil moisture and ET root zone soil moisture (from SMOS DISPATCH) and MOD16 ET 

ET_bf baseline framework / ET MOD16 ET 

NS_SM_bf baseline framework / soil moisture original SMOS DISPATCH near-surface soil moisture 

SMOS_if inversion framework / soil moisture root zone soil moisture (from SMOS DISPATCH) 

SMAP_if inversion framework / soil moisture root zone soil moisture (from SMAP DISPATCH) 

S1RT_if inversion framework / soil moisture root zone soil moisture (from Sentinel-1 RT) 

 325 

 

Table 2: Calibration results for four baseline frameworks. Statistics are calculated over rainfed cropland for the period 2016 – 2017. 

calibration results RZ-SM_bf joint_bf ET_bf NS-SM_bf 

     

MAE 2.8 mm soil moisture/day 2.4 mm soil moisture/day 

8.1 mm ET/month 

7.1 mm ET/month 2.8 mm soil moisture/day 

 

     

Pearson correlation 0.84, soil moisture  0.82, soil moisture  

0.82, ET 

0.84, ET  0.76, soil moisture  

 

The joint_bf baseline has a similar ET performance as ET_bf but has better soil moisture performance than the NS-

SM_bf and RZ-SM_bf baselines because it benefits from targeting both the soil moisture and ET references that enable the 330 

model to better simulate soil moisture dynamics. The NS-SM_bf baseline has the lowest Pearson correlation because the NS-

SM reference has more day-to-day variation that cannot be simulated by the hydrological model compared to the RZ-SM 

reference, which has a smoother trajectory.  

In general, all baseline models exhibit the poorest performance during winter and early spring, and it is known from 

other irrigation studies that irrigation estimation is more uncertain during rainy periods, which makes the separation between 335 

precipitation and irrigation-induced changes more difficult (Brocca et al., 2018; Dari et al., 2020; Jalilvand et al., 2019; Koch 

et al., 2020). Time series from the model calibrations of rainfed cropland can be found in supplementary materials (Figure S2-

S6) together with bias measures of mean error (ME) and the standard derivation of rainfed residuals (Table S1).   
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4.2 Soil moisture and ET approaches within a rainfed baseline framework 340 

The four approaches produce irrigation estimates that overall match the benchmark (Figure 3), however, the timing and 

intensity of the irrigation estimates seem to be affected more by precipitation variability than the benchmark and show that 

large amounts of precipitation counteract the irrigation needs. In 2016, irrigation estimates are linked with precipitation by 

showing low irrigation supply when precipitation is high and vice versa during summer. In 2017 the irrigation estimates 

steadily increased over a prolonged period due to the uniform precipitation input throughout the year. Thus, the timing and 345 

intensity of the irrigation estimates seem to be affected more by precipitation variability than the benchmark and show that 

large amounts of precipitation counteract the irrigation requirements. This coupling between irrigation estimates and 

precipitation gives confidence to the applied framework’s ability to create robust baselines able to separate precipitation-related 

changes from a remote sensing reference. 

The RZ-SM_bf and ET_bf results represent the highest and lowest irrigation estimates during the main irrigation 350 

season respectively (Figure 4), which is related to the soil moisture baselines being more challenging to estimate (stacked bars, 

Figure 4)This is supported by comparing mean monthly coefficients of variation (CV) of the ET (CV = 0.14) and soil moisture 

(CV = 0.45) components between ET_bf, RZ-SM_bf, and joint_bf.  

The joint_bf estimate (stacked graph, Figure 4) is characterized by the soil moisture storage increase in 2016 due to 

irrigation, followed by storage decrease as ET rapidly depletes the root zone soil moisture storage. In 2017, soil moisture 355 

storage and ET simultaneously increased and decreased due to the meteorological conditions that did not support the same 

rapid depletion of the root zone as in 2016. The joint_bf is overall close to the benchmark and captures the different aspects of 

the hydrological cycle that cannot be captured by a stand-alone analysis of soil moisture or ET. 

The NS-SM_bf estimate (blue black graph, Figure 4) matches the average timing and intensity of the joint approach 

in 2016 as it captures both soil moisture storage and ET flux changes induced by irrigation. In 2017 the irrigation estimate is 360 

a little lower than the joint approach, possibly because of the precipitation input that causes an overestimation of the baseline, 

thus underestimating irrigation during the irrigation season and estimating almost no irrigation in-between irrigation seasons. 

To address this, further work is needed on the calibration of near-surface rather than root-zone soil moisture. However, the 

NS-SM_bf estimate points towards a methodology to quantify irrigation solely based on soil moisture storage changes. 

The distribution of irrigation water is more complex than direct allocation from the main reservoirs to the fields 365 

(benchmark data) as smaller reservoirs also exist within the districts, which means that there might not be temporal consistency 

between the allocation and field practice as water can be stored for days or months in between irrigation seasons. Still, the 

benchmark provides an upper limit when evaluating irrigation estimates, which could be done on accumulated benchmark 

volumes over longer periods to account for the delay between the allocation and timing of irrigation.  

An example of water storage could be seen in In the Algerri Balaguer district (Figure 3), where the spring irrigation 370 

increases above the benchmark in 2016 and 2017, which also can be seen in the Urgell, Algerri Balaguer, and South Catalan 

Aragonese districts, during autumn in 2017 when precipitation was low. These results suggest that water stored during the 
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current season or from last season is used for irrigation.suggesting that stored water from the last season is used for irrigation. 

Also, in the Urgell, Algerri Balaguer, and South Catalan Aragonese districts, autumn precipitation in 2017 was low and water 

storage within the districts seems to have been depleted in September and October. Irrigation estimates from radar soil moisture 375 

also suggest that water storage within the districts could play a significant role in this context (Dari et al., 2023). wasespattern 

as early spring irrigation in the Algerri Balaguer district 

In 2016, the irrigation estimates are were lower than the benchmark (Figure 3) in the Urgell, North, and South Catalan 

Aragonese districts because the rainfed baselines, linked to the spring precipitation (183 mm), explain most of the observed 

flux and storage changes. The benchmarks from 2016 and 2017 have very similar timing and intensity, although the 380 

precipitation patterns are very different. In 2016 the precipitation input was high during winter and spring, low during summer, 

and high during autumn, whereas 2017 lacks the expected seasonality with 25 mm/month precipitation on average besides a 

wet March. This could suggest that the reservoirs might work according to a relatively fixed schedule or that not all of the 

benchmark water might be allocated to irrigation but simply is balancing the reservoir water level.  

The baseline framework offers a solution to both separately or jointly utilize soil moisture and ET in calibrations to 385 

extract consistent and robust rainfed baselines. The calibration targets were similar for both soil moisture and ET to keep the 

approaches inter-comparable although soil moisture is more challenging to calibrate, compared to ET. This challenge arises 

because the hydrological model and the satellite-derived products react differently to precipitation as it implies that the modeled 

baseline must be rescaled to the reference mean content, which limits the calibration of sensitive soil parameters to only satisfy 

the fit to the seasonal amplitude.  390 

The SMOS DISPATCH product is characterized by low mean soil moisture content and high seasonal amplitude, 

which poses an issue due to a positive relationship between mean content and amplitude within the mHM model. This pushes 

the baseline calibrated for root zone soil moisture (RZ-SM_bf) to simulate a mean soil moisture content that is 10 mm higher 

than SMOS DISPATCH to fit the amplitude, whereas the baseline solely calibrated against ET (ET_bf) simulates a mean soil 

moisture content only 2 mm higher than SMOS DISPATCH but underestimates the amplitude. This creates a seasonal bias 395 

that underestimates irrigation estimates during summer and overestimates during winter (Figure 4). On the contrary, the ET 

baselines are more comparable between the three approaches because the relationship between the field capacity and wilting 

is scaled according to the modeled amplitude, which yields similar soil-water stress factors used to estimate actual ET.  

The RZ-SM_bf and ET_bf results represent the highest and lowest irrigation estimates during the main irrigation 

season respectively (Figure 4), mainly due to large differences in the soil moisture-based component of the irrigation 400 

estimation. This is supported by comparing mean monthly coefficients of variation (CV) of the ET (CV = 0.14) and soil 

moisture (CV = 0.45) components between ET_bf, RZ-SM_bf, and joint_bf. This shows that the soil moisture baselines are 

difficult to estimate without a soil moisture calibration target as compared to the ET baselines, which can be estimated fairly 

accurately only with a soil moisture calibration target. This also calls for further work on how to improve soil moisture 

calibration by targeting attributes such as field capacity, wilting point, amplitude, or other soil moisture characteristics as 405 

proposed by Araki et al. (2022). Only one combination of soil moisture and ET references were was used in a joint calibration, 
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and further testing by ensemble analysis is required to establish guidelines on how to combine different references and fully 

understand what specific attributes from soil moisture and ET that needs to be targeted to extract valid baselines.  

 

4.3 Irrigation frameworks, their strengths, and weaknesses 410 

The comparison of frameworks for irrigation quantification is based on our four baseline framework estimates (ET_bf, RZ-

SM_bf, NS-SM_bf, and joint_bf) and three SM-based inversion framework estimates (SMOS_if, SMAP_if, and S1RT_if). 

Mean irrigation estimates for the entire irrigated cropland (Figure 5) show that all estimates capture the irrigation 

seasonality that is expected to peak during summer. The dynamics of the four baseline framework estimates are similar because 

they are based on the same references and meteorological forcing, likewise SMOS_if and SMAP_if. These six estimates use 415 

similar DISPATCH downscaled references and meteorological forcing and therefore produce generally similar spatiotemporal 

irrigation patterns. The S1RT_if estimate seems to vary more with precipitation than SMOS_if and SMAP_if (Figure 5), which 

is probably an effect of the spatially distributed soil parameters that are fitted for each pixel to the precipitation and benchmark 

input. As mentioned in section 4.1, the S1RT_if  estimates suggest the use of stored irrigation water within the districts around 

May, seen as a peak each May in Figure 5, but based on the reoccurring irrigation peaks each May, within each district, this 420 

could also be explained by the reoccurring influence of vegetation that is known to influence radar signals (Meyer et al., 2022). 

However, the temporal correlation is high between all seven estimates, ranging between 0.720.69 and 0.97. Results from a 

temporal and spatial correlation analysis are presented as a correlogram in Figure 6. 

One of the apparent differences between among the estimates is a weaker response between precipitation and 

irrigation amounts in the SM-based inversion framework compared to the baseline framework as pointed out in section 4.2, 425 

which for SMOS_if and SMAP_if, could be a consequence of simplifying the ET calculation by implementing a water-based 

limitation approach, or maybe relate to the PET product used as input. Dari et al. (2020) analyzed the contribution from soil 

moisture and ET components of the SMAP_if estimate, which showed a larger ET contribution during spring (when 

precipitation and soil moisture content are high) than what is estimated by the baseline frameworks in this study (Figure 4). 

The main purpose of using a rainfed hydrological model is to estimate how much of the observed ET can be explained by the 430 

precipitation input and thereby is embedded within the baseline, making sure that when larger amounts of precipitation input 

are available the irrigation estimates will be low if the baseline is well calibrated. PET estimates can vary substantially between 

readily available remote sensing datasets or estimates from meteorological data, which ultimately can have a profound impact 

on the irrigation components if not accounted for in the calibration (Kragh et al., 2023). 

Overall, there is a tendency to underestimate irrigation (Table 3), either suggesting that the rainfed baselines are too 435 

high, total input estimates are too low, or that the irrigation loss might be even larger. Underestimation is however expected to 

some degree for the SM-based inversion framework estimates as each daily satellite overpass does not provide full coverage. 

The RZ-SM_bf and joint_bf estimates differ the least from the benchmark, in total underestimating irrigation with -76 and -

242 mm yearly and overestimating with 41 47 and 17 37 mm on a seasonal basis (Table 3). The NS-SM_bf and S1RT_if 
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estimates differ the most from the benchmark because they it estimate much lower irrigation in between irrigation seasons, 440 

and in addition, the S1RT_if is also underestimating during the main irrigation season. Yearly NS-SM_bf and S1RT_if differ 

by -215 and -375 mm, but both show better performance on a seasonal basis by -124 and -285 mm (Table 3). As mentioned in 

section 4.2, a question may arise whether the benchmark in-between irrigation seasons does represent water used for irrigation. 

The ET_bf, NS-SM_bf, SMOS_if, and SMAP_if estimates differ yearly by -191-154, -143, -112, and -135 mm, respectively. 

ET_bf and SMOS_if perform slightly worse on a seasonal basis by -228-208 and -144 mm, respectively (Table 3), because 445 

they tend to overestimate irrigation in between irrigation seasons, which compensates for the underestimation during the main 

irrigation season. SMAP_if performs the same on a seasonal basis by -138 mm. NS-SM_bf performs better on a seasonal basis 

by -76 mm because it behaves reasonably well during the main irrigation on a more similar level to the RZ-SM_bf and joint_bf 

approaches. 

 450 

 

Table 3: Yearly and seasonal (April - October) irrigation estimates (mm) for different approaches and frameworks. The red and 

blue values show the under or overestimation of irrigation compared to a weighted area average benchmark in the last column. * 

benchmark data is without observations from September to December 2017 for comparison with SMOS_if and SMAP_if estimates. 

estimates RZ-SM_bf joint_bf ET_bf NS-SM_bf SMOS_if SMAP_if S1RT_if Benchmark 
                  

2016 year 553 (+25) 535 (+10) 477 (-46) 465 (-49) 495 (-37) 436 (-96) 375 (-157) 532   

2017 year 576 (-19) 576 (-8) 467 (-108) 455 (-94) 409 (-75) 445 (-39) 386 (-217) 603 484* 

sum year 1128 (+6) 1111 (+2) 944 (-154) 920 (-143) 905 (-112) 881 (-135) 760 (-375) 1135 1016* 

                                  

2016 season 460 (+37) 437 (+16) 328 (-94) 396 (-21) 367 (-56) 323 (-100) 318 (-105) 423   

2017 season 504 (+10) 502 (+21) 366 (-114) 402 (-55) 314 (-88) 364 (-38) 320 (-180) 499 401* 

sum season 963 (+47) 939 (+37) 694 (-208) 799 (-76) 681 (-144) 687 (-138) 638 (-285) 922 824* 

 455 

estimates RZ-SM_bf joint_bf ET_bf NS-SM_bf SMOS_if SMAP_if S1RT_if Benchmark 
                  

2016 year 553 (+20) 535 (+3) 477 (-55) 465 (-67) 495 (-37) 436 (-96) 375 (-157) 532   

2017 year 576 (-27) 576 (-27) 467 (-136) 455 (-148) 409 (-75) 445 (-39) 386 (-217) 603 484* 

sum year 1128 (-7) 1111 (-24) 944 (-191) 920 (-215) 905 (-112) 881 (-135) 760 (-375) 1135 1016* 

                                  

2016 season 460 (+37) 437 (+14) 328 (-95) 396 (-27) 367 (-56) 323 (-100) 318 (-105) 423   

2017 season 504 (+4) 502 (+3) 366 (-133) 402 (-97) 314 (-88) 364 (-38) 320 (-180) 499 401* 

sum season 963 (+41) 939 (+17) 694 (-228) 799 (-124) 681 (-144) 687 (-138) 638 (-285) 922 824* 

 

When comparing irrigation patterns from the baseline framework with aerial photos the irrigation patterns match the 

surface greenness (Figure 1 and Figure 7,) which is incorporated through the MODIS vegetation products by the ET reference, 

DISPATCH downscaling, and model vegetation input. The baseline framework estimates are very similar as they are produced 
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by the same conceptual model (even though the calibration parameters are different), meaning that most of the spatial 460 

distribution of the irrigation estimates is locked within the model inputs.  

The similarities between the SMOS_if, SMAP_if, and the baseline framework estimates are high, which is not that 

surprising as they all use the same SMOS DISPATCH reference or a similar SMAP DISPATCH reference. The spatial 

distribution of S1RT_if irrigation is different from the other estimates. However, by closer comparison, there are similar large-

scale features between all seven estimates which gives confidence to the S1RT_if estimate. An initial analysis within the study 465 

area of the DISPATCH downscaled products and the soil moisture data sets they originate from showed that the irrigation 

signal was forced into the soil moisture reference by downscaling, which is another reason why the Sentinel-1 RT product is 

an interesting reference to include and further investigate.  

The uncertainty introduced by using a daily soil moisture reference is not only an issue within the baseline framework 

but is something that also needs to be handled within the SM-based inversion framework. The SMOS_if and SMAP_if 470 

estimates are temporally aggregated from daily to 5-day estimates, which in addition to the lower spatial resolution (1 km) 

than the baseline estimates, will result in a smoother irrigation pattern when compared to the baseline framework estimates 

(Figure 7). For the S1RT_if estimate, aggregation of daily irrigation is less of a limiting factor because the soil parameters for 

each irrigated cell are calibrated against precipitation and benchmark data, thus accounting for fine-scale soil moisture 

heterogeneity, which may lead to an over-parametrization. 475 

The main advantage of the baseline framework is the consistency between the soil moisture and ET baselines making 

it unlikely that one component will control the calibration. For example, if the PET estimate used in the SM-based inversion 

framework is too high, the contribution from the soil moisture and drainage components will need to be very low to correctly 

simulate the precipitation input, since ET will dominate. Thus, adjusting the calibration parameters will mostly be controlled 

by the ET component (Dari et al., 2022b). However, calibration of a hydrological model is not trivial as it includes many 480 

parameters to correctly split the precipitation input into the observed spatiotemporal patterns of rainfed soil moisture and ET, 

compared to the SM-based inversion framework that needs fewer parameters and uses the soil moisture balance equation to 

directly convert the observed changes into a total of precipitation and irrigation.  

The soil moisture component within the SM-based inversion framework is easier to handle as changes are directly 

converted to a volume based on calibrated soil parameters that contain information about soil layer depth and porosity. This 485 

eliminates the main issue within the baseline framework that arises from the mismatch between the unknown remote sensing 

depth of investigation and the static topsoil layer depth of a conceptual model (López et al., 2017; Reichle and Koster, 2004), 

which makes it difficult to fully calibrate all sensitive soil parameters when rescaling is needed.  

The ET component on the other hand is easier to handle within the baseline framework because the term can be 

adjusted to rainfed conditions through calibration, which is not a possibility within the SM-based inversion framework used 490 

in Dari et al. (2020) as the term does not contain any calibration parameters causing the ET component to dominate how the 

total input is separated between the terms based on the PET estimate used. In Dari et al. (2023) the ET component is calibrated 

through adjustment of a bias correction factor to account for PET uncertainties, but the calibration target changes from rainfed 
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to irrigated conditions. Nevertheless, this circumstance does not represent a limiting factor for the algorithm applicability, as 

it can be also implemented where reference irrigation data for calibration is not available by accepting a higher degree of 495 

uncertainty. 

4.4 Influence of uncertainty 

Based on the structure of the frameworks and their calibration strategies, the influence of various uncertainty sources can have 

different impacts on the irrigation estimates. This section aims to provide a brief overview of the main uncertainty sources and 

how much they impact the considered frameworks (Table 4). 500 

 Precipitation uncertainties have an indirect effect on the baseline framework which can potentially be mitigated by 

the calibration of soil moisture and ET baselines in the hydrological model (Kragh et al., 2023). In the soil moisture-based 

inversion framework, the influence is more direct as precipitation is used both as a calibration target and reference for 

quantifying irrigation water input as a residual (Dari et al., 2020).  

ET uncertainties mainly become very apparent due to large differences across different remote sensing-based ET 505 

retrievals. The baseline framework addresses this uncertainty through model calibration to compensate for satellite biases 

(Kragh et al., 2023), whereas the soil moisture-based inversion framework can compensate by introducing a correction factor 

(Dari et al., 2023).  

Soil moisture uncertainties mainly relate to the unknown sensing depth of the satellite systems. The soil moisture-

based inversion framework addresses this uncertainty through calibration of a model parameter representing the water capacity 510 

of the soil layer (Brocca et al., 2018), where the baseline framework applies rescaling of model estimates of soil moisture to 

account for differences between model and satellite responses to precipitation. Overall, comparison of model estimates and 

satellite observations of soil moisture remains a challenge (López et al., 2017), which is avoided in the soil moisture-based 

inversion framework by directly converting observed soil moisture changes into irrigation. Overall, a common source of 

uncertainty related to soil moisture concerns its spatiotemporal resolution, which should match the spatiotemporal dynamics 515 

of irrigation (i.e., the spatial extent and the frequency) to catch the irrigation signal (Dari et al., 2022a; Zappa et al., 2022). 

The uncertainties of the spatial resolution mainly relate to how well it allows the model domain to be classified into 

rainfed and irrigated cropland. The baseline framework is very dependent on a good classification of rainfed and irrigated 

cropland to be used in the calibration (Koch et al., 2020), whereas the soil moisture-based inversion framework is less sensitive 

since it can use both rainfed and irrigated cropland in the calibration (Dari et al., 2020, 2023). The uncertainties originating 520 

from the temporal resolution relate more to the calibration strategy and framework. The baseline framework works better with 

more robust mean monthly observations compared to uncertain daily observations, whereas the soil moisture-based inversion 

framework requires a higher temporal resolution for the calibration.  

The uncertainties of model parameters relate to how they are defined and spatially distributed. The baseline model 

has well-described physically based parameters that are distributed based on spatially distributed catchment characteristics 525 
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using the multiscale parameter regionalization framework (Schweppe et al., 2022), whereas the soil moisture-based inversion 

framework applies coefficients describing processes either homogeneously or spatially distributed by extensive calibration of 

pixel-based coefficients (Dari et al., 2023). Dari et al. (2020) found that parameter uncertainty was low for the soil moisture-

based inversion framework within a restricted region with homogeneous soil texture. 

 530 

Table 4: Overview of how different uncertainty sources affect the two frameworks. The +, ++, +++ symbology represents to what 

degree the framework may be influenced by an uncertainty source, where (+) is not much influence and (+++) is more influenced. 

framework precipitation ET soil moisture resolution parameters 

soil moisture inversion ++ +++ ++ +++ + 

baseline + ++ +++ +++ + 

 

6 Conclusion 

This study aimed at comparingto compare the different state-of-the-art approaches and frameworks to quantify irrigation at a 535 

regional scale. To assess the strengths and limitations of irrigation estimates, we compared four separate and joint calibrations 

against soil moisture and ET references within a common baseline framework. Additionally, we compared three irrigation 

estimates derived from the SM-based inversion framework. 

This study underlines the advantage of considering both soil moisture and ET residuals in a joint approach, by 

estimating irrigation during the main irrigation season (April - October) with an error of 17 37 mm to the benchmark (922 mm) 540 

over two years from 2016-2017. Through correlation analysis, we found that the baseline and SM-based inversion frameworks 

were able to produce similar spatial and temporal irrigation patterns with a correlation between 0.51 – 0.64 and 0.720.69 – 

0.90.97, respectively, when using the same reference. The spatial correlation with irrigation estimates from the S1-RT_if was 

lower compared to the other estimates. However, the Sentinel-1 RT product used was the only independent soil moisture 

product in the inter-comparison and did produce temporal irrigation dynamics that correlated well with all other estimates 545 

(0.720.69 – 0.86), making it an interesting product to investigate further. The study also highlighted the importance of 

calibration strategies being tailored to both soil moisture and ET targets to estimate the right magnitudes of contribution from 

soil moisture and ET changes induced by irrigation to ultimately form more robust estimates. Also, the baseline framework 

was able to account for precipitation patterns through the rainfed baselines, which resulted in a more plausible temporal 

dynamic of the irrigation estimates than what was expected from the benchmark observations. This is an illustrative example 550 

of how we can gain knowledge about the hydrological system through hydrological models. 

We found that uncertainty from daily soil moisture observations must be accounted for to quantify irrigation, either 

through the calibration or aggregation of estimates. We also found that the near-surface soil moisture approach could have the 

potential to estimate irrigation solely from soil moisture residuals, but further work on model calibration of near-surface soil 

moisture is needed. 555 
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Figure 1: Maps over the study area. (a) Map over the Iberian Peninsula (Source: Esri, Garmin, GEBCO, NOAA NGDC, and other 745 
contributors), the red square marks the extent of (b). (b) outline of the model domain, the four irrigation districts, canals, and pumps 

from where the benchmark was required. The light gray shaded area is rainfed cropland used for calibration. (Source: Esri, 

DigitalGlobe, GeoEye, Earthstar Geographics, CNES/Airbus DS, USDA, USGS, AeroGRID, IGN, and the GIS User Community) 
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Figure 2: The scheme gives an overview of the similarities and differences between the four hydrological baseline models. 
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Figure 3: Irrigation estimates from the four approaches within the baseline framework. Estimates are shown for each of the four 

irrigation districts for the period 2016 – 2017 and compared with the benchmark. The gray shaded area shows the benchmark with 

and without irrigation water losses due to irrigation efficiency. Dark blue bars show precipitation amounts. Light red areas mark 775 
missing benchmark observations. 
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Figure 4: Mean area irrigation estimates from the four approaches within the baseline framework. Estimates are shown for all four 780 
irrigation districts for the period 2016 – 2017 and separate the estimates between soil moisture (SM) and evapotranspiration (ET) 

contributions. The gray line represents a weighted area average benchmark data with losses due to irrigation efficiency. Dark blue 

bars show precipitation amounts. 
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Figure 5: Mean area irrigation estimates from the four baselines and three SM-based inversion frameworks. Estimates are shown 

for all four irrigation districts for the period 2016 – 2017.  The gray shaded area shows a weighted area average benchmark with 

and without irrigation water losses due to irrigation efficiency. Dark blue bars show precipitation amounts. 
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Figure 6: Correlogram between four baseline and three SM-based inversion frameworks. The analysis is separated between the 

spatial correlation (red area) of irrigation maps (Figure 7), and the temporal correlation (green area) of monthly irrigation amounts 795 
(Figure 5).   
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Figure 7: Mean monthly main irrigation season maps for 2016 and 2017 from four baseline and three SM-based inversion 800 
frameworks. The main irrigation season is assumed April – October. 

 

 

 


