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We thank the three reviewers for their time in commenting on our paper. We provide responses to 
each individual point below. For clarity, comments are given in italics, and our responses are given 
in plain blue text. 
 
Reviewer #1 
 
The manuscript aims to evaluate the role of calibration metrics (objective function for calibration 
and performance evaluation metrics) on the seasonal streamflow forecasts in 22 mountainous river 
basins in Chile based on CAMELS-CL datasets. The quantum of work done by the authors needs 
appreciation, as well as the framing of the scientific questions. The manuscript has enough scientific 
content to be published in HESS after revision. The problems framed in the manuscript are tested 
using scientifically sound methodology. 
 
However, I feel the manuscript is a complicated read due to the multiple parameters, metrics and 
lack of clarity, especially in the methods section. I believe the manuscript can benefit from 
reorganizing the content. The main result must be better highlighted, and others could be moved to 
the supplementary section to improve readability. The result sections do not highlight the overall 
conclusion or takeaway in each section. Therefore, I was pretty confused, even after multiple reads, 
about what the authors were trying to communicate. 
 
We greatly appreciate the reviewer’s comments, and provide detailed responses below. 
 
A detailed flow chart can be used to convey the method. Parts of the methodology are distributed 
across different sections, including the introduction. 
 
We have designed a new and more detailed flow chart. Additionally, we have added a diagram 
inspired by Figure 3 in Crochemore et al. (2020) to explain the Ensemble Streamflow Prediction 
(ESP) method, which is now detailed in section 3.2 (L201-219). 
 



 
Figure 3. Flowchart describing the approach used in this study. See text for details. 

 
 
The concept of Ensemble Streamflow Prediction used in the study is defined in the introduction 
section. I would appreciate elaborating on it in the methodology section instead. The introduction 
section should better focus on existing gaps in the literature and highlight the need for the present 
study. 
 
We have moved the full description of the Ensemble Streamflow Prediction (ESP) method to section 
3.2 (“Hindcast generation and verification”). We choose to maintain a brief description of the method 
in the introduction, only to highlight how our study contributes to the existing literature by exploring 
the impact of calibration metric selection on the quality of seasonal streamflow forecasts. 
 
There is a lack of consistency in the terms used, which makes it more confusing. For instance, though 
hindcasts are performed in the paper, at certain places, forecasts are used. 
 
In response to this observation and the comments from Reviewer #2: 

- We have modified the term “forecasts” by “hindcasts” when referring to our methods and 
results, since this work presents an assessment of retrospective forecasts obtained from the 
application of different model calibration metrics. 

- We use the term ‘forecasts’ when referring to past studies and operational applications. 
- We use the term ‘verification’ when referring to the assessment of retrospective seasonal 

streamflow hindcasts. 
- We use the term “evaluation” to the assessment of streamflow simulations outside the 

calibration period. The term “validation” is no longer used in this paper. 
We have clarified this terminology at the beginning of section 3 in the revised manuscript (L136-
139): 
 



“In this paper, we use the term forecast when referring to past studies, applications at locations where 
observational data will not be available, and to reflect on the implications of our results for operational 
practice; we use the term hindcast when referring to retrospective forecasts produced in this study; 
the term evaluation for the assessment of streamflow model simulations outside the calibration 
period, and verification for the assessment of seasonal streamflow hindcasts.” 
 
Similarly, I did not understand what the authors meant by the first and second validation periods in 
the Figure 8 caption.  Did you mean the calibration period, where the model is calibrated using 
different parameters, and the hindcast period, where the ensemble streamflow prediction method is 
employed? 
 
As pointed above, we have replaced the term “validation” by “evaluation”, which refers to the process 
of evaluating the quality of streamflow simulations outside the calibration period. Additionally, we 
have merged the originally proposed first and second evaluation periods into a single evaluation data 
set (which spans April/1987 – March/1994 and April/2013 – March/2020) to assess model 
simulations graphically and quantitatively. Such evaluation is illustrated for three objective functions 
in Figure 4 (former Figure 8). We clarify this procedure in Section 3.1.2 (L196-199): 
 
“Model evaluation is conducted by computing performance metrics using data from two periods: (i) 
April/1987 - March/1994, which is hydroclimatically diverse, and (ii) April/2013 – March/2020, 
which is characterized by unprecedented and temporally persistent dry conditions (Garreaud et al., 
2017, 2019). In both cases, the preceding 8-year period is used for model spin-up”. 
 

 
Figure 4. (Left) Daily hydrographs (April/2009 – March/2011) and (right) monthly variation curves 
for the evaluation dataset (April/1987 – March/1994 and April/2013 – March/2020) at the Maipo en 
el Manzano River basin, obtained with the three models and three objective functions: (1) NSE, (2) 
KGE(Q)+NSE(log(Q)) and (3) VE-Sep. The daily KGE obtained with each model is displayed in the 
left panels, while right panels include the coefficient of determination (R2) between mean monthly 
simulated and observed runoff averages. 
 



I think the manuscript will also benefit from redesigning the figures. The multiple boxplot figures 
create a lot of complexity in analyzing. Reducing the amount of noise while focusing on a particular 
science question could considerably improve the manuscript's readability and merit. 
 
We appreciate this observation, and we agree that the figures included the original manuscript where 
unnecessarily busy. Hence, we have redesigned Figures 3 to 10, and we have moved Figure 6 (now 
Figure S5) in the original manuscript to Supplementary Material, following the recommendation of 
Reviewer #2. 
 
For instance, I would suggest focusing on the median result of all model combinations while showing 
the effect of initialization time and performance metrics for each calibration OF (Figure 7).   
 
In response to the comments from Reviewers #1 and #2, we have redesigned Figure 7, showing three 
hindcast performance metrics and five initialization times from only one model structure (TUW), 
with parameters calibrated with only one objective function (NSE). We display the median (solid 
line) and the 5th & 95th percentiles from the 22 case study basin basins as a light-blue shade for each 
metric. The results presented in this figure communicate the same findings obtained for the remaining 
representative objective functions and models: CRPSS and R2 (α-index) values increase (degrades) 
as hindcast initializations approach Sep. 1. We decided to keep all five initialization times to clearly 
show the progression of seasonal (i.e., September-March) hindcast quality during the austral winter. 
The extended version of the new Figure 6 (which contains all five representative objective functions) 
is now included in the Supporting Information document. We make all these points in section 4.2 of 
the revised manuscript (L296-303): 
 
“Figure 7 illustrates how initialization time affects hindcast quality attributes when using NSE as 
calibration metric and the TUW model. As observed in the Upper Maipo River basin (Error! 
Reference source not found.), CRPSS and R2 (the α index) improve (degrades) as hindcasts 
initializations approach September 1, with considerable increments in skill on July 1 compared to 
May 1 and June 1 hindcasts. The skill of May 1 hindcasts is rather low (with CRPSS 5th and 95th 
percentiles, obtained from the 22 catchments, equal to 0.26 and 0.28, respectively) and does not 
improve considerably on June 1. Additionally, inter-basin differences in CRPSS increase as hindcast 
initializations approach the beginning of the snowmelt season, ranging 0.57-0.69 on September 1. 
The same patterns, with small variations in ranges, are observed for the remaining representative 
objective functions and models (see Figures S7, S8 and S9 in Supporting Information).” 
 

 
Figure 7. Impact of initialization time on (a) CRPSS, (b) the a reliability index, and (c) R2 for seasonal 
streamflow hindcasts (period April/1987-March/2020) produced with the NSE as calibration 
objective function and the TUW model. The shades represent the 5th and 95th percentiles in each 
metric from the 22 case study basins, and the solid line represents the median value from the sample 
of catchments. 
 
Figure S2 is not cited, and supplementary figure S3 is wrongly numbered. 
 



We thank the reviewer for the detailed revision of our manuscript. Figure S2 is now cited in the 
revised manuscript (L272). Additionally, we have made sure that all the figures contained in the 
Supplementary material are correctly cited in the main manuscript.  
 
In respect of results, '(not shown)' is used multiple times in the manuscript. I would suggest it will be 
better to include it in the supplementary section if the results are an important part of the argument. 
 
We now include in the supplementary material most of the results that were referred to as ‘not shown’, 
in order to better support the arguments exposed here. 
 
I reiterate the scientific questions in the manuscript intend to improve the seasonal ensemble 
streamflow prediction by assessing its sensitivity to calibration metrics is an important question. 
However, improving the organization and presentability of results are required to understand the 
manuscript outcomes better. 
 
We agree with the Reviewer and thank him/her for the positive feedback and for his/her constructive 
review. 
 
 
 
  



Reviewer #2 
 
This study evaluates the effect of calibration, initial condition and choice of model structure on 
forecasting seasonal volumes in mountainous areas. To that end, the parameters of three conceptual 
models were calibrated for 22 river basins in Chile using 12 objective functions. The calibrated 
models were then used to produce ESP forecasts considering five initial conditions. The authors 
evaluated the quality of the spring-summer forecasts using 33 years of data given the different 
combinations of models, parameters and initial conditions. An evaluation of the links between 
forecast quality, model performance in simulating different streamflow signatures, and catchment 
characteristics was conducted. The authors found that the choice of objective function has an impact 
on forecast quality and that a high performance in simulating hydrological signatures does not ensure 
good forecast quality. The authors also found that these results depend to some extent on the 
hydrological model. 
 
As mentioned by the first reviewer, this study represents a significant amount of work. The subject is 
very relevant and has not been covered much in the literature. The differences in forecast quality and 
hydrological consistency for the different forecast combinations demonstrate that this study covers 
an important topic that needs to be considered for operational use. 
 
Given the amount of model/calibration/HIC combinations and the choice of presentation by the 
authors, the article is not very easy to understand. I also have several questions and comments on 
some of the methodological choices that were made. Because the questions, comments and 
corrections I am making below might require a lot of work, I think they should be considered in light 
of the choices that will be made to reorganize the paper. 
 
We express our gratitude to the referee for his/her meticulous review of our manuscript and for the 
constructive suggestions. We provide our responses below.  
 
Major comments: 
 
Twenty-two catchments with seasonal snowmelt contributions to total runoff were selected from the 
CAMELS-CL dataset for this study. It is stated (line 105) that “the selected basins are included in the 
CAMELS-CL dataset … and meet the following criteria…”. Were all the catchments meeting these 
criteria selected (resulting in a total of 22 catchments) or were there other mountainous catchments 
of CAMELS-CL meeting the same criteria? Although these catchments encompass a large variety of 
hydroclimatic conditions, a larger dataset would enable more general conclusions to be drawn from 
this study. If other catchments of CAMELS-CL were to meet the same criteria, I would suggest 
including them in this study. Since they come from the same open-source database, it would mean 
running the same calculations but for more catchments. 
 
Although we agree with the reviewer in that a larger sample of catchments would be desirable, there 
were no other Andean catchments meeting the six conditions. The most restrictive criteria are: (v) at 
least 75% of days with streamflow observations during the period April/1987 – March/2020, and (vi) 
at least 20 water years with seasonal (Sep-Mar) streamflow observations for hindcast verification 
purposes. We consider that these two requirements are essential for proper hydrologic model 
calibration and evaluation (since seasonal objective functions rely solely on Sep-Mar data 
availability) and a robust verification of seasonal streamflow hindcasts. We have added the following 
lines to section 2 to clarify this (L105-108): 
  
“The most restrictive conditions are (v) and (vi), which hinder the possibility to include additional 
mountainous catchments from CAMELS-CL; nevertheless, we consider that both requirements are 
essential for proper hydrologic model calibration and evaluation (since seasonal objective functions 
rely solely on Sep-Mar data availability) and a robust verification of seasonal streamflow hindcasts.” 
  



If the choice of selecting 22 catchments was driven by computation time restrictions, please consider 
mentioning it in the manuscript. 
 
The choice of catchments was not driven by computation time restrictions. Please see our previous 
response. 
 
As pointed out by the first reviewer, the manuscript can benefit from reorganizing the content. One 
way to reorganize the content would be to keep only one figure presenting the results for all 
models/objective functions/HICs (e.g. fig. 5, extended in height to enhance visualisation) and change 
the other figures so that they better highlight the conclusions of the paper.  
 
We agree with the reviewers that the original set of figures has a high degree of complexity. Hence, 
we have redesigned Figures 3 to 10 to make them easier to understand and to better highlight the key 
results and conclusions of this work. Following the reviewer’s recommendation, we now have only 
one figure (i.e., Figure 6, which contains CRPSS values) presenting the results for all models, all (12) 
calibration objective functions and hindcast initializations. Additionally, we have improved the 
methodology flow chart (Figure 3), and offer more detailed explanations in the text about the 
approach and results. 
 
A few related suggestions: 
 
Fig. 4 and section 4.1: I would have put this section at the end of the results section to illustrate the 
results. This figure could be reduced in terms of results by only keeping one model and two OFs (a 
popular OF and KGE(Q)+NSE(log(Q))) 
 
We appreciate the reviewer’s suggestion. However, we believe that it is important to illustrate first 
the individual basin calibration (Figure 3a) and the hindcast generation/verification (Figure 3b) steps 
in one case study basin. The extension of steps 3a and 3b (Figure 3) to the 22 case study catchments 
is the basis for subsequent analyses aiming to explore connections between seasonal hindcast 
performance, the hydrological consistency of streamflow simulations obtained with the various 
calibration metrics, and catchment characteristics. We now clarify this at the beginning of section 3 
(L140-145).  
 
“Figure 3 outlines our methodology, which includes four steps: (a) parameter calibration of three 
hydrological models (GR4J, TUW and SAC-SMA) configured in 22 snow-influenced basins using a 
suite of 12 objective functions; (b) seasonal (September-March) streamflow hindcast generation with 
the ESP method for 33 WYs (April/1987 - March/2020) and five initialization times, and verification 
of forecast quality attributes; (c) assessment of hydrological consistency through five streamflow 
signatures for the subset of best-performing objective functions in terms of hindcast attributes, and 
(d) analysis of possible relationships between catchment characteristics and ESP hindcast attributes.” 
 
Additionally, we have simplified the original Figure 8 (as also suggested by Reviewer #1) and placed 
it before the original Figure 4 (now Figure 5). These results are included in Section 4.1, which has 
been renamed to “Example: hydrologic model calibration and ESP at the Upper Maipo River basin”.  
Nevertheless, we fully agree that the information content of the original Figure 4 was excessive, and 
have hence simplified it from a 6 x 3 panel figure, to a 3 x 2 panel figure. We now show results from 
one model structure (TUW model) and three calibration metrics: NSE (a popular OF as the reviewer 
suggests), KGE(Q)+NSE(log(Q)), and VE-Sep, due to their relevance in the subsequent results and 
findings. 
 



 
Figure 5. Time series with ESP seasonal hindcasts (i.e., September-March runoff) initialized on July 
1 (left panels), and September 1 (right panels) for the Maipo at El Manzano basin. The boxes 
correspond to the interquartile range (IQR, i.e., 25th and 75th percentiles); the horizontal line in each 
box is the median, whiskers extend to the ±1.5·IQR of the ensemble, and the red dots represent the 
observations. The results were produced with the TUW model, using parameters obtained from 
calibrations conducted with NSE, KGE(Q)+NSE(log(Q)) and VE-Sep (see details in Section 3.1). 
Each panel displays the CRPSS, the reliability index α, and the coefficient of determination R2 
(computed using the ensemble forecast median). 
 
Fig. 5: to extend in height to enhance visualisation. 
 
We have modified this figure (now Figure 6) following the reviewer’s suggestion. We have also 
changed the colours to enhance visualization.  
 



 
Figure 6. Comparison of CRPSS obtained with different calibration objective functions. Each panel 
contains results for a specific combination of initialization time (rows) and hydrological model 
(columns), and each boxplot comprises results from the 22 case study basins. The boxes correspond 
to the interquartile range (IQR, i.e., 25th and 75th percentiles), the horizontal line in each box is the 
median, and whiskers extend to the ±1.5·IQR of the ensemble. The circle indicates the objective 
function providing the highest median within each family of calibration metric (identified with 
different colors), and the square indicates the objective function that delivers the best set of metric 
values using a specific combination of initialization time and hydrological model. 
 
Fig. 6: to move to the supplementary materials. 
 
We have moved this figure to the Supporting Information section (Figure S5), following the 
reviewer’s recommendation. 
 
Fig. 7: show only three OFs (pick the most relevant to highlight your conclusions), May 1 and Sep 1 
for initialization times and two forecast criteria. 
 
In response to the comments from Reviewers #1 and #2, we have redesigned Figure 7, showing three 
hindcast performance metrics and five initialization times from only one model structure (TUW), 
with parameters calibrated with only one objective function (NSE). We display the median (solid 
line) and the 5th & 95th percentiles from the 22 case study basin basins as a light-blue shade for each 
metric. We believe that the results from one model and one calibration metric are enough to 
communicate the same findings obtained for the remaining representative OFs and models: CRPSS 
and R2 (α-index) values increase (degrades) as hindcast initializations approach Sep. 1. We decided 
to keep all five initialization times to clearly show the progression of seasonal (i.e., September-March) 
hindcast quality during the austral winter. The extended version of the new Figure 6 (which contains 



all five representative objective functions) will be included in the Supporting Information. We make 
all these points in section 4.2 of the revised manuscript (L296-303): 
 
“Figure 7 illustrates how initialization time affects hindcast quality attributes when using NSE as 
calibration metric and the TUW model. As observed in the Upper Maipo River basin (Error! 
Reference source not found.), CRPSS and R2 (the α index) improve (degrades) as hindcasts 
initializations approach September 1, with considerable increments in skill on July 1 compared to 
May 1 and June 1 hindcasts. The skill of May 1 hindcasts is rather low (with CRPSS 5th and 95th 
percentiles, obtained from the 22 catchments, equal to 0.26 and 0.28, respectively) and does not 
improve considerably on June 1. Additionally, inter-basin differences in CRPSS increase as hindcast 
initializations approach the beginning of the snowmelt season, ranging 0.57-0.69 on September 1. 
The same patterns, with small variations in ranges, are observed for the remaining representative 
objective functions and models (see Figures S7, S8 and S9 in Supporting Information).” 

 
Figure 7. Impact of initialization time on (a) CRPSS, (b) the a reliability index, and (c) R2 for seasonal 
streamflow hindcasts (period April/1987-March/2020) produced with the NSE as calibration 
objective function and the TUW model. The shades represent the 5th and 95th percentiles in each 
metric from the 22 case study basins, and the solid line represents the median value from the sample 
of catchments. 
 
Fig. 8: keep only two OFs and present the daily hydrographs for two years in one of the validation 
periods. 
 
In response to the recommendations provided by reviewers #1 and #2, we have merged the originally 
proposed first and second evaluation periods into a single evaluation data set (which spans April/1987 
– March/1994 and April/2013 – March/2020). Hence, we show daily hydrographs for two water years 
from the evaluation data set, and the runoff seasonality curves are displayed jointly for these two 
periods. We decide to show results for three representative objective functions (the same as in Figure 
5), and place this figure before. 



 
Figure 4. (Left) Daily hydrographs (April/2009 – March/2011) and (right) monthly variation curves 
for evaluation data set (April/1987 – March/1994 and April/2013 – March/2020) at the Maipo en el 
Manzano River basin, obtained with the three models and three objective functions: (1) NSE, (2) 
KGE(Q)+NSE(log(Q)) and (3) VE-Sep. The daily KGE obtained with each model is displayed in the 
left panels, while right panels include the coefficient of determination (R2) between mean monthly 
simulated and observed runoff averages. 
 
Fig. 9: keep only two or three OFs and extend the figure in height. 
 
We have extended the figure (now numbered as Figure 8) in height and have simplified it by removing 
one of the signatures (F9M, since it contained very similar information of high flows than FHV), and 
showing the results from only one model (TUW). Nevertheless, we decided to keep the five 
representative objective functions for consistency with Figure 6, which highlights them as the best 
performing OFs per family. Additionally, we now show percent biases in hydrological signatures for 
the calibration period and for the combined evaluation data set, which combines the periods 
April/1987 – March/1994 and April/2013 – March/2020.  



 
Figure 8. Percent biases (y-axis) in hydrologic signatures (x-axis) obtained with the five 
representative objective functions and the TUW model for the (a) calibration (April/1994 – 
March/2013) and (b) evaluation dataset (April/1987 – March/1994 and April/2013 – March/2020). 
Each boxplot comprises results for our 22 case study basins. The boxes correspond to the interquartile 
range (IQR, i.e., 25th and 75th percentiles), the horizontal line in each box is the median, and whiskers 
extend to the ±1.5 ∙ 𝐼𝑄𝑅 of the ensemble. 
 
Fig. 10: remove the alpha and bias lines. Show only KGE or NSE for popular OFs. 
 
We have modified this figure (now numbered as Figure 9) following the reviewer’s suggestion. We 
have also removed the results from the KGE(Q)+KGE(1/Q) objective function because it did not add 
any relevant information relative to what is illustrated with the remaining objective functions. 
 



 
Figure 9. Variations in September 1 CRPSS (top panels) due to the choice of popular and alternative 
objective functions (shown in different boxplots), relative to the best performing OF in terms of 
forecast quality (VE-Sep). The dashed line indicates no difference (i.e., no loss) in forecast 
performance. The bottom panels display the average bias in hydrological signatures (computed over 
the calibration period and evaluation data set) with the associated ranking (being 1 the best in terms 
of hydrological consistency), and median average bias obtained from the sample of basins (in 
parentheses). 
 
I did not understand why the ESP forecasts were evaluated on both calibration and evaluation periods 
without separation in the result analyses. Even if there are 32 meteorological inputs for each 
forecasted year, and that they are different from the meteorological input of the forecasted year, the 
streamflow data used to calculate seasonal performance has already been “seen” by the model 
during calibration. Since one of the goals of this study is to evaluate the impacts of calibration on 
seasonal forecasts, I think the authors should consider the evaluation of forecast quality only on the 
evaluation periods (or better explain why it was done that way). 33-1 years of meteorological data 
can still be used for the ensemble forecasts of each forecasted year. To improve the analysis of the 
hydrological consistency of model simulations, the authors could perform a split-sample test. 
 
We agree with the reviewer in that, when the hindcasted year overlaps with the calibration period (as 
it happens with our experimental setup), the hydrological model gains information from 
meteorological inputs, even if the climate time series observed during that year are excluded from the 
generation of ESP hindcasts. In spite of this, we decided to take advantage of the entire 33-year period 
for hindcast verification, since small sample sizes (i.e., number of WYs) have been widely recognized 
as a serious limitation within the seasonal forecasting literature (e.g., Shi et al., 2015; Trambauer et 
al., 2015; Mendoza et al., 2017; Lucatero et al., 2018; Wood et al., 2018). This strategy enables a 
more robust assessment of seasonal hindcast quality, as opposed to using only the 14 WYs left for 
model evaluation. To demonstrate this point, we characterized the impact of sample size on the spread 
of CRPSS results by performing a bootstrap analysis with 1000 realizations for the Maipo River basin, 
using hindcasts produced with the TUW model and KGE(Q)+NSE(log(Q)) as the calibration metric 
(Figure 11). The analysis was conducted for the following verification samples: (a) full period (i.e., 
33 WYs) using the same parameter set, obtained by calibrating the model with data from the period 
April/1994 – March/2013; (b) full period, using parameter sets re-calibrated with all data except the 



hindcasted year (i.e., 33 parameter sets to produce 33 seasonal hindcasts); (c) 19 WYs (calibration 
periods), using a single parameter set obtained with data from the same period; (d) 14 WYs (i.e., 
evaluation data set April/1987 – March/1994 and April/2013 – March/2020), using the same 
parameter set as in case (c); and (e) 14 WYs (April/2006 – March/2020), using the same parameter 
set as in case (c). 
 
The results in Figure 11 show a considerable spread in CRPSS arising from sampling uncertainty 
when using 14-year verification periods (orange and cyan boxes). Additionally, the median CRPSS 
results are lower than those obtained with 19 and 33 WYs in July 1, August 1 and September 1. An 
interesting result is the similarity of CRPSS values obtained with scenarios (a) and (b), suggesting 
that the hindcasting generation and verification approach adopted here (i.e., using a single parameter 
set obtained by calibrating will all the years with available observations) is a good proxy to 
characterize the hindcast quality that would be obtained with an operational setup that considers 
parameter re-calibration for each forecasted season. 
 
We thank the reviewer for this thoughtful observation, and we have incorporated this analysis in the 
new section 5.5 (“Verification sample size”), contained in the discussion section (L421-441). 
 

 
Figure 11: Comparison of CRPSS values for seasonal (i.e., September-March) streamflow hindcasts 
produced at the Maipo River basin with the TUW model and KGE(Q)+NSE(log(Q)) as calibration 
metric. Each box comprises results from 1000 bootstraps with replacement applied to different 
verification sample sizes (i.e., number of hindcast-observation pairs): (a) full period (i.e., 33 WYs) 
using the same parameter set, obtained by calibrating the model with data from the period April/1994 
– March/2013 (blue); (b) full period, using parameter sets re-calibrated with all data except the 
hindcasted year (i.e., 33 parameter sets to produce 33 seasonal hindcasts, gray); (c) 19 WYs 
(calibration periods), using a single parameter set obtained with data from the same period (red); (d) 
14 WYs (i.e., evaluation data set April/1987 – March/1994 and April/2013 – March/2020), using the 
same parameter set as in case (c) (orange); and (e) 14 WYs (April/2006 – March/2020), using the 
same parameter set as in case (c) (cyan). The boxes correspond to the interquartile range (IQR, i.e., 
25th and 75th percentiles); the horizontal line in each box is the median, and the whiskers extend to 
the ±1.5 ∙ 𝐼𝑄𝑅 of the ensemble.  
 
Lines 21 and 435, the term “hydrologically consistent parameter set” is used. No analyses of 
parameter sets were made in this study, only the ability of the models to reproduce streamflow 
signatures was evaluated. A high performance for specific streamflow signatures may imply more 



consistency in simulating streamflow than using a “popular” metric. However, I would argue that it 
does not necessarily imply that the parameter sets of the models are more hydrologically consistent, 
as a model can be wrongly parameterized and the hypotheses behind not fit for the studied 
catchments. Even when a specific parameter set leads to better signature performance, equifinality 
of parameters can remain high, especially if the parameter sets yielding good performance vary 
between periods. As the manuscript already includes many results, I suggest considering a small 
analysis of the parameter sets of one of the models (e.g. TUWmodel that seems to be giving the highest 
forecast quality). This analysis would only be conducted for three objective functions (the one 
associated with the lowest hydrological consistency, the one associated with the highest hydrological 
consistency and KGE(Q)+NSE(log(Q)) which is the best compromise between forecast quality and 
hydrological consistency). In TUW model, not all the parameters would need to be assessed but, for 
instance, only the ones related to baseflow (in the TUWmodel package, it would be “param k2”) 
or/and snow, to relate the results to catchment attributes that have a strong correlation with forecast 
quality.  
 
We agree with the reviewer’s appreciation and, therefore, we have removed any references to 
“hydrologically consistent parameter sets” in the revised manuscript, replacing by “hydrologically 
consistent simulations”, as the reviewer suggests below. Despite we recognize that parameter 
equifinality can be substantial, characterizing such effects is out of the scope of this study. Recently, 
Muñoz-Castro et al. (2023) examined the effects of calibration metric selection and parameter 
equifinality on the level of (dis)agreement in parameter values across 95 catchments in Chile, finding 
that (i) the choice of objective function has smaller effects on parameter values in catchments with 
low aridity index and high mean annual runoff ratio, in contrast to dryer climates, and (ii) catchments 
with better parameter agreement also provide better performance across model structures and 
simulation periods. Future work could explore whether such performance in streamflow simulations 
translates well into seasonal forecast quality attributes. We will make these points in section 5.6 
(“Limitations and future work”) of the revised manuscript (L443-450). 
 
The variations of parameters between periods could then be evaluated (if you were to follow the 
previous comment about periods of calibration and evaluation). 
 
We appreciate the reviewer’s sentiment. Nevertheless, the assessment of temporal stability in 
hydrological model parameters is itself a topic worth of detailed investigation (e.g., Merz et al., 2011; 
Coron et al., 2012; Gharari et al., 2013; Fowler et al., 2018; Duethmann et al., 2020) that we prefer 
to leave for future work. We make this point in section 5.6 (“Limitations and future work”) of the 
revised manuscript (L450-454): 
 
“Additionally, calibration strategies (e.g., Gharari et al., 2013; Fowler et al., 2018) and model 
selection frameworks (e.g., Saavedra et al., 2022) advocating for consistent performance across 
different hydroclimatic conditions could be explored for seasonal forecasting applications.” 
 
Of course, this would need to be considered after a reorganisation of the manuscript (to better 
highlight the results already presented). It should not come in the same format as the other results. 
The content of the manuscript (in terms of results) needs to be reduced first. That being said, the 
publications needs some extra work. The main points that need attention are argumentation for 
hydrological model aggregation, the structure of text and figures, additional reflection on the 
meaning of study results, and the archiving of code and data. 
 
We have re-organized and re-designed most of the figures, reducing the amount of results included 
in the original submission, and we have revised the text accordingly. The data and codes used to 
produce the results presented here are correctly archived in a Zenodo repository (see our response 
below). 
 
Minor comments: 



 
The link to the Zenodo repository does not seem to be working anymore (last checked: 30/06). 
 
The Zenodo repository is working again (last checked: August 15, 2023). We attach the message from 
Zenodo Support. 
 

 
 
Lines 27 and 86: the term “for the right reasons” is a bit strong, as no additional data to streamflow 
was used for model evaluation. I suggest using “more hydrologically consistent simulations” as you 
did in the remaining of the paper. 
 
We have deleted any reference to “the right reasons”, and now refer to “hydrologically consistent 
simulations”, following the reviewer’s recommendation. 
  
Line 108: how were the seasonal snowmelt contributions calculated?  
 
We have deleted any reference to snowmelt contributions, since we did not estimate these. What we 
actually meant for criteria (iv) is that the selected basis have the requirement of snowmelt influence 
on runoff seasonality (i.e., they must have snow-driven, nivo-pluvial or pluvio-nival regimes, as 
described by Baez-Villanueva et al., 2021). We have modified the text in Section 2 to clarify this 
(L102-103). 
 
Line 155: the CemaNeige model also partitions total precipitation into liquid and solid precipitation. 
Liquid precipitation and snowmelt are fed to the soil moisture store.  
 
In response to the reviewer’s observation, we have re-worded the text in section 3.1.1 as follows 
(L59-161): 
 
“(…) The CemaNeige module first partitions total precipitation into liquid and solid, and then 
simulates snow accumulation and melt over five or more (user-defined; here we use 10) elevation 
bands, using a two-parameter degree-day based scheme (Valéry et al., 2014) that adds snowmelt and 
liquid precipitation to the soil moisture accounting reservoir. (…)”. 
 
Line 158: the GR4J model also includes a non-conservative function for water exchanges between 
topographical catchments.  
 
In response to the reviewer’s observation, we have added the following text in section 3.1.1 (L163-
164): 
 
“A groundwater exchange term acts on both flow components to represent water exchanges between 
topographical catchments.” 
 
Line 160: what do you mean by response area? 
 
We meant response routine. We have modified the text to clarify (L168). 
 
Sect 3.1.1: were different elevation bands considered in TUWmodel and SNOW17? 
 



No. These models were implemented in a lumped fashion. We clarify this at the end of section 3.1.1 
(L182-183): 
 
“While the CemaNeige is configured with 10 elevation bands, the snow routines of TUW and SAC-
SMA (i.e., SNOW-17) are implemented in a lumped fashion.” 
 
Sect 3.1.1: the three models used in this study were implemented within the R environment. These 
models and their exact implementation were described in (Astagneau et al., 2021; 
https://doi.org/10.5194/hess-25-3937-2021). In addition, the structures of the models are compared 
using a unified representation of the different storages and fluxes (Fig. 1). If, and only if, you used 
this paper to choose, implement or understand these models, you should cite it. Otherwise, please 
ignore this comment. 
 
We did not select the model structures based on the paper mentioned by this reviewer. Instead, these 
model structures were selected because they are widely used by the hydrology community (Addor 
and Melsen, 2019), with a myriad applications to streamflow forecasting. For example, SAC-SMA 
has been applied for testing alternative approaches (e.g., Mendoza et al., 2017), and is used to produce 
operational streamflow forecasts in the US (Micheletty et al., 2021). GR4J has been applied to assess 
streamflow forecasting frameworks in large samples of catchments (e.g., Harrigan et al., 2018; 
Woldemeskel et al., 2018). HBV-like conceptual models have been used to assess short (e.g., Pauwels 
and De Lannoy, 2009; Verkade et al., 2013) to long (e.g., Peñuela et al., 2020) range streamflow 
forecasts, especially in European countries. This explanation is included in section 3.1.1 (L151-157). 
 
Fig. 3 and sect. 3.1.2: I am not sure there is any validation of the models made in this study. For me, 
validation means that you are choosing one model over the other (or rejecting one) and evaluation 
means that you are evaluating the models outside the calibration period. Please consider replacing 
“validation” by “evaluation”. 
 
In response to the reviewer’s observation, we have replaced the term “validation” by “evaluation” in 
the text and the figures. Here, evaluation refers to the assessment of streamflow model simulations 
outside the calibration period (see L138). 
 
Sect 3.2: it could be useful to add a more detailed presentation of the ESP method (for instance by 
adding a reference to Fig. 3 of Crochemore et al., 2020; https://doi.org/10.1029/2019WR025700) 
and extend Fig. 3 that really helps to understand your framework. 
 
We have designed a new and more detailed flow chart to explain the methodology. Additionally, we 
have added a diagram inspired by Figure 3 in Crochemore et al. (2020) to explain the Ensemble 
Streamflow Prediction (ESP) method. 



 
Figure 3. Flowchart describing the approach used in this study. See text for details. 

  



Reviewer #3 

 
Thank you for the opportunity to review this manuscript. The authors have clearly put substantial 
effort into this work to analyzing impact of calibration metrics, and providing potentially valuable 
insights in mountainous areas.  
 
We greatly appreciate the reviewer’s positive feedback, as well as the time and consideration for 
providing constructive suggestions. 
 
While the overall presentation of the content is satisfactory, some of the arguments need stronger 
scientific support and detailed information. As other referees have already pointed out, the structure 
needs to be improved, while the content needs also to be filtered by relevance to reduce redundancy. 
 
In response to all the reviewers’ comments, we have re-organized the material and re-designed most 
of the figures, reducing the amount of results included in the original submission, and we have revised 
the text accordingly. 
 
In terms of specific comments: 
 
Lines 20-25, please expand or explain abbreviations when they are first used to ensure clarity. 
 
We have added a small explanation for these metrics: 

- Split KGE, which gives equal weight to each water year in the calibration time series (L20). 
- VE-Sep, which quantifies seasonal volume errors series (L22). 

 
The cited work "Troin et al., 2021" doesn't appear in the reference list. 
 
We have deleted this reference from the manuscript. 
 
Line 112, There is a typo error, should be "km2". 
 
Solved. Thanks! 
 
Line 123, could the authors expand on the underestimation they mention here? Is the underestimation 
from CR2MET or CAMELS dataset? 
 
In response to the reviewer’s observation, we have added the following text in section 2 (L130-133): 
 
“(…) Aconcagua at Chacabuquito (ACO) is the only basin with a mean annual runoff ratio larger 
than 1, which can be explained by (i) underestimation of catchment-averaged precipitation from 
CR2MET v2.0 or from the meteorological station records used to develop the gridded product, (ii) 
positive biases in streamflow records from the DGA’s stations due to uncertainties in stage-discharge 
relationships, or (iii) glacier and/or groundwater contributions. 
 
Line 123 and 126, similar as the previous comment: bias in runoff is mentioned in line 123, but it's 
unclear how this ties into the observed runoff mentioned in line 126. Further clarification would be 
useful. 
 
Please see our response to the previous comment. 
 
Could the authors clarify which dataset is used to conduct Figures 1 and 2? 
 
These graphs were produced using data retrieved from the CAMELS-CL database. We have added 
this information to the figure captions. 



 
On line 128, the manuscript mentions both basin-averaged precipitation from CR2MET and 
precipitation from CAMELS. Could the authors elaborate on how they are used? It would be helpful 
if they clarified the specific roles these data sources play in their analysis. 
 
CAMELS-CL contains daily time series of basin-averaged hydrometeorological variables retrieved 
from different sources, including CR2MET for the case of precipitation. To clarify this, we have 
added the following text in section 2 (L109-115): 
 
“We use daily time series of observed streamflow, and basin-averaged precipitation, mean air 
temperature and potential evapotranspiration (PET) retrieved from the CAMELS-CL database 
(Alvarez-Garreton et al., 2018), which compiles information from different sources: (i) streamflow 
observations acquired from stations maintained by the Chilean General Water Directorate (DGA), 
also available at the DGA’s website (https://dga.mop.gob.cl/); (ii) basin-averaged precipitation and 
mean temperature data derived from the gridded observational product CR2MET (DGA, 2017; 
Boisier et al., 2018) version 2.0, which provides information of these variables for continental Chile 
at a 0.05° x 0.05° horizontal resolution; and (iii) PET calculated with the formula proposed by 
Hargreaves and Samani (1985) using basin averaged temperature from CR2MET.” 
 
Line 240, I assume WY stands for Water Years? But this is not stated in the contents when they are 
first mentioned. 
 
Thank you for catching this. We now define the acronym WY in section 2 (L104). 
 
There are a large number of citations scattered throughout the paper, which makes it challenging to 
follow. Please consider revisiting these citations and remove any that may not be strictly necessary. 
 
We have removed citations where possible, following the reviewer’s recommendation. 
 
Again, thank you for the opportunity to review this work. With clarifications and improvements, I 
believe this paper has potential to make a valuable contribution to the field. 
 
We are grateful to the referee for his/her thorough review and for providing valuable and constructive 
suggestions. 
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