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Abstract. Heavy rainfall is the main driver of soil erosion by water which is a threat to soil and water resources across the 

globe. As a consequence of climate change, precipitation -and especially extreme precipitation- is increasing in a warmer 

world, leading to an increase in rainfall erosivity. However, conventional global climate models struggle to represent extreme 10 

rain events and cannot provide precipitation data at the high spatio-temporal resolution that is needed for an accurate estimation 

of future rainfall erosivity. Convection-permitting simulations (CPS) on the other hand, provide high-resolution precipitation 

data and a better representation of extreme rain events, but they are mostly limited to relatively small spatial extents and short 

time periods. Here we present for the first time rainfall erosivity and soil erosion scenarios in a large modelling domain such 

as Central Europe based on high-resolution CPS climate data generated with COSMO-CLM using emission scenario RCP8.5. 15 

We calculated rainfall erosivity for the past (1971-2000), present (2001-2019), near future (2031-2060) and far future (2071-

2100). Our results showed that future increases in rainfall erosivity in Central Europe can be up to 84 % in the river basins of 

Central Europe. These increases are much higher than previously estimated based on regression with mean annual 

precipitation. We conclude that despite remaining limitations, convection-permitting simulations have an enormous and to 

date unexploited potential for climate impact studies on soil erosion. Thus, the soil erosion modelling community should follow 20 

closely the recent and future advances in climate modelling to take advantage of new CPS for climate impact studies. 

1 Introduction 

Soil erosion by water is one of the main threats to soils worldwide (Amundson et al., 2015; Panagos et al., 2015b). It causes 

severe ecological and socio-economic problems such as ecosystem degradation (Bilotta and Brazier, 2008; Orgiazzi and 

Panagos, 2018; Mueller et al., 2020; Stefanidis et al., 2022), loss of fertile topsoil on agricultural land (Pimentel et al., 1995; 25 

Zhao et al., 2013; Sartori et al., 2019), channel and reservoir siltation (Wisser et al., 2013; Kondolf et al., 2014) and nutrient 

and contaminant transport to water bodies (Owens et al., 2005; Ciszewski and Grygar, 2016). Heavy rainfall is the main driving 

force of soil erosion by water. It acts via the detachment of soil particles by raindrop impact or shear forces of overland flow 

and subsequent transport of soil particles with overland flow. Rainfall erosivity was first quantified in the 1950s and can be 

defined as “the capability of rainfall to cause soil loss from hillslopes by water” (Nearing et al., 2017). It is most commonly 30 
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expressed as the R-factor of the Universal Soil Loss Equation (USLE, Wischmeier and Smith, (1978)) and its revised versions 

RUSLE (Renard et al., 1993) and RUSLE2 (USDA Agricultural Research Service, 2008). The USLE, its derivates and models 

based on the USLE are the most widely used soil erosion models (Borrelli et al., 2021). The USLE calculates average annual 

soil loss at a site from rainfall erosivity, soil erodibility, topography, crop management and control practices. 

Rainfall erosivity is governed by rainfall kinetic energy, which depends itself on raindrop numbers, sizes and fall velocities 35 

(e.g. Laws and Parsons, 1943; Wilken et al., 2018). As drop size distributions and fall velocity distributions are usually not 

available for long periods of time and large study sites, rainfall intensity is usually used as a proxy. Numerous kinetic energy 

- rainfall intensity relations exist in the literature and are used in soil erosion modelling (Van Dijk et al., 2002; Wilken et al., 

2018; Brychta et al., 2022). Site-specific rainfall erosivity expressed as the USLE R-factor is commonly calculated from long 

lasting precipitation records from rain gauges. The suitability of R-factors equations to represent rainfall erosivity depends 40 

strongly on the temporal resolution of the underlying precipitation data time series. R-factors decrease with decreasing 

resolution of the precipitation data because intensity peaks are reduced when precipitation is aggregated over longer time spans 

(Fischer et al., 2018). When high-resolution precipitation data are available only at a few locations or limited time periods but 

low-resolution data (daily – annual) are available elsewhere (e.g. denser rain gauge networks, past reconstructions or future 

projections), so called low-resolution approaches can be applied (Brychta et al., 2022). These approaches are based on 45 

empirical relations between rainfall erosivity calculated from high-resolution data and lower resolution rainfall amounts 

(usually monthly, seasonal or annual totals). Application of these approaches to calculate future changes of rainfall erosivity 

is not permitted if the frequency distribution of rainfall events changes, as expected under climate change.  

Erosion modelling usually requires contiguous data of rainfall erosivity which is highly variable in space (Auerswald et al., 

2019a). This spatial variability is usually not represented by rain gauge networks, so spatially interpolated raster data are 50 

necessary. Gauge-adjusted radar rainfall data have a high potential for the estimation of highly resolved and contiguous rainfall 

erosivity maps (Fischer et al., 2018; Risal et al., 2018; Auerswald et al., 2019a; Kreklow et al., 2020). Where ground-based 

radar data are not available, satellite-based gridded precipitation data sets can also be used to generate contiguous maps 

(Vrieling et al., 2010; Teng et al., 2017; Phinzi and Ngetar, 2019).  

Globally, precipitation is increasing due to an increase in atmospheric water vapor in warmer air (e.g. Allan et al., 2020; Fowler 55 

et al., 2021). For Central Europe, a net increase of total precipitation is projected with a decrease in summer and an increase 

in winter (Brienen et al., 2020; Jacob et al., 2014). Furthermore, warming and higher atmospheric moisture fluxes lead to an 

intensification of the water cycle causing an increase of the intensity and frequency of extreme precipitation, globally as well 

as in Central Europe (Allan et al., 2020; Brienen et al., 2020; Fowler et al., 2021). Strong increases in extreme precipitation 

are due to the fact that the share of convective precipitation in total precipitation is increasing (Berg et al., 2013). Trends of an 60 

increase in the frequency and intensity of extreme precipitation have been observed since the beginning of the 20 th century 

(Groisman et al., 2005; Alexander et al., 2006; Arnone et al., 2013; Kendon et al., 2014; Fischer and Knutti, 2016) and are 

expected to continue in the future (Allen and Ingram, 2002; Kharin et al., 2013; Scoccimarro et al., 2013; Westra et al., 2013; 

Westra et al., 2014; Kendon et al., 2017; Fowler et al., 2021). Thus, rainfall erosivity and soil erosion are also observed to 



3 

 

increase and expected to increase further (Nearing et al., 2004; Mueller and Pfister, 2011; Hanel et al., 2016a; Panagos et al., 65 

2017; Panagos et al., 2022; Auerswald et al., 2019a; Auerswald et al., 2019b; Borrelli et al., 2020). 

For climate impact studies on soil erosion, a common limitation is the lack of reliable high-resolution precipitation data for the 

future (Eekhout and De Vente, 2020). Projections of future precipitation from regional climate models in Europe are typically 

available at a temporal resolution of one day and a spatial resolution of 0.11° (approx. 12 km) (e.g. Jacob et al., 2014). Thus, 

low-resolution approaches based on regression models that estimate future R-factors from monthly or annual precipitation are 70 

commonly applied (Eekhout and De Vente, 2020). Out of 68 climate impact assessment studies reviewed by Eekhout and De 

Vente (2020) only four used sub-daily precipitation data. In the review of 3030 soil erosion modelling studies by Borrelli et 

al. (2021), 196 were identified to have the aim to model “climate change” or “Land use change and climate change” impacts. 

Only 11 out of the 196 studies are quoted to use sub-daily precipitation data. The few studies that use hourly or sub-hourly 

future precipitation data mostly use either statistical downscaling of lower resolution data (Routschek et al., 2015; Wang et al., 75 

2018) or artificially generated precipitation time series (e.g. Coulthard et al., 2012; Simonneaux et al., 2015). Strictly speaking, 

regression-based models applying monthly or annual precipitation are only valid for the time period for which these models 

are calibrated and lead to underestimations of the rainfall erosivity if extreme precipitation events increase with time, as 

suggested by many climate change scenarios. 

Only recently, the development of convection-permitting climate simulations (CPS) offers the possibility to model rain 80 

erosivity considering the effects of changing frequency of heavy precipitation that predominantly drives future soil erosion. 

Thus, CPS have an enormous and to date unexploited potential for the calculation of future rainfall erosivity. CPS are 

performed with regional climate models (RCM) on a high spatial resolution (usually ≤ 4 km). Due to the coarse resolution of 

conventional climate simulations, deep convection has to be parameterized as a sub-grid scale process, which leads to deficits 

in the realistic simulation of precipitation.  This parameterization is switched off in the model setup of a CPS (Lucas-Picher et 85 

al., 2021), allowing the model to simulate the precipitation explicitly in each grid cell. A good representation of deep 

convection is crucial because it is the main source of precipitation in many parts of the world and especially important as it 

often generates extreme precipitation (Prein et al., 2015). As the grid size of most CPS still ranges between 2 and 4 km, large 

deep convection cells are explicitly simulated, while smaller shallow convection still needs to be simulated using a 

parametrization. Despite this shortcoming, CPS provide an improved representation of extreme precipitation compared to 90 

climate models with parametrized deep convection. This is due to several improvements: the diurnal cycle is strongly improved 

(Ban et al., 2014; Prein et al., 2015), the return periods of extreme precipitation are better represented (Rybka et al., 2022) and 

added value diagnostics have been applied for the comparison to coarse climate model data (Raffa et al., 2021). However, CPS 

also show some limitations. The simulations on the km-scale for regional domains are still time-consuming and they need a 

considerable amount of computing power. Compromises have to be made: either the covered time period is shortened or the 95 

model domain is restricted to the region of interest. Up to some years ago, only single CPS have been performed, covering 

only one future scenario. Thus, given the novelty of CPS, model ensembles are not yet available for regional model domains, 

for the length of the time series needed for the robust estimation of rainfall erosivity (~ 20 years) or for several emission 
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scenarios. Lately, the first-of-its-kind CPS ensembles have been created through combined efforts in the CPS community 

(Coppola et al., 2020; Ban et al., 2021). Even though these ensemble simulations do not cover the long time periods needed 100 

for the estimation of rainfall erosivity yet, these flagship studies show promising results that suggest that in the future 

ensembles of CPS will be available for climate impact studies including studies on soil erosion. 

The COSMO-CLM is a regional climate model that is used on horizontal scales from 1 to 50 km (Rockel et al., 2008). It is the 

climate version of the former operational forecast model COSMO of the German meteorological service (Deutscher 

Wetterdienst, DWD) and other European partners. COSMO-CLM is jointly maintained and developed by the CLM-105 

Community but will soon be gradually replaced by the newly developed model ICON-CLM (Pham et al., 2021). In the 

framework of the project BMDV-Expertennetzwerk, convection-permitting climate simulations have been performed with 

COSMO-CLM. Three time periods including one historical period (1971-2000, called CPS-hist) and two future periods (CPS-

scen; near future: 2031-2060; far future: 2071-2100) were simulated by dynamically downscaling from global model data. 

Additionally, evaluation simulations were conducted with reanalysis data forcing for the time period 1971-2019 (CPS-eval). 110 

The data are published and usable for manifold analyses and impact model studies (Brienen et al., 2022; Haller et al., 2022a, 

b).  

The improved representation of extreme precipitation in CPS compared to conventional convection-parametrized climate 

models as well as the high spatio-temporal resolution of CPS is of great benefit for climate impact studies in soil erosion 

modelling (Chapman et al., 2021). Using CPS with high temporal resolution facilitates the direct calculation of the R-factor 115 

and avoids the application of regression equations between the R-factor and annual precipitation, which are established for 

past climates but may not be valid for future climate with different precipitation frequency and magnitude. To our knowledge, 

to date only one study (Chapman et al., 2021) assessed the impact of climate change on soil erosion using a convection-

permitting climate model. They used 15-min precipitation data from the pan-African model CP4A to calculate rainfall erosivity 

in Tanzania and Malawi for 8 years in the past and 8 years in the future. Their results suggested that convection-parameterized 120 

regional and global climate models might underestimate future rainfall erosivity while CPS represent observed storm 

characteristics better. Nonetheless, there are remaining limitations of CPS that hinder their use in soil erosion modelling:  

i) limited spatial extent of most CPS. While regional and global convection-parameterized simulations cover the entire 

globe, to date CPS are only available for limited areas in most regions of the world (e.g. Central Europe) due to 

constraining factors like computing power. 125 

ii) the relatively short periods of time covered by CPS. Because of the high interannual variability of rainfall erosivity, 

long time series are required for robust estimates of long-term R-factors. Wischmeier and Smith (1958) give a 

minimum of 20 years. 

iii) the lack of model ensembles. While ensembles of regional or global climate models give more robust estimates of 

the future climate than single ensemble members, ensembles of CPS are only being developed recently. 130 
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Covering an area of approx. 1.6 million km2 on land and in total 109 years, the CPS performed at DWD with COSMO-CLM 

overcome the limitations i) and ii) for the first time and are thus a valuable source of precipitation data for the estimation of 

rainfall erosivity in Central Europe.  

In this study, we calculated rainfall erosivity in Central Europe expressed as the USLE R-factor for the past (1971-2000), 

present (2001-2019), near future (2031-2060) and far future (2071-2100) from convection-permitting climate model output 135 

using emission scenario RCP8.5. We assessed changes in rainfall erosivity from the climate model output for a historical and 

future time period. Finally, we discuss the potential and limitations of using CPS for the calculation of rainfall erosivity. The 

main remaining limitation is the fact that to date ensembles of CPS that cover at least 20 years needed for robust rainfall 

erosivity estimations do not exist yet. In consequence, the uncertainty due to the choice of the model and the emission scenario 

cannot be assessed. To address this problem, we compare our results to the ones obtained from an ensemble of conventional 140 

regional climate models as well as to results from the literature. To our knowledge, this is the first test case that applies CPS 

for the calculation of rainfall erosivity covering national spatial scales and time series with a length in the order of 30 years.  

2 Material and methods 

2.1 COSMO-CLM 

Convection-permitting simulations were conducted using the non-hydrostatic regional climate model COSMO-CLM. It shares 145 

almost all relevant modules with the weather forecast model COSMO (Doms et al., 2001), which has been the operational 

weather forecast model of DWD for more than a decade, before it was replaced by the ICON model (Giorgetta et al., 2018) in 

recent times. COSMO-CLM, the climate version of COSMO, is optimized for long-term climate runs for more than 15 years 

(Rockel et al., 2008; Sørland et al., 2021). The general COSMO characteristics (e.g. physics) are documented in Steppeler et 

al. (2003). The COSMO-CLM is described in more detail in Böhm et al. (2006). COSMO-CLM is usable on different 150 

horizontal grid widths and has a typical vertical spacing of 50 layers in the troposphere and the lower stratosphere up to about 

22 km. Subgrid-scale physical processes are parametrized, as they cannot be calculated explicitly. For grid spacings of less 

than 4 km, the convection parametrization scheme for deep convection is turned off, while the shallow convection scheme 

remains turned on. In the COSMO-CLM standard parametrization for coarser grid resolutions, both parts are switched on. 

The model domain of the CPS has 415 x 423 grid points and is centred over Germany. It includes large parts of neighbouring 155 

countries and therefore fully covers the contributing catchment areas of the major Central European rivers Rhine, Elbe, Oder 

and Upper Danube until Bratislava (Fig. 1). The grid resolution is 0.0275° (≈ 3 km). The model uses the standard 

parametrizations for turbulence and (shallow) convection as well as for the time integration. 
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Figure 1: Extent of the CPS model domain. Colours show the elevation (source: EU-DEM, Copernicus Land Monitoring Service, 160 
2016). The natural regions outlined in grey were adapted from Bundesamt für Naturschutz (2017). 

For the projection simulations, three 30-year time slices have been selected, covering the years 1971-2000 (historical, CPS-

hist) and 2031-2060/2071-2100 (scenario, CPS-scen). CMIP5 global model data from the MIROC-MIROC5 (Watanabe et al., 

2010) have been dynamically downscaled, applying the RCP8.5 scenario. The downscaling has been performed using an 

intermediate nesting step of 12 km. This intermediate nesting was performed because it is not advised to perform direct 165 

downscaling from global models with resolutions of approximately 100 km or coarser to the very high resolution of 

approximately 3 km.  

The CPS evaluation simulation (CPS-eval) covering the time range of 1971–2019 is driven by ERA5 (Hersbach et al., 2020) 

for the years 1979 to 2019 and by ERA-40 reanalysis data (Uppala   et al., 2005) for the years 1971 to 1978. ERA5 and ERA40 

are reanalysis data that provide a comprehensive and coherent information of essential climate variables by assimilating 170 

additional various observational data to a model grid. The model system itself remains unchanged throughout the entire time 

period, resulting in a consistent approach to data assimilation and various parameterizations. For the ERA-40-driven time 

period, we used a two-fold nesting with a middle step at 0.11°, while for the ERA5-driven time period, a direct downscaling 

from 30 to 3 km was applied. The evaluation simulation driven with reanalysis data serves as a reference for the historical 

simulation driven by a global climate model. It quantifies how well the historical climate can be reproduced by the historical 175 

simulation and how large the differences of specific climate variables are between both simulations. In addition, Rybka et al. 

(2022) used the evaluation simulation for a comparison with high resolution observational precipitation data sets to analyze 

the model performance for extreme precipitation. 

The COSMO-CLM CPS model output consists of hourly data for the most important variables (e.g. temperature, precipitation, 

humidity and wind). It is available at https://esgf.dwd.de/projects/dwd-cps/ (accessed 10 February 2023) (Brienen et al., 2022; 180 

Haller et al., 2022a, b). The overall configuration of our simulation has been taken from a joint contribution of the CLM-
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community to a CPS experimental study for Central Europe (Coppola et al., 2020). The hourly precipitation data that were 

further processed for this study were organized in five data sets (Table 1), i.e. the projection simulations for the historical 

period, the near and far future (CPS-hist, CPS-scen-nf, CPS-scen-ff) as well as the evaluation simulations for the historical 

period and the present (CPS-eval-hist, CPS-eval-present).  185 

Table 1: Information on the five data sets that were used for rainfall erosivity calculation.  

Name Temporal coverage Driving data Reference 

CPS-eval-hist 1971-2000 ERA5 and ERA40 Brienen et al., 2022 

CPS-eval-present 2001-2019 ERA5 Brienen et al., 2022 

CPS-hist 1971-2000 MIROC5, RCP 8.5 Haller et al., 2022a 

CPS-scen-nf 2031-2060 MIROC5, RCP 8.5 Haller et al., 2022b 

CPS-scen-ff 2071-2100 MIROC5, RCP 8.5 Haller et al., 2022b 

 

2.2 Calculation of rainfall erosivity 

2.2.1 High temporal resolution approach 

Following Wischmeier and Smith (1958; 1978) and Wischmeier (1959), the erosivity of an erosive rain event Re [N h-1] is 190 

calculated as the product of maximum 30 min rain intensity Imax30 [mm h-1] and kinetic energy Ekin [kJ m-2] of the rain event: 

𝑅𝑒 =  𝐼𝑚𝑎𝑥30 ∗ 𝐸𝑘𝑖𝑛            (1) 

An erosive rain event is defined as having a total precipitation (P) of at least 12.7 mm or a maximum 30 min rainfall intensity 

(Imax30) of at least 12.7 mm h-1 and at least 6 h without any precipitation separate two erosive rain events. We used the classical 

equation by Wischmeier and Smith (1978) to calculate kinetic energy based on high-resolution rainfall data. Transferred to SI 195 

units, it calculates specific kinetic energy per millimeter rain depth, ekin,i in kJ m-2 mm-1 for every time increment during an 

erosive rainfall event as follows (Rogler and Schwertmann, 1981): 

𝑒𝑘𝑖𝑛,𝑖 = {

0                                                                      𝑓𝑜𝑟 𝐼 < 0.05 𝑚𝑚 ℎ−1                                

(11.89 + 8.73 ∗  log10 𝐼) ∗  10−3            𝑓𝑜𝑟 0.05 𝑚𝑚 ℎ−1  ≤ 𝐼 < 76.2 𝑚𝑚 ℎ−1

28.33 ∗ 10−3                                              𝑓𝑜𝑟 𝐼 ≥ 76.2 𝑚𝑚 ℎ−1                                 

    (2) 

To obtain Ekin for each event, ekin,i is multiplied with rain depth of each timestep and summed up for the entire rain event. 

Annual rainfall erosivity of a specific year is obtained by summing up Re of all erosive rain events in that year. The USLE R-200 

factor is the long-term average of annual rainfall erosivity. R-factors are often given in the unit MJ mm ha-1 h-1 a-1. To convert 

rainfall erosivity as given here in N h-1 a-1 to MJ mm ha-1 h-1 a-1, it has to be multiplied with a factor 10. 

Here we calculated annual erosivity as well as long-term average annual erosivity for each one of the 175,545 grid points and 

for each of the five data sets (CPS-hist, CPS-scen-nf, CPS-scen-ff, CPS-eval-hist, CPS-eval-present). We used the command 
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line suite Climate Data Operators (CDO, Schulzweida, 2022) and the library ncdf4 (Pierce, 2019) of the statistical software R 205 

to extract time series of 30 years (19 years for CPS-eval-present) for each grid point and each data set and calculated rainfall 

erosivity as described above. As the COSMO-CLM model output is available at a temporal resolution of 60 min, three 

adjustments were made as proposed by Fischer et al. (2018): (i) the rainfall intensity threshold of Imax30 to define an erosive 

rain event was lowered from 12.7 mm h-1 to 5.8 mm h-1, (ii) Imax30 in Eq. (1) was replaced by maximum 60 min rainfall erosivity 

Imax60 and (iii) a temporal scaling factor of 1.9 was applied to the R-factor for Germany to account for the reduction of intensity 210 

peaks with lower temporal resolution data. Here we did not apply a spatial scaling factor because it is unclear if such a 

modification is necessary for climate model output. 

We further assessed the seasonal distribution of erosivity by calculating the erosion index for each day of the year. The erosion 

index gives the contribution of each day to annual erosivity in % d-1. The seasonal distribution of erosivity is important for soil 

erosion assessments, because of its interactions with seasonal changes of the crop cover. Briefly, high rainfall erosivity in 215 

months where vegetation cover is scarce (in Central Europe the winter months) is more severe than high rainfall erosivity 

during the vegetation period (i.e. the summer months). The erosion index was calculated for each one out of 175,545 grid 

points and each day of each year and averaged over all grid points and all 30 years in the three data sets from the projection 

simulations (CPS-hist, CPS-scen-nf, CPS-scen-ff). The erosion index varies strongly from one day to another and between 

grid points. Even averaged over all grid point and over 30 years, there still is a high remaining scatter, so a 13-day moving 220 

average is used for smoothing of the curves for the three data sets.  

2.2.2 Low temporal resolution approach 

For comparison, we also calculated rainfall erosivity (R) for the past (1971-2000), near future (2031-2060) and far future 

(2071-2100) from mean annual precipitation (MAP). Therefore, we used the empirical regression equation 

𝑅 [𝑁 ℎ−1𝑎−1] =  0.0788 ∗ 𝑀𝐴𝑃 [𝑚𝑚]  −  2.82         (3) 225 

from the German norm DIN 19708 (Din-Normenausschuss Wasserwesen, 2017), which was derived from regression analysis 

of R-factor values calculated based on Eq. (1) and annual precipitation sums for the time period from the 1960s to the 1980s 

in Germany. We used the median, 15th and 85th percentile of the MAP of a climate model ensemble consisting of 21 members 

that were run with the emission scenario RCP 8.5. The models are part of the DWD reference ensemble (www.dwd.de/ref-

ensemble, accessed on 20 October 2022). The low temporal resolution approach was used here because it allows a 230 

representation of the bandwidth of results obtained with a regional climate model ensemble and thus an estimate of model 

uncertainty which is not yet possible for CPS. Nonetheless, the main limitation, i.e. the neglection of the effect of increases in 

heavy rain, of the approach has to be stressed again. This shortcoming is overcome by CPS and is one of the reasons why the 

most recent version of DIN 19708 (DIN 19708:2022-08) recommends to use equation 3 only for historical observations. 
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3 Results and discussions 235 

3.1 Past, present and future rainfall erosivity 

3.1.1 Rainfall erosivity maps 

The average annual rainfall erosivity maps for the five data sets show a consistent spatial pattern (Fig. 2), which is mainly 

driven by topography. In all data sets erosivity is lowest in the lowlands of the North European Plain and highest in the Alps. 

In the past and present, average annual erosivity in the lowlands ranges between approx. 50 – 90 N h-1 a-1. In the Alps, it ranges 240 

between 260 and 290 N h-1 a-1 and in the lower mountain ranges it ranges between about 90 – 130 N h-1 a-1. In the past, the 

mean of the entire modelling domain is  91N h-1 a-1 in the evaluation run (CPS-eval-hist) and 96 N h-1 a-1 in the projection run 

(CPS-hist).It increased considerably in the future (Sect. 3.2). These maps are available on Zenodo (Uber et al., 2023) and can 

be used as R-factor maps in USLE based soil erosion modelling. 

 245 

Figure 2: Average annual rainfall erosivity (R-factor) in Central Europe in the past, present and future derived from the evaluation 

run (a-b) and the historic and future projection simulations (c-e). 

The maps for the past calculated from the evaluation run and the projection run are very similar (Fig. 2a and c). The spatial 

mean of difference between the maps is 4.9 N h-1 a-1 and the values for all grid points extracted from the two maps correlate 

well (R2 = 0.91, Fig. S1 in the supplementary material). 250 

Beyond erosion modelling, rainfall erosivity can also be regarded as an index of heavy rain which combines rainfall intensity 

and cumulative precipitation depth. As such, the rainfall erosivity data presented here can also provide valuable information 
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for other hydrological applications dealing with extreme rainfalls such as the assessment of (future) risks for flash floods or 

landslides or identifying zones that are prone to these natural risks (Fiener et al., 2013; Panagos et al., 2015c). 

3.1.2 Comparison to other rainfall erosivity maps  255 

 

Figure 3: Comparison of the present rainfall erosivity map generated here (evaluation run, data from 2001-2019) with maps 

presented by other authors. (a) Each point corresponds to a raster cell. The dashed lines show the linear models fit to the data. (b-e) 

show maps of differences of the map presented here and (b) the map for Germany by Auerswald et al. (2019a) covering the years 

2001-2017, (c) the map for Austria covering the years 1995-2015 by Johannsen et al. (2022), (d) for the Czech Republic from 1989-260 
2003 by Hanel et al. (2016b) and (e) for Central Europe covering 1970-2017 with a predominance of the last decade by Panagos et 

al. (2015c). 

Past and present rainfall erosivity can be compared to other available rainfall erosivity maps. Figure 3 shows that rainfall 

erosivity calculated from the evaluation simulation for 2001-2019 agrees well with the rainfall erosivity map by Auerswald et 

al. (2019a). The correlation between the values at the raster cells is very good (R2 = 0.94) and the slope of the linear regression 265 

model is 0.98, i.e. very close to one. Thus, there is no systematic difference between the two data sets and the spatial structure 

corresponds well to the one found by Auerswald et al. (2019a). There are regional differences nonetheless. Rainfall erosivity 

in the very north of Germany and in the northwest are underestimated here when compared to Auerswald et al. (2019a) and 

overestimated in parts of eastern Germany, the Black Forest and in the Alps (Fig. 3b). The highest values reported here (>500 

N h-1 a-1) are not found by Auerswald et al. (2019a). This might be due to the overestimation of extreme precipitation in 270 

COSMO-CLM (Rybka et al., 2022, see Sect. 3.3). Compared to the other rainfall erosivity maps for Europe (Panagos et al., 

2015c), the Czech Republic (Hanel et al., 2016b) and Austria (Johannsen et al., 2022), our values are on average about two 

times higher than the ones of the other authors. Nonetheless, the correlation is good (0.85 – 0.96), so the spatial patterns agree 

well. In general, differences are highest in the mountains and lower in the plains. Here, we did not correct the precipitation 

data for snow (i.e. not considering precipitation during days below 0°C) as Johannsen et al. (2022) and Hanel et al. (2016b) 275 
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did. This can explain parts of the differences, especially in the mountains. The differences can also be due to different temporal 

coverage of the precipitation data used for the generation of the maps. The temporal coverage of our map (2001-2019) is very 

similar to the one of the map by Auerswald et al. (2019a) (2001-2017), but agrees less with the temporal coverage of the maps 

of the other authors (1995-2015 for Johannsen et al. (2022), 1989-2003 for Hanel et al. (2016b) and 1970-2017 with a 

predominance of the last decade for Panagos et al. (2015c)). Differences in temporal coverage are especially important  given 280 

the observed increases in R-factors in the last decades (e.g. Hanel et al., 2016a; Auerswald et al., 2019a, b). Furthermore, our 

methodology is very similar to the one of Auerswald et al. (2019a) (calculation from contiguous data, hourly precipitation 

data, same temporal scaling factor, same equation used to calculate ekin,i) while it differs from the methodology used by the 

other authors. The effect of using different equations to calculate ekin,i was investigated by Hanel et al. (2016b) and Nearing et 

al. (2017). The former authors found out that average rainfall erosivity in the Czech Republic varied strongly between 500 and 285 

760 MJ mm ha-1 h-1 when 14 different equations were used. The USLE equation (which was used here) resulted in the highest 

values. Nearing et al. (2017) compared rainfall erosivity calculated with the USLE, RUSLE (Brown and Foster (1987) 

equation) and RUSLE2 and found out that on average the values obtained with RUSLE and RUSLE2 were 14% and 3.7% 

lower than when USLE was used. A further important source of uncertainty is the choice of the scaling factors. Here we used 

a temporal scaling factor of 1.90 which was established by Fischer et al. (2018) for Germany. This value is remarkably similar 290 

to the value 1.87 established by Yue et al. (2020) for China. Keeping in mind that the temporal scaling factor of 1.56 established 

by Panagos et al. (2015c) for Europe was used for the conversion of 60-min data to 30-min data and that a second factor (0.80-

1 = 1.25) was established by the same authors for the conversion between 5-min data and 30-min data, the conversion factor is 

also similar. The assumption of a constant scaling factor for the entire model domain and the entire simulated time with 

different types of rain and shifting intensity patterns is certainly a simplification of reality that adds uncertainty. Here we only 295 

used a temporal scaling factor and no spatial scaling factor because the results were in good agreement with the ones of 

Auerswald et al. (2019a). It is surprising that no spatial scaling factor was needed here despite the resolution of 3 km that 

certainly smoothes sub-grid scale variability of rainfall intensity and reduces local intensity peaks. Thus, other scaling factors 

such as spatial scaling factors or bias correction between measured and simulated precipitation might be necessary elsewhere 

and the temporal scaling factor might have to be adapted to future data with higher intensities of extreme events.   300 

In order to quantify the effect of using a different equation to calculate specific kinetic energy from rainfall intensity, 

we used a subset of our data (about 8% of the model domain located partly at the coast and partly in the Alps, covering 

30 years from 1971-2000) to recalculate rainfall erosivity with the RUSLE equation. The USLE-based R-factors are on 

average 1.23 times higher than the ones obtained with the RUSLE equation.3.1.3 Seasonal distribution of rainfall 

erosivity 305 

The seasonal distribution of rainfall erosivity shows a clear peak in the summer months (late May – August, Fig. 4) and minima 

from November to March. This seasonal pattern is coherent with the results obtained by Johannsen et al. (2022) for Austria, 

by Auerswald et al. (2019a) for Germany and by Meusburger et al. (2012) for Switzerland. There is a strong variability from 

one day to another and between subregions of the modelling domain (light grey lines and dashed black line in Fig. 4). This is 
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coherent with the observations made by Auerswald et al. (2019a) and can be explained by the effect of extreme rains that occur 310 

during the same day on several pixels (Auerswald et al., 2019a). Thus, single extreme rainfalls influence the mean values 

despite the large number of pixels and the long averaging period of 30 years.  

 

Figure 4: Seasonal distribution of the erosion index. The light grey lines show daily erosion indexes averaged over 30 years in the 

past (CPS-hist, 1971-2000) and in 25 subregions of the modelling domain. The dashed black line is the average of the entire modelling 315 
domain in the past and the colored lines show the 13-day moving average for each one of the data sets for the past (CPS-hist, 1971-

2000), the near future (CPS-scen-nf, 2031-2060) and the far future (CPS-scen-ff, 2071-2100). 

The smoothed distribution of the erosion index does not differ considerably between the past, the near future and the far future 

(Fig. 4). A comparison between past and present rainfall erosivity in Germany by Auerswald et al. (2019b) showed however, 

that winter erosivity increased considerably.  In Switzerland on the other hand, Meusburger et al. (2012) observed a decreasing 320 

trend in rainfall erosivity in February and an increase from May to October.  The reasons for the discrepancies between this 

study which did not detect significant changes in the seasonal distribution and the other studies that did observe trends are not 

clear yet and an remain an open question.  
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Figure 5: Distribution of average annual rainfall erosivity (R-factor) [N h-1 a-1] in the five data sets. 325 

3.2 Past and future changes in rainfall erosivity 

In the evaluation run, average annual rainfall erosivity increased between the past (1971-2000, mean: 90.5 N h-1 a-1) and the 

present (2001-2019, mean: 97.8 N h-1 a-1) (Fig. 5). In the projection runs driven by the global climate model, rainfall erosivity 

increased considerably. This is the case for all statistics (Fig. 5). Mean values increased from 96.3 N h-1 a-1 in the past to 119.3 

N h-1 a-1 in the near future and 149.7 N h-1 a-1 in the far future. Relative changes in average annual rainfall erosivity (in %) 330 

between the historical period and the near or far future are highest in the central and northern part of the modelling domain, 

i.e. in the river basins of the Weser, Ems, Elbe and the coastal basins in the north (Fig. 6a and 6e) where rainfall erosivity in 

the far future can be up to 84 % higher than in the past. Absolute changes on the other hand are highest in the basins of the 

Rhine (28 N h-1 a-1 in the near future and 78 N h-1 a-1 in the far future) and the Upper Danube (37 and 74 N h-1 a-1 respectively). 

These are very strong changes. Furthermore, the changes in rainfall erosivity calculated from convection-permitting climate 335 

model output are considerably higher than the ones calculated with the low-resolution approach using mean annual 

precipitation from model output of conventional regional climate model ensembles (Fig. 6).  

 

Figure 6: Relative changes in average annual rainfall erosivity (R-factor) in the major Central European river basins between the 

historical period (1971-2000) and the near future (2031-2060, top row) or the far future (2071-2100, bottom row). All values are 340 
given in percent of the erosivity of the historical period. (a) and (e) shows changes in erosivity calculated with the convection-

permitting simulations (CPS); the other subfigures show changes in erosivity calculated with mean annual precipitation (MAP) 

obtained from the 15th, 50th and 85th percentile of 21 regional climate models. All simulations used emission scenario RCP 8.5. 
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This is the case not only when future MAP is obtained from the median of the model ensemble but also for the entire plausible 

bandwidth of models. Figure 6 shows changes in rainfall erosivity estimated with the 15th and the 85th percentile of the model 345 

ensemble. Even though this approach only considers changes in MAP and not changes in rainfall intensity, it allows an estimate 

of model uncertainty due to the differences between the ensemble members. The results obtained with CPS are outside of the 

bandwidth of the model ensemble because they also represent changes in extreme precipitation in addition to changes in MAP. 

The finding that the low-resolution approach underestimates future changes in erosivity is in line with the results of Gericke 

et al. (2019). The regression equation of the German DIN 19708 that was used here (Eq. 3) was established in the early 1990s 350 

with climate data from the 1960s to 1980s. Thus, changes in precipitation characteristics and the fact that it does not consider 

heavy precipitation raise concerns that the equation can be transferred to the future (Gericke et al., 2019). It has to be noted 

that DIN 19708 explicitly states that whenever possible, high frequency precipitation should be used and that using Eq. (3) 

should only be used when only monthly or annual precipitation is available. 

Annual rainfall erosivity in all topographic regions of Central Europe (coasts, plains, low mountain ranges, Prealps and Alps) 355 

shows a strong interannual variability and clear trends (Fig. 7). The high interannual variability observed here is consistent 

with the findings of other authors who observed strong interannual variability in rainfall erosivity calculated from measured 

precipitation data (e.g. Verstraeten et al., 2006; Meusburger et al., 2012; Fiener et al., 2013). The presence of trends supports 

the conclusions made by other authors that rainfall erosivity maps have to be frequently updated because old rainfall erosivity 

maps no longer represent current precipitation characteristics (Yin et al., 2017; Auerswald et al., 2019b; Johannsen et al., 360 

2022). 

 

Figure 7: Trends and interannual variability in rainfall erosivity in the natural regions of Central Europe (coast and plains (a) as 

well as lower mountain ranges, Prealps and Alps (b)). Rainfall erosivity was calculated with precipitation data from the projection 

run. The natural regions were defined according to Bundesamt für Naturschutz (2017) for Germany and were manually extended 365 
to include Central Europe based on elevation here. They are outlined in Fig. 1. 
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While calculating future rainfall erosivity from CPS offers the advantage of the direct calculation from high-resolution data, it 

only represents future projections from one model and one emission scenario which is less robust than using model ensembles. 

Thus, we compared the past and future changes calculated here to observed and simulated trends in rainfall erosivity in central 

Europe reported in the literature (Table S1, supplementary material). Both in the past and in the future, the range of reported 370 

trends is very large. The values given here agree well with reported values in some cases (e.g. approx. 20 % increase per decade 

in the Ruhr area in Germany calculated here for the projection run and reported by Fiener et al. (2013) in the period 1973-

2007). In other cases, they are strongly over- or underestimated (Table S1). It also has to be noted that for the period 1971-

2000 where we estimated rainfall erosivity from the projection run as well as from the evaluation run, the trends in the two 

data sets can differ considerably. In most regions, the changes were stronger in the projection run than in the evaluation run.  375 

The high range of trends reported in the literature shows the need to consider model ensembles and to conduct sensitivity 

analyses to differences in methodology in future research. A comparison with the literature suggests that actual future changes 

could even be higher than reported here. Such strong changes in rainfall erosivity in the order of > 10 % per decade as reported 

by Panagos et al. (2017, 2022) would have important implication for future soil erosion as well as for the occurrence of other 

natural risks such as landslides and flash floods that are triggered by heavy rain events. 380 

3.3 Potential and limitations of convection-permitting climate simulations for the calculation of rainfall erosivity 

The maps presented here offer a high potential for erosion modelling and climate impact studies. Due to the high resolution of 

3 km, they can represent the high spatial variability of rainfall erosivity in a large domain in Central Europe. Unlike most other 

R-factor maps (e.g. Meusburger et al., 2012; Panagos et al., 2015c; Hanel et al., 2016b), our maps do not rely on spatial 

interpolation and correlation with other spatial covariates such as elevation, latitude, longitude or climate indices.  385 

Because of the high temporal resolution of the underlying precipitation data, we did not have to rely on correlations between 

R-factors calculated at a high resolution and low-resolution rainfall totals such as MAP, either. Many studies find a good 

correlation between MAP and R-factors, suggesting that MAP is a good covariate to estimate R at locations where no high-

resolution precipitation data are available. However, using empirical relations between past MAP and past R-factors to derive 

future R-factors is problematic because it is unlikely that these relations remain stationary in the future (Quine and Van Oost, 390 

2020). These relations are strongly conditioned by the frequency and magnitude of rainfall events that will very likely change 

in a warmer climate. In several regions in Europe such as the Mediterranean (Tramblay et al., 2012; Blanchet et al., 2018) and 

the Carpathian Basin (Bartholy and Pongrácz, 2007), MAP is decreasing while extreme precipitation is increasing. This leads 

to an underestimation of future R-factors that are derived from MAP alone. In Central Europe, both MAP and extreme 

precipitation are expected to increase (Jacob et al., 2014; Brienen et al., 2020), so future R-factors derived from MAP are also 395 

underestimated but less severely than in the above-mentioned regions. Because changes in MAP as well as in extreme 

precipitation are well represented in convection-permitting simulations, they offer a valuable data source for the calculation of 

future rainfall erosivity. 
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Even when the same temporal resolution (3 h) of simulated precipitation data is compared, Chapman et al. (2021) find that 

rainfall erosivity was considerably higher and observed storm characteristics agreed better with simulated ones when a 400 

convection-permitting model was used instead of a conventional convection-parameterized one. 

On the other hand, the maps presented here also have limitations. Here, we calculated rainfall erosivity from precipitation data 

and did not consider whether precipitation falls as rain, snow or hail, so the high erosivity of hail is underestimated while 

erosivity in zones where considerable amounts of precipitation fall as snow (i.e. mainly the Alps) is overestimated. As rainfall 

erosivity in Central Europe is highest in the summer month, we assume that the impact of snow is small and can be neglected. 405 

For the Alps this is not the case, thus the very high values calculated in this region are too high.  

As our maps are calculated from model output and not from precipitation measurements, the uncertainties of the model are 

propagated to the rainfall erosivity maps. The precipitation data were quality controlled and compared to radar- and station-

based precipitation data from the past but not bias-corrected. The data showed a good agreement for extreme rainfall intensities 

for durations of more than 12 h but an overestimation for hourly extreme precipitation intensities (Rybka et al., 2022). This 410 

leads to an overestimation of the rainfall erosivity presented here that has to be kept in mind. Thus, it is important to compare 

the R-factors calculated here to the ones calculated from measured rainfall data.  

Concerning the future projections, it has to be noted that current climate models struggle with estimates of future precipitation 

and biases are much larger than those for future temperatures (e.g. Slingo et al., 2022). Ensembles of global and regional 

climate models show a high range of future trends in precipitation that cannot be represented by a single model. Other studies 415 

estimated future R-factors from ensembles of global or regional climate models such as the CMIP5 model ensemble, the 

EURO-CORDEX ensemble or the DWD reference ensemble (Gericke et al., 2019; Panagos et al., 2022; Uber et al., 2022). In 

this way, the high range in projections can be represented and the uncertainty due to the choice of climate model and emission 

scenario can be assessed. To date, such evaluations of variability between climate models is not possible for convection-

permitting climate models because there are no model ensembles of multi-decadal simulations over large domains available 420 

yet. In COSMO-CLM, so far only simulations driven with RCP8.5 were performed while no data driven with the other 

emission scenarios are available.  However, there are promising flagship studies such as the CORDEX-FPS where a first multi-

model convection-permitting ensemble for the Alps and the Mediterranean is presented (Coppola et al., 2020). Furthermore, 

the latest generation of CMIP6 global climate models suggests that the decrease of summer precipitation in Central Europe 

might be stronger than previously estimated by the CMIP5 model ensemble (Palmer et al., 2021; Ritzhaupt and Maraun, 2023) 425 

but these global models are only being downscaled by regional models now. Thus, the soil erosion modelling community 

should follow closely the coming advances in convection-permitting modelling to take advantage of new climate simulations 

for climate impact studies. 
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4 Conclusions 

We calculated rainfall erosivity (quantified as the USLE R-factor) in Central Europe in the past (1971-2000), present (2001-430 

2019), near future (2031-2060) and far future (2071-2100) from convection-permitting climate simulation (CPS) output. From 

this work, we draw three main conclusions:  

• Thanks to the high spatio-temporal resolution of CPS (in this case 3 km, 1 h), R-factors can be calculated directly 

without having to rely on spatial interpolation and regression with aggregated precipitation sums such as mean annual 

precipitation (MAP). Thus, CPS offer a high potential for the calculation of future R-factors for climate impact studies 435 

on soil erosion. For the present, the R-factor map presented here is very similar to the map by Auerswald et al. (2019a) 

that was calculated from radar-derived precipitation data. 

• In the river basins in Central Europe, assuming emission scenario RCP8.5, changes in rainfall erosivity between the 

past and the near future can be as high as 33 % and in the far future it can be up to 84 % higher. These rates of change 

are much higher than estimated previously using regression with MAP. This is due to the fact that the intensification 440 

of extreme precipitation is not represented by changes in MAP. This indicates that correlations between R-factors and 

MAP that were developed in the past are not necessarily valid in the future. 

• A major limitation of CPS is their high computational demand. Thus, model domains are usually limited to much 

smaller spatial extents than the ones covered by global or regional climate models or simulated time periods are 

limited to short time periods. The simulations in COSMO CLM cover a long time period (in total 109 years) and a 445 

comparably large modelling domain of approx. 1.6 million km2 on land. However, to date no ensembles of CPS are 

available at the regional scale and for long time periods. Thus, in contrast to global or regional climate models, the 

uncertainty in future R-factors due to the choice of climate models cannot yet be estimated by using a bandwidth of 

model ensembles. Promising advances in the CPS community – including flagship studies on CPS model ensembles 

– suggest that in the future more CPS will be available for climate impact studies on soil erosion. 450 

Data Availability 

COSMO-CLM model output (e.g. hourly precipitation) is freely available from the evaluation simulations CPS-eval (Brienen 

et al., 2022), the historical projection simulations CPS-hist (Haller et al., 2022a) and the scenario projection simulations CPS-

scen (Haller et al., 2022b) at https://esgf.dwd.de/projects/dwd-cps/ (accessed 10 February 2023). The rainfall erosivity maps 

presented in Fig. 2 are available at https://doi.org/10.5281/zenodo.7628957 (accessed 20 march 2023, Uber et al., 2023). Data 455 

of the erosion index can be provided on request to the first author.   
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