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Abstract

A deep learning model designed for time series predictions, the long short-term memory (LSTM) architecture is regularly
producing reliable results in local and regional rainfall-runoff applications around the world. Recent large-sample-hydrology
studies in North America and Europe have shown the LSTM to successfully match conceptual model performance at a daily
timestep over hundreds of catchments. Here -we investigate how these models perform in producing monthly runoff
predictions in the relatively dry and variable conditions of the Australian continent. The monthly timestep matches historic
data availability and is also important for future water resources planning, however it provides significantly smaller training
data sets than daily time series. In this study, a continental-scale comparison of monthly deep learning (LSTM) predictions
to conceptual rainfall-runoff model (WAPABA) predictions is performed on almost 500 catchments across Australia with
performance results aggregated over a variety of catchment sizes, flow conditions, and hydrological record lengths. The study
period covers a wet phase followed by a prolonged drought, introducing challenges for making predictions outside of known
conditions -— challenges that will intensify as climate change progresses. The results show that LSTMs matched or exceeded
WAPABA prediction performance for more than two-thirds of the study catchments; the largest performance gains of LSTM
versus WAPABA occurred in large catchments; the LSTM models struggled less to generalise than the WAPABA models
(eg. mMaking predictions under new conditions); and catchments with few training observations due to the monthly timestep
did not demonstrate a clear benefit with either WAPABA or LSTM.

Key words{6-max}: Hydrology and water resources, machine learning, deep learning, benchmarking, neural networks,

process-based-medellingLSTM
Major points

1. A deep learning model (single-layer LSTM) matched or exceeded performance of a WAPABA rainfall-runoff
model in 69% of study catchments.

2. Monthly datasets contain enough information to train the LSTMs to this level.

3. Generalisation to new conditions was found to improve with use of the LSTM Wlth implications for modelllnq
under cllmate change. 3 3 ;
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1. Introduction

With progressively variable climate conditions and the ever-increasing accessibility of hydrologic data, there comes the
opportunity to reconsider how available data is being used to efficiently predict streamflow runoff on a large scale.
Hydrological researchers are increasingly turning to emerging machine learning techniques such as deep learning to analyse
this increasing volume of data, due to the relative ease of extracting useful information from large datasets and producing
accurate predictions about future conditions without the need for detailed knowledge about the underlying physical systems.

Min-seme—cases—machine learning models have been shownfeund to be capable of obtaining more information from

hydrological datasets than is abstracted with traditional models, due to their automatic feature engineering and ability to

effectively capture high-dimensional and long-term relationships (Nearing et al., 2021, Frame et al., 2021). The continually

evolving machine learning field will continue to offer novel opportunities that can be harnessed for hydrological data
analyses, and it is important to understand how these methods relate to classical models. Here, we-benchmark-a basic machine
learning model is benchmarked against a traditional conceptual model over a large sample of catchments as a step towards a
general understanding of the use of deep learning models as a tool for the task of monthly rainfall-runoff modelling in

Australian catchments.

Deep learning models have been shown in many applications to provide accurate hydrological predictions and classifications
(Kratzert et al., 2018, Shen et al., 2021, Reichstein et al., 2019, Frame et al., 2022). These models are particularly useful to

hydrological studies as they provide the potential to quickly add and remove predictors (Shen, 2018), scale to multiple
catchments (Kratzert et al., 2019, Kratzertetal 2018 Lees et al., 2021), automatically extract useful and abstract information

from large datasets (Reichstein et al., 2019, Shen, 2018), make predictions in areas with little or no data (Kratzert et al.

2019b, Majeske et al., 2022, Ouma et al., 2022, Choi et al., 2022), and extrapolate proficiently to larger hydrologic events
than are seen in the training dataset (Frame et al., 2022), Li et al., 2021, Song et al., 2022).

The long short-term memory network (LSTM, (Hochreiter and Schmidhuber, 1997)), is a deep learning model that is gaining

popularity in hydrology for daily time series predictions at individual basins or groups of basins due to its ability to efficiently
and accurately produce predictions without requiring assumptions about the physical processes generating the data. The
LSTM is a type of recurrent neural network (RNN),—Aan extension of the multilayer perceptron that-the-RNN is specifically
designed for use with time series data through its sequential consideration of input data. The LSTM further extends the RNN
to incorporate gates and memory cells, allowing for input data to be remembered over much longer time periods and for
unimportant data to be forgotten from the network. LSTMs make predictions by taking into account both the short and long
temporal patterns in a time series as well as incorporating information from exogenous predictors. The data-driven detection
of intercomponent, spatial and temporal relationships by these deep learning models can be of particular benefit when
attempting to represent systems in which the physical characteristics are not well defined and the intervariable relationships

are complex.

The increasing popularity of the LSTM in hydrology is due to its ability to capture the short-term interactions between rainfall
and runoff, as well as the long-term patterns and interactions arising from longer-frequency drivers such as climate, catchment
characteristics, land use and changing anthropogenic activity. A growing number of publications are applying LSTMs to

hydrological simulations and comparing results to process-based or conceptual modelling results.

A gap exists in the literature concerning a comparison of LSTM models and conceptual models at a monthly time step over
a large sample of catchments. The conditions in which LSTMs or conceptual models may have an advantage for monthly
rainfall-runoff modelling, in a general sense, are not yet understood as most machine learning applications in hydrology are

individual-basin case studies (Papacharalampous et al., 2019) at a daily timestep or higher frequency (eg. {Li et al., 2021,
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Yokoo et al., 2022). Though the LSTM has successfully matched conceptual model performance in somea-couple large-

sample-hydrology studies at daily timesteps (eg. In the USA (Kratzert et al., 2019b) and the UK (Lees et al., 2021)) it is yet

unknown how these models compare to conceptual models for monthly runoff predictions in relatively dry conditions such

as those characterised by Australian catchments.

Monthly hydrological models are important tools for water resources assessments as hydrologic data has historically been

recorded at a monthly or longer frequency based on the schedule of manually-collected measurements. Furthermore,ane the

monthly timestep is often the most practical for water resources planning with many decisions requiring only monthly
streamflow predictions. With their simpler structure, fewer parameters and lower data requirements compared to daily models

(Hughes, 1995, Mouelhi et al., 2006), monthly models are also useful tools to investigate uncertainty in rainfall-runoff model

structure (Huard and Mailhot, 2008) and_to-aHow-the support-of probabilistic seasonal streamflow forecasting systems

(Bennett et al., 2017). Due to data availability, models designed to run on monthly timesteps can be used across much larger

areas, informing important large-scale water resources decision-making. For these reasons, generalisable models at monthly
timesteps are vital. However, the monthly timestep is traditionally a difficult one to model as it requires extracting both short

and long-term hydrologic processes (Machado et al., 2011). In a machine-learning context, the monthly time step differs

significantly from the daily time step as it drastically reduces the size of the data set available for model training (by a factor
of 30). As the convergence of machine learning algorithms typically improves with larger data sets, a central research question
of this paper is to explore the capacity of the LSTM algorithm to cope with the reduced amount of input data imposed by the

monthly time step.

Seome-studies-have-already-used-the-L STMs have been used to model the rainfall-runoff relationship at a monthly time step
in a limited number of localised studies, showing potential for this application on a broader scale. Ouma et al. (2022) used

monthly aggregated data due to low data availability in three scarcely-gauged basins the Nzoia River basin, Kenya. Majeske
etal. (2022) trained LSTMs with spatially- and temporally-limited data for three sub-basins of the Ohio River Basin, claiming
the daily timestep was superfluous and cumbersome in some conditions. Lee et al. (2020) found the LSTM adept at preserving
long-term memory in monthly streamflow at a single station on the Colorado River over a 97-year study without any
weakening of the short-term memory structure. Yuan et al. (2018) used a novel method for parameter calibration inan LSTM

for monthly rainfall-runoff estimation at a single station on the Astor River basin in northern Pakistan. Song et al. (2022)

found the LSTM better reproduced observed monthly runoff and simulated extreme runoff events than a physically-based

model at five discharge stations in the Yeongsan River basin in South Korea.

Large-sample hydrologic studies that assess methods on a large number of catchments are being increasingly called for in

the field of hydrology (Papacharalampous et al., 2019, Mathevet et al., 2020, Gupta et al., 2014). Papacharalampous et al.
(2019) compared the performance of a number of statistical and machine learning methods (no LSTM) on 2000 generated
timeseries and over 400 real-world river discharge timeseries and determined that the machine learning and stochastic

methods provided similar forecasting results. Mathevet et al. (2020) compared daily conceptual model performance (no

machine learning) for runoff prediction in over 2000 watersheds, determining that performance depended more on catchment

and climate characteristics than on model structure. Kratzert et al. (2018) found individual daily-scale LSTMs were able to
predict runoff with accuracies comparable to a baseline hydrological model for over 200 differently complex catchments.
(Kratzert et al., 2019b) found a global LSTM trained on over 500 basins in the United States with daily data produced better

individual catchment runoff predictions than conceptual and physically-based models calibrated on each catchment
individually. (Lees et al., 2021) produced a global LSTM to model almost 700 catchments in Great Britain, finding that this
model outperformed a suite of benchmark conceptual models, showing particular robustness in arid catchments and

catchments where the water balance does not close. (Jin et al., 2022) compared machine learning daily rainfall-runoff models
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to process-based models for over 50 catchments in the Yellow River Basin in China. (Frame et al., 2021) found that a global

LSTM with climate forcing data performed similarly or outperformed a process-based model on over 500 US catchments,

and that in catchments where hydrologic conditions are not well understood the LSTM was a better choice.

This study aims to determine the ability of a simple machine learning model (a single-layer LSTM) to match or exceed the

performance of a conceptual monthly rainfall-runoff model (the WAPABA model (Wang et al., 2011)) for predicting runoff,

using inputs derived from easily accessible climate variables. The goal here is not to maximise LSTM performance to cutting-

edge machine learning standards, rather to ascertain the minimum performance level that a non-expert user might expect to

obtain from basic usage of an LSTM with the input data regularly used in a conceptual model. A frequently heard reason for

hydrological researchers not engaging machine learning approaches is the small data size associated with individual

catchment time series, and it is of interest to examine the lower limits of data availability required to fit an LSTM with

individual catchment monthly data sets.

A comparison is made on almost 500 basins across Australia, representing a wide variety of catchment types, hydro-climate
conditions, and with differing amounts of historical data. The prediction performance of the LSTM machine learning models
is compared to the WAPABA conceptual models for each individual catchment. The proportion of catchments in which the
runoff prediction performance of the conceptual model is met or exceeded by the machine learning model is determined.
Conditions under which the machine learning models or the conceptual models may have an advantage are investigated, such

as catchment size, flow level, and length of historical record. The central questions of this study are:

1) Ingeneral, do LSTMs match conceptual model prediction performance on Australian catchments?
2) Is the reduced number of data points due to the monthly time step an issue for training an LSTM?
3) Under what conditions is the LSTM of particular benefit or drawback? (eg. cSatchment size, flow level, amount of

training data, etc.)

The results of this large-sample analysis of LSTM performance over the Australian continent will assist in understanding
whether LSTMs are a justifiable alternative to conceptual models for monthly rainfall-runoff prediction in Australia and
similar environments, including if monthly data sets are sufficient to produce accurate predictions with the LSTM. Building
on these results of this study, further benefits of deep learning could be harnessed through the creation of larger-scale models
that encompass climatic, hydrologic and anthropogenic patterns spanning multiple catchments, allowing for the sharing of
information under similar conditions and the potential transfer of knowledge between data-rich and data-scarce regions, or

models that blend conceptual models into the machine learning network structure.

2. Data and Methods

2.1. Data

The catchment and climate data used in this study are from a dataset curated by Lerat et al. (2020) comprising a selection of
basins across Australia. The dataset spans all main climate regions of the continent, providing data from a variety of rainfall,
aridity and runoff regimes, as described in Table 1Fable-1. Catchments where some data were marked as suspicious (e.g.
high flow data with large uncertainties, inconsistencies, suspected errors) or with more than 30% missing data were excluded.
This left 496 catchments in the study, with locations as shown in Figure 1Figure-1. The area of the individual catchments ranges

from approximately 5 km? to 120,000 km?,
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Table 11: Characteristics of the study catchments, over the period 1950-2020

Variable Min Q25 Median Q75 Max
Catchment area (km2) 4 180 449 1,456 119,000
Mean rainfall (mm/y) 237 691 887 1130 3097
Mean PET (mm/y) 918 1280 1500 1755 2321
Mean runoff (mm/y) 0.5 46 130 275 2213
Avridity index rainfall/PET (-) 0.11 0.44 0.61 0.81 2.61
Daily rainfall skewness (-) 24 4.8 5.9 7.4 16.7
Runoff coeff. Runoff/rainfall (-) 0.001 0.069 0.150 0.255 0.902
% zero flows in daily series 0.0 0.0 34 23.7 74.0
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Figure 11: Locations of the 496 study catchments, coloured by mean annual rainfall. The three labelled catchments, which will be
used as examples during the study, represent a wet catchment (111005 in Northern Queensland), a temperate catchment (204014
in New South Wales), and a dry catchment (609012 in Western Australia).

Observed runoff data were collected from the Bureau of Meteorology’s Water Data online portal

(http://www.bom.gov.au/waterdata), rainfall and temperature data are from the Bureau of Meteorology’s AWAP archive

(Jones et al., 2009), and potential evapotranspiration data was computed by the Penman equation as part of the AWRA-L

landscape model developed jointly by CSIRO and the Bureau of Meteorology (Frost et al., 2018). Rainfall, temperature and

evapotranspiration are averaged from daily grids (5x5km) over each of the catchments.

The runoff records begin between January 1950 and September 1982, and end between October 2016 and June 2020. The
number of runoff observations per catchment ranges from 425 to 846 with a median dataset size of 613 observations. The
rainfall and potential evapotranspiration data cover the period from 1911 to 2020 continuously. The resulting dataset therefere
consists of a set of 496 time series ranging from 37 to 70 years in length, with a median record length of 51 years.
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2.1.1. Training and testing data split

The data set for each catchment is split into two portions for modelling - in machine learning these are referred to as
‘training” and ‘testing’ sets, corresponding to the traditional ‘calibration’ and ‘validation’ sets used in hydrologic modelling.
The training data set runs from January 1950 (or the start of the station’s record, if later) to December 1995 for all catchments.
The testing data set begins in January 1996 for all catchments and ends in July 2020 (or at the end of the station’s record, if
sooner). This split is chosen to divide the streamflow records into two relatively even periods, but also to distinguish an early
wet period from a testing period characterised by the Millennium Drought over south-eastern and eastern Australia (Van Dijk

et al., 2013). WAPABA and LSTM models were trained and evaluated using the same data splits, giving identical duration

and dataset size.

When split into training and testing sets at the beginning of January 1996, between 38% and 72% of the data from each
catchment becomes the training set. The length of the training data record for individual catchments ranges from 14 to 47
years, with the smallest data set used for training containing 172 observations. Typically in machine learning, a portion of
the training data is held back to be used during the model fitting process tofer monitoring for over-fitting and to signal early
stopping of training if necessary. Since the training data sets in this study are already small by machine learning standards,

this has not been done as it would reduce the number of training observations significantly, as well as lead to a smaller

training dataset than used in the WAPABA models. A sensitivity test has been performed to justify this choice, and it was

found that training the LSTMs with 20% of the training data reserved for this task (ie. with the data split into training: 64%,

validation: 16%, testing: 20%) produced no apparent benefit in prediction performance.

2.2. Models

2.2.1. Deep learning time series models (LSTMs)

The long short-term memory network, LSTM (Hochreiter and Schmidhuber, 1997), is an updated recurrent neural network

(RNN) specifically designed for deep learning with time series data. The inclusion of gates and memory cells increases the
length of time series the LSTM is able to process; three gates (input, output and forget gates) regulate the flow of information
into and out of the memory cell, determining which information from the past is to be retained and which can be forgotten.

In this way, each member of the LSTM output becomes a function of the relevant input at previous timesteps.

The LSTM network consists of an input layer, one or more hidden layers, and an output layer. The layers are connected by a
set of updatable weights, with the same weights applying to all timesteps of the data. Memory cells shadow each node on the
hidden layer, retaining important information over long time periods. Each node of the input layer represents a variable of
the input data set. Observations are fed into the network along with a pre-specified number of predictor values from previous
timesteps (known as the lookback length, or lag) which are cycled sequentially through the network. Network weights are
updated by backpropagating the gradient of the error between the modelled and observed outputs. For detailed information
on the mathematical functioning of the LSTM, see (Goodfellow et al., 2016) and (Kratzert et al., 2018).

In this study, a separate LSTM is trained for each catchment. Input to the LSTMs are monthly averaged measurements of:
rainfall depth (P), potential evapotranspiration (E), average maximum daily temperature over the month, and net monthly

(effective) rainfall (P* ) computed for month t by summing daily effective rainfall, as shown here:
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Standard scaling of the input data is performed per catchment as follows:

- X -
Xt — t Hyx 2
Ox
where X, is an input variable for month t, p, is its mean and o, its standard deviation over the training period. The target
variable for LSTM training is monthly average runoff. Observed runoff values are scaled by taking the square root and then

transforming to the range [-1,1] per catchment, as follows:

where Q. is the observed runoff for month ¢, and Y, and Y; are the minimum and maximum square root transformed flow
over the training period, respectively. The square root transform is chosen to be conceptually consistent with the objective
function of the WAPABA model calibration (as described below, mean absolute error of the square roots of flows). Note that
the same scaling constants (u,, oy, Yy, Y1) used during LSTM training are also applied to LSTM inputs and targets for the
testing period. Using scaling constants only derived from the training data ensures that the training process is not

incorporating any information from the testing data set.

The loss function used for training the LSTM is the mean absolute error (MAE) performed on the transformed runoff, as

follows:

L= Z|Yt—1?t| 4
t

where Y, is the output of the network for month ¢ and Y, is the transformed runoff for the same month.

Hyperparameters, or parameters controlling the LSTM training algorithm, were selected after a grid search (over 1016
separate runs) on a randomly selected catchment (14207) with a good length data record and tested on a small additional

subset of catchments. As the purpose of this study was not to optimise catchment-specific predictions results, a more

comprehensive hyperparameter search by catchment was deemed unnecessary. The hyperparameter space searched was:
initial learning rate &, (1e-3 to 1e-4), sequence (lookback or lag) length (6, 9, 12, 15, 18, 21, 24 months) and number of
hidden nodes (10, 20, 30, 40, 50, 60). The hyperparameter set that performed the best predictions over the training period
was selected for use in all LSTMs: 10 nodes on a single hidden layer, run with a sequence length 6 months, and an initial
learning rate &, of 0.0001. Subsequent to this hyperparameter search-en-one-catchment, we-investigated-en-all-catchments
the-the effect of raising the initial learning rate for faster convergence while using input and recurrent dropout to prevent

overfitting_was investigated on all catchments. Empirically, and counter to our intuition, this never improved training

performance and so thean initial learning rate &, of 0.0001 was retainedkept. The learning rate was allowed to vary during
training with a patience of 3 epochs without improvement before multiplying by a factor of 0.2 to obtain a new learning rate.
The dataset was divided into 400 steps-per-epoch for training; data was sent through the model in batches with a weight
update after each (an epoch, or iteration, is concluded when the entire dataset has been run through the model once). The
LSTM training was implemented using a gradient descent algorithm run for a maximum of 100 epochs. Training was set to

stop early if the training error failed to decrease over 5 consecutive epochs. The LSTMs were implemented with Tensorflow
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in Python-—Fhe-coede-was-designed-te, using-tse numeric seeds to ensurehave reproducible outcomes..-which-is-often-not-the

2.2.2. WAPABA rainfall-runoff models

The WAPABA model is a conceptual monthly rainfall-runoff model introduced by Wang et al. (2011). The model is an

evolution of the Budyko framework proposed by Zhang et al. (2008) where water fluxes are partitioned using parameterised

curves. The model uses two inputs, mean monthly rainfall and potential evapotranspiration, and operates in five stages. First,
input rainfall is split between effective rainfall that will eventually leave the catchment, and catchment consumption that
replenishes soil moisture and evaporates. Second, catchment consumption is portioned between soil moisture replenishment
and actual evapotranspiration. Third, effective rainfall is partitioned between surface water (fast) and groundwater (slow)
stores. Fourth, the groundwater store is drained to provide a baseflow contribution. Fifth, the surface water and baseflow are

added to obtain the final simulated runoff for the month. The model has five parameters described in Table 2Table-2 which

interact as depicted in Figure 2.

Table 22 WAPABA model parameters

Name Description Unit Minimum  Maximum

alphal Exponent of the catchment consumption/effective Dimensionless 1.0 10.0
rainfall curve

alpha2 Exponent of the soil moisture Dimensionless 1.0 10.0
storage/evapotranspiration curve

Beta Partition between groundwater recharge and surface  Dimensionless 0.0 1.0
runoff
Smax Maximum water-holding capacity of soil store mm 5.0 6000.0
Inverse K Inverse of groundwater store time constant 1/day 0.000274 1.0
ET Rainfall

5,

Surface | =
Store l @

|

Groundwater | =
Store Qe

Qs

Figure 2: WAPABA model schematic

A separate WAPABA model is run for each study catchment. The WAPABA models were trained (calibrated) and tested
(validated) over the same periods as the LSTMs: 1950 to 1995 inclusive for training, and 1996 to June 2020 for testing. The

model was calibrated with a warm-up period of 2 years to avoid possible bias associated with initial values. WAPABA

parameters were optimized over the training period using the Shuffle Complex Evolution algorithm (Duan et al., 1993) with
the Swift software package (Perraud et al., 2015). The objective function used for the WAPABA models is the same as the

one used for LSTM, i.e. the mean absolute error (MAE) on the square root of runoff (see Equation 4).
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2.3. Performance evaluation

Predictions from the conceptual (WAPABA) and machine learning (LSTM) models for all catchments are compared to
observed runoff, assessing each model’s” predictive capabilities on the set of catchments. Runoff prediction performance is

reported here using the following metrics.

The Nash Sutcliffe Efficiency (NSE, (Nash and Sutcliffe, 1970)) is the most often used performance metric in hydrology. It

can be considered a normalised form of mean squared error (MSE) and is defined as:

Zt(Qébs - Qrtnod)z -1 E S

NSE =1— =1-—
Zt(Qébs - .uobs)z |4

where Qf,, and Qf,,, are the observed and modelled discharges for month ¢, respectively, and u,,, is the average observed
discharge over the training or testing period. The ratio of the sum of squared errors, E = ¥,(Qt,s — Q%.,4)?, to the variance,
V = Y(Q5,s — Hops)?, is subtracted from a maximum score of 1. An NSE closer to 1 indicates better predictive capability

of the model, and an NSE less than 0 indicates the model mean squared error is larger than the observation variance.

The NSE metric alone cannot provide an accurate description of model performance due to its focus on high flow regime

(Schaefli and Gupta, 2007). The reciprocal NSE focuses the error metric on low flows (Pushpalatha et al., 2012) by comparing

the reciprocals of the observed and modelled flows. It is calculated as:

1 1 2 6
X ((Qg,,s +1) Q.+ 1))

RecipNSE =1 —

2 ((st: D G T 1))2

The Kling-Gupta efficiency (KGE, (Gupta et al., 2009)) provides an alternative to metrics based on sum of squared error
such as the two previous ones, by equally weighting measures of bias of the mean, variability, and correlation into a single

metric as follows:

N2 i \2
KGE:1—\/<1—“ﬂ> +<1— 5””) +(1-p)2

Hobs Oobs

where uy and oy are the mean and the standard deviation and p is the Pearson correlation coefficient between the simulated

and observed data.

Finally, Bbias is a measure of consistent under-forecasting or over-forecasting of the mean, defined as:

Usim — Hobs 8
Hobs

Bias =

Comparison of performance metrics between catchments using normalised indexes

When comparing metrics across model types and catchments, a normalised difference in NSE values is used. The NSE metric
can reach into large negative values in dry catchments when the variance of the observations is very small compared to the

model errors (Mathevet et al., 2006), as can be seen from Equation 5. Differences between large negative values of NSE have

a much smaller implication than the same absolute difference between values of NSE closer to 1. To allow for a comparison

between the WAPABA and LSTM models at catchments of various aridities, the normalised difference in NSE is calculated

following Lerat et al. (2012):
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Diff NSEnorm =

where NSE; and NSE, are the NSE values corresponding to the two models to be compared. Substituting in NSE = 1 —5

from Equation 5 into Equation 9, the normalised difference in NSE can be seen to represent a percentage difference in the
sum of squared errors between the two models being compared:
NSEZ - NSEl El - E2 10

Diff_NSE, g = -
YFNSEnorm = 5 (NSE, + NSEy) ~ E, + ,

A similar formula is applied to reciprocial NSE and KGE. The normalised difference between the bias for two models is
calculated as:

|Bias;| — |Bias,| 11
|Bias,| + |Bias,|

Diff_Biasporm =

To simplify the comparison of model results across the large number of catchments, model performances at each catchment
are classified as similar if the normalised difference between WAPABA and LSTM metrics lies within +/- 0.05 at that
catchment, following Lerat et al. (2020). Therefore in this paper, a ‘similar’ NSE denotes that the sum of squared errors of
the WAPABA and LSTM models at an individual catchment differ by no more than 5%. For differences greater than this,
the catchments are classified by the model type producing the higher metric. The selection of the threshold of 0.05 was based

on the recommendations of (Lerat et al., 2020) and the authors’ experience relative to the use of the NSE, KGE and bias

metrics.

3. Results

For each of the study catchments, a WAPABA model and an LSTM model have been trained using monthly data over the
training period, and the prediction performance of the models are evaluated here on monthly data from the testing period
(data unseen by the model during training) using the metrics described above. A general comparison of WAPABA and LSTM
prediction performance is first made over all catchments with a continental-scale analysis of the performance metrics, to

determine:

1) the proportion of overall catchments for which the WAPABAS or the LSTMSs produced better predictions,
and

2) differences at individual catchments in WAPABA versus LSTM prediction performance.

A comparison of model performance is then made in relation to various catchment and time series characteristics (eg.
catchment size, flow level, record length), to determine if an association exists between these properties and the relative

performance of the conceptual and machine learning models.
Example prediction results

As a sample of the modelling output, Figure 3Figure2 shows the WAPABA and LSTM runoff predictions along with the
corresponding observed runoff for the three stations highlighted in Figure 1Figure-1 (over the testing period). These
hydrographs are representative of a wet catchment in Northern Queensland (Mulgrave River at the Fisheries, 111005), a
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temperate catchment in NSW (Mann River at Mitchell, 204014), and a dry, intermittent catchment in Western Australia
(Blackwood River at Winnejup, 609012). NSE values of each of the predictions are noted. The WAPABA and LSTM
predictions both match the observed data reasonably well in the three catchments. The performance of the models, in
particular for the Blackwood River at Winnejup is remarkable because of the difficulty in modelling dry, intermittent

catchments (Wang et al., 2020). The next sections provide a more detailed assessment of the performance over all catchments

using quantitative metrics.
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Figure 32: Observed data (black dashed line) and predicted runoff (by WAPABA and LSTM models) over the testing period for
the Mulgrave River at the Fisheries (111005), Mann River at Mitchell (204014) and the Blackwood River at Winnejup (609012).
Catchment locations are shown on Figure 1.

Large-sample performance summary

The general runoff prediction performance of WAPABA and LSTM models on a continent-wide basis is summarized in
Figure 4Figure-3. From the models run for each catchment, metrics are determined on the training portion (calibration) and
testing portion (validation) separately and gathered here in boxplots. Median and quartiles of NSE, reciprocal NSE, KGE and
Bias over all catchments are shown for each model type, with each data point representing an individual catchment. All data
is shown on the top panel, and due to a few large (negative) outliers the same figure is shown with a restricted y-axis for
visualization purposes on the lower panel. Higher values of the first three metrics (NSE, reciprocal NSE and KGE) indicate

a better match of predicted runoff with observed runoff, whereas lower values of Bias indicate better prediction results.

Figure 4Figure-3 shows that across the set of study catchments the median values of NSE, Reciprocal NSE, and KGE are
slightly higher for LSTM than for WAPABA during both the training and testing phases. Bias has a slightly lower median
for the LSTM. As expected, both model types perform better during the training phase than the testing phase for all metrics.
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The difference between WAPABA and LSTM performance is relatively large during the training period but similar during

testing, indicating perhaps a higher tendency towards overfitting by the ML models than traditional modellers would be

expecting.=The interquartile ranges increase from training to testing (longer boxes during testing), indicating a greater spread
of performance results when the models are run on data not seen during the training phase. Over all catchments, the median
NSE is: 0.74 with the WAPABA models and 0.76 with the LSTM models (on testing data). See Table 3 for median values
of theseall metrics.
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Figure 43: Performance metrics summary for the set of 496 catchments (zoomed in on lower panel, excluding outliers < -1). Median
values of LSTM performance metrics are slightly higher than WAPABA for NSE, Reciprocal NSE and KGE_(higher indicates
better performance), and slightly lower for Bias (lower Bias is preferable). For all four metrics on both models,-the-trairingresults

were-better-than-the-testingresults—with the longer testing boxes indicateing more spread in performance results when predicting
on new data.

WAPABA  LSTM
NSE 074 0.76
Reciprocal NSE 062 0.65
KGE 068 0.70
Bias 0.9 0.06
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348  Aggregated performance metrics may mask performance variability within certain aspects of the time series (Mathevet et

349  al., 2020). The KGE has the benefit of being easily decomposed into three components for further error analysis: bias of the
350 mean (ratio of mean of simulations to mean of observations), bias of variability (ratio of standard deviation of simulations
351  to standard deviation of the observations), and correlation (matching of the timing and shape of the time series to the

352  observations).

353 Table 3: Median values of metrics over the set of catchments (n=496)

NSE Reciprocal NSE KGE Bias Bias of Bias of Correlation
the mean variability
WAPABA  0.74 0.62 0.68 0.09 1.10 1.05 0.90
LSTM 76 0.65 0.70 0.06 1.07 0.97 0.90

354

355 In Figure 5Figure-4 and Table 3, model performance is assessed with respect to each component of the KGE metric.

356 Boxplots of the decomposed KGE components are shown by model type and training/testing period. During testing, the
357 medians of bias of the mean and standard deviation are above zero for WAPABA and greater for WAPABA than LSTM.
358 This indicates that mean streamflow and streamflow variability tend to be overestimated more by the WAPABA models
359  compared to the LSTMs. TWith-the LSTM median; bias ofstreamflow variability is below zero, and therefore streamflow
B60  variability is more prone to underestimation.-{median-belowzere). For bias of the mean and standard deviation, the depth

B61  of the boxplots increases from training to testing, indicating the bias values from individual catchments are more diverse

B62  during the testing period.

363 The scatterplots in the lower part of Figure 5Figure-4 compare the KGE components at individual catchments for the

364  WAPABA and LSTM models (each dot represents a catchment), separately for training and testing portions of the data.
365 Most values of bias of the mean (left column) are between 0 and 1 during training (underestimating) yet during testing

B66  values extend beyond 2, indicating the mean flow in many catchments is overestimated by both model types on the testing
367  data. The observable correlation in testing period bias of the mean between WAPABA and LSTM indicates that this error is
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not specific to model type. Correlation between simulations and observed data is similar for both model types and remains

relatively constant between training and testing periods (right column).
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Figure 54: KGE decomposition into three components: bias of the mean, bias of variability, and correlation. Each dot represents
an individual catchment (large outliers have been omitted for visualization purposes.) The mean flow and variability (left and
middle columns) tend to be underestimated during training and both under- and overestimated during testing by both model types.
The correlation (right column) remains similar during training and testing.

Performance differences at individual catchments

The differences between WAPABA and LSTM performance at each catchment (eg. NSE; = NSE; yapapa — NSE; 15t TOr
catchment i) are summarised in Figure 6Figure-5. Values above zero indicate higher metrics obtained by WAPABA, and

values below zero indicate higher metrics obtained by the LSTM model at a specific catchment.

The boxplots indicate that median differences in WAPABA and LSTM prediction performance at each catchment (measured

by NSE, Reciprocal NSE, KGE and Bias on the testing data) are very close to zero. However, there are outliers (black dots)

Page 14 of 33



384
385
386
387

388

B89
390
391
392
393

394

395
396
397
398
399
100
101
102

representing large performance differences between WAPABA and LSTM models, both positive and negative. These indicate
that each model provides advantages for predicting runoff in certain catchments. In this figure the boxplots are restricted to
the range [-1,1] for visualisation purposes. A version of this figure including the large outliers is provided in Figure Al of
the Appendix.
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Figure 65: Difference in the metrics (WAPABA — LSTM) for each catchment. A positive value indicates WAPABA has a higher
metric for that catchment, and a negative value indicates LSTM has a higher metric. The median difference in each metric lies
close to zero for the testing portion of the dataset, signifying overall similarity in catchment-specific metrics between model types.
Large negative outliers have been excluded from this figure for visualisation purposes, but are included in the reproduction in the
Appendix.

This data set represents a range of catchments across Australia, some being characterised by highly arid conditions. To enable
comparisons between these diverse catchments, the impact of large negative NSE values which can occur at very dry
catchments is minimised by calculating the normalised differences in NSE between the WAPABA and LSTM predictions at
each catchment, as per Equation 9. The normalised differences fall into the range [-1,1], facilitating comparison. This
distribution is shown in Figure 7Figure-6 for the 496 catchments. The portion of the distribution lying to the right of the
vertical dashed line corresponds to catchments with better prediction by WAPABA and catchments to the left have better
prediction by LSTM. The x-axis corresponds to percentage differences between the sum of squared errors of the two model
types (ie. -0.5 indicates a 50% performance gain by LSTM and 0.5 indicates a 50% performance gain by WAPABA).
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Figure 76: Distribution of normalized differences between WAPABA and LSTM prediction performance at individual catchments
(measured by NSE). The values on the x-axis represent percentage/100 difference in sum of squared errors between WAPABA and
LSTM at the same catchment (ie 0.5 —> 50% difference in sum of squared errors). The catchments under the curve on the right of
the dashed line have better predictions by the WAPABA model and on the left by the LSTM model.

In Figure 7Figure-6, it can bewe seen that during the training period the majority of catchments are to the left of the line
indicating better prediction by LSTM, and in the testing period there is a more even split. The median normalised difference
in NSE across the 496 catchments over the training period is -0.15 (mean -0.16) and -0.04 (mean -0.05) during the testing
period. This equates to a median 15% performance advantage by LSTM versus WAPABA during training and 4% during

testing based on sum of squared errors.

This figure suggests that in general there is little overall advantage of either the WAPABA or LSTM models when predicting
on unseen data across the whole sample of catchments. However, the width of the distribution indicates that both the

WAPABA and LSTM models have advantages at certain individual catchments, which will be explored in the next section.

Figure 8Figure7 quantifies the proportion of catchments with similar or better prediction performance by either WAPABA
or LSTM (on the testing data). ‘Similarity’ is defined here as an absolute normalised difference in NSE of less than 0.05
between WAPABA and LSTM predictions, meaning the sum of squared errors of the WAPABA and LSTM models at an

individual catchment differ by no more than 5%.

The LSTM models produce similar or higher NSE values for 69% of the catchments when tested on data not seen during the
training process (and 89% of the catchments during training, not shown). It can also be seen that 70% of catchments have
similar or higher reciprocal NSE (focusing on low flow predictions) with the LSTM-, 61% have similar or higher KGE with
the LSTM (higher being preferable), and 57% have similar or lower Bias (lower being preferable) with the LSTM model

compared to WAPABA on the same catchment.
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Figure 87: Percentage of catchments with similar or better performance metrics on the testing portion of the data (note better Bias
is lower, all others is higher). For catchments in the ‘similar’ category, the sum of squared errors of the WAPABA and LSTM
predictions differ by less than 5%. The LSTM model produces predictions with similar or higher NSE values compared to the
WAPABA predictions for 69% of the catchments.

Prediction performance comparison by catchment or time series characteristics

In this section, it iswe investigated if the abilities of WAPABA and LSTM to accurately predict runoff at individual

catchments vary based on attributes such as catchment area, flow level and length of historical record.
Catchment size

Figure 9Figure-8 shows the association of prediction performance with catchment area. The left panel shows the catchment
area compared to the normalised difference in NSE between LSTM and WAPABA prediction performance for each
catchment. Data points are coloured according to the model that produced the better prediction for that catchment. This figure
indicates the largest performance gains of LSTM versus WAPABA occurred in large catchments (points furthest to the left
are found in the upper portion of the plotfigure). Splitting the catchments into quintiles by area, we-can-analyse-the results
can be analysed for the largest 20% of catchments. Of these catchments, over three-quarters (78%) had similar or better
runoff predictions with the LSTM (with similarity defined as less than 5% difference in sum of squared errors compared to
WAPABA predictions). In this top quintile of catchments by area, those with higher NSE values from the LSTM show a
greater average advantage (average 24% lower sum of squared errors, maximum 97% lower), than those with better
WAPABA predictions (average 15% lower sum of squared errors, maximum 65% lower).

The mirrored histogram in the right panel of Figure 8 shows catchments stratified into bins by area (log base 10), coloured
and counted by the model type that produced the better runoff prediction at each catchment. The LSTM models produced
higher NSEs for a greater number of catchments than the WAPABA models in all of the bins, except the lowest bin (where
n=1).
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Figure 98: Model performance by catchment size. Left panel: Each data point represents the normalized difference in prediction
performance at an individual catchment, arranged by catchment size. The spread of data points in the top left quadrant indicates
that in large catchments the performance gain of LSTM overversus WAPABA can exceed 90% in terms of sum of squared errors.
Right panel: count of catchments in each size bin that have better performance with each model.

Flow level

Model performance is compared for high, medium and low flow portions of the time series. For each station, each observation
is categorised based on its flow level. High flows are defined here as the top 5% of flow values and low flows as the lower
10% of flows at each station (calculated excluding zeros) over all observed data during the study period. The training and
testing portions of the time series over all the catchments have different distributions of flow levels, as listed in Table 4Fable
4. During the testing portion of the study period, conditions are dryer with more no-flow and low-flow observations, and

fewer medium- and high-flow observations than during training.

Table 44: Distribution of flow levels during training and testing

Training Testing
Flow level observations observations
(n) (n)
No flow 18,728 21,690
Low 11,967 14,668
Medium 127,584 96,089
High 9,192 4,203

For comparison purposes_in this section, the rawbeth observed and modelled flow datas are standardizedstandardised by

station based on the mean and standard deviation of all observations at that station during the study period. The observed

mean is subtracted from each value before dividing by the standard deviation of the observations, allowing for basins with a

range of flow volumes to be compared.

Figure 10Figure-9 shows that when NSE is calculated separately for the low, medium and high flow measurements at each
catchment, both model types have similar NSE distributions. Medium flows are better predicted (NSE peak closer to 1) than

high flows, and low flows appear to be poorly represented by both WAPABA and the LSTM.
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Figure 109: NSE distributions calculated separately by flow level over all catchments. Both model types have similar distributions
of NSE by flow. Medium flows are best represented, followed by high and then low flows.

Figure 11Figure-10 compares the standardizedeated modelled flow to the standardizedeated observations for all testing
observations at all stations. Kernel density contours split the data into 10 density regions on each plot and a 1:1 line is added
to aid interpretation. The lower panel focuses on the regions of highest density for each subset of flows. Note that the

standardization procedure used in this section leads to standardized ‘no-flow’ data points that do not fall exactly on zero in

the plot even though the raw flow values at these points are zero. For no-flows and low flows (left two panels), the densest

portions of the observation/prediction clouds are closely aligned along the 1:1 line forbeth- WARABA-and-LSTMindicating

similar predictions obtained with both models. The magnitude of the outliers (beyond the outermost contour) is greatest above

the 1:1 line indicating that prediction errors for no-flows and low flows are dominated by overestimations. For medium flow
levels, the contours again follow the 1:1 line. The contours tend to expand upwards as flow size increases, indicating a
tendency towards more overestimation with higher flows. The shape of the contours is similar for both models. On the upper
panel it can be seen that the edges of the data cloud alse-expand upwards and outwards as the flows increase. The medium
flow prediction errors with largest magnitude tend to be overestimations, with the WAPABAS producing greater
overestimations than the LSTMs on the higher flows (still in this medium-flow subset). For high flows (on the far right panel),
the majority tend to be underestimated by both LSTM and WAPABA (central density located below the 1:1 line), though
there is a difference in the outliers — most of the larger errors in LSTM high flow predictions are underestimations, whereas

the high-magnitude WAPABA errors are both over- and underestimations of high flows.
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Figure 1110: Prediction performance related to flow level. Upper panel: Observed vs. modelled flow pairs (normalized data) at all
stations, separated into no-flow, low, medium and high flows (ftesting data only)}. The dBensest portion of the data cloud is
identified with density contours. Note that the Bdata are-standardizedhave been standardized based on observed mean and
standard deviation_leading to non-zero values in the ‘no-flow’ category. Lower panel: Comparison of density distributions of the
data, zoomed in on the kernel density contours. In general, the largest errors on medium flows tend to be overestimations (by both
models) and on high flows tend to be underestimations (by both models'""APABA-and-LSTM) or overestimations (by WAPABA).

Poorly predicted catchments
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Figure 12Figure-11 compares the NSEs for WAPABA and LSTM runoff predictions by catchment. Each dot represents an
individual catchment, coloured according to the model with higher NSE at that catchment. The top left quadrant contains
catchments where NSEwapasa < 0 and NSE_ stm > 0 (n=19), and the lower right quadrant contains catchments where NSE stm
< 0 and NSEwapasa > 0 (n=5).
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Figure 1241: Comparison of NSEs on testing data - each data point represents the WAPABA and LSTM values of NSE for a single
catchment, coloured by the model which provides the best prediction at that catchment. On the right panel, two far-left outliers
have been removed to enable better viewing of the other datapoints. Catchments in the upper left quadrant are those in which
runoff is poorly predicted by WAPABA (NSE < 0) and better predictions (NSE > 0) are obtained with LSTM. The lower right
quadrant correspondingly shows catchments in which the NSE values from LSTM are below 0 and WAPABA has better
predictions (NSE > 0).

WAPABA and LSTM predictions at each catchment are classified into poor (NSE < 0), fair (0 <= NSE <= 0.5) or good (NSE
> 0.5) categories. In this set of catchments, the runoff at 5 catchments is poorly predicted (NSE < 0) by both model types
(lower left quadrant of Figure 12Figure-21). All other catchments are better represented by one model or the other, with either
WAPABA or LSTM producing predictions with NSEs above 0.

For the 5% (n=24) of overall catchments that are poorly represented by WAPABA (NSE < 0), runoff predictions at 23 of
these catchments (96%) are improved with use of the LSTM. In fact, one-third (n=8) of these have ‘good’ predictions by the
LSTM (NSE > 0.5). Conversely, for the 2% of catchments (n=10) that are poorly represented by the LSTM, 60% are improved
with use of WAPABA, and one-tenth (n=1) have ‘good’ predictions by WAPABA (in this catchment the LSTM prediction
is on the border of poor and fair (NSE=0.001) ). Figure 13Figure-12 depicts the number of catchments poorly represented by

each model and how these specific catchments are represented by the alternate model. For half of the catchments with poor
LSTM predictions, WAPABA does poorly as well; whereas in 79% of the catchments with poor WABAPA predictions, fair

or good predictions were obtained with the LSTM.
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Figure 1312: Number of catchments with poor runoff predictions by each model type. Colouring indicates the prediction results
from the alternate model type. One-third of WAPABA poorly predicted catchments have good predictions with the LSTM. One-
tenth of LSTM poorly predicted catchments have good predictions with the WAPABA. Results are denoted as poor (NSE < 0), fair
(0 <= NSE <=0.5), or good (NSE > 0.5).

Generalising to changing conditions

The ability of a model to generalise outside of the conditions encountered during training is important, especially in the
context of a changing climate. A model that is able to make predictions on unseen (testing) data to a comparable performance
level as on the training data will provide confidence in making predictions into the future when external conditions are not
expected to remain constant. In this data set it iswe known that conditions differ between the training and testing data, with

wetter climate conditions during the training period and a dryer testing period.

It was found that 2% (n=11) of WAPABA models struggled with generalising outside of the training period, with ‘good’
(NSE > 0.5) runoff predictions during training but ‘very poor’ predictions (NSE < -0.5) during the testing period. The testing
predictions for all of these catchments were improved by use of the LSTM, and at 4 of these catchments ‘good’ predictions
(NSE > 0.5) were obtained with the LSTMs. Conversely, one LSTM model produced ‘good’ training runoff predictions and
‘very poor’ testing predictions. This catchment was one of the 11 that also had poor generalisation (and ‘very poor’
predictions) with the WAPABA.

Historical record length and data set size

The performance of each model type is compared to the length of historical records available at each station. Training data
length has been categorized here as 14-25 years (38% of stations), 25-35 years (40%), and 35-47 years (23%).

Figure 14Figure-13 (top panel) shows prediction performance varying slightly with record length (for visualisation purposes,
this figure is shown without large negative outliers — the figure including outliers is provided in Figure A2 of the Appendix).
Stations with medium record length tend to have slightly better predictions according to the four metrics than those with
shorter records. The performance levels tend to even out as record lengths increase beyond 35 years, and there is even a slight
decline in the WAPABA reciprocal NSE.
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Considering catchments individually, the median normalised difference in NSE between WAPABA and LSTM predictions
(on testing data) is just slightly below zero for all record lengths: -0.03 (<25 years of record), -0.04 (25-35 years), -0.04 (>35
years). This indicates that, in each of the short, medium and long record length categories, at least half of the individual

catchments have higher NSEs with the LSTMs.

The mirrored histogram in the lower left panel of Figure 14 guantifies the number of catchments within 5-year bins of record

length in which runoff is better predicted by the LSTM or by the WAPABA. In six of the eight bins, the majority of

catchments are better represented by the LSTM.
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Figure 1443: Effect of record length and training data size on prediction performance for each model type. Upper panel: Medians
of the NSE and KGE on testing data increase with record length for both WAPABA and LSTM predictions (large negative outliers
have been excluded for visualization purposes, but are included in the corresponding figure in the Appendix). Lower left panel:
Advantage of each model in 5-year increments of record length based on NSE values. Lower right panel: Advantage of each model
based on number of training observations.
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Comparing performance based on the number of years of record does not take into account the actual size of the data sets,
since measurement frequency differs at each station. Catchments in this study have between 172 and 564 training data
observations (425-846 including testing data). The lower right panel of ErrorlReference source-notfound-Figure 14 shows
the number of catchments best modelled by the WAPABA or LSTM model (determined by higher NSE on the testing data)
in relation to the number of training observations. Median NSE values of both the WAPABA and LSTM predictions increased
with increasing number of training data points (not shown). Of particular note is that runoff at catchments with the smallest
data sets (less than 250 training data points) were similarly well predicted by both LSTM (median NSE = 0.67) and WAPABA
(median NSE = 0.66).

4. Discussion

When considered over the entire study set of catchments, Fhe-machine learning models were found to match the-conceptual

model performance for the majority of catchments-in-this-study. \When-considered-overthe-entirecatchment-set-Tthe median
NSE of runoff predictions was 0.74 with the WAPABA models and 0.76 with the LSTMs-{en-the-testing-data)}, and —Fthe
medians of other metrics were similarly aligned.

aAt individual catchments, LSTM runoff prediction
performance was similar to or exceeded WAPABA performance in 69% of the catchments in this study (based on the NSE
metric). The median differences in metrics (NSE, Reciprocal NSE, KGE and Bias) between the model types at individual
catchments were close to zero, though the range of differences was wide in both directions suggesting many catchments had
noticeable prediction advantages with either the WAPABA or LSTM models.

Medium flows were similarly well--represented by both model types, with less accurate predictions for high flows and worse
again for low flows. Both WAPABA and LSTM models tend to overestimate low flows, while; high flows are noticeably
underestimated by LSTM and both over- and underestimated by WAPABA. Across all flow levels, the mean flow is
prevalently overestimated during testing for both model types, though slightly more so by WAPABA (higher bias of the
mean). This overestimation is expected as the testing period in this study is drier than the training period and it is common
to have an overestimation of mean during dry periods (Vaze et al., 2010). VStreamflow—variability of streamflow tends

towards overestimation by WAPABA and underestimation by LSTM.

Larger catchments were found to have the potential for greater prediction improvements with the LSTM. This finding

supports the work of (Fluet-Chouinard et al., 2022), who found that deep learning methods compete especially well with

traditional models in larger non-regulated rivers where the influence of time lags is significant.

Though it is known that, in general, machine learning models-generathy benefit from large amounts of training data, it is often
not possible to provide large hydrological data sets. In this comparison, shorter training record lengths were not found togié
not affect one model type more than the other; the catchments with the smallest training data sets (less than 250 observations)
did not show a distinct prediction advantage with either WAPABA or LSTM (median NSEs of 0.66 and 0.67 respectively).

In past studies, traditional models have been found to struggle to make accurate runoff predictions under shifting meteorologic

data (Saft et al., 2016). This is an issue that researchers have noted deep learning models may have the potential to overcome

(Li et al., 2021, Wi and Steinschneider, 2022). In this study, the variation in differences in prediction performance at

individual catchments is more evident during the testing portion than the training portion of the time series, implying that the

WAPABA and LSTM models may each have advantages or drawbacks for generalising to unseen data on various catchments.
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It was found that in catchments where the WAPABA models provide good runoff predictions during training but struggle to
make accurate predictions on new data, the LSTM provides improved predictions in all cases (ie., for those with testing NSE
< 0 with WAPABA, all bar one had NSE > 0 with the LSTM). In the opposite case, where the LSTM produced substantially
poorer predictions on testing data than training data, these predictions were not outdone by WAPABA. This improvement by
the LSTM in predicting beyond conditions experienced during training will become progressively important as climate

change continues.

Aside from scientific considerations, another important advantage of developing rainfall-runoff models using a machine

learning software framework is to easily share them among users and to benefit from software optimisation provided by well-

established frameworks such as Tensorflow, Keras, or Pytorch. Better benchmark datasets and centralised repositories will
be the key to advancement of machine learning in hydrology (Nearing et al., 2021, Shen et al., 2021). Initiatives are being

made to grow reusable software for applying machine learning in hydrology and to benchmark these against other approaches
(Abbas et al., 2022) and (Kratzert et al., 2022).

Metrics and models

Certain caveats are acknowledged regarding the metrics and models used here. It is possible that the use of individual metrics
to compare predictions along the entire length of the time series may mask any variability in model performance that occurs

in subperiods of the time series (Clark et al., 2021, Mathevet et al., 2020). These limitations were partially addressed by

comparing high, medium and low flow periods separately, though there are many other subdivisions of the time series that

we-have not been included in the scope of this study.

WAPABA is only one example of a conceptual rainfall-runoff model. Taned-there are others that could have been chosen for
this analysis, though fewer are suitable for comparisons at a monthly time step than would be the case at the daily time step.
Model comparisons in Wang et al. (2011), Bennett et al. (2017) and the subsequent body of work with WAPABA in Australia

have established WAPABA as a reasonable benchmark against which to assess the machine learning model performance.

Though this study has focused on comparing the LSTM model to the WAPABA, readers may wonder if the more traditional

feed-forward neural network (FFNN) may suffice in producing as good results. The FFNN has been used in hydrology for

many years to model the relationship between climatic predictors and hydrological responses and many researchers are

familiar with this basic neural network structure. However, the FFNN is a static network and does not consider the sequential

nature of the input data. Though the six months of lagged predictor variables could be input as separate variables, this requires

an increase in the complexity of the training space and is not likely to be the optimal choice for time series data as the

cumulative impact of the predictor sequences may not be captured. Many studies have already considered the comparison of

FENNSs to LSTMs for rainfall-runoff modelling and have determined the LSTM to provide superior runoff predictions (eg.

Rahimzad et al., 2021). As an experiment, the FFNN has been run on this set of 496 catchments and added to the comparison

of overall model performance, shown in Figure A3 of the Appendix. It can be seen that the FEFNN leads to lower NSE, KGE,

Reciprocal NSE, bias of the mean, bias of variability and correlation values, and therefore provides less accurate estimations
of runoff than both the WAPABA and the LSTM. For this reason, the FFNN has not been included in the bulk of this study.

Future research directions
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Future work may entail an expansion of the architecture and complexity of the LSTMs-for models used hereling-this-set-of
catchments, to determine what advantages could be gained from the use of more sophisticated_model setups-=SFMs. This
may involve the development of hybrid models blending existing conceptual models with LSTMs, the production of a global
LSTM incorporating all of the time series, or a type of transfer learning where a model is-trained on data from all catchments
isand-then fine-tuned on a catchment-by-catchment basis, as in Kratzert et al. (2019).

A simple LSTM has been used in this study, with a single layer and no catchment-specific hyperparameter tuning. Through
appropriate tuning of the models’ architecture and hyperparameters for each catchment, more accurate results could be

expected. For example, i}t is known that the performance of data-driven runoff models is heavily dependent on the amount

of lagged data that is used as input (Jin et al., 2022). In this study, a lag of 6 months has been used for all of the catchments,

—Aand as such, only temporal patterns of up to 6 months are
captured by the LSTMs used in this paper. Varying the length of lag on a catchment-specific basis may lead to better

performance.

Opportunities also exist for multiple time series analyses on this set of basins to capture patterns in hydrologic behaviour that
surpass the catchment scale. With multiple time series analysis onewe might expect to see greater benefits in the use of

machine learning over traditional hydrologic models, since these large-scale studies present obstacles to traditional modelling

due to their greater input data and parameter requirements to accurately describe theing physical properties of the catchments

(Nea”nq et al, 2021) _5___55.;,.__e_,_;__,_-__s.-_;.-_,_-__;.;.ss_-_e__;__5_._5._.;_u.;.g.-___;__-_s.;__s.;_-______s.g___;.s.__-_;__r;__se.g.g.-___.A.___s__v__L.A_

~Deep learning models have

been found to produce better predictions when trained on multiple rather than individual basins (Nearing et al., 2021), and it

has been noted that the training of LSTMs on large diverse sets of watersheds may help improve the realism of hydrologic

projections under climate change (Wi and Steinschneider, 2022).

Another consideration may be hybrid modelling frameworks, which combine aspects of conceptual models with machine

learning models. These have the potential to draw benefits from both types of models to produce more interpretable and

possibly more physically realistic predictions. By leveraging the particular strengths of each model type, the limitations

inherent in each may be reduced. For example, Okkan et al., (2021) embedded machine learning models into the internal

structure of a conceptual model, calibrating both the host and source models simultaneously, and found the product

outperformed each model individually. Li et al., (2023) replaced a set of internal modules of a physical model with embedded

neural networks, leading to improved interpretability as well as predictions that are comparable to pure deep learning (LSTM)

predictions. The authors found that replacing any of the internal modules improved performance of the process-based model.

In the Australian context, Kapoor et al., (2023) studied the use of deep learning components in the form of LSTMs and

convolutional neural networks to represent subprocesses in the GR4J rainfall-runoff conceptual model for a set of over 200

basins. It was found the hybrid models outperformed the conceptual model as well as the deep learning models when used

separately, and provided improved interpretability, better generalisation and an improvement in prediction performance in

arid catchments. In this case of this study, the soil moisture and groundwater recharge outputs derived from the WAPABA

model would likely be useful as additional predictors for the LSTM model.

The question of catchment-specific circumstances under which the LSTM may provide an advantage to monthly rainfall-
runoff modelling has been broached in an elementary fashion here, and a more sophisticated investigation would be warranted

in further studies. Investigation of multi-dimensional patterns of catchment or climate characteristics that may be associated
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with differences in predictive performance between the model types could lead to a greater understanding of the value that

LSTMs could add to hydrologic modelling.

5. Conclusion

A continental-scale comparison of conceptual (WAPABA) and machine learning (LSTM) model predictions has been made
for monthly rainfall-runoff modelling on almest- 500496 diverse catchments across Australia. This large-sample analysis of
monthly-timescale models aggregates performance results over a variety of catchment types, flow conditions, and

hydrological record lengths.

The following conclusions have been found:

1. The LSTM models matches or exceeds-the WAPABA prediction performance at a monthly scale for the majority
of catchments (69%) in this study.

e2. Both the WAPABA and LSTM models have advantages at certain individual catchments; whilst Atindividual
catehmentsthe median difference in WARABA-and-LSTM-prediction performance is nearelose-te zero,-but the
distribution spreads in both directions. i i

3. Larger catchments were found to have the potential for greater prediction improvements with the LSTM At-larger

4. Mean streamflow and streamflow variability tend to be overestimated more by the WAPABA models than the
LSTMs.

*—

5. Both model types predict medium flows better than high or low flows. Ttr-general-the majority of high flows were

underestimated by both models-LESTFM-and WARPABA, h-—However; -whilst the largesterrorsin-high-flow-estimations
by-LSTM-were-underestimates,-WAPABA also had some tendency towards large over-estimations of high flows

that wasn’t seen with the LSTMs. Fherefore-streamflow-variabHity-was-found-to-tend-towards-overestimation-by

6. Generalisation to new conditions is found to improve with use of the LSTM. In this data set the testing period was

significantly drier than the training period, —Fhis-haswith implications for making predictions in the context of
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climate change. At catchments in which WAPABA produced good predictions on the training data but very poor
predictions on the testing data, the testing predictions were universally improved with use of the LSTM; the opposite
case {poor-generahsation-by-LSTM-improved-by-WAPRABA)-was not observed (ie., in the one catchment with poor
generalisation by the LSTM, this was not improved upon by the WAPABA).-h-this-data-set-the-testing-period-was
significantly-drier than-the-training-period—This-has-implicationsfor making-predictions-in-thecontext-of climate
ehange-

7. Training-data—set-size-has-little—affect-on-the—models—Catchments with the smallest training data sets (< 250

observations) were similarly well predicted by both model types.

. It has been shown that similar performance to traditional models is able to be reached despite the LSTM being fit

using limited data on single catchments and a basic model setup.

With refinement of the LSTM model architecture and hyperparameter tuning specific to each catchment, it may be possible
to increase the proportion of catchments for which the LSTM provides good prediction performance. Other benefits may be
realised by combining multiple catchments within a global models to capture patterns that transcend catchment boundaries,

incorporating hybrid modelling techniques or-by transferring knowledge from data-rich catchments to data-poor catchments;

within Australia or from international source catchments.
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available at the following address: http://www.bom.gov.au/water/geofabric/. The deep learning source code used in this paper

is available at: https://csiro-hydroinformatics.github.io/monthly-Istm-runoff/ including an overview and instructions for

retrieving the source code and setting up batch calibrations on a Linux cluster. The code is made available under a CSIRO

open-source software license for research purposes. Fhe-seurce-code-used-n-thispaperis-avaHable—instructionsforretrieving
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Appendix

Figures Al and A2TFhis appendix-includesare reproductions of seme-of therepert-figures in the report in which large outliers
detract from a decent visualisation of the bulk of the data points. Here the entire data set is included, whereas the

corresponding figures in the report are shown without the large outliers.
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Figure Al: Difference in the metrics (WAPABA — LSTM) for each catchment. A reproduction of Figure 1514 that includes

outliers.
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Figure A2: Effect of record length and training data size on prediction performance for each model type. A reproduction of Figure
13 that includes outliers.

Feed-forward Neural Network

Page 32 of 33



D14 To investigate the use of a very simple neural network, the FEFNN was run for the 496 catchments. Input variables were the

D15 same as for the LSTM and WAPABA, however 6 months of historical values were included with each training observation.

D16 A grid search on 5 random catchments was conducted to select learning rate and batch size. Out of a search space of [8, 16,
D17 32] for batchsize and [0.1, 0.01, 0.001, 0.0001] for learning rate, a batch size of 16 and learning rate of 0.01 were chosen.

D18 Figure A3 includes the FFNN model results in the comparison with LSTM and WAPABA results. The FFNN values are

D19 lower than WABAPA and LSTM indicating poorer runoff predictions over this set of catchments.
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D21 Figure A3: FENN metrics compared with WAPABA and LSTM metrics, corresponding to Figures 4 and 5.
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