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Abstract. Dynamical (i.e., modébased) methods are widely used by forecasting centers to generate seasonal streamflow
forecasts, building upon procekased hydrological models that require parameter specification (i.e., calibration). Here, we
investigate the exte to which the choice of calibration objective function affects the quality of seasonal {spnimger)
streamflowhindcastgroduced with the traditional ensemble streamflow prediction (ESP) methddexplore connections
betweenrhindcastskill and hydrological consisteneymeasured in terms of biases in hydrological signatuod$ained from

the model parameter sets. To this end, we calibrate three popular conceptuatreainfalmodels (GR4J, TUW, and
Sacramento) using 12 differenbjective functions, including seasonal metrics that emphasize errors during the snowmelt
period, and produce hindcasts five initialization times over a 3gear period (April/1987 March/2020) in 22 mountain
catchments that span diverse hydroclimatic conditions along the semiarid Andes Cordillda°&@8The results show that

the choice of calibration metric becomes relevant as the winter (snow accumulation) season begins (i.e., July 1), enhancin
inter-basin differences irhindcastskill as initializations approach the beginning of the snowmelt season (i.e., September 1).
The comparison of seasoimhdcastshows thathe hydrological consistencly quantified here through biases in streamflow
signatures obtained with some calibration metri@s.g., Split KGE which gives equal weight to each water year in the
calibration time serigsdoes not ensure satisfactory seasonal t88tastsand thatthe metrics that provide skillful ESP
forecastqe.g., VESep which quantifies seasonal volume erjats not necessarily yieldydrologically consistenmnodel
simulations Among the options explored here, an objective function that combines the@ljtg Efficiency (KGE) and the
NashSutcliffe Efficiency (NSE) with flows in log space provides the best compromise between hydrologically consistent
simulations andhindcasiperformance. Finally, the choice of calibration metric generally affects the magnitude of correlations
betweenrhindcastquality attributes and catchment descriptors, rather thasighe being the baseflow index and interannual
runoff variability the best predictors @drecastskill. Overall, this study highlights the need for careful parameter estimation
strategies in the forecasting production chain to generate skillful fordoastshydrologically consistent simulationand

draw robust conclusions @treamflowpredictability.
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1 Introduction

Seasonal streamflow forecasts can support-teng water resources management and planning, including allocations for
water supply, irrigation, hydropower generation, industry, mining operations, and navigation. Therefore, improvingyhe qualit
of these poducts is an ongoing challenge for the hydrology community, especially in regions where drought risk and severity
are expected to increase under climate change scerj@oo& et al., 2022)Among the existing approaches, dynamical
methodd which rely on the implementation of hydrological or land surface m@@ét®d et al., 2018; Slater et al., 2022)

are attractive because they involve explicit hydrologic process representations, with varying degrees of abstractiom dependin
on model complexityHrachowitz and Clark, 2017)\ccordingly, dynamical systems not only offer the opportunity to monitor

and predict other variables than streamfl@@g., Singla et al., 2012; Greuell et al., 2018)t also provide mechanistic
explanations for the current and future state of hydrological systems.

In particular, the ensemble streamflow predic(@8P; Day, 198%echnique has been used operationally by many forecasting
agencies in the world and is considered a baseline for the implementation of dynamical forecasting frafviévoorles al.,

2018) The approach relies on historical sequences of climate time series forcing a hydrology or land surface model for a giver
forecast initialization timeBecause of its simplicity and relatively low cost, ESP has been widely used as a reference for
developing and testing more complex forecasting frameworks that incorporate dynamical climate model outputs to force
hydrologic model simulation&.g., Yuan et al., 2014; Arnal et al., 2018; Lucatero et al., 2018; Wanders et al., 2019; Pefiuela
et al., 2020; Baker et al., 202Notably, the approach remains a htgebeat benchmark when the target predictand is spring
summer snowmelt runofé.g., Arnal et al., 2018; Wanders et al., 20%8)ce it was originally designed to provide more skill

for regions and times in the year whariial hydrologic conditionsIHCs) dominate the seasonal hydrologic response. This

has motivated a large body of research to improve ESP forecasts irdesmomated areas, includingerification and
diagnostics of operational systeliesg., Franz et al., 2003he implementation of data assimilation meth@ag., DeChant

and Moradkhani, 2014; Micheletty et al., 202d)mate input selectiofi.e., preESP; Werner et al., 20043tatistical post
processing techniquégs.g., Wood and Schaake, 2008; Mendoza et al., 2&id multimodel combination strategiés.g.,

Bohn et al., 2010; Najafi and Moradkhani, 2015)

However, and despite the reliance of dynamécal someypes ofhybrid (i.e., statisticadynamical; see review by Slater et

al., 2022)approaches on hydrologic models, there has been limited attention on how parameter estimation strategies may affec
seasonal forecast quality. In particular, the choice of calibration metric is crucial because it involves defining teesproces
and/or taget variables (including streamflow characteristics) that need to be well simulated for specific water resources
applicationge.g., Pool et al., 2017; Mizukami et al., 2019)

In seasonal streamflow forecasting, the N&sitcliffe efficiency(NSE; Nash and Sutcliffe, 1970)a normalized version of

the mearsquareerrori is a common choice for singtibjective(e.g., Giuliani et al.2020; Sabzipour et al., 2024) multi-
objective(e.g., Shi et al., 2008; Bohn et al., 20t@)ibration frameworks. Other studies have preferred related metrics, like

the mearsquareerror (e.g., DeChant and Moradkhani, 201#)erootmeansquare errofe.g., Huang et al., 201&nd the
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mean absolute err¢e.g., Yuan et al., 201®etween observed and simulated streamflow. Another popular choice is the Kling
Gupta efficiencKGE; Gupta et al., 2009Wwhich has been applied to raw streamfi@ag., Micheletty et al., 2021)oot
squared flows(e.g., Crochemore et al., 2016; Harrigan et al., 2@@8) inverse flows to emphasize low streamflow
(Crochemore et al., 2017Jhe KGE has also been used in its-panametric forn{Pool et al., 2018p capture different parts
of the hydrograpiiDonegan et al., 202,19r combined with NSEe.g., Girons Lopez et al., 202Ejnally, seasonalkpriented
metrics are attractive if the aim is to constrain the calibration process to the time window of interest. For ¥eengeal.
(2014)showed that calibrating hydrological model parameters using only data from the dry season improved forecast skill for
months included therein in comparison to using the entire time series.
To the best of our knowledge, no previous studies have conducted a systematic assessment on how different typesof calibrati
objective functions may impact forecast quality attributes and their relationship with catchment characteristics. Evien more,
remains unclear whether O6goodd seasonal forecasts are a
features of observed catchment behatiier, hydrological consistency; Martinez and Gupta, 20Ihjs is a critical issue if
hydrological models need to be operationally implemented for multiple purposes, since traditional objective functions may not
necessarily reproduce streamflow characteristescribedwith different mathematical formulatior(ge.g., Mendoza et al.,
2015) Therefore, we address the following research questions:

1. How dependent is the quality of seasonal streamflow forecasts on the choice of calibration metric and forecast

initialization times?
2. Is it possible to obtain skillful and reliable seasonal foredesits hydrologically consistent simulatiotisrough an
appropriate choice of calibration objective function?
3. How does the relationship between catchment characteristics and seasonal forecast quality vary for different

calibration metrics?

To address these questions, assesseasonal streamflow hindcasts produced with the ESP method, using three popular
conceptual rainfaltunoff models calibrated with metrics that belong to different families of objective functions. We conduct
our analyses over a collection of headwater basins in central Chile, where snow plays a key role in the hydrologic cycle
(Mendoza et al., 2020; Murillo et al., 202&)d, especially, for streamflow predictabiliiendoza et al., 2014; Cornwell et

al., 2016) Current operational practice in this region considers Septelfdwah (i.e., Spring and Summer) water supply
forecasts produced only once a year (September 1), based on subjectively adjusted outputs from statistical models that regre
streamflow volumes against in situ measurements of precipitation, temperature, SWE, and antecedent streamflow, among oth
variables(DGA, 2022) Hence, this paper provides a baseline for ongoing and future streamflow forecasting efforts using
dynamical and/or hybrid methods in central Chile. Additiondlig, selected basins cover a wide range of physiographic and
hydroclimatic characteristiqasquez et al., 2021; Sepulveda et al., 202@abling the examination of possible connections

between forecast quality and catchment attrib(¢ags, Harrigan et al., 2018; Pechlivanidis et al., 2020; Donegan et al., 2021)
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2  Study domain and data

We focus on 22 case study basins located in central Chile3(Z&, 70271°W), a domain that encompasses more than 60%

of the countryés population and, therefore, many sSmsci o0e
are induded in the CAMELSCL datasef{AlvarezGarreton et al., 2018nd meet the following criteria: (i) a low (i.e., < 0.05)
human intervention index, which is defined as the ratio between annual volume of water assigned for permanent consumptiv
uses and the observed mean annual runoff; (ii) absence of large reservoirs; (iii) no major consumptive water withdrawals fron
the stream; (iv) snowmahfluenceon runoff seasonalityi.e.,they must have snowmelt-driven, nivepluvial or pluvionival

regimes, as described by Baéilanueva et al., 2021 )v) at least 75% of days with streamflow observations during the period
April/1987 7 March/2020; (vi) at least 20 water yegdWY s) with seasonal (Seplar) streamflow observations for hindcast
verification purposesThe most restrictiveeconditionsare (v) and (vi), which hinder the possibility to include additional
mountainous catchments from CAMEIQ]; nevertheless, we consider that bo#lquirements are essential for proper
hydrologic model calibration and evaluation (since seasonal objective functions rely solelyarSigia availability) and

a robust verification of seasonal streamflow hindcasts.

We use daily time series abserved streamflowand basiraveragedprecipitation, mean air temperatua@d potential
evapotranspiration (PET) retrieved from the CAMECE database(AlvarezGarreton et al., 2018)which compiles
information from different sourcegi) streamflowobservationsacquired from stations maintained by the Chil&amneral
Water Directorate (DGA), also avail g()lbasinavdragediprecipiatmAadnd we
mean temperature dafar the period1973202Q derived from the gridded observational product CR2ZMBGA, 2017;

Boisier et al., 2018yersion 2.0, which provides information of these variables for continental Chile at a 0.05° x 0.05°
horizontal resolutionand (iii) PET calculated with the formula proposed Bgrgreaves and Samani (1988ing basin
averagedemperaturédrom CR2MET. Additionally, devation data from the ASTER Global Digital Elevation Model (DEM),
version 3.0 (U.S./Japan Aster Science Team), is used to generate hypsometric curves for the basins.

Figure 1 shows a suite of attributes for our case study basins, whose mean elevations and areas range betw2r51605
m.a.s.l. and 81 4839 kn?, respectively. The selected basins provide a pronounced hydroclimatic gradient, with aridity indices

T defined as the ratio between mean annual potential evapotranspiration (PET) and mean annual precigitapanr{iiy

0.57 7.0. Indeed, there is a nordouth transition from serarid, water limited hydroclimates (with PET/P > 1) towards energy
limited environments (with PET/P < 1, segure 1c andFigure 2d), with larger precipitation and runoff amounts. No clear
spatial patterns are found in the fraction of precipitation falling as shegvatchment attribute values are provided in Table
S1(Suporting Information)including precipitation seasonality, baseflow index, and other characteristics.

Figure2 includes additional hydrological features for our sample of catchments. In terms of average seasonal patterns, highe
Pardé coefficients are obtained in most basins during the snowmelt season (Septarobewhich spans the spring and
summer seasons). Precipitatidtigure2b) is concentrated between April and September, andantraal variations in PET

(Figure2c) are consistent with seasonal temperature fluctuations in central Chile (not shigwrg2d also shows that the



case study basins span different annual water and energy balances, complementing the latitudinal gradientSighmvn in

130 1. Aconcagua at Chacabuquito (ACO) is the only basin with a mean annual runoff ratio larger than 1, which can be explainec
by (i) underestimation of precipitatidrom CR2METv2.0or from meteorological statiorecordsused to develop the gridded
product (ii) positive biases instreamflowrecordsf r om t he D Gdué ® ursdrtairttids dnn stagéscharge
relationshipsopr (i) glacier and/or groundwater contributions. Finally, the daily flow duration curves (HBgise2e) show

the diversity of hydrological responses, with differences in high/low flows,segnent slope, median and other signatures.

135 3 Methods

In this paper, W use the terrforecastwhen referring to past studiespplicationsat locations where observational data will
not be availableandto reflecton the implications of our results for operational practiee;usethe termhindcastwhen
referring to retrospective forecagisoduced in this studythe termevaluationfor the assessment of streamflow model
simulations outside the calibration peri@hdverificationfor the assessment of seasonal streamflow hindcasts.

140 Figure 3 outlines our methodology, which includes feteps: & parameter calibratioaf three hydrological models (GR4J,
TUW and SACGSMA) configuredin 22 snowinfluenced basins using a suite of 12 objective functioby;séasonal
(SeptembeMarch) streamflow hindcast generation with the ESP method for 33 WYs (April-LB&#ch/2020) and five
initialization times, andrerification of forecast quality attributesg)(assessment of hydrological consistency throfixgh
streamflowsignatures for the subset of bestrforming objective functions in terms lihdcastattributes, andd) analysis of

145 possible relationships betweeatchment characteristics and B8fdcastattributes

3.1 Hydrological modeling
3.1.1 Models

We use three conceptual, buckégle hydrological models: (i) GR4Perrin et al., 2003youpled with the CemaNeige snow
module(Valéry et al., 2014h)ii) TUWmodel (Parajka et al., 2007yvhich follows the structure of HB{Bergstrém, 1976)
150 and (iii) the Sacramento Soil Moisture Accounti(®AC-SMA; Burnash et al., 1973nodel combined with SNOVY¥7
(Anderson, 1973and a routing schenfeohmann et al., 1996 hese model structuregere selected because ttag widely
used by the hydrology communifAddor and Melsen, 2019with a myriad applications to streamflow forecasting. For
example, SAESMA has been applied for testing alternative approa@gs Mendoza et al., 201@nd is used to produce
operational streamflow forecasts in the (Micheletty et al., 2021)GR4J has been applied to assess streamflow forecasting
155 frameworks in large samples of catchmefetgy., Harrigan et al., 2018; Woldemeskel et al., 20HBV-like conceptual
models have been used to assess $bat, Pauwels and De Lannoy, 2009; Verkade et al., 2618hg(e.g., Pefiuela et al.,
2020)range streamflow forecasts, especially in European countries.
The GR4J modg[Perrin et al., 2003)as a parsimonious structure consisting in two interconnected reservoirs and four free

parameters. The CemaNeige modfitst partitions total precipitation intoliquid and solid and thensimulates snow
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accumulation and melt over five or more (udefined; here we use 10) elevation bands, using gptwameter degreday

based schemg@/aléry et al., 2014b)hat adds snowme#ind liquid precipitatiorto the soil moisture accounting reservoir.

Water that is not intercepted or evaporated from the soil moisture accounting reservoir is partitioned into two fluges: one i
routed with a unit hydrograph and then by a nonlinear routing store, and the othetedsusing a single unit hydrograph
groundwater exchange term acts on both flow components to represent water exchanges between topographical catchment:
The TUW model consists of four main routines. In the snow routine (with five free parameters), precipitation is partitioned
into snowfall and rainfall, and snow accumulation and melting are calculated with a-dagssheme. Rainfall and snowmelt

are inputs for the soil moisture routine (with three free parameters), which computes actual ET, soil moisture and runoff
heading ¢ the responsmutine With five free parametershe response routirigas an upper reservoir that produces surface
runoff and interflow, and a lower reservoir producing baseflow. Finally, a routing scheme (two free parameters) delays total
runoff using ariangular transfer function.

The SAGSMA (Burnash et al., 1973)as a more complex structure than GR4J and TUW (with 16 free parameters), dividing
the catchment into (1) an upper zone that simulates hydrological processes occurring in the root, surface, and atmospher
zones, producing surface and direct runoff; a2)dalower zone, where percolation occurs and baseflow is produced. The
model is coupled with the conceptual snow accumulation and ablation model SMQ\Wderson, 1973)which simulates

snow accumulation and melt usingsinplified energy balancand requires the specification of 10 free parameters. An
independent, twgparameter routing scheme, based on the linearized-$an#nt equation, is used to route runoff and
baseflow(Lohmann et al., 1996)

Here, we use model versions from opsnour ce packages i mpl emented in Zhe s
project.org/). GR4J and CemaNeige (hereafter referred to as GR4J) are implemented in-8mumgepackagealrGR'

(Coron etal., 2017) whereas TUW and SAC afmTWWmadadMiglioaebahdeParajka, 202@yed p a c |
fisacsmaRB(Taner, 2019)respectively. All the models require daily time series of catchueaie precipitation (P, mm), PET

(mm) and mean air temperature (T, "@}hile the CemaNeigds configured with 1@levation bandshe snow routines of

TUW and SAC-SMA (i.e., SNOW-17) are implemented in a lumped fashibacause preliminary experimemntsth these
modelsshowed that the benefits atiding snow bandsn the KGE of daily flows were margindle stress that the use of

three models does not seek to provide comparisons among different model structures; instead, we aim to examine to whe

degree our results and conclusions can be rabef@ndent.

3.1.2 Calibration strategy

We calibrate model parametefadure 3a) using the global optimization algorithm Shuffled Complex Evolul@QEUA;
Duan et al., 1992Jmplemented in the R packag#dp" (Skagien et al., 2014T o0 compute the calibration objective functjon
we usemodeled and observed streamflow data from the period April/1994rch/2013 because it spans a diverse range of
hydroclimatic conditionsconsidering th@eriod April/1986i March/1994 for model spiap. For each model and basin, we

perform 12 calibrations using the objective functions listeflahle 1. Eight metrics (groups-4) are selected because they
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are representative of different families of objective functions and have been widely used for various modeling purposes. Fot
example, the NSE with flows in log space (EN§E) has been used to enhance low flow simulafiergs, Oudin et al., 2008;

Melsen et al., 2019)while the recently proposed Split KGEowler et al., 2018aaims to provide robust streamflow
simulations under contrasting climatic conditions. Additionally, we include four calibration metrics formulated to improve
seasonal streamflow simulations. Modgfaluationis conductedby computing performance metriegth data fromtwo

periods: (i) April/1987- March/1994, which is hydroclimatically diverse, and (ii) April/2003Viarch/2020, which is
characterized by unprecedented and temporally persistent dry cond@ansaud et al., 2017, 2019)o produce runoff
simulations for each perigthe precedingight years (i.e., April/1979March/1987 and April/200b6 March/2013)wvereused

for model spirup.

3.2 Hindcast generation andverification

We produce seasonal streamflbimdcastdy retrospectively applying trensemble streamflow predictigSP; Day, 1985)
method The approachelies on deterministic hydrologic model simulations forced with historical meteorological inputs up to
the forecast initialization time, assuming that meteorological data and model are perfect, which yields IHCs without errors.
Then, the model is forced with an ensemble of climate sequences, attributing all the streamflow forecast uncertainty to the
spread of future meteorological forcings (FMFSs). In the traditional ESP implementation, each climate sequence (i.e., ensembl
membey is drawn from a ongear observed meteorological time series, and the meteorological input traces associated with
target years are excluded for hindcast generation/verific@lendoza et al., 2017)mportantly, ESP cannot forecast extreme
events with magnitudes that have not been recof8abzipour et al., 2021and forecast quality can be limited in ron
stationary climategPefiuela et al., 2020ere, we apply th&SP method for the period April/1987March/2020 Figure
3b), using five initialization times (from May 1 to September 1). Hence, for each combination of catchment, hydrological
model, parameter set (i.e., objective function) and initialization time, we complete the following steps:
1. Force model simulations during the eighitYs preceding the initialization time to obtain the initial hydrologic
conditions (IHCs).
2. Using the states obtained in step 1, run hydrologic model simulations using observed meteorological data from the
remaining 32WYs (i.e., the forcings of the year to hindcastedare not used), generating an ensemble of 32 traces
for yearn.
3. Aggregate daily streamflow volumes within the period of interest (Septenibltatch 31), obtaining an ensemble

of 32 seasonal streamfldwndcasts

Steps 13 are repeated until a time series of 33 ensemble seasonal streamflow hindcasts is obtained vE&hgndifferent
hindcastquality attributes using a set of deterministic and probabilistic mefraislé¢ J. These include standard measures
such as the coefficient of determinatid®f) the percent bias, and thermalizedroot mean squared errddRMSE). All

deterministic metrics are calculated using the ensemble median. Probabilistic skill is assessed through the continuous ranke
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probability score(CRPS; Hersbach, 20Q0\vhich measures the temporal average error between the forecast cumulative
distribution function (CDF) and that from the observation. We compute the continuous ranked probability skill score (CRPSS)
using the observed mean climatology as the reference forecast, instead of modeled data as in otlfergstudtesgan et

al., 2018; Crochemore et al., 202@aking our verification results independent from the choice of objective function and
hydrological model. Forecast reliability i.e., adequacy of the forecast ensemble spread to represent the uncertainty in
observations$ is assessedsing thea index from the predictive quantiiguantile (QQ) plo(Renard et al., 2010QQQ plots
compare the empirical CDF of forecgsvtalues (i.e. Fo), where Pand ¢ are the forecast CDF and observation at year

with that from a uniform distributio[0,1] (Laio and Tamea, 2007All the hindcast verification metrics are calculated using

the entire time series (i.e., 33 WYSs)

3.3 Assessment of hydrological consistency

From each family of objective functions listedTliablel, we choose the one providing the overall best hindcast performance
(quantified through the median from the sample of catchmenta)l fmvmbinations of initialization time, performance metric

and model and evaluate its capability to provide hydrologically consistent simulafimuse(3c) usingfive signature
measuresf hydrological behavior. Our goal here is to explore the extent to which the quality of seasonal streéarndfiasts

T achieved with a specific calibration objective function s connected to the model 6ds ca
characteristics.Hence, we select metrics that cover various aspects of simulated catchment response, including precipitation
partitioning into ET and runoff, high and low flow volumes, flashiness of runoff and medium flows. The notation, short
description, mathematical formulation, and physical process associated withtreachflowsignatuwe aredetailed inTable

3.

We also examine possible variatidigain/loss)n hindcasskill when selectingpopular(i.e., NSE)or alternative calibration

metrics that yield hydrologically consistemiodelsimulations(CRPSS%g), relative to reference forecaspbbtainedwith the

overallbestobjectivefunctionin terms of hindcast performand8RPSRep):
DCRPSS = CRPS$i CRPSSer 1)

Here, we us&quation (1¥or hindcastsnitialized on September 1.

3.4  Drivers of seasonal streamflow predictability

To explore possible relationships between the quality of seasonal stredmfideastsand catchment characteristics, we
compute for each combination of hydrological model, initialization time and objective functiome Spear man 6
correlation coefficient betweehindcastperformance measurés namely, theCRPSStheU r el i abi l ity i n
coefficient of determination R and selected physiograpHigdroclimatic descriptorsH{gure3d). To this end, we use the

five calibration metrics from section 3.3 and basin descriptors ifable4.
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4  Results
4.1 Example: hydrologic model calibration and ESP results at the Upper Maipo River basin

Figure 4 showsobserved and simulatethily hydrographs antunoff seasonalityor the Maipo at EIl Manzano River basin

(4,839 kwhich provides nearly 70% of municipal water surg

source of water for agriculture, hydropower, and industry in the (Angga et al., 2020)These results wermbtained with
three calibration objective functioremd the three hydrological models. Although these calibration metrics yakildful
seasonahindcass for the Maipo at El Manzano River bagiigure 5) the simulated hydrographs can be very different,
particularly during the target period (Septembtarch). Specifically, the objective functioWE-Sep Figure 4.3) yields
parameter values that cannot properly reproduce dailyff dynamics fith KGE ranging betweerD.27 and0.40), whilethe
otherobjective functionprovidea more realisticunoff representatiofe.g.,KGE = 0.68 for TUW mode). Similar results are
obtainedfor runoff seasonality durinthe evaluationperiod figure 4.1-b.3), and forthe remaininghasins (seperformance
metrics for all basins ifigure S1 of the Supporting information).

Figure5 shows sample results of seasonal (i.e., Septeniarch) streamflovhindcastsnitialized on July 1 and September
1 for the period April/1987 March/2020at the Maipo at El Manzano basmsing parameter sets obtained vilie same
objective functionss in Figure 4and theTUW model As expected, theindcasinitialization time greatly impacts the CRPSS

and R indices regardless of calibration metric, with substantial improvements towards the beginning of the snowmelt season;

converselyt he U reliability index de c hiedaastensemiesbeconges rampopar)oThe h
results also show that, for those initialization times where IHCs (in particular, snow accumai#tisrdomain) play a key

role on streamflow predictability, trehoice of calibration criteria may have large effectsexification metrice.g.,seeU-

index for September) lin contrast tdhindcastsnitialized on July 1 or earlier datésee Figuré&s2in Supporting Informatiohn

Further VE-Sepyields thebestperformance measurés July 1 and September 1 hindcasts

4.2  Effects of calibration metric selectionon hindcast performance

Figure6 shows hindcastRPSSesultsfor our sample of catchments and all initialization times, using the three hydrological
models ancparameter values obtained witR calibration objective functions. lgeneral the seasonal objective functions
(cyanboxplots) providehe highest median values acrdsins for 57 out of 75 combinations (3 models x 5 performance
metrics x 5 initialization times). The highest median performance metric with the TUW model is mainly obtained through
seasonal objective functions (11 out of 25 cases, witlS¥[ standing out) and K@&kased metrics (11 out of 25 cases, with
ModKGE standing oyt When using the GR4J and SAC models, seasonal objective functions dominate, b&ag ®id
KGEV-Sep the begperforming in most cases, respectivédn the other hand, KGE(Q)+KGE(1/Q) and Split KGE generally
yield the pooreshindcastquality across hydrological models. Interestingly, some objective functions enhance the spread in
performance metrics across basire.g., see CRPSS values obtained with GR4J and Si@ices (Figure 8) andNRMSE

(Figure &) obtained with SAC using KGE(Q)+KGE(1/Q) as calibration metric.

[
<
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The catchment sample means ofatidcastverification metrics (Table 2) obtained from objective functions belonging to the
same family are not significantly different-falues > 0.05 from-tests, not shown), which is valid for the different
initialization timesconsidered heréHowever, there are significant differences between verification means obtained with the
best and the worst performing calibration metrics. For example, see CRPSS results for Sepitémadoastbtained from

the TUW model (Figure 5), calibrated with MBct versus Split KGE @walue = 0.03). For hindcasts initialized before July 1,

when the signal from IHCs is weak, the choice of calibration metric becomes less relevant, and the magnitude of difference:
dependson the forecast verification criteria. Forstance significant differences in percent bi@Sigure %) are obtained
betweenseasonalandmetd j ect i ve seasonal functions, though this is
results anédditional analyses wittheU i nNRMSE percent biaandR? (Figures 8, $4, S5and $), we select the overall
bestper f orming (or Arepresentat i v elTabe l)dob further tanalyses, MamelycNSE, o n
ModKGE, Split KGE, VESep and KGE(Q)+NSE(log(Q)).

Figure 7 illustrates how initialization time affectsindcastquality attributes when usingSE as calibration metric and the

TUW model As observed irthe Upper Maipo River basirFigure5), CRPSSandR t he U index) i mpr o’
hindcastsnitializations approach Septemtemwith considerable increments in skill on July 1 compared to May 1 and June 1
hindcastsThe skill of May 1hindcastss rather low {ith CRPSS5™" and 9% percentiles, obtained from the 22 catchments,
equal t00.26 and0.28 respectively and does not improveonsiderablyon June 1Additionally, inter-basin differences in

CRPSS increase &indcastinitializations approach the beginning of the snowmelt seasmging 0.570.69 on September

1. The sane patterns with small variations in rangeare observed for theemainingrepresentative objective functioaad

models $ee FigureS7, S8 and St Supporting Information

4.3 Seasonahindcastquality vs. hydrological consistency

We now turn our attention to the following question: to what extent is the quality of seasonal stre@indagtselated to
the proper simulation atinoff characteristicsPigure8 displays biases in hydrological signatui@sall basinspbtainedrom
the TUW modelcalibratedwith the five selected calibration metrithe results forGR4J and SAESMA are includedn
Figures 30andSl1, respectively)Although there is no single best objective function forsigaatureexaminechere, there
aresomeinterestingfeatureghat arecommon to almodelresults
1 The OFs that yield the largest biases in the nagerual runoff ratio (RR) during the calibration period are Split KGE
(median 8.6%) and ViSep (median 12.2%). However, Split KGE is one of the best OFs in this regard (median bias
of 11.8%) during the evaluation periods, while-8Ep provides the highesidiian biag24.2%)
1 ModKGE is the OF that provides the lowest biases in high flow volumes (FHV) during the calibration period (median
bias = 4.7%), although it is one of the worst OFs (median bias = 38.7%), along wkp/fnedian bias = 43.4%),
in the evaluation periods.
1 ModKGE and VESep (KGE(Q)+NSE(log(Q)) and Split KGE) yield the highest (lowest) median biases in low flow

volumes (FLV) during both calibration and evaluation periods.
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1 Split KGE best represents flashinegsunoff (FMS, median bias = 15.0% during calibration period and 18.2% in
the evaluation periods), while ModKGE (median bias = 26.4% and 44.2% during calibration and evaluation periods,
respectively) and VEep (median bias = 27.5% and 33.1% during calibration and evaluation periods, respectively)
are the worst performing forithsignature during both calibration and evaluation periods.

1 Split KGE and KGE(Q)+NSE(log(Q))(VE-Sep yield the lowest (highest) biases median flows EMM) during
both calibration and evaluation pergod

In summary VE-Sep yields the poorebydrological consistency across periods and moaeld ModKGE provideslarge

biases in streamflow signaturésring theevaluation periosl During thecalibration period, KGE(Q)+NSE(log(Q)) yields the
overallbest hydrabgical consistency, followed by Split KGE and N&Hiring the evaluation periods, Split KGE provides, in
general, the lowest mean biases in streamflow signatures for all the models, followed by NSE and KGE(Q)+NSE(log(Q)).
Interestingly, some objective functions enhance ibtesin differences in signature biases (e.g., compare the spread in RR
biasesobtained withSplit KGE andKGE(Q)+NSE(log(Q))Xuringthe calibration period)

What would be the impagbf selecting a calibration metridelding good hydrological consistency, instead of a reference
objective function thaprovides the overall bekindcastperformanceFigure9 displaysvariations inCRPSS ¢btained with
equation ) usingVE-Sepas the referengdor hindcastdnitialized on September. 1t can be notedhat Split KGEyields a
considerable decrease liindcast skillcompared tdahe referencédmedianDCRPSS~ -0.08, ~-0.07 and ~0.20for GR4J,

TUW and SAC, respectivelywhile ModKGE and KGE(Q)+NSE(log(Q)) yields smBICRPSS median values, especially

for GR4J and TUW model&igure9 also shows thateasonal hindcasts produced with NB&vide generally lower skill than
ModKGE and KGE(Q)+NSE(log(Q)); however, NSE yields better hydrological consistency than ModKGE, and worse
(similar) biases in signatures than KGE(Q)+NSE(log(Q)) using GR4J and TUW (SAC) models.,Gheraliults presented

in Figure 9 show tha{GE(Q)+NSE(log(Q))ffers a good compromise betwegydrological consistency and hindcast skill

4.4  Hindcast quality vs. catchment characteristics

We nowexplore the factors that control seasonal hindcast quality, and the extent to which the choice of calibration metric
impacts the connections inferred from our sample of catchnégtge10displays results for the TUW model only, ahe

full results (including GR4J and SAC) are available in the Supplement. In general, the choice of calibration metricoaéfects m
the strength, rather than the sign, of the relationships between hindcast quality and catchment attributes. Invpafiicdlar,

that the correlations between CRPSS and catchment descriptors obtained with Split KGE (which maximizes hydrologic
consistency), are weaker than those obtained with other calibration metrics (e.g., see results for baseflow index with TUW,
interannual runoff/ariability with all models, and fraction of precipitation falling as snow with all models).

We find statisticallysignificant correlations between CRPSS and the baseflow indeX (21 0.8) with the three models

being ModKGE ¢ =0.49),VE-Sep ¢ =0.70), and VESep ¢ =0.41) the objective functions that maximize such relationship

for September 1 when using TU{Figure 10), GR4Jand SAC(Figure S12) respectivelyFigure 10 showssignificant
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correlations between CRPSS and the interannual variability of runefl0(01 0.6)7 especially for SeptemberHindcasts

(r =0.53 for VESep/TUW,r = 0.64 for ModKGE/GR4andr =0.62 for VESep/SAC). Also positive, but generally weaker
correlations are obtained betwdendcasskill and pseasonalityf ~-0.61 0.0), as well as the fraction of precipitation falling

as snow £ ~ 0.07 0.4).

Overall, theUreliability index Figure 10, center panels) correlates differently than CRPSS with basin characteristics, with
generally smaller values that range betwe®d and 0.4. Although negative correlations are obtained between interannual
runoff variability andJfor all models, largeand significant absolute values are obtained for Septentiaddastonly with

the GR4J and SAC modglBigure S12) The right panels ifrigure 10 show that some catchment descriptors (e.g., baseflow

index, interannual variability in runoff) yield similar correlations withd@mpared to those obtained with CRPSS

5 Discussion
5.1 Compromise between hydrological consistencgnd hindcast performance

The experiments presented here provide insights on the impacts that calibration metric selection may have on the performanc
of dynamical seasonal forecasting systems in simfiwenced environments, in particular for the traditional ESP technique.
Despite the choice of calibration metric isedevanttopic in the hydrologic modeling literature, given the implications for a
myriad of water resources applicatiofsee, for example, Shafii and Tolson, 2015; Pool et al., 2017; Melsen et al., 2019;
Mizukami et al., 2019)it has received relatively limited attention for the specific case of ensemble seasonal forecasting.
Additionally, our sample of catchments offers an interesting experimental setup, spanning an ample range of mountain
hydroclimates and physiographic caeteristics.

The results presented here reveal tradeoffs between hindcasting skill and hydrological consistency in model simulations
Despite seasonal OFs produced the best hindcast performance regardless of the hydrological model, they did not result
acceptable hydrological consistency, which was better achieved witkhéiseel metabjective functions (SpiKGE) or

through meteaobjective functions with transforms (KGE(Q)+NSE(log(Q))). Conversely, these objective functions resulted in
worse hindcast performance than the referenceQ¥p) calibration metric (e.g., a 10%, 10% and 26% loss in CRPSS for
September 1 using Split KGE withR4J, TUW and SAGMA, respectively). These results highlight the risk of selecting
model configurations for a specific purpose without complementary insights on the representation of features that may be
useful for other operational applications. Among the options examined here, KGE(Q)+NSE(log(Q)) provided the best
compromise between hgalogical consistency and hindcast skill, with only a median 5% loss in CRPSS for September 1

hindcasts.
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5.2 Initialization times and hindcast skill

ESPhindcass produced at the beginning of the snowmelt season for our set of catchments are veryns&difahCRPSS ~
0.62-0.67 for seasonal GFCRPSS ~ 0.60.64 for metaobjective OFswith transformations, and 0.6062 for KGEtype

OF), andthe skill decreasé monotonicallywith longerlead times, regardless of the choice of calibration OF and model.
Importantly, hindcastskill improves considerably between June 1 and July 1, reflectingthibainformation on snow
accumulation collected at tieed of fall andeginning of the winter season is crucial to maximize the predictability from IHCs
in Andean catchments. These results align well with previous studies in otheindlu@nced mountain environments and
cold regions of the world, such as the Colorado River l&sanz et al., 2003; Baker et al., 202the US Pacific Northwest
(Mendoza et al., 201&nd Northern Europ@Pechlivanidis et al., 2020; Girons Lopez et al., 20Rgre generally, this study
reinforcesi through multiple hydrologic model setupshe decay of ESRindcastskill with lead time which has been also

reported in domains where snow has a limited influence on the water(eyrleHarrigan et al., 2018; Donegan et al., 2021)

5.3  Factors controlling seasonal forecast quality

Our results reaffirm that seasonal forecast quality is better in-rdlaeting basins with a higher baseflow contribution
(Harrigan et al., 2018; Pechlivanidis et al., 2020; Donegan et al., 2021; Girons Lopez et al.a2@2dijh a higher amount

of precipitation falling as snow, in agreement with previous studies conducted over large dengajsrnal et al., 2018;
Wanders et al., 2019)n our study area, seasonal hindcast quality is also explained by high interannual runoff vdriability
with significant correlations on September 1 and Augustwhich is a characteristic feature of sndaminated headwater
catchments in Central Chile (i.e., between 27°S and 37°S), where year to year variability in mean annual precipitation is als
consicerable(Hernandez et al., 20223 the driest (northernmost) catchments, only a few sporadic storms contribute to annual
precipitation amountédernandez et al., 2022)nd the high skewness of daily runoff challenges the calibration of hydrological
models. On the other hand, the predictability from future meteorological forcings becomes important in the wetter southern

hydroclimates since occasional spring precipitation events may have a strong effect on totauspmieg runoff volumes.

5.4 Inter-model differences

In this study, we obtained similar effects of calibration criteria selection across model structures, though the laer provi
differences in hindcast performance and hydrological consistency. Despite the three models are in the lower zoneadif the spati
process complexity continuuifiHrachowitz and Clark, 2017}hey greatly differ in the number of parameters, andh
differences dmot necessarily relate to seasonal forecast quality. In fact, the TUW model (15 parameters) provides generally
better ESP hindcasts than GR4J (6 parameters) andSBMC(28 parameters). In addition to discrepancies related to soil
storages and associateadrameterizations, the models differ in terms of their snow moduldsch is a key component for
seasonal predictability in mountainous basinsvith 2, 5 and 10 freparameters within GR4J, TUW and S/ASDA,
respectively. The snow routinesed in GR4JCemaNeige; Valéry et al., 2014hihd TUW (Parajka et al., 2007#hodels
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follow a simple degreéay factor approach, differing mainly in the characterization of precipitation phase (TUW allows for a
mix of rain and snow) and the melt temperature threshold (set as 0°C for GR4J and defined pararfreter in TUW). On

the othe hand, Snowl 7 (snow routine coupled to SAEMA) is based on a simplified energy balaf®ederson, 1973)Both
CemaNeige and Snet/ models estimate precipitation phase using a single temperature threshold (i.e., precipitation can
occur only as rain or snow). Finally, both TUW snow routine and the 9rfomodel include a parameter to correct snowfall
undercatch.

The results presented hetige intermodel differencesescribedaboveand previous worknthe implications of precipitation

phase partitioningHarder and Pomeroy, 2014; e.g., Valéry et al., 2014a; Harpold et al.,2@jBsthat agradual transition
between rain and snogas in the TUWmode) may favorseasonabktreamflowforecast performance isnowinfluenced
regimes, especially in catchments wliinge elevation rangesnd extendedsnowmelt season(Girons Lopez et al., 2020)
However,testing such hypothesis is out of the scope of this study, for which controlled modeling experiments would be

required.

5.5 Impacts of verification sample size

When the hindcasted year overlaps with the calibration period (as it happens with our experimental setup), the hydrologica
model gains information from meteorological inputs, even if the climate time series observed during that year are excluded
from the generation of ESP hindcagstsspite ofthis, we decided to take advantage of the entirge28 period for hindcast
verification, since small sample sizes (i.e., number of WYs) have been widely recognized as a serious limitation within the
seasonal forecasting literatyeg.,Shi et al., 2015; Trambauer et al., 2015; Mendoza et al., 2017; Lucatero et al., 2018; Wood
et al., 2018)This strategy enables a more robust assessment of seasonal hindcast quality, as opposed to using only the 14 W?
left for model evaluation. To demonstrate this point, we characterized the impact of sample size on the spread of GRPSS resul
by performing a bootstrap analysis with 1000 realizations for the Maipo River basin, using hindcasts produced with the TUW
model and KGE(Q)+NSE(log(Q)) as the calibration metric (Figure 11). The analysis was conducted for the following
verification samples(a) full period (i.e., 33 WYs) using the parameter set obtained by calibrating the model with data from
the period April/1994 March/2013; (b) full period, using parameter setsatbrated with all data except the hindcasted year

(i.e., 33 parameteress to produce 33 seasonal hindcasts)cdtipration periodi.e., 19 WY$, using a single parameter set
obtained with data from the same period;ddaluation dataset perio¢ise., 14 WYs betweer\pril/1987 7 March/1994 and
April/2013 7 March/2020), using the same parameter set as in case (c); aig fg)droclimaticperiod (14 WYs period
betweerApril/20067 March/2020), using the same parameter set as in case (c).

The results in Figure 11 show a considerable spread in CRPSS arising from sampling uncertainty whenyesing 14
verification periods (orange and cyan boxes). Additionally, the median CRPSS results are lower than those obtained with 1¢
and 33 WYs in July 1, August 1 and September 1. An interesting result is the similarity of CRPSS values obtained with

scenarios (a) and (b), suggesting that the hindcasting generation and verification approach adopted here (i.e., @&sing a sing
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parameter set obtained by calibrating allitheyearswith availableobservationgis a good proxy to characterize the hindcast
quality that would be obtained with an operational setup that considers paranuatiésragion for each forecasted season.
Finally, we examined the sensitivity of the CRPSS for September 1 hindcasts, to the stratification of the full verification sample
(i.e., 33 WYs) between hydrologic model calibration (April/199arch/2013; i.e., 19 WYs) and evaluation (April/1987
March/1994 and April/2018 March/2020; i.e., 14 WYs) datasets (Figure 12). Here, we used parameters calibrated with the
five represerdtive OFs and the TUW model, using data from the period April/1994rch/2013. The results show that the
VE-Sep remains the tgperforming objective function in terms of CRPSS, while Split KGE yields the worst results. Further,
the rankings of the othebjective functions (NSE, ModKGE, and KGE(Q)+NSE(log(@pgry depending on theerification

period, and CRPSS values are higher during the calibration period compared to the evaluation dataset.

5.6 Limitations and future work

In this study, we used a globakingleobjectiveo pt i mi zati on al gorithm to find the i
of forcing, modelstructureand calibration objective function; hence, did not explore the potential effects of parameter
equifinality, since such analysis out of the scope of this worRecently MufiozCastro et al. (2023)xamined the effects of
calibration metric selection and parameter equifinality on the level of (dis)agreement in parameter values across 9& catchmen
in Chile, finding that (i) the choice of objective function has smaller effects on parameter values in catchments vidtitylow ar
index and high mean annual runoff ratio, in contrast to dryer climates, and (ii) catchments with better parameter agreemen
also provide better performance across model structures and simulation periods. Future work could explore whether suc|
performane in streamflow simulations translates well into seasonal forecast quality attriBdiditonally, calibration
strategies(e.g., Gharari et al., 2013; Fowler et al., 2018hyl model selection frameworks.g., Saavedra et al., 2022)
advocating for consistent performance across different hydroclimatic conditions could be explored for seasonal forecasting
applications.

Our assessment of hydrological consistency is solely ba
though snow deptfiTuo et al., 2018; Sleziak et al., 2028how water equivalerfe.g., Nemri and Kinnard, 20203now

covered arede.g.,korman et al., 2009; Duethmann et al., 20Dbt)the combination of these and othesitu or remotely

sensed variablgg.g., KunnatiPoovakka et al., 2016; Nijzink et al., 2018; Tong et al., 2680) beincorporatedo achieve

a more exhaustivevaluatiorof model realismMoreovermultivariate calibration methods usingulti-objectiveoptimization
algorithms(e.g., Yapo et al., 1998; Pokhrel et al., 2012; Shafii and Tolson, 204%)e consideretb examine potential
improvements in hydrological consistency and streamflow forecast qealitypared to traditional parameter estimation
approaches

The data, models and results obtained here provide a test bed for the systematic implementation of new tools aimed ¢
improving seasonal streamflow forecasts in smumminatedAndeancatchments. Ongoing work is focused on developing a
historical ensemble gridded meteorological product for our study area, the implementation of data assimilation methods for

improved estimates of initial conditions, the assessment of seasonal clineatesfqrroducts and the inclusion of additional

15



480

485

490

495

500

505

catchments. Given the strong relationships between-Baaie hydrology in this domain and some lagsgale climate patterns
(e.g., El Nifio Southern Oscillation; Hernandez et al., 20@)re research should explore the potential of-postessing
techniques that take advantage of climate information to improve forecast ¢eialityHamlet and Lettenmaier, 1999; Werner
et al., 2004; Yuan and Zhu, 2018; Donegan et al., 202aally, the hindcast generation and verification analyses presented

here should be extended to fall and winter seasons, which are relevant for domestic water supply and other applications.

6 Conclusions

Dynamical systems have been implemented by many organizations across the globe for operational seasonal streamflo
forecasting. Despite their reliance on hydrological models, no detailed assessments have been conducted to understand he
the choice of calitation metric affects the quality attributes of seasonal streamflow forecasts, their connection with simulated

streamflow characteristics and the relationship between forecast quality and catchment descriptors. Here, we provitle importar
insights using the traditional ensemble streamflow prediction (ESP) method to generate seasonal hindcasts of spring/summ
streamflow in 22 basins in central Chile, where snow plays a key role in the hydrologic cycle. We use three populard conceptua

rainfdl-runoff models calibrated with 12 metrics from different families of objective functions. The main conclusions are:

1 The choice of calibration metric yieldensiderabldlifferences irhindcasguality (except R for winterinitialization
times Such effect decreasesnsiderably for hindcasts initialized during the fall season.

1 The comparison of seasonhindcastsobtained from different families of objective functions revealed that
hydrological consistency does not ensure satisfactory seasonal ESP forecasts (e.g., Split KGE), and that satisfactor
ESP forecasts are not necessarily associated to hydrologicallgtemtsireamflow simulationge.g., VESep).

1 We could identify at least one objective function (KGE(Q)+NSE(log(Q))) that yields a reasonable balance between
hydrological consistency aridndcastperformance.

1 The baseflow index and the interannual runoff variability are the strongest predictors of probabilistic skfll and R
across objective functions and models. Moreover, the choice of calibration metric generally affects the strength of the

relationship between forecast quality and catchment attributes.

The results presented here highlight the importance of hydrologic model calibration in producing skillful seasonal
streamflow forecasts and drawing robust conclusions on hydrological predictability. Improving parameter estimation
strategies can benefit not only operational systems relying on dynamical methods but also a myriad of hybrid
approaches designed to leveragtsrmation from hydrologic model outputs. By advancing our understanding of the
complex interplay between calibration metrics, model performance, and catchment characteristics, our study
contributes to the ongoing effort to enhance the accuracy andiligjiali streamflow forecasts in snomfluenced

domains, to support informed water resources management decisions.
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Table 1. Objective functions used for model calibration. The bold text indicates the notation used in this paper.

separately for each yeaq
and the annual values a

Group of objective| Objective functions Description Reason for use and attributes
function utilized
1. Classic leas| NSE (Nash and Sutcliffe] Normalized variant of thg One of the most widely use
squares 1970) Mean Square Error (MSE)] metrics to assess the predicti
It minimizes the ratio of the skill of hydrological models.
variance of the simulate
flows to the variance of thi
observed flows.
2. Least square| KGE (Gupta et al., 2009) Focus on optimizing thre{ Popular family of metrics tha
variations K GE 6(Kling et al.,| aspects of the time seriel combine the NSE componen
2012) ModKGE | variability, bias, and (i.e., correlation, bias
(Mizukami et al., 2019)| correlation. variability) in a more balance
K GE §Tang etal., 2021 fashion.
3. Timebased| Split KGE (Fowler et al.,| Consider different sub| Reducing the yeao-year
metaobjective 2018a) The KGE(Gupta | periods of the calibratiof variability of model performanc
functions et al., 2009)s calculated period, in which a value o would allow for a stable set ¢

the metric is calculated an
then combined into a sing|

parameters over time. Ea
subperiod has the same weight

Seasonal (SeMar) KGE
(KGEV-Sep; Seasonal
(Oct-Mar) KGE KGEYV -
Oct).

averaged. metaobjective  function| the calculation of the metric.
(e.g., average).
4. Metaobjective | KGE(Q)+KGE(1/Q) Linear combination of The transformations emphasi
functions with| KGE(Q)+NSE(log(Q)) performance metrics thg medium and low flows. Th¢
transforms may consider| weighting allows to conside
transformations (e.g., usin high and low flows
the inverse of the runoff g simultaneously.
the logarithm).
5. Seasona| Seasonal (SepMar) | The daily values arq¢ Since the predictand is seaso
objective functions | RMSE (VE-Sep); | aggregated (i.e., summe( volume, testing metrics thg
Seasonal (Oéwar) | to generate a yearly tim| focus on optimizing volume
RMSE (VE-Oct); | series with seasonal rung seems logical. However, th

volumes. Then, the suwf
squares is minimized for a
the time steps (i.e., WYs
within  the calibration

period.

approach has the disadvantage
misrepresenting streamflo
dynamics at finer time scale
(e.g., daily or monthly).

26



Table 2. Performance metrics usedor seasonal streamflow hindcast verification

Name Equation Description

Deterministic metric that varies [0,1] with

Coefficient of B 5T - erfect score of 1. It measures the line
Y h
determination I 5 I - association  between  forecasts &
h observations.

Deterministic metric that variestf, D)

: v BN R € perfect score of 0. It measures the differel
|—
Percentbias b w Q1 B ¢ tp T between the mean of the forecasts and

mean of observations.

:\(I)c())rtmn?g;ﬁd DEB ns &€ Deterministic metri
squared error 0 YO YOI e tp T perfect score of 0.
e ey O Y Probabilistic metric that variesff, 1]
Continuous 0 YUV p 8 'Y perfect score of 1. It measures the skill
ranked CRPS relative to a reference forec
obabili 8 vy o4 OR Qf (Hersbach, 2000) CRPS quantifies th
gkill scorg v difference between the CDF of a forec&st (
o iRl Tt and the corresponding CDF of tt
on pRIRI TU observationsHy).
Probabilistic metric that varies [0, 1].
5 quantifies the closeness between
Ureliability p 5 ¢ empirical CDF of sample-palues with the
index | P G O V& €3 CDF of a uniform distribution. A value of

is the worst, and 1 reflects perfect reliabil
(Renard et al., 2010)

795 1N pdForecast ensemble median for year

1 rdAverage over forecast ensemble medians

¢ dObservation for year

¢ dAverage of observations

0 ¢ dNon-exceedance probability éf using ensemble forecast for yéar
800 "Y¢ dNon-exceedance probability éf using the uniform distribution U [0,1]
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Table3.Hydr ol ogi cal signatures used to evalwuate the
Notation Short description Equation Hydrologic process
RR Runoff ratio Y'Y 010 Overall water balance.
. Measure of thecatchment
FHV FDC higfrsegment "O0w n reaction to large
volume ;
rainfall/snowmelt events.
FDC lowsegment .. . 3w v Measure of the lonc
FLV volume oL b e term basepow
FDC midsegment , . .. | 11 (" Measure of the catchmel
FMS o0 Y - i i
slope a o reactivity or flashiness.
FMM FDC median o0 0 Measure of miet an g e
OdAverage of a basibnds runoff time series (
0OJAverage of a basindl precipitation time series
805 0 dRunoff median value
1] dRunoff observation/simulation for day
NdRunoff observation/simulation for pows with
NdRunoff observation/simulation for pows with

1 dMinimum runoff observation/simulation
810 n dRunoff observation/simulation with exceedance probability of 0.20
1 dRunoff observation/simulation with exceedance probability of 0.70

(

model s 6
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Table 4. Selected physiographic and climatic characteristics to explore drivers of seasonal forecast quality. Hydroclimatic attributes

are computed for the period April/19871 March/2020.

by barren land

sandy areas,and bare expose
rocks

Name Description Units Data source Reference
e Aridity calculated as the ratio g
Aridity index mean annual PET to mean ann - Computed fc_)r Budyko (1974)
(Al C the study period
precipitation
. Fraction calculated as a functig
Fraction of of temperature and a variable th
precipitation P to¢ CAMELS-CL Eq. (13) inWoods
: guantifies the seasonal variation -
falling as L . ] dataset (2009)
precipitation, and its temporg
snow oo
distribution
Seasonality of precipitatiorn
Positive (negative) values indical
_seasonalit that precipitation peaks occur i CAMELS-CL Eqg. (14) inWoods
P Y| summer (winter); values close tg dataset (2009)
indicate uniform precipitation al
over the year
Interannual Coefficient of variation for thg Computed for
runoff ; ; - X -
T time series of annual runoff the study period
variability
Baseflow Computed as ratio of mean da CAMELS-CL
index baseflow to mean dailgischarge i dataset Ladson et al. (2013)
Mean Catchment mean elevation m.a.s.! CAMELS-CL ASTER GDEM,
elevation T dataset Tachikawa et al. (2011
Fraction of the Fraction of the catchment cover
. by forest according to a land cov, CAMELS-CL
basin covered . - Zhao et al. (2016)
map. Includes native forest ai dataset
by forest i
forest plantation
Fraction of the catchment covers
Fraction of the| by barren land according to a laf
basin covered cover map. Includes dry salt flat - CAZ/I;;;—RCL Zhao et al. (2016)
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Figure 1. Location and spatial variability of catchment characteristics across the study domain. Hydroclimatic attributes are
computed for the period April/1987 1 May/2020using data retrieved from the CAMELS -CL database (see details in Section.ZJhe
white star in panel (a) denotes the outlet of the Maipo en El Manzano River basin, for which the analysis approach is illadtd (see
section 4.1).
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(a) Runoff Seasonality
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evapotranspiration, (d) characteristic ratios, and(e) daily flow duration curves (FDC). Thesegraphs correspond tothe period
April/1987 i March/2020 and were produced using data retrieved from the CAMELSCL database (see details in Section .2)n the
legend (panel e), the basins are ordered from north (PUL) to south (SAU), and the colors indicate their aridity indices (Ajreen to
red i lower to higher index).
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(a) Calibration of hydrological models

—Obs
—_ ! —8
GR4) + CemaNeige Calibration using 12 'g —Sim . nl
Precipitation Forcings objective functions g . 0;
Temperature S—— TUWmodel - > =
Potential ) SCE-UA g :
cvapotranspiration SAC-SMA + SNOW17 = —0,,

(b) Ensemble Streamflow Prediction (ESP)

P, PET, Tops = N-1 = 32 historical _Obs Each boxplot contains
~ N X scenarios (Y;) 4 PR .. Hindcasts For cach model, 2 N-1 hindcasts
) ' : ' =
i — —~ excluding =) 1 : ' parameter set, = ®Obs
: - hindcasted year E Mudel ! : initialization % T
: S (Yo = | spinup_ i timeand basin £ g $ .z
v, [ - 5 . | :
. g ' 2T Q M
. o % - Lol
Y‘\' e g > o ll ;I’ . J' ;\"-l N
p Imtla.hzanon SC&S(I)TIZ] time Hindeasted year
time window
(c) Identification of robust objective functions (OFs) i (d) Relationship between hindcast
Selection of the five i performance and basin attributes
best-performing :
objective functions Calculation of biases in : S P
from overall hindcast hydrological signatures . . : E " e
performance metrics from model simulations 0!'!’ that y'c!‘! : E o A
satisfactory ESP 8 L.
CRPSS _’8};1 e = - hindcasts and El
a-index :OF2 > :-E N Fbe » hydrologically g B [~ae | s
3 2 E T consistent T ol T N\
- o simulations. = g : ‘
Exceedance probability Catchment attributes

830 Figure 3. Flowchart describing the approach used in this studySee text for details.



Figure 4. (Left) Daily hydrographs (April/l2014 i March/2016) and (right) monthly variation curves for the evaluation dataset

(April/1987 i March/1994 and April/20137 March/2020) at the Maipoat El Manzano River basin, obtained with the three models
835 using parameters obtained from calibrations conducted with NSE, KGE(Q)+NSE(log(Q)) and \WSep The daily KGE obtained

with each model is displayed in the left panels, while right panels include the coefficient of determinatior?jRetween mean monthly

simulated and observed runoff averages.
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