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The manuscript develops an adjoint subordinated fractional-dispersion equation (S-FDE) in order 
to estimate release times and source locations of contaminants in aquifers and rivers. The author 
first (Section 2) present the three-dimensional forward S-FDE and then derive its adjoint 
following the approach of Neupauer and Wilson and using fractional-order integration by parts, 
and a fractional-order extension of the divergence theorem. Then, a Lagrangian backward solver 
is presented based on the developments of the lead authors. The solver is validated by 
comparison to finite difference solutions of the S-FDE. In Section 3, the developed backward 
tracking methodology is then applied to three field scenarios to estimate the release history of 
pollutants, and groundwater age. Section 4 discusses extensions of the proposed method to 
identify pollutant source locations, and multi-scale subordinated models, relevant for fractured 
media. This is an interesting contribution that adds to the literature on S-FDEs and source and 
release time identification in aquifers and rivers. In the following, I list a few comments and 
recommendations: 

Comments: 

(1) Line 103: Could the authors give a physical explanation of the meaning of the space-
fractional advection term and the subordination to the velocity field? This is important 
because in field applications, solute transport is typically advection-dominated. 

Reply: We thank the reviewer for offering helpful feedback that improved the presentation of 
this work. In the revised manuscript (lines 120-124), we added the following explanation 
regarding the subordination term in Eq. (1a), which can be directly equated to the space 
fractional derivative when the equation simplifies to one dimension: 
“It is worth noting that pollutant particles undergo advective displacement controlled by local 
mean velocity, with individual particles migrating along various flow paths in a heterogeneous 
medium, leading to random mechanical dispersion due to local speeds deviating from the mean 
velocity. Eq. (1a) assumes a (tempered) 𝛼-stable density distribution for random mechanical 
dispersive jumps, rescaled by the mean local velocity. This (tempered) 𝛼-stable density 
encompasses both Gaussian and power-law densities as two end members.” 

 

(2) Line 126 and following: The detailed derivations could be moved to an appendix. 
Reply: Done. We moved the detailed deviations to Appendix A. 

 

(3) Lines 123-124: It is not clear what the authors mean here. Molecular diffusion should model 
hydrodynamic dispersion? I assume the space fractional derivative should account for 
dispersion. This should be clarified. 

Reply: We revised this statement (lines 267~268), and it now reads as follows: 
“Notably, if molecular diffusion is not negligible, it can be included in Eq. (1), combining with 
the subordination term responsible for mechanical dispersion to define hydrodynamic 
dispersion.” 

We concur with the reviewer that the space fractional derivative explains super-diffusion 
resulting from rapid displacement along preferential flow paths, which can typically overshadow 
molecular diffusion's influence on particle dispersion. 



 

(4) Lines 146 and 152: When the authors refer to fractional-order integration and integration by 
parts of the spatial derivatives, do they mean the use of the divergence theorem and its 
fractional-order extensions? This should be clarified. 

Reply: We used integration by parts, whether fractional or integer order, rather than the 
divergence theorem. For instance, Eq. (5) (now Eq. (A2)) employed fractional-order integration 
by parts, which doesn't involve vector field flux through a closed surface. Eq. (6) (now Eq. (A3)) 
applied integer-order integration by parts in the first equality and the Green’s divergence 
theorem in the second. We clarified this in the revised manuscript (line 717). 

 

(5) Section 2.2: This section refers extensively to previous work by the lead author. It would be 
instructive for the reader if the authors could provide the Lagrangian equations that are 
implemented in the solver. 

Reply: Done. We added the temporal Langevin equation that describes the non-Markovin 
displacement of solute particles over time in the revised manuscript (lines 259~262). 

 

(6) Lines 297 and 302: What is meant by relatively homogeneous/heterogeneous? How are the 
K-fields generated and how are they characterized (log-K variance, correlation length, etc.)? 

Reply: We generated the K-fields using the 2D fractional Brownian motion (fBm) random field 
method developed by Zhang et al. (2019a). Particularly, log-normal random K values were 
distributed in space using the Fourier filter function. The Hurst parameter in the filter function 
defines the spatial correlation of K values: a relatively ‘homogeneous’ K-field exhibits weak 
correlation (e.g., Fig. 2a), while a ‘heterogeneous’ K-field displays strong correlation (e.g., Fig. 
2c). We have included this clarification in the revised manuscript (lines 324~326). 

 

(7) Line 300: Do the authors add diffusion to capture hydrodynamic dispersion? This needs to be 
clarified. 

Reply: Yes, we have done this. It's necessary because molecular diffusion is a component of 
hydrodynamic dispersion. Please see also our response for Question 3. 

 


