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Abstract 7 

A deep learning model designed for time series predictions, the long short-term memory (LSTM) 8 

architecture is regularly producing reliable results in local and regional rainfall-runoff applications 9 

around the world. Recent large-sample-hydrology studies in North America and Europe have shown the 10 

LSTM to successfully match conceptual model performance at a daily timestep over hundreds of 11 

catchments. Here we investigate how these models perform in producing monthly runoff predictions in 12 

the relatively dry and variable conditions of the Australian continent. The monthly timestep matches 13 

historic data availability and is also important for future water resources planning, however it provides 14 

significantly smaller training data sets than daily time series. In this study, a continental-scale 15 

comparison of monthly deep learning (LSTM) predictions to conceptual rainfall-runoff model 16 

(WAPABA) predictions is performed on almost 500 catchments across Australia with performance 17 

results aggregated over a variety of catchment sizes, flow conditions, and hydrological record lengths. 18 

The study period covers a wet phase followed by a prolonged drought, introducing challenges for making 19 

predictions outside of known conditions - challenges that will intensify as climate change progresses. 20 

The results show that LSTMs matched or exceeded WAPABA prediction performance for more than 21 

two-thirds of the study catchments; the largest performance gains of LSTM versus WAPABA occurred 22 

in large catchments; the LSTM models struggled less to generalise than the WAPABA models (eg. 23 

making predictions under new conditions); and catchments with few training observations due to the 24 

monthly timestep did not demonstrate a clear benefit with either WAPABA or LSTM.  25 

Key words [6 max]: Hydrology and water resources, machine learning, deep learning, benchmarking, 26 

neural networks, process-based modelling 27 
 28 

Major points  29 

1. A deep learning model (single-layer LSTM) matched or exceeded performance of a WAPABA 30 

rainfall-runoff model in 69% of study catchments.  31 

2. Monthly datasets contain enough information to train the LSTMs to this level. 32 

3. WAPABA struggled in more catchments to make predictions under dry conditions after being 33 

trained on wet conditions than the LSTM did.  34 

https://doi.org/10.5194/hess-2023-124
Preprint. Discussion started: 30 May 2023
c© Author(s) 2023. CC BY 4.0 License.



Page 2 of 34 

1. Introduction 35 

With progressively variable climate conditions and the ever-increasing accessibility of hydrologic data, 36 

there comes the opportunity to reconsider how available data is being used to efficiently predict 37 

streamflow runoff on a large scale. Hydrological researchers are increasingly turning to emerging 38 

machine learning techniques such as deep learning to analyse this increasing volume of data, due to the 39 

relative ease of extracting useful information from large datasets and producing accurate predictions 40 

about future conditions without the need for detailed knowledge about the underlying physical systems. 41 

In some cases, machine learning models have been found capable of obtaining more information from 42 

hydrological datasets than is abstracted with traditional models, due to their automatic feature 43 

engineering and ability to effectively capture high-dimensional and long-term relationships (Nearing et 44 

al., 2021, Frame et al., 2021). The continually evolving machine learning field will continue to offer 45 

novel opportunities that can be harnessed for hydrological data analyses, and it is important to understand 46 

how these methods relate to classical models. Here we benchmark a basic machine learning model 47 

against a traditional conceptual model over a large sample of catchments as a step towards a general 48 

understanding of the use of deep learning models as a tool for the task of monthly rainfall-runoff 49 

modelling in Australian catchments. 50 

Deep learning models have been shown in many applications to provide accurate hydrological 51 

predictions and classifications (Shen et al., 2021, Reichstein et al., 2019, Frame et al., 2022). These 52 

models are particularly useful to hydrological studies as they provide the potential to quickly add and 53 

remove predictors (Shen, 2018), scale to multiple catchments (Kratzert et al., 2018, Lees et al., 2021), 54 

automatically extract useful and abstract information from large datasets (Reichstein et al., 2019, Shen, 55 

2018), make predictions in areas with little or no data (Kratzert et al., 2019, Majeske et al., 2022, Ouma 56 

et al., 2022, Choi et al., 2022), and extrapolate proficiently to larger hydrologic events than are seen in 57 

the training dataset (Li et al., 2021, Song et al., 2022).  58 

The long short-term memory network (LSTM, (Hochreiter and Schmidhuber, 1997)), is a deep learning 59 

model that is gaining popularity in hydrology for daily time series predictions at individual basins or 60 

groups of basins due to its ability to efficiently and accurately produce predictions without requiring 61 

assumptions about the physical processes generating the data. The LSTM is a type of recurrent neural 62 

network (RNN). An extension of the multilayer perceptron, the RNN is specifically designed for use 63 

with time series data through its sequential consideration of input data. The LSTM further extends the 64 

RNN to incorporate gates and memory cells, allowing for input data to be remembered over much longer 65 

time periods and for unimportant data to be forgotten from the network. LSTMs make predictions by 66 

taking into account both the short and long temporal patterns in a time series as well as incorporating 67 

information from exogenous predictors. The data-driven detection of intercomponent, spatial and 68 
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temporal relationships by these deep learning models can be of particular benefit when attempting to 69 

represent systems in which the physical characteristics are not well defined and the intervariable 70 

relationships are complex. 71 

The increasing popularity of the LSTM in hydrology is due to its ability to capture the short-term 72 

interactions between rainfall and runoff, as well as the long-term patterns and interactions arising from 73 

longer-frequency drivers such as climate, catchment characteristics, land use and changing 74 

anthropogenic activity. A growing number of publications are applying LSTMs to hydrological 75 

simulations and comparing results to process-based or conceptual modelling results.  76 

A gap exists in the literature concerning a comparison of LSTM models and conceptual models at a 77 

monthly time step over a large sample of catchments. The conditions in which LSTMs or conceptual 78 

models may have an advantage for monthly rainfall-runoff modelling, in a general sense, are not yet 79 

understood as most machine learning applications in hydrology are individual-basin case studies 80 

(Papacharalampous et al., 2019) at a daily timestep or higher frequency (eg. (Li et al., 2021, Yokoo et 81 

al., 2022). Though the LSTM has successfully matched conceptual model performance in a couple large-82 

sample-hydrology studies at daily timesteps (in the USA (Kratzert et al., 2019) and the UK (Lees et al., 83 

2021)) it is yet unknown how these models compare to conceptual models for monthly runoff predictions 84 

in relatively dry conditions such as those characterised by Australian catchments. 85 

Monthly hydrological models are important tools for water resources assessments as hydrologic data has 86 

historically been recorded at a monthly or longer frequency, and the monthly timestep is often the most 87 

practical for water resources planning with many decisions requiring only monthly streamflow 88 

predictions. With their simpler structure, fewer parameters and lower data requirements compared to 89 

daily models (Hughes, 1995, Mouelhi et al., 2006), monthly models are also useful tools to investigate 90 

uncertainty in rainfall-runoff model structure (Huard and Mailhot, 2008) and allow the support of 91 

probabilistic seasonal streamflow forecasting systems (Bennett et al., 2017). Due to data availability, 92 

models designed to run on monthly timesteps can be used across much larger areas, informing important 93 

large-scale water resources decision-making. For these reasons, generalisable models at monthly 94 

timesteps are vital. However, the monthly timestep is traditionally a difficult one to model as it requires 95 

extracting both short and long-term hydrologic processes (Machado et al., 2011). In a machine-learning 96 

context, the monthly time step differs significantly from the daily time step as it drastically reduces the 97 

size of the data set available for model training (by a factor of 30). As the convergence of machine 98 

learning algorithms typically improves with larger data sets, a central research question of this paper is 99 

to explore the capacity of the LSTM algorithm to cope with the reduced amount of input data imposed 100 

by the monthly time step.  101 
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Some studies have already used the LSTM to model the rainfall-runoff relationship at a monthly time 102 

step in localised studies, showing potential for this application on a broader scale. Ouma et al. (2022) 103 

used monthly aggregated data due to low data availability in three scarcely-gauged basins the Nzoia 104 

River basin, Kenya. Majeske et al. (2022) trained LSTMs with spatially- and temporally-limited data for 105 

three sub-basins of the Ohio River Basin, claiming the daily timestep was superfluous and cumbersome 106 

in some conditions. Lee et al. (2020) found the LSTM adept at preserving long-term memory in monthly 107 

streamflow at a single station on the Colorado River over a 97-year study without any weakening of the 108 

short-term memory structure. Yuan et al. (2018) used a novel method for parameter calibration in an 109 

LSTM for monthly rainfall-runoff estimation at a single station on the Astor River basin in northern 110 

Pakistan. Song et al. (2022) found the LSTM better reproduced observed monthly runoff and simulated 111 

extreme runoff events than a physically-based model at five discharge stations in the Yeongsan River 112 

basin in South Korea.  113 

Large-sample hydrologic studies that assess methods on a large number of catchments are being 114 

increasingly called for in the field of hydrology (Papacharalampous et al., 2019, Mathevet et al., 2020, 115 

Gupta et al., 2014). Papacharalampous et al. (2019) compared the performance of a number of statistical 116 

and machine learning methods (no LSTM) on 2000 generated timeseries and over 400 real-world river 117 

discharge timeseries and determined that the machine learning and stochastic methods provided similar 118 

forecasting results. Mathevet et al. (2020) compared daily conceptual model performance (no machine 119 

learning) for runoff prediction in over 2000 watersheds, determining that performance depended more 120 

on catchment and climate characteristics than on model structure. Kratzert et al. (2018) found individual 121 

daily-scale LSTMs were able to predict runoff with accuracies comparable to a baseline hydrological 122 

model for over 200 differently complex catchments. (Kratzert et al., 2019) found a global LSTM trained 123 

on over 500 basins in the United States with daily data produced better individual catchment runoff 124 

predictions than conceptual and physically-based models calibrated on each catchment individually. 125 

(Lees et al., 2021) produced a global LSTM to model almost 700 catchments in Great Britain, finding 126 

that this model outperformed a suite of benchmark conceptual models, showing particular robustness in 127 

arid catchments and catchments where the water balance does not close. (Jin et al., 2022) compared 128 

machine learning daily rainfall-runoff models to process-based models for over 50 catchments in the 129 

Yellow River Basin in China. (Frame et al., 2021) found that a global LSTM with climate forcing data 130 

performed similarly or outperformed a process-based model on over 500 US catchments, and that in 131 

catchments where hydrologic conditions are not well understood the LSTM was a better choice. 132 

This study aims to determine the ability of a simple machine learning model (a single-layer LSTM) to 133 

match or exceed the performance of a conceptual monthly rainfall-runoff model (the WAPABA model 134 

(Wang et al., 2011)) for predicting runoff using inputs derived from easily accessible climate variables. 135 
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A comparison is made on almost 500 basins across Australia, representing a wide variety of catchment 136 

types, hydro-climate conditions, and with differing amounts of historical data. The prediction 137 

performance of the LSTM machine learning models is compared to the WAPABA conceptual models 138 

for each individual catchment. The proportion of catchments in which the runoff prediction performance 139 

of the conceptual model is met or exceeded by the machine learning model is determined. Conditions 140 

under which the machine learning models or the conceptual models may have an advantage are 141 

investigated, such as catchment size, flow level, and length of historical record. The central questions of 142 

this study are: 143 

1) In general, do LSTMs match conceptual model prediction performance on Australian 144 

catchments? 145 

2) Is the reduced number of data points due to the monthly time step an issue for training an LSTM? 146 

3) Under what conditions is the LSTM of particular benefit or drawback? (eg. catchment size, flow 147 

level, amount of training data, etc.) 148 

The results of this large-sample analysis of LSTM performance over the Australian continent will assist 149 

in understanding whether LSTMs are a justifiable alternative to conceptual models for monthly rainfall-150 

runoff prediction in Australia and similar environments, including if monthly data sets are sufficient to 151 

produce accurate predictions with the LSTM. Building on these results, further benefits of deep learning 152 

could be harnessed through the creation of larger-scale models that encompass climatic, hydrologic and 153 

anthropogenic patterns spanning multiple catchments, allowing for the sharing of information under 154 

similar conditions and the potential transfer of knowledge between data-rich and data-scarce regions, or 155 

models that blend conceptual models into the machine learning network structure. 156 

 157 

2. Data and Methods 158 

2.1. Data 159 

The catchment and climate data used in this study are from a dataset curated by Lerat et al. (2020) 160 

comprising a selection of basins across Australia. The dataset spans all main climate regions of the 161 

continent, providing data from a variety of rainfall, aridity and runoff regimes, as described in Table 1. 162 

Catchments where some data were marked as suspicious (e.g. high flow data with large uncertainties, 163 

inconsistencies, suspected errors) or with more than 30% missing data were excluded. This left 496 164 

catchments in the study, with locations as shown in Figure 1. The area of the individual catchments ranges 165 

from approximately 5 km2 to 120,000 km2.  166 

 167 

https://doi.org/10.5194/hess-2023-124
Preprint. Discussion started: 30 May 2023
c© Author(s) 2023. CC BY 4.0 License.



Page 6 of 34 

Table 1: Characteristics of the study catchments, over the period 1950-2020  168 

Variable Min Q25 Median Q75 Max 

Catchment area (km2) 4 180 449 1,456 119,000 

Mean rainfall (mm/y) 237 691 887 1130 3097 

Mean PET (mm/y) 918 1280 1500 1755 2321 

Mean runoff (mm/y) 0.5 46 130 275 2213 

Aridity index rainfall/PET (-) 0.11 0.44 0.61 0.81 2.61 

Daily rainfall skewness (-) 2.4 4.8 5.9 7.4 16.7 

Runoff coeff. runoff/rainfall (-) 0.001 0.069 0.150 0.255 0.902 

% zero flows in daily series 0.0 0.0 3.4 23.7 74.0 

 169 

Figure 1: Locations of the 496 study catchments, coloured by mean annual rainfall. The three labelled catchments, which 170 
will be used as examples during the study, represent a wet catchment (111005 in Northern Queensland), a temperate 171 

catchment (204014 in New South Wales), and a dry catchment (609012 in Western Australia). 172 

 173 

Observed runoff data were collected from the Bureau of Meteorology’s Water Data online portal 174 

(http://www.bom.gov.au/waterdata), rainfall and temperature data are from the Bureau of Meteorology’s 175 

AWAP archive (Jones et al., 2009), and potential evapotranspiration data was computed by the Penman 176 

equation as part of the AWRA-L landscape model developed jointly by CSIRO and the Bureau of 177 

Meteorology (Frost et al., 2018). Rainfall, temperature and evapotranspiration are averaged from daily 178 

grids (5x5km) over each of the catchments. 179 
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The runoff records begin between January 1950 and September 1982, and end between October 2016 180 

and June 2020. The number of runoff observations per catchment ranges from 425 to 846 with a median 181 

dataset size of 613 observations. The rainfall and potential evapotranspiration data cover the period from 182 

1911 to 2020 continuously. The dataset therefore consists of a set of 496 time series ranging from 37 to 183 

70 years in length, with a median record length of 51 years. 184 

 185 

 Training and testing data split 186 

The data set for each catchment is split into two portions for modelling - in machine learning these are 187 

referred to as ‘training’ and ‘testing’ sets, corresponding to the traditional ‘calibration’ and ‘validation’ 188 

sets used in hydrologic modelling. The training data set runs from January 1950 (or the start of the 189 

station’s record, if later) to December 1995 for all catchments. The testing data set begins in January 190 

1996 for all catchments and ends in July 2020 (or at the end of the station’s record, if sooner). This split 191 

is chosen to divide the streamflow records into two relatively even periods, but also to distinguish an 192 

early wet period from a testing period characterised by the Millennium Drought over south-eastern and 193 

eastern Australia (Van Dijk et al., 2013).  194 

When split into training and testing sets at the beginning of January 1996, between 38% and 72% of the 195 

data from each catchment becomes the training set. The length of the training data record for individual 196 

catchments ranges from 14 to 47 years, with the smallest data set used for training containing 172 197 

observations. Typically in machine learning, a portion of the training data is held back to be used during 198 

the model fitting process for monitoring over-fitting and to signal early stopping of training if necessary. 199 

Since the training data sets in this study are already small by machine learning standards, this has not 200 

been done as it would reduce the number of training observations significantly. A sensitivity test has 201 

been performed to justify this choice, and it was found that training the LSTMs with 20% of the training 202 

data reserved for this task produced no apparent benefit in prediction performance.  203 

2.2. Models 204 

 Deep learning time series models (LSTMs) 205 

The long short-term memory network, LSTM (Hochreiter and Schmidhuber, 1997), is an updated 206 

recurrent neural network (RNN) specifically designed for deep learning with time series data. The 207 

inclusion of gates and memory cells increases the length of time series the LSTM is able to process; 208 

three gates (input, output and forget gates) regulate the flow of information into and out of the memory 209 

cell, determining which information from the past is to be retained and which can be forgotten. In this 210 

way, each member of the LSTM output becomes a function of the relevant input at previous timesteps.  211 

The LSTM network consists of an input layer, one or more hidden layers, and an output layer. The layers 212 

are connected by a set of updatable weights, with the same weights applying to all timesteps of the data. 213 
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Memory cells shadow each node on the hidden layer, retaining important information over long time 214 

periods. Each node of the input layer represents a variable of the input data set. Observations are fed into 215 

the network along with a pre-specified number of predictor values from previous timesteps (known as 216 

the lookback length, or lag) which are cycled sequentially through the network. Network weights are 217 

updated by backpropagating the gradient of the error between the modelled and observed outputs. For 218 

detailed information on the mathematical functioning of the LSTM, see (Goodfellow et al., 2016) and 219 

(Kratzert et al., 2018). 220 

In this study, a separate LSTM is trained for each catchment. Input to the LSTMs are monthly averaged 221 

measurements of: rainfall depth (𝑃), potential evapotranspiration (𝐸), average maximum daily 222 

temperature over the month, and net monthly (effective) rainfall (𝑃∗ ) computed for month t by summing 223 

daily effective rainfall, as shown here: 224 

 

𝑃𝑡
∗ =  ∑ max(0,  𝑃𝑑 − 𝐸𝑑)

𝑑=𝑑𝑎𝑦𝑠(𝑡)

𝑑=0

  

1 

Standard scaling of the input data is performed per catchment as follows: 225 

 
𝑋̃𝑡 =

𝑋𝑡 − 𝜇𝑥

𝜎𝑥
 

2 

where 𝑋𝑡 is an input variable for month 𝑡, 𝜇𝑥 is its mean and 𝜎𝑥 its standard deviation over the training 226 

period. The target variable for LSTM training is monthly average runoff. Observed runoff values are 227 

scaled by taking the square root and then transforming to the range [-1,1] per catchment, as follows: 228 

 
𝑌𝑡 = 2 

√𝑄𝑡 − 𝑌0

𝑌1 − 𝑌0
− 1 

3 

where 𝑄𝑡 is the observed runoff for month 𝑡, and 𝑌0 and 𝑌1 are the minimum and maximum square root 229 

transformed flow over the training period, respectively. The square root transform is chosen to be 230 

conceptually consistent with the objective function of the WAPABA model calibration (as described 231 

below, mean absolute error of the square roots of flows). Note that the same scaling constants 232 

(𝜇𝑥, 𝜎𝑥 , 𝑌0, 𝑌1) used during LSTM training are also applied to LSTM inputs and targets for the testing 233 

period. Using scaling constants only derived from the training data ensures that the training process is 234 

not incorporating any information from the testing data set.   235 

The loss function used for training the LSTM is the mean absolute error (MAE) performed on the 236 

transformed runoff, as follows: 237 
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 𝐿 =  ∑|𝑌𝑡 − 𝑌̂𝑡|

𝑡

 4 

where 𝑌̂𝑡 is the output of the network for month 𝑡 and 𝑌𝑡 is the transformed runoff for the same month. 238 

Hyperparameters, or parameters controlling the LSTM training algorithm, were selected after a grid 239 

search on a randomly selected catchment (14207) with a good length data record and tested on a small 240 

additional subset of catchments. The hyperparameter space searched was: initial learning rate 𝛿0 (1e-3 241 

to 1e-4), sequence (lookback or lag) length (6, 9, 12, 15, 18, 21, 24 months) and number of hidden nodes 242 

(10, 20, 30, 40, 50, 60). The hyperparameter set that performed the best predictions over the training 243 

period selected for use in all LSTMs: 10 nodes on a single hidden layer, run with a sequence length 6 244 

months, and an initial learning rate 𝛿0 of 0.0001. Subsequent to this hyperparameter search on one 245 

catchment, we investigated on all catchments the effect of raising the initial learning rate for faster 246 

convergence while using input and recurrent dropout to prevent overfitting. Empirically, and counter to 247 

our intuition, this never improved training performance so an initial learning rate 𝛿0 of 0.0001 was kept. 248 

The learning rate was allowed to vary during training with a patience of 3 epochs without improvement 249 

before multiplying by a factor of 0.2 to obtain a new learning rate. The dataset was divided into 400 250 

steps-per-epoch for training; data was sent through the model in batches with a weight update after each 251 

(an epoch, or iteration, is concluded when the entire dataset has been run through the model once). The 252 

LSTM training was implemented using a gradient descent algorithm run for a maximum of 100 epochs. 253 

Training was set to stop early if the training error failed to decrease over 5 consecutive epochs. The 254 

LSTMs were implemented with Tensorflow in Python. The code was designed to use numeric seeds to 255 

have reproducible outcomes, which is often not the default behavior of many components of Tensorflow 256 

or other deep learning frameworks. 257 

 WAPABA rainfall-runoff models 258 

The WAPABA model is a conceptual monthly rainfall-runoff model introduced by Wang et al. (2011). 259 

The model is an evolution of the Budyko framework proposed by Zhang et al. (2008) where water fluxes 260 

are partitioned using parameterised curves. The model uses two inputs, mean monthly rainfall and 261 

potential evapotranspiration, and operates in five stages. First, input rainfall is split between effective 262 

rainfall that will eventually leave the catchment, and catchment consumption that replenishes soil 263 

moisture and evaporates. Second, catchment consumption is portioned between soil moisture 264 

replenishment and actual evapotranspiration. Third, effective rainfall is partitioned between surface 265 

water (fast) and groundwater (slow) stores. Fourth, the groundwater store is drained to provide a 266 

baseflow contribution. Fifth, the surface water and baseflow are added to obtain the final simulated 267 

runoff for the month. The model has five parameters described in Table 2. 268 
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Table 2 WAPABA model parameters 269 

Name Description Unit Minimum Maximum 

alpha1 Exponent of the catchment 

consumption/effective rainfall curve 

Dimensionless 1.0 10.0 

alpha2 Exponent of the soil moisture 

storage/evapotranspiration curve 

Dimensionless 1.0 10.0 

Beta Partition between groundwater recharge and 

surface runoff 

Dimensionless 0.0 1.0 

Smax Maximum water-holding capacity of soil store mm 5.0 6000.0 

Inverse K Inverse of groundwater store time constant 1/day 0.000274 1.0 

 270 

A separate WAPABA model is run for each study catchment. The WAPABA models were trained 271 

(calibrated) and tested (validated) over the same periods as the LSTMs: 1950 to 1995 inclusive for 272 

training, and 1996 to June 2020 for testing. WAPABA parameters were optimized over the training 273 

period using the Shuffle Complex Evolution algorithm (Duan et al., 1993) with the Swift software 274 

package (Perraud et al., 2015). The objective function used for the WAPABA models is the same as the 275 

one used for LSTM, i.e. the mean absolute error (MAE) on the square root of runoff (see Equation 4).  276 

2.3. Performance evaluation 277 

Predictions from the conceptual (WAPABA) and machine learning (LSTM) models for all catchments 278 

are compared to observed runoff, assessing each models’ predictive capabilities on the set of catchments. 279 

Runoff prediction performance is reported here using the following metrics.  280 

The Nash Sutcliffe Efficiency (NSE, (Nash and Sutcliffe, 1970)) is the most often used performance 281 

metric in hydrology. It can be considered a normalised form of mean squared error (MSE) and is defined 282 

as:  283 

 
𝑁𝑆𝐸 = 1 −

∑ (𝑄𝑜𝑏𝑠
𝑡 − 𝑄𝑚𝑜𝑑

𝑡 )2
𝑡

∑ (𝑄𝑜𝑏𝑠
𝑡 − 𝜇𝑜𝑏𝑠)2

𝑡

= 1 −
𝐸

𝑉
 

5 

where 𝑄𝑜𝑏𝑠
𝑡  and 𝑄𝑚𝑜𝑑

𝑡  are the observed and modelled discharges for month 𝑡, respectively, and 𝜇𝑜𝑏𝑠 is 284 

the average observed discharge over the training or testing period. The ratio of the sum of squared errors, 285 

𝐸 = ∑ (𝑄𝑜𝑏𝑠
𝑡 − 𝑄𝑚𝑜𝑑

𝑡 )
2

𝑡 , to the variance, 𝑉 = ∑ (𝑄𝑜𝑏𝑠
𝑡 − 𝜇

𝑜𝑏𝑠
)

2

𝑡 , is subtracted from a maximum score of 1. An 286 

NSE closer to 1 indicates better predictive capability of the model, and an NSE less than 0 indicates the 287 

model mean squared error is larger than the observation variance.  288 
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The NSE metric alone cannot provide an accurate description of model performance due to its focus on 289 

high flow regime (Schaefli and Gupta, 2007). The reciprocal NSE focuses the error metric on low flows 290 

(Pushpalatha et al., 2012) by comparing the reciprocals of the observed and modelled flows. It is 291 

calculated as:  292 

 

𝑅𝑒𝑐𝑖𝑝𝑁𝑆𝐸 = 1 −

∑ (
1

(𝑄𝑜𝑏𝑠
𝑡 + 1)

−
1

(𝑄𝑚𝑜𝑑
𝑡 + 1)

)

2

𝑡

∑ (
1

(𝑄𝑜𝑏𝑠
𝑡 + 1)

−
1

(𝜇𝑜𝑏𝑠 + 1)
)

2

𝑡

 

6 

The Kling-Gupta efficiency (KGE, (Gupta et al., 2009)) provides an alternative to metrics based on sum 293 

of squared error such as the two previous ones, by equally weighting measures of bias of the mean, 294 

variability, and correlation into a single metric as follows:   295 

 

𝐾𝐺𝐸 = 1 − √(1 −
𝜇𝑠𝑖𝑚

𝜇𝑜𝑏𝑠
)

2

+ (1 −
𝜎𝑠𝑖𝑚

𝜎𝑜𝑏𝑠
)

2

+ (1 − 𝜌)2 

7 

where 𝜇𝑋 and 𝜎𝑋 are the mean and the standard deviation and 𝜌 is the Pearson correlation coefficient 296 

between the simulated and observed data. 297 

Finally, bias is a measure of consistent under-forecasting or over-forecasting of the mean, defined as: 298 

 𝐵𝑖𝑎𝑠 =
𝜇𝑠𝑖𝑚 − 𝜇𝑜𝑏𝑠

𝜇𝑜𝑏𝑠
. 8 

Comparison of performance metrics between catchments using normalised indexes 299 

When comparing metrics across model types and catchments, a normalised difference in NSE values is 300 

used. The NSE metric can reach into large negative values in dry catchments when the variance of the 301 

observations is very small compared to the model errors (Mathevet et al., 2006), as can be seen from 302 

Equation 5. Differences between large negative values of NSE have a much smaller implication than the 303 

same absolute difference between values of NSE closer to 1. To allow for a comparison between the 304 

WAPABA and LSTM models at catchments of various aridities, the normalised difference in NSE is 305 

calculated following Lerat et al. (2012): 306 

 
𝐷𝑖𝑓𝑓_𝑁𝑆𝐸𝑛𝑜𝑟𝑚 =

𝑁𝑆𝐸2 − 𝑁𝑆𝐸1

(1 − 𝑁𝑆𝐸1) + (1 − 𝑁𝑆𝐸2)
=

𝑁𝑆𝐸2 − 𝑁𝑆𝐸1

2 − (𝑁𝑆𝐸1 + 𝑁𝑆𝐸2)
 

9 

where 𝑁𝑆𝐸1 and 𝑁𝑆𝐸2 are the NSE values corresponding to the two models to be compared. Substituting 307 

in 𝑁𝑆𝐸 = 1 −
𝐸

𝑉
 from Equation 5 into Equation 9, the normalised difference in NSE can be seen to 308 

represent a percentage difference in the sum of squared errors between the two models being compared: 309 
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𝐷𝑖𝑓𝑓_𝑁𝑆𝐸𝑛𝑜𝑟𝑚 =

𝑁𝑆𝐸2 − 𝑁𝑆𝐸1

2 − (𝑁𝑆𝐸1 + 𝑁𝑆𝐸2)
=

𝐸1 − 𝐸2

𝐸1 + 𝐸2
 

10 

A similar formula is applied to reciprocial NSE and KGE. The normalised difference between the bias 310 

for two models is calculated as: 311 

 
𝐷𝑖𝑓𝑓_𝐵𝑖𝑎𝑠𝑛𝑜𝑟𝑚 =

|𝐵𝑖𝑎𝑠1| − |𝐵𝑖𝑎𝑠2|

|𝐵𝑖𝑎𝑠1| + |𝐵𝑖𝑎𝑠2|
 

11 

To simplify the comparison of model results across the large number of catchments, model performances 312 

at each catchment are classified as similar if the normalised difference between WAPABA and LSTM 313 

metrics lies within +/- 0.05 at that catchment, following Lerat et al. (2020). Therefore in this paper, a  314 

‘similar’ NSE denotes that the sum of squared errors of the WAPABA and LSTM models at an 315 

individual catchment differ by no more than 5%. For differences greater than this, the catchments are 316 

classified by the model type producing the higher metric. The selection of the threshold of 0.05 was 317 

based on the recommendations of (Lerat et al., 2020) and the authors’ experience relative to the use of 318 

the NSE, KGE and bias metrics. 319 

 320 

3. Results 321 

For each of the study catchments, a WAPABA model and an LSTM model have been trained using 322 

monthly data over the training period, and the prediction performance of the models are evaluated here 323 

on monthly data from the testing period (data unseen by the model during training) using the metrics 324 

described above. A general comparison of WAPABA and LSTM prediction performance is first made 325 

over all catchments with a continental-scale analysis of the performance metrics, to determine:  326 

1) the proportion of overall catchments for which the WAPABAs or the LSTMs produced 327 

better predictions, and 328 

2) differences at individual catchments in WAPABA versus LSTM prediction performance. 329 

A comparison of model performance is then made in relation to various catchment and time series 330 

characteristics (eg. catchment size, flow level, record length), to determine if an association exists 331 

between these properties and the relative performance of the conceptual and machine learning models.  332 

Example prediction results 333 

As a sample of the modelling output, Figure 2 shows the WAPABA and LSTM runoff predictions along 334 

with the corresponding observed runoff for the three stations highlighted in Figure 1 (over the testing 335 

period). These hydrographs are representative of a wet catchment in Northern Queensland (Mulgrave 336 
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River at the Fisheries, 111005), a temperate catchment in NSW (Mann River at Mitchell, 204014), and 337 

a dry, intermittent catchment in Western Australia (Blackwood River at Winnejup, 609012). NSE values 338 

of each of the predictions are noted. The WAPABA and LSTM predictions both match the observed 339 

data reasonably well in the three catchments. The performance of the models, in particular for the 340 

Blackwood River at Winnejup is remarkable because of the difficulty in modelling dry, intermittent 341 

catchments (Wang et al., 2020). The next sections provide a more detailed assessment of the performance 342 

over all catchments using quantitative metrics.  343 

 344 

Figure 2: Observed data (black dashed line) and predicted runoff (by WAPABA and LSTM models) over the testing period 345 

for the Mulgrave River at the Fisheries (111005), Mann River at Mitchell (204014) and the Blackwood River at Winnejup 346 

(609012). Catchment locations are shown on Figure 1. 347 

Large-sample performance summary  348 

The general runoff prediction performance of WAPABA and LSTM models on a continent-wide basis 349 

is summarized in Figure 3. From the models run for each catchment, metrics are determined on the 350 

training portion (calibration) and testing portion (validation) separately and gathered here in boxplots. 351 

Median and quartiles of NSE, reciprocal NSE, KGE and Bias over all catchments are shown for each 352 

model type, with each data point representing an individual catchment. All data is shown on the top 353 

panel, and due to a few large (negative) outliers the same figure is shown with a restricted y-axis for 354 

visualization purposes on the lower panel. Higher values of the first three metrics (NSE, reciprocal NSE 355 
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and KGE) indicate a better match of predicted runoff with observed runoff, whereas lower values of 356 

Bias indicate better prediction results.  357 

Figure 3 shows that across the set of study catchments the median values of NSE, Reciprocal NSE, and 358 

KGE are slightly higher for LSTM than for WAPABA during both the training and testing phases. Bias 359 

has a slightly lower median for the LSTM. As expected, both model types perform better during the 360 

training phase than the testing phase for all metrics.  The interquartile ranges increase from training to 361 

testing (longer boxes during testing), indicating a greater spread of performance results when the models 362 

are run on data not seen during the training phase. Over all catchments, the median NSE is: 0.74 with 363 

the WAPABA models and 0.76 with the LSTM models (on testing data). See Table 3 for median values 364 

of all metrics.   365 

366 

 367 

Figure 3: Performance metrics summary for the set of 496 catchments (zoomed in on lower panel, excluding outliers < -1). 368 

Median values of LSTM performance metrics are slightly higher than WAPABA for NSE, Reciprocal NSE and KGE, and 369 

slightly lower for Bias (lower Bias is preferable). For all four metrics on both models, the training results were better than 370 

the testing results, with the longer testing boxes indicating more spread in performance results when predicting on new 371 

data.  372 
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Table 3: Median values of metrics over the set of catchments (n=496) 373 

 WAPABA LSTM 

NSE 0.74 0.76 

Reciprocal NSE 0.62 0.65 

KGE 0.68 0.70 

Bias 0.09 0.06 

 374 

Aggregated performance metrics may mask performance variability within certain aspects of the time 375 

series (Mathevet et al., 2020). The KGE has the benefit of being easily decomposed into three 376 

components for further error analysis: bias of the mean (ratio of mean of simulations to mean of 377 

observations), bias of variability (ratio of standard deviation of simulations to standard deviation of the 378 

observations), and correlation (matching of the timing and shape of the time series to the 379 

observations).  380 

In Figure 4, model performance is assessed with respect to each component of the KGE metric. 381 

Boxplots of the decomposed KGE components are shown by model type and training/testing period. 382 

During testing, the medians of bias of the mean and standard deviation are above zero and greater for 383 

WAPABA than LSTM. This indicates that mean streamflow and streamflow variability tend to be 384 

overestimated more by the WAPABA models compared to the LSTMs. With the LSTM, streamflow 385 

variability is more prone to underestimation (median below zero).  For bias of the mean and standard 386 

deviation, the depth of the boxplots increases from training to testing, indicating the bias values from 387 

individual catchments are more diverse during the testing period. 388 

The scatterplots in the lower part of Figure 4 compare the KGE components at individual catchments 389 

for the WAPABA and LSTM models (each dot represents a catchment), separately for training and 390 

testing portions of the data. Most values of bias of the mean (left column) are between 0 and 1 during 391 

training (underestimating) yet during testing values extend beyond 2, indicating the mean flow in 392 

many catchments is overestimated by both model types on the testing data. The observable correlation 393 

in testing period bias of the mean between WAPABA and LSTM indicates that this error is not 394 
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specific to model type. Correlation between simulations and observed data is similar for both model 395 

types and remains relatively constant between training and testing (right column). 396 

 397 

         398 

 399 

Figure 4: KGE decomposition into three components: bias of the mean, bias of variability, and correlation. Each dot 400 
represents an individual catchment (large outliers have been omitted for visualization purposes.) The mean flow and 401 

variability (left and middle columns) tend to be underestimated during training and both under- and overestimated during 402 
testing by both model types. The correlation (right column) remains similar during training and testing. 403 

 404 

Performance differences at individual catchments 405 

The differences between WAPABA and LSTM performance at each catchment (eg. 𝑁𝑆𝐸𝑖 =406 

𝑁𝑆𝐸𝑖,𝑊𝐴𝑃𝐴𝐵𝐴 − 𝑁𝑆𝐸𝑖,𝐿𝑆𝑇𝑀 for catchment 𝑖) are summarised in Figure 5. Values above zero indicate 407 

higher metrics obtained by WAPABA, and values below zero indicate higher metrics obtained by the 408 

LSTM model at a specific catchment.  409 
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The boxplots indicate that median differences in WAPABA and LSTM prediction performance at each 410 

catchment (measured by NSE, Reciprocal NSE, KGE and Bias on the testing data) are very close to zero. 411 

However, there are outliers (black dots) representing large performance differences between WAPABA 412 

and LSTM models, both positive and negative. These indicate that each model provides advantages for 413 

predicting runoff in certain catchments. In this figure the boxplots are restricted to the range [-1,1] for 414 

visualisation purposes. A version of this figure including the large outliers is provided in Figure A1 of 415 

the Appendix. 416 

 417 

Figure 5: Difference in the metrics (WAPABA – LSTM) for each catchment. A positive value indicates WAPABA has a 418 

higher metric for that catchment, and a negative value indicates LSTM has a higher metric. The median difference in each 419 

metric lies close to zero for the testing portion of the dataset, signifying overall similarity in catchment-specific metrics 420 

between model types. Large negative outliers have been excluded from this figure for visualisation purposes, but are 421 

included in the reproduction in the Appendix. 422 

 423 

This data set represents a range of catchments across Australia, some being characterised by highly arid 424 

conditions. To enable comparisons between these diverse catchments, the impact of large negative NSE 425 

values which can occur at very dry catchments is minimised by calculating the normalised differences 426 

in NSE between the WAPABA and LSTM predictions at each catchment, as per Equation 9. The 427 

normalised differences fall into the range [-1,1], facilitating comparison. This distribution is shown in 428 

Figure 6 for the 496 catchments. The portion of the distribution lying to the right of the vertical dashed 429 

line corresponds to catchments with better prediction by WAPABA and catchments to the left have 430 

better prediction by LSTM. The x-axis corresponds to percentage differences between the sum of 431 

squared errors of the two model types (ie. -0.5 indicates a 50% performance gain by LSTM and 0.5 432 

indicates a 50% performance gain by WAPABA). 433 
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 434 

Figure 6: Distribution of normalized differences between WAPABA and LSTM prediction performance at individual 435 
catchments (measured by NSE). The values on the x-axis represent percentage/100 difference in sum of squared errors 436 

between WAPABA and LSTM at the same catchment (ie 0.5 –> 50% difference in sum of squared errors). The catchments 437 
under the curve on the right of the dashed line have better predictions by the WAPABA model and on the left by the LSTM 438 

model.  439 

 440 

In Figure 6, we see that during the training period the majority of catchments are to the left of the line 441 

indicating better prediction by LSTM, and in the testing period there is a more even split. The median 442 

normalised difference in NSE across the 496 catchments over the training period is -0.15 (mean -0.16) 443 

and -0.04 (mean -0.05) during the testing period. This equates to a median 15% performance advantage 444 

by LSTM versus WAPABA during training and 4% during testing based on sum of squared errors.  445 

This figure suggests that in general there is little overall advantage of either the WAPABA or LSTM 446 

models when predicting on unseen data across the whole sample of catchments. However, the width of 447 

the distribution indicates that both the WAPABA and LSTM models have advantages at certain 448 

individual catchments, which will be explored in the next section.  449 

Figure 7 quantifies the proportion of catchments with similar or better prediction performance by either 450 

WAPABA or LSTM (on the testing data). ‘Similarity’ is defined here as an absolute normalised 451 

difference in NSE of less than 0.05 between WAPABA and LSTM predictions, meaning the sum of 452 

squared errors of the WAPABA and LSTM models at an individual catchment differ by no more than 453 

5%.  454 

The LSTM models produce similar or higher NSE values for 69% of the catchments when tested on data 455 

not seen during the training process (and 89% of the catchments during training, not shown). It can also 456 

be seen that 70% of catchments have similar or higher reciprocal NSE (focusing on low flow predictions) 457 

with LSTM , 61% have similar or higher KGE with LSTM, and 57% have similar or lower Bias with 458 

LSTM model compared to WAPABA on the same catchment.  459 
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 460 

 461 

Figure 7: Percentage of catchments with similar or better performance metrics on the testing portion of the data (note better 462 
Bias is lower, all others is higher). For catchments in the ‘similar’ category, the sum of squared errors of the WAPABA and 463 

LSTM predictions differ by less than 5%. The LSTM model produces predictions with similar or higher NSE values 464 
compared to the WAPABA predictions for 69% of the catchments.  465 

 466 

 467 

Prediction performance comparison by catchment or time series characteristics 468 

In this section, we investigate if the abilities of WAPABA and LSTM to accurately predict runoff at 469 

individual catchments vary based on attributes such as catchment area, flow level and length of historical 470 

record. 471 

Catchment size 472 

Figure 8 shows the association of prediction performance with catchment area. The left panel shows the 473 

catchment area compared to the normalised difference in NSE between LSTM and WAPABA prediction 474 

performance for each catchment. Data points are coloured according to the model that produced the 475 

better prediction for that catchment. This figure indicates the largest performance gains of LSTM versus 476 

WAPABA occurred in large catchments (points furthest to the left are found in the upper portion of 477 

figure). Splitting the catchments into quintiles by area, we can analyse the results for the largest 20% of 478 

catchments. Of these catchments, over three-quarters (78%)  had similar or better runoff predictions with 479 

the LSTM (with similarity defined as less than 5% difference in sum of squared errors compared to 480 

WAPABA predictions). In this top quintile of catchments, those with higher NSE values from the LSTM 481 

show a greater average advantage (average 24% lower sum of squared errors, maximum 97% lower), 482 

than those with better WAPABA predictions (average 15% lower sum of squared errors, maximum 65% 483 

lower).  484 

The mirrored histogram in the right panel of Figure 8 shows catchments stratified into bins by area (log 485 

base 10), coloured and counted by the model type that produced the better runoff prediction at each 486 

catchment. The LSTM models produced higher NSEs for a greater number of catchments than the 487 

WAPABA models in all of the bins, except the lowest bin (where n=1). 488 
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 489 

Figure 8: Model performance by catchment size. Left panel: Each data point represents the normalized difference in 490 

prediction performance at an individual catchment, arranged by catchment size. The spread of data points in the top left 491 

quadrant indicates that in large catchments the performance gain of LSTM versus WAPABA can exceed 90% in terms 492 

of sum of squared errors.  Right panel: count of catchments in each size bin that have better performance with each 493 

model. 494 

 495 

Flow level 496 

Model performance is compared for high, medium and low flow portions of the time series. For each 497 

station, each observation is categorised based on its flow level. High flows are defined here as the top 498 

5% of flow values and low flows as the lower 10% of flows at each station (calculated excluding zeros) 499 

over all observed data during the study period. The training and testing portions of the time series over 500 

all the catchments have different distributions of flow levels, as listed in Table 4. During the testing 501 

portion of the study period, conditions are dryer with more no-flow and low-flow observations, and 502 

fewer medium- and high-flow observations than during training.  503 

Table 4: Distribution of flow levels during training and testing 504 

Flow level 

Training 

observations 

(n) 

Testing 

observations 

(n) 

No flow 18,728 21,690 

Low  11,967 14,668 

Medium 127,584 96,089 

High 9,192 4,203 

   505 

For comparison purposes, both observed and modelled flows are standardised by station based on the 506 

mean and standard deviation of all observations at that station during the study period. The observed 507 

mean is subtracted from each value before dividing by the standard deviation of the observations.  508 
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Figure 9 shows that when NSE is calculated separately for the low, medium and high flow measurements 509 

at each catchment, both model types have similar NSE distributions. Medium flows are better predicted 510 

(NSE peak closer to 1) than high flows, and low flows appear to be poorly represented by both 511 

WAPABA and the LSTM.  512 

 513 

Figure 9: NSE distributions calculated separately by flow level over all catchments. Both model types have similar 514 
distributions of NSE by flow. Medium flows are best represented, followed by high and then low flows.  515 

 516 

Figure 10 compares the scaled modelled flow to the scaled observations for all testing observations at 517 

all stations. Kernel density contours split the data into 10 density regions on each plot and a 1:1 line is 518 

added to aid interpretation. The lower panel focuses on the regions of highest density for each subset of 519 

flows. For no-flows and low flows (left two panels), the densest portions of the observation/prediction 520 

clouds are closely aligned along the 1:1 line for both WAPABA and LSTM. The magnitude of the 521 

outliers (beyond the outermost contour) is greatest above the 1:1 line indicating that prediction errors 522 

for no-flows and low flows are dominated by overestimations. For medium flow levels, the contours 523 

again follow the 1:1 line. The contours tend to expand upwards as flow size increases, indicating a 524 

tendency towards more overestimation with higher flows. The shape of the contours is similar for both 525 

models. On the upper panel it can be seen that the edges of the data cloud also expand upwards and 526 

outwards as the flows increase. The medium flow prediction errors with largest magnitude tend to be 527 

overestimations, with the WAPABAs producing greater overestimations than the LSTMs on the higher 528 

flows (still in this medium-flow subset). For high flows (on the far right panel), the majority tend to be 529 

underestimated by both LSTM and WAPABA (central density located below the 1:1 line), though there 530 

is a difference in the outliers – most of the larger errors in LSTM high flow predictions are 531 

underestimations, whereas the high-magnitude WAPABA errors are both over- and underestimations of 532 

high flows. 533 
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 534 

 535 

 536 

Figure 10: Prediction performance related to flow level. Upper panel: Observed vs. modelled flow pairs at all stations, 537 
separated into no-flow, low, medium and high flows [testing data only]. Densest portion of the data cloud is identified with 538 

density contours. Data are standardized based on observed mean and standard deviation. Lower panel: Comparison of 539 
density distributions of the data, zoomed in on the kernel density contours. In general, the largest errors on medium flows 540 
tend to be overestimations (by both models) and on high flows tend to be underestimations (by WAPABA and LSTM) or 541 

overestimations (by WAPABA). 542 

 543 

Poorly predicted catchments 544 

Figure 11 compares the NSEs for WAPABA and LSTM runoff predictions by catchment. Each dot 545 

represents an individual catchment, coloured according to the model with higher NSE at that catchment. 546 
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The top left quadrant contains catchments where NSEWAPABA < 0 and NSELSTM > 0 (n=19), and the lower 547 

right quadrant contains catchments where NSELSTM < 0 and NSEWAPABA > 0 (n=5). 548 

 549 
Figure 11: Comparison of NSEs on testing data - each data point represents the WAPABA and LSTM values of NSE for a 550 
single catchment, coloured by the model which provides the best prediction at that catchment. On the right panel, two far-551 
left outliers have been removed to enable better viewing of the other datapoints.  Catchments in the upper left quadrant are 552 

those in which runoff is poorly predicted by WAPABA (NSE < 0) and better predictions (NSE > 0) are obtained with 553 
LSTM. The lower right quadrant correspondingly shows catchments in which the NSE values from LSTM are below 0 and 554 

WAPABA has better predictions (NSE > 0). 555 

 556 

WAPABA and LSTM predictions at each catchment are classified into poor (NSE < 0), fair (0 <= NSE 557 

<= 0.5) or good (NSE > 0.5) categories. In this set of catchments, the runoff at 5 catchments is poorly 558 

predicted (NSE < 0) by both model types (lower left quadrant of Figure 11). All other catchments are 559 

better represented by one model or the other, with either WAPABA or LSTM producing predictions 560 

with NSEs above 0.  561 

For the 5% (n=24) of overall catchments that are poorly represented by WAPABA (NSE < 0), runoff 562 

predictions at 23 of these catchments (96%) are improved with use of the LSTM. In fact, one-third (n=8) 563 

of these have ‘good’ predictions by LSTM (NSE > 0.5). Conversely, for the 2% of catchments (n=10) 564 

that are poorly represented by LSTM, 60% are improved with use of WAPABA, and one-tenth (n=1) 565 

have ‘good’ predictions by WAPABA. Figure 12 depicts the number of catchments poorly represented 566 

by each model and how these specific catchments are represented by the alternate model. For half of the 567 

catchments with poor LSTM predictions, WAPABA does poorly as well; whereas in 79% of the 568 

catchments with poor WABAPA predictions, fair or good predictions were obtained with the LSTM. 569 
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 570 

Figure 12: Number of catchments with poor runoff predictions by each model type. Colouring indicates the prediction 571 
results from the alternate model type. One-third of WAPABA poorly predicted catchments have good predictions with the 572 
LSTM. One-tenth of LSTM poorly predicted catchments have good predictions with the WAPABA. Results are denoted as 573 

poor (NSE < 0), fair (0 <= NSE <= 0.5), or good (NSE > 0.5). 574 

 575 

Generalising to changing conditions 576 

The ability of a model to generalise outside of the conditions encountered during training is important, 577 

especially in the context of a changing climate. A model that is able to make predictions on unseen 578 

(testing) data to a comparable performance level as on the training data will provide confidence in 579 

making predictions into the future when external conditions are not expected to remain constant. In this 580 

data set we know that conditions differ between the training and testing data, with wetter climate 581 

conditions during the training period and a dryer testing period.  582 

It was found that 2% (n=11) of WAPABA models struggled with generalising outside of the training 583 

period, with ‘good’ (NSE > 0.5) runoff predictions during training but ‘very poor’ predictions (NSE < -584 

0.5) during the testing period. The testing predictions for all of these catchments were improved by use 585 

of the LSTM, and at 4 of these catchments ‘good’ predictions (NSE > 0.5) were obtained with the 586 

LSTMs. Conversely, one LSTM model produced ‘good’ training runoff predictions and ‘very poor’ 587 

testing predictions. This catchment was one of the 11 that also had poor generalisation (and ‘very poor’ 588 

predictions) with the WAPABA. 589 

 590 

Historical record length and data set size 591 

The performance of each model type is compared to the length of historical records available at each 592 

station. Training data length has been categorized here as 14-25 years (38% of stations), 25-35 years 593 

(40%), and 35-47 years (23%).  594 

Figure 13 (top panel) shows prediction performance varying slightly with record length (for visualisation 595 

purposes, this figure is shown without large negative outliers – the figure including outliers is provided 596 
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in Figure A2 of the Appendix). Stations with medium record length tend to have slightly better 597 

predictions according to the four metrics than those with shorter records. The performance levels tend 598 

to even out as record lengths increase beyond 35 years, and there is even a slight decline in the WAPABA 599 

reciprocal NSE.  600 

Considering catchments individually, the median normalised difference in NSE between WAPABA and 601 

LSTM predictions (on testing data) is just slightly below zero for all record lengths: -0.03 (<25 years of 602 

record), -0.04 (25-35 years), -0.04 (>35 years). This indicates that, in each of the short, medium and long 603 

record length categories, at least half of the individual catchments have higher NSEs with the LSTMs.  604 

     605 

            606 

Figure 13: Effect of record length and training data size on prediction performance for each model type. Upper panel: Medians 607 
of the NSE and KGE on testing data increase with record length for both WAPABA and LSTM predictions (large negative 608 
outliers have been excluded for visualization purposes, but are included in the corresponding figure in the Appendix). Lower 609 
left panel: Advantage of each model in 5-year increments of record length based on NSE values. Lower right panel: 610 
Advantage of each model based on number of training observations. 611 

 612 
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The mirrored histogram in the lower left panel of Figure 13 quantifies the number of catchments within 613 

5-year bins of record length in which runoff is better predicted by the LSTMs or by the WAPABAs. In 614 

six of the eight bins, the majority of catchments are better represented by the LSTMs. 615 

Comparing performance based on the number of years of record does not take into account the actual 616 

size of the data sets, since measurement frequency differs at each station. Catchments in this study have 617 

between 172 and 564 training data observations (425-846 including testing data). The lower right panel 618 

of Error! Reference source not found. shows the number of catchments best modelled by the W619 

APABA or LSTM model (determined by higher NSE on the testing data) in relation to the number of 620 

training observations. Median NSE values of both the WAPABA and LSTM predictions increased with 621 

increasing number of training data points (not shown). Of particular note is that runoff at catchments 622 

with the smallest data sets (less than 250 training data points) were similarly well predicted by both 623 

LSTM (median NSE = 0.67) and WAPABA (median NSE = 0.66).  624 

 625 

4. Discussion 626 

The machine learning models were found to match the conceptual model performance for the majority 627 

of catchments in this study. When considered over the entire catchment set, the median NSE of runoff 628 

predictions was 0.74 with the WAPABA models and 0.76 with the LSTMs (on the testing data). The 629 

medians of other metrics were similarly aligned.  630 

When considering the differences between models in predicting runoff at individual catchments, LSTM 631 

performance was similar to or exceeded WAPABA performance in 69% of the catchments in this study 632 

(based on the NSE metric). The median differences in metrics (NSE, Reciprocal NSE, KGE and Bias) 633 

between the model types at individual catchments were close to zero, though the range of differences 634 

was wide in both directions suggesting many catchments had noticeable prediction advantages with 635 

either the WAPABA or LSTM models.  636 

Medium flows were similarly well represented by both model types, with less accurate predictions for 637 

high flows and worse again for low flows. Both WAPABA and LSTM tend to overestimate low flows; 638 

high flows are noticeably underestimated by LSTM and both over- and underestimated by WAPABA. 639 

Across all flow levels, the mean flow is prevalently overestimated during testing for both model types, 640 

though slightly more so by WAPABA (higher bias of the mean). This overestimation is expected as the 641 

testing period in this study is drier than the training period and it is common to have an overestimation 642 

of mean during dry periods (Vaze et al., 2010). Streamflow variability tends towards overestimation by 643 

WAPABA and underestimation by LSTM.  644 
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Larger catchments were found to have the potential for greater prediction improvements with the LSTM. 645 

This finding supports the work of (Fluet-Chouinard et al., 2022), who found that deep learning methods 646 

compete especially well with traditional models in larger non-regulated rivers where the influence of 647 

time lags is significant.  648 

Though it is known that machine learning models generally benefit from large amounts of training data, 649 

it is often not possible to provide large hydrological data sets. In this comparison, shorter training record 650 

lengths did not affect one model type more than the other; the catchments with the smallest training data 651 

sets (less than 250 observations) did not show a distinct prediction advantage with either WAPABA or 652 

LSTM (median NSEs of 0.66 and 0.67 respectively).  653 

In past studies, traditional models have been found to struggle to make accurate runoff predictions under 654 

shifting meteorologic data (Saft et al., 2016). This is an issue that researchers have noted deep learning  655 

models may have the potential to overcome (Li et al., 2021, Wi and Steinschneider, 2022). In this study, 656 

the variation in differences in prediction performance at individual catchments is more evident during 657 

the testing portion than the training portion of the time series, implying that the WAPABA and LSTM 658 

models may each have advantages or drawbacks for generalising to unseen data on various catchments. 659 

It was found that in catchments where the WAPABA models provide good runoff predictions during 660 

training but struggle to make accurate predictions on new data, the LSTM provides improved predictions 661 

in all cases (for those with testing NSE < 0 with WAPABA, all bar one had NSE > 0 with the LSTM). 662 

In the opposite case, where the LSTM produced substantially poorer predictions on testing data than 663 

training data, these predictions were not outdone by WAPABA. This improvement in predicting beyond 664 

conditions experienced during training will become progressively important as climate change 665 

continues. 666 

Certain caveats are acknowledged regarding the metrics used here. It is possible that the use of individual 667 

metrics to compare predictions along the entire length of the time series may mask any variability in 668 

model performance that occurs in subperiods of the time series (Clark et al., 2021, Mathevet et al., 2020). 669 

These limitations were addressed by comparing high, medium and low flow periods separately, though 670 

there are many other subdivisions of the time series that we have not included in the scope of this study. 671 

WAPABA is only one example of a conceptual rainfall-runoff model and there are others that could 672 

have been chosen for this analysis, though fewer are suitable for comparisons at a monthly time step 673 

than would be the case at the daily time step. Model comparisons in Wang et al. (2011), Bennett et al. 674 

(2017) and the subsequent body of work with WAPABA in Australia have established WAPABA as a 675 

reasonable benchmark against which to assess the machine learning model performance.  676 
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Future work may entail an expansion of the architecture and complexity of the LSTMs for modelling 677 

this set of catchments, to determine what advantages could be gained from the use of more sophisticated 678 

LSTMs. A simple LSTM has been used in this study, with a single layer and no catchment-specific 679 

hyperparameter tuning. Through appropriate tuning of the models’ architecture and hyperparameters for 680 

each catchment, more accurate results could be expected. It is known that the performance of data-driven 681 

runoff models is heavily dependent on the amount of lagged data that is used as input (Jin et al., 2022). 682 

In this study, a lag of 6 months has been used for all of the catchments, based on a trial of up to 24 683 

months lag on 10 random stations. As such, only temporal patterns of up to 6 months are captured by 684 

the LSTMs used in this paper. Varying the length of lag on a catchment-specific basis may lead to better 685 

performance.  686 

Opportunities also exist for multiple time series analyses on this set of basins to capture patterns in 687 

hydrologic behaviour that surpass the catchment scale. With multiple time series analysis we might 688 

expect to see greater benefits in the use of machine learning over traditional hydrologic models, since 689 

these large-scale studies present obstacles to traditional modelling due to their greater input data and 690 

parameter requirements describing physical properties of the catchments (Nearing et al., 2021). This 691 

may involve the development of hybrid models blending existing conceptual models with LSTMs, the 692 

production of a global LSTM incorporating all time series, or transfer learning where a model is trained 693 

on data from all catchments and then fine-tuned on a catchment-by-catchment basis, as in Kratzert et al. 694 

(2019). Deep learning models have been found to produce better predictions when trained on multiple 695 

rather than individual basins (Nearing et al., 2021), and it has been noted that the training of LSTMs on 696 

large diverse sets of watersheds may help improve the realism of hydrologic projections under climate 697 

change (Wi and Steinschneider, 2022).  698 

The question of catchment-specific circumstances under which the LSTM may provide an advantage to 699 

monthly rainfall-runoff modelling has been broached in an elementary fashion here, and a more 700 

sophisticated investigation would be warranted in further studies. Investigation of multi-dimensional 701 

patterns of catchment or climate characteristics that may be associated with differences in predictive 702 

performance between the model types could lead to a greater understanding of the value that LSTMs 703 

could add to hydrologic modelling. 704 

Aside from scientific considerations, another important advantage of developing rainfall-runoff models 705 

using a machine learning software framework is to easily share them among users and to benefit from 706 

software optimisation provided by well-established frameworks such as Tensorflow, Keras, or Pytorch. 707 

Better benchmark datasets and centralised repositories will be the key to advancement of machine 708 

learning in hydrology (Nearing et al., 2021, Shen et al., 2021). Initiatives are being made to grow 709 
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reusable software for applying machine learning in hydrology and to benchmark these against other 710 

approaches (Abbas et al., 2022) and (Kratzert et al., 2022).  711 

 712 

5. Conclusion 713 

A continental-scale comparison of conceptual and machine learning model predictions has been made 714 

for monthly rainfall-runoff modelling on almost 500 diverse catchments across Australia. This large-715 

sample analysis of monthly-timescale models aggregates performance results over a variety of 716 

catchment types, flow conditions, and hydrological record lengths.  717 

The following conclusions have been found:  718 

• The LSTM matches or exceeds the WAPABA prediction performance at a monthly scale for the 719 

majority of catchments (69%) in this study. 720 

• At individual catchments, the median difference in WAPABA and LSTM prediction 721 

performance is close to zero but the distribution spreads in both directions, showing both model 722 

types have advantages at certain catchments. 723 

• At larger catchments, potential for a greater magnitude advantage of LSTM predictions over 724 

WAPABA predictions was seen than at smaller catchments (though some large catchments were 725 

better modelled by WAPABA). 726 

• Both model types predict medium flows better than high or low flows. In general, the majority 727 

of high flows were underestimated by both LSTM and WAPABA. However, whilst the largest 728 

errors in high flow estimations by LSTM were underestimates, WAPABA also had some 729 

tendency towards over-estimation of high flows. Therefore streamflow variability was found to 730 

tend towards overestimation by WAPABA and underestimation by LSTM. 731 

• More catchments are poorly predicted (NSE < 0) by WAPABA than by LSTM (5% vs. 2%). For 732 

those poorly predicted by WAPABA, predictions at 96% were improved by use of LSTM. For 733 

those poorly predicted by LSTM, 60% were improved by use of WAPABA. 734 

• Generalisation is found to improve with use of the LSTM. At catchments in which WAPABA 735 

produced good predictions on training data but very poor predictions on testing data, the testing 736 

predictions were universally improved with use of the LSTM; the opposite case (poor 737 

generalisation by LSTM improved by WAPABA) was not observed. In this data set, the testing 738 

period was significantly drier than the training period. This has implications for making 739 

predictions in the context of climate change. 740 

• Training data set size has little affect on the models. Catchments with the smallest training data 741 

sets (< 250 observations) were similarly well predicted by both model types. 742 
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With refinement of the LSTM model architecture and hyperparameter tuning specific to each catchment, 743 

it may be possible to increase the proportion of catchments for which the LSTM provides good prediction 744 

performance. Other benefits may be realised by combining multiple catchments within global models to 745 

capture patterns that transcend catchment boundaries, or by transferring knowledge from data-rich 746 

catchments to data-poor catchments, within Australia or from international source catchments. 747 
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Appendix 893 

This appendix includes reproductions of some of the report figures in which large outliers detract from 894 

a decent visualisation of the bulk of the data points. Here the entire data set is included, whereas the 895 

corresponding figures in the report are shown without the large outliers. 896 

 897 

Figure A1: Difference in the metrics (WAPABA – LSTM) for each catchment. A reproduction of Figure 14 that includes 898 

outliers.  899 

 900 

Figure A2: Effect of record length and training data size on prediction performance for each model type. A reproduction of 901 

Figure 13 that includes outliers.  902 
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