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Abstract. The Bayesian model averaging (BMA), hydrological uncertainty processor (HUP), and HUP-BMA methods have 7 

been widely used to quantify flood forecast uncertainty. This study proposed the CHUP-BMA method by introducing a 8 

copula-based HUP in the framework of BMA to bypass the need for normal quantile transformation of the HUP-BMA 9 

method. The proposed ensemble forecast scheme consists of 8 members (two forecast precipitation inputs, two advanced 10 

long short-term memory (LSTM) models, and two objective functions used to calibrate parameters) and is applied to the 11 

interval basin between Xiangjiaba and Three Gorges Reservoir (TGR) dam-site. The ensemble forecast performance of the 12 

HUP-BMA and CHUP-BMA methods is explored in the 6-168h forecast horizons. The TGR inflow forecasting results show 13 

that the two methods can improve the forecast accuracy over the selected member with the best forecast accuracy, and the 14 

CHUP-BMA performs much better than the HUP-BMA. Compared with the HUP-BMA method, the forecast interval width 15 

with the 90% confidence level and continuous ranked probability score metrics of the CHUP-BMA method are highest 16 

reduced by 28.42% and 17.86%, respectively. The probability forecast of the CHUP-BMA method has better reliability and 17 

sharpness and is more suitable for flood ensemble forecasts, providing reliable risk information for flood control decision-18 

making. 19 

1 Introduction 20 

Accurate and reliable flood forecasting is one of the necessary measures to reduce flood disasters and improve water 21 

resource utilization (Zhou et al., 2019; Vegad and Mishra, 2022). With the development of hydrological theory and flood 22 

forecasting techniques, the flood forecasting accuracy and lead time have been significantly improved in recent years (Xu et 23 

al., 2022; Cui et al., 2023). However, neither physically-based and conceptual hydrological models nor data-driven models 24 

can guarantee to obtain perfect forecasting in real conditions. Because of the influence of the changing environment and the 25 

limitations of human perception of complex hydrological processes, the meteorological forcing and other inputs, 26 

hydrological model structure, and parameters, etc., contain significant uncertainties (Cloke et al., 2009), which leads to the 27 

simulation and forecast results of the model inevitably containing integrated uncertainties from multiple sources (Liu et al., 28 

2022). Traditional flood forecasting schemes are mostly deterministic forecast results without considering forecast 29 
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uncertainty (Zhong et al., 2018a; Gelfan et al., 2018), which makes decision-makers unable to grasp useful risk information 30 

beyond the forecast value. Excessive superstition on a single forecast value will likely lead to poor decision-making 31 

(Krzysztofowicz et al., 1999). Therefore, it is essential to quantify and reduce flood forecast uncertainty in practical 32 

applications. 33 

Probabilistic flood forecasting is one of the effective methods to quantify integrated forecast uncertainty (Matthews et 34 

al., 2022). It not only provides a deterministic forecast value, but also provides forecast uncertainty (or risk) information by 35 

means of quantile, confidence interval, or density function (Biondi and Todini, 2018; Ferretti et al., 2020; Zhou et al., 2022), 36 

which is more scientifically reasonable and practically useful compared with deterministic forecasts and helps decision-37 

makers consider forecast risk quantitatively (Todini, 2008). Various probabilistic forecasting methods based on statistical 38 

post-processing of numerical forecast data have been developed in recent years. Among these methods, probabilistic 39 

ensemble forecasting is considered to overcome the limitations of a single model or a simple average with fixed model 40 

weights (Han and Coulibaly, 2017) and contains richer forecast information because it can consider the ensemble forecast 41 

results of multiple models to quantify and reduce integrated uncertainty that contains uncertainties in the inputs, model 42 

structure, and parameters (Li et al., 2017; Saleh et al., 2016). Bayesian model averaging (BMA), proposed by Raftery et al. 43 

(2005), uses the Bayesian theory and a total probability formulation to transform ensemble forecasts into probabilistic 44 

forecasts and is one of the most representative and reliable methods that has been widely used to supplement uncertainty 45 

information beyond point estimates (Shu et al., 2022). 46 

The BMA method is initially successfully applied to the ensemble forecast of meteorological elements such as 47 

temperature, precipitation, and wind speed (Raftery et al 2005; Sloughter et al, 2007; Sloughter et al, 2010). After 48 

confirming that the BMA method can effectively quantify forecast uncertainty and obtain highly accurate deterministic 49 

forecasts, it is widely used in hydrological forecasting to quantify forecast uncertainty from different sources, such as model 50 

inputs, structure, and parameters. The standard BMA method assumes that each member's posterior probability distribution 51 

approximately obeys a normal distribution (Huang et al., 2019; Guo et al., 2021). However, some variables, such as wind 52 

speed, rainfall, runoff, etc., usually obey skewed distributions and require methods such as Box-Cox to convert non-53 

Gaussian variables to standard normal variables that affect the accuracy of probability distribution estimation (Duan et al., 54 

2007; Liu et al., 2018). Many authors have investigated the applicability of BMA in flood ensemble forecasting and tried to 55 

overcome its limitations (Madadgar and Moradkhani, 2014; Darbandsari and Coulibaly,2020). Sloughter et al. (2010) 56 

proposed an improved BMA method by assuming that the posterior probability distribution of each member could obey a 57 

specific non-normal distribution (e.g., Gamma distribution) and using the member forecast values to estimate the mean and 58 

variance of the distribution. Madadgar and Moradkhani (2014) introduced the Copula function to solve the posterior 59 

probability distribution of members in the BMA method and proposed the Copula-based BMA method, which avoids the 60 

assumption of the posterior probability distribution and further reduces the application limitation of the BMA method. In 61 

order to ensure that the quantiles of forecast distributions after Box-Cox transformation are within the actual physical range, 62 

Baran et al. (2019) introduced upper and lower truncated normal distributions into the BMA, and found that the double 63 
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truncated BMA had reliable forecasting ability compared to ensemble model output statistics. The advantage was more 64 

obvious when rolling window training periods are used. Hemri et al. (2013) introduced the principle of geostatistical output 65 

perturbation into the BMA method and proposed a multivariate BMA, which extended the membership probability 66 

distribution into a multivariate normal distribution function. Relative to the univariate BMA method, the multivariate BMA 67 

can not only consider the temporal correlation between forecast flows, but also improve the forecast reliability when the 68 

forecast system was changing, i.e., fewer models were available due to dropping out at particular lead times. Meanwhile, the 69 

BMA method usually ensembles the forecast results of multiple models to be as close to the actual values as possible. 70 

However, too many ensemble members may generate redundant information. Darbandsari and Coulibaly (2020) introduced 71 

the Shannon entropy theory to select the forecast members that satisfy the above conditions before applying BMA. Their 72 

results showed that the BMA method incorporating entropy could improve the probabilistic forecasting performance for high 73 

flows over the standard BMA method. In addition, some studies have developed various methods based on the BMA 74 

principle, such as the multi-model ensemble forecasting method based on Vine Copula (Zhang et al., 2022) and the 75 

combination of BMA and data assimilation techniques (Parrish et al., 2012).  76 

However, most studies ignore an essential issue: the BMA does not consider the constraint of initial conditions (i.e., 77 

observed flow at the start of the forecast). It can be shown from Raftery et al. (2005) that the conditional distribution of the 78 

member (Qf,i) in the BMA is assumed to follow the normal distribution with expectation μi = ai+bi·Qf,i (ai and bi are the bias 79 

correction coefficients) and variance σi, which implies that the conditional distribution is only related to the member's 80 

forecasted flow and not affected by the observed flow at the forecast start time. It is unreasonable to produce the same 81 

posterior distribution when the forecast results are the same at different moments.  82 

The hydrological uncertainty processor (HUP) can obtain the posterior distribution function of the actual value under 83 

the condition of the forecast value and the observed flow at the start time based on Bayesian principles and the assumption of 84 

perfect rainfall forecasting (Krzysztofowicz and Kelly, 2000). Darbandsari and Coulibaly (2021) firstly utilized the HUP 85 

method to derive the posterior distribution of each member considering the initial constraints, and then used the BMA 86 

method to weight the conditional distribution of all members to obtain the final posterior distribution, which is called the 87 

HUP-BMA method. Their results showed that the HUP-BMA method outperforms the HUP method and improves the BMA 88 

method in short-term probabilistic forecasting. In addition, the derivability of the posterior distribution for the ensemble 89 

members is theoretically enhanced, the heteroskedasticity of the ensemble members is considered, and the interpretability 90 

and logical rationality of the BMA method are improved. 91 

Although it has been demonstrated that considering initial conditions in the BMA method can improve ensemble 92 

forecast performance, there are still issues to be explored. The HUP-BMA method requires a normal quantile conversion 93 

method to convert the flow data series to Gaussian space to solve the posterior distribution. The process is not only tedious 94 

and complicated, but also prone to bias in the inverse conversion. To this end, Liu et al. (2018) adopted the copula to derive 95 

the conditional distribution of the observed flow under the conditions of the forecasted flow, which avoids the assumption 96 

that the flow series obeys a normal distribution in the HUP and relaxes the application limitation. The study shows that the 97 
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CHUP can improve the probabilistic forecasting performance of the HUP method. It is anticipated that coupling CHUP to 98 

the BMA may improve the HUP-BMA accuracy and applicability, which motivates the current study. 99 

The main innovations and research steps are shown as follows: (1) A novel CHUP-BMA method is proposed for the 100 

first time by coupling CHUP into BMA, which not only avoids the normal distribution assumption in HUP-BMA, but also 101 

considers the constraints of the initial condition of the forecast. (2) An ensemble forecast containing eight members is 102 

constructed by combining two types of forecast precipitation, two long short-term memory (LSTM) models, i.e., the 103 

recursive encoder-decoder structure-based LSTM-RED model and the feature-temporal dual attention-based DA-LSTM-104 

RED model, and two objective functions of model calibration. (3) The ensemble forecast performance of the proposed 105 

method is analysed and discussed in comparison to the HUP-BMA benchmark method in terms of the deterministic and 106 

probabilistic forecasts. The interval basin between Xiangjiaba Dam and the Three Gorges Dam in the Yangtze River, China, 107 

is selected as case study. 108 

The rest of the paper is organized as follows. Section 2 introduces the case study and materials. The methods are 109 

presented in Section 3. Section 4 evaluates the deterministic and ensemble forecast results. Conclusions and prospects are 110 

given in Section 5. 111 

2 Case study and materials 112 

2.1 Study basin 113 

Three Gorges Reservoir (TGR) is the largest hydraulic project in the world and plays a vital role in flood control, power 114 

generation, and other water resource management issues (Zhong et al., 2020). The TGR controls a watershed area of about 1 115 

million km2. The total reservoir capacity is about 39.3 billion m3, with a flood control capacity of about 22.15 billion m3.  116 

The TGR inflow is directly influenced by the runoff yield of the cascade reservoir interval-basin between Xiangjiaba 117 

and TGR (Fig.1), with a basin area of about 127,400 km2 (Zhou et al., 2019). The inflow of the TGR consists of the outflow 118 

discharge from the Xiangjiaba Reservoir, the inflow of several tributaries such as Min, Tuo, Jialing, and Wu Rivers, and the 119 

rainfall of the interval-basin. The flow sources are complex and have different effects on the TGR inflow. Moreover, TGR is 120 

a river-type reservoir with a length of about 600 km at the normal storage level (175m) and an average width of only 1.1 km, 121 

resulting in uncertainty in rainfall intensity and storm-centre positioning (Zhong et al., 2020). Therefore, there is significant 122 

uncertainty in the flood forecast of TGR. It has been a major challenge to quantify and reduce forecast uncertainty. 123 

Table 1 shows the flow propagation time from the hydrological control stations of the mainstream and tributaries to the 124 

TGR dam. The outflow discharge of Xiangjiaba Reservoir, located on the Jinsha River, is observed at the Pingshan 125 

hydrological station and represents the mainstream flow. The discharge values from large tributaries (Min, Jialing, Tuo, and 126 

Wu Rivers) are observed at the Gaochang, Fushun, Beibei, and Wulong hydrological stations, respectively.  127 

 128 



5 

 

 129 

Fig. 1 Schematic diagram of the interval-basin between Xiangjiaba and TGR dam-site which is divided into three sub-regions. 130 

 131 

Considering the uneven distribution of rainfall intensity because of the narrow and long basin, the interval basin 132 

between Xiangjiaba and TGR dam-site is divided into three sub-basins: Pingshan-Cuntan, Cuntan-Wanxian, and Wanxian-133 

TGR dam-site. Their watershed areas are 76,900, 22,900, and 27,600 km2 respectively. Meanwhile, there are 45, 38, and 60 134 

gauged rainfall stations in these three sub-regions, respectively.  135 

 136 

Table 1 List of flow propagation time for hydrological control stations to TGR dam-site 137 

Rivers Hydrological control stations To TGR dam flow propagation time (h) 

Jinsha Pingshan 48-66 

Min Gaochang 48-66 

Jialing Beibei 24-42 

Tuo Fushun 42-60 

Wu Wulong 15-30 

 138 
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2.2 Study materials 139 

This study collects 6h observed flow discharges at TGR dam-site and five hydrological stations (Table 1), and 6h 140 

observed rainfall in the interval-basin during the 2010-2021 flood season (May-September). The Tyson polygon method is 141 

used to calculate areal average rainfall using rainfall station data for each sub-basin area. Meanwhile, this study collects the 142 

forecasted precipitation data issued by the European Centre for Medium-Range Weather Forecasts (ECMWF) and the 143 

Hydrology Bureau of the Yangtze River Water Resources Commission (HBYRWRC) for the 2017-2021 flood season in the 144 

three sub-basins. Their forecast time starts at 8:00, with the 6-168h forecast horizons and the 6h forecast interval. The spatial 145 

resolution of each grid for the ECMWF forecasted precipitation is 0.125°×0.125°. The HBYRWRC forecasted precipitation 146 

is the areal average forecasted precipitation data. 147 

The training period is from 2010 to 2016, and the validation period is from 2017 to 2021. Since the precipitation 148 

forecast starts at 8:00 a.m., the forecasted flow for the 6-168h forecast horizons is also calculated from the daily 8:00 a.m. in 149 

the validation period. 150 

3 Methods 151 

3.1 Proposed CHUP-BMA method 152 

3.1.1 Bayesian model averaging (BMA) 153 

Bayesian model averaging (BMA) method’s principle is as follows. 154 

𝑝(𝑄𝑜|𝑄𝑓,1, 𝑄𝑓,2, … , 𝑄𝑓,𝑘) = ∑ 𝑤𝑖 ∙

𝑘

𝑖=1

𝑝(𝑄𝑜|𝑄𝑓,𝑖) (1) 

where, where, p(·) denotes the probability density function. Qo denotes the observed flow corresponding to the forecast 155 

moment (target value). k is the number of ensemble members. Qf denotes the forecasted flow of ensemble members. wi 156 

denotes the weight of the i-th model. p(Qo|Qf,i) denotes the conditional probability density of Qo conditional on Qf,i , which is 157 

assumed to approximately obey a normal distribution with the expectation of μi = ai+bi·Qf,i and variance of σi. ai and bi are the 158 

bias correction coefficients obtained by linear fitting of Qf,i to Qo. 159 

Therefore, Eq. (1) can be rewritten as follows. 160 

𝑝(𝑄𝑜|𝑄𝑓,1, 𝑄𝑓,2, … , 𝑄𝑓,𝑘) = ∑ 𝑤𝑖 ∙

𝑘

𝑖=1

𝑁(𝑄𝑜|𝜇𝑖, 𝜎𝑖) (2) 

From Eq. (2), it can be seen that the BMA method does not consider the influence of the initial state (the actual 161 

observed flow at the start of the forecast) on the posterior distribution. When the member forecasts at different times are the 162 

same, the posterior probability distribution generated by the BMA is also the same, which lacks logical rationality. 163 
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3.1.2 Hydrological uncertainty processor (HUP) 164 

Based on the assumption that the precipitation uncertainty is zero, under the condition that the i-th ensemble member 165 

forecasts (Qf,i) and the observed flow at the start of the forecast (Qb), the posterior distribution of Qo derived by the HUP 166 

method is as follows. 167 

𝑝(𝑄𝑜|𝑄𝑓,𝑖 , 𝑄𝑏) =
𝑝(𝑄𝑓,𝑖|𝑄𝑜 , 𝑄𝑏) ∙ 𝑝(𝑄𝑜|𝑄𝑏)

∫ 𝑝(𝑄𝑓,𝑖|𝑄𝑜 , 𝑄𝑏) ∙ 𝑝(𝑄𝑜|𝑄𝑏)𝑑𝑄𝑜
+∞

−∞

 (3) 

where, p(Qo|Qb) is the prior density function, p(Qf,i|Qo,Qb) is the likelihood density function. p(Qo|Qf,i,Qb) is the posterior 168 

density function. 169 

The HUP method assumes that flow series transformed to normal space obey the Gaussian distribution. The cumulative 170 

distribution function is different for forecasted and observed flows. The common normal quantile transformation is key to 171 

the application of the HUP method, which its significance is to make the HUP method applicable to variables with any 172 

marginal distributions, heteroskedasticity, and nonlinear dependence structures (Krzysztofowicz and Kelly, 2000; 173 

Darbandsari and Coulibaly, 2021). 174 

�̂�𝑜 = 𝑁−1(𝑃(𝑄𝑜)), �̂�𝑓,𝑖 = 𝑁−1(𝑃(𝑄𝑓,𝑖)) (4) 

where, P(∙) denotes the probability distribution function.  𝑁−1(∙)  denotes the inverse function of the standard normal 175 

distribution. �̂�𝑜 and �̂�𝑓,𝑖 are the observed and forecasted flow transformed to the normal space, respectively. 176 

The HUP method also assumes that the observed flow obeys the strictly stationary first-order Markov process 177 

(Krzysztofowicz and Kelly, 2000), i.e., the flows between adjacent forecast horizons obey the linear constraint after the 178 

normal transformation. 179 

�̂�𝑜,𝑡 = 𝑐𝑡 × �̂�𝑜,𝑡−1 + 𝜀𝑡 (5) 

where, �̂�𝑜,𝑡 is the observed flow corresponding to the t-th forecast horizon. c is the regression coefficient. ε is the residual, 180 

obeying N(0,1-ct
2). 181 

The prior density function expressions are as follows. 182 

𝑝(�̂�𝑜,𝑡|�̂�𝑏) =
1

(1 − 𝐶𝑡
2)0.5

𝑛 {
�̂�𝑜,𝑡 − 𝐶𝑡 × �̂�𝑏

(1 − 𝐶𝑡
2)0.5

} , 𝐶𝑡 = ∏ 𝑐𝑖

𝑡

𝑖=1

 (6) 

where, 𝑛(∙) denotes standard normal density function; �̂�𝑏 is the observed flow at the start of the forecast transformed to the 183 

normal space. 184 

�̂�𝑏 , �̂�𝑜, and �̂�𝑓,𝑖 are assumed to obey a linear relationship. The expression of the likelihood function in normal space is 185 

as follows. 186 

�̂�𝑓,𝑖,𝑡 = 𝑎𝑡 × �̂�𝑜,𝑡 + 𝑑𝑡 × �̂�𝑏 + 𝑏𝑡 + 𝜃𝑡 

(7) 
𝑝(�̂�𝑓,𝑖,𝑡|�̂�𝑜,𝑡 , �̂�𝑏) =

1

𝜎𝑡

𝑛 {
�̂�𝑓,𝑖,𝑡 − (𝑎𝑡 × �̂�𝑜,𝑡 + 𝑑𝑡 × �̂�𝑏 + 𝑏𝑡)

𝜎𝑡

} 
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where, 𝜃𝑡 is an independent variable obeying N(0,𝜎𝑡
2). 𝑎𝑡, 𝑑𝑡, and 𝑏𝑡 are regression coefficients. 187 

The posterior density function under normal space can be derived by substituting Eqs. (6) and (7) into Eq. (3). 188 

𝑝(�̂�𝑜,𝑡|�̂�𝑓,𝑖,𝑡 , �̂�𝑏) =
1

𝑌𝑡

𝑛 {
�̂�𝑜,𝑡 − (𝐴𝑡 × �̂�𝑓,𝑖,𝑡 + 𝐷𝑡 × �̂�𝑏 + 𝐵𝑡)

𝑌𝑡

}, 

𝐴𝑡 =
𝑎𝑡𝑦𝑡

2

𝑎𝑡
2𝑦𝑡

2 + 𝜎𝑡
2 , 𝐵𝑡 =

−𝑎𝑡𝑏𝑡𝑦𝑡
2

𝑎𝑡
2𝑦𝑡

2 + 𝜎𝑡
2 , 𝐷𝑡 =

𝐶𝑡𝜎𝑡
2 − 𝑎𝑡𝑑𝑡𝑦𝑡

2

𝑎𝑡
2𝑦𝑡

2 + 𝜎𝑡
2 , 𝑌𝑡 = (

𝑦𝑡
2𝜎𝑡

2

𝑎𝑡
2𝑦𝑡

2 + 𝜎𝑡
2)

0.5

, 𝑦𝑡
2 = 1 − 𝐶𝑡

2 

(8) 

The posterior distribution function under the normal space can be converted to the original space by Jacobian 189 

transformation (Liu et al., 2016). The posterior density function of 𝑄𝑜,𝑡 under 𝑄𝑓,𝑖,𝑡 and 𝑄𝑏 conditions is as follows. 190 

𝑝(𝑄𝑜,𝑡|𝑄𝑓,𝑖,𝑡 , 𝑄𝑏) =
𝐽(𝑄𝑜,𝑡)

𝑌𝑡

𝑛 {
𝑁−1 (𝑃(𝑄𝑜,𝑡)) − 𝐴𝑡𝑁−1 (𝑃(𝑄𝑓,𝑖,𝑡)) − 𝐷𝑡𝑁−1(𝑃(𝑄𝑏)) − 𝐵𝑡

𝑌𝑡

}, 

𝐽(𝑄𝑜,𝑡) =
𝑝(𝑄𝑜,𝑡)

𝑛 (𝑁−1 (𝑃(𝑄𝑜,𝑡)))
 

(9) 

where, J(∙) is the Jacobian transformation function. 191 

3.1.3 HUP-BMA method 192 

Darbandsari and Coulibaly et al. (2021) applied the hydrological uncertainty processor (HUP) to the ensemble forecast 193 

members, substituted the posterior density function obtained by the HUP method (Eq. (9)) into the BMA framework (Eq. 194 

(2)), and then obtained the posterior distribution function of the target flow based on the initial state and the forecasted flow 195 

of the ensemble member. Therefore, the expression of the HUP-BMA method is as follows. 196 

𝑝(𝑄𝑜|𝑄𝑓,1, 𝑄𝑓,2, … , 𝑄𝑓,𝑘, 𝑄𝑏) = ∑ 𝑤𝑖 .
𝐽(𝑄𝑜,𝑡)

𝑌𝑡

𝑛 {
𝑁−1 (𝑃(𝑄𝑜,𝑡)) − 𝐴𝑡𝑁−1 (𝑃(𝑄𝑓,𝑖,𝑡)) − 𝐷𝑡𝑁−1(𝑃(𝑄𝑏)) − 𝐵𝑡

𝑌𝑡

}

𝑘

𝑖=1

 (10) 

3.1.4 Copula-based HUP-BMA (CHUP-BMA) method 197 

(1) Copula-based HUP 198 

According to Sklar's theorem (Sklar, 1959), the joint distribution of m variables is as follows. 199 

𝑃(𝑥1, 𝑥2, … … , 𝑥𝑚) = 𝐶𝑚(𝑃(𝑥1), 𝑃(𝑥2), … … , 𝑃(𝑥𝑚)) (11) 

where, 𝐶𝑚(∙) denotes the m-dimensional copula distribution. 200 

The copula-based HUP method (CHUP) was proposed by Liu et al. (2018), which can avoid the normal quantile 201 

transformation process of the flow series in the standard HUP method. With the help of the copula function, the prior density 202 

function in Eq. (3) can be derived as follows. 203 

𝑝(𝑄𝑜|𝑄𝑏) =
𝜕2𝐶2(𝑃(𝑄𝑜), 𝑃(𝑄𝑏))

𝜕𝑃(𝑄𝑜)𝜕𝑃(𝑄𝑏)
∙

𝑑𝑃(𝑄𝑜)

𝑑𝑄𝑜

= 𝑐2(𝑃(𝑄𝑜), 𝑃(𝑄𝑏)) ∙ 𝑝(𝑄𝑜) (12) 
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where, 𝑐𝑚(∙) denotes the m-dimensional copula density function. m denotes the dimension. 204 

The likelihood density function in Eq. (3) can be derived as follows. 205 

𝑝(𝑄𝑓,𝑖|𝑄𝑜 , 𝑄𝑏) =

𝜕3𝐶3(𝑃(𝑄𝑜), 𝑃(𝑄𝑓,𝑖), 𝑃(𝑄𝑏))

𝜕𝑃(𝑄𝑜) ∙ 𝜕𝑃(𝑄𝑓,𝑖) ∙ 𝜕𝑃(𝑄𝑏)

𝜕2𝐶2(𝑃(𝑄𝑜), 𝑃(𝑄𝑏))
𝜕𝑃(𝑄𝑜) ∙ 𝜕𝑃(𝑄𝑏)

∙
𝑑𝑃(𝑄𝑓,𝑖)

𝑑𝑄𝑓,𝑖

=
𝑐3(𝑃(𝑄𝑜), 𝑃(𝑄𝑓,𝑖), 𝑃(𝑄𝑏))

𝑐2(𝑃(𝑄𝑜), 𝑃(𝑄𝑏))
∙ 𝑝(𝑄𝑓,𝑖) (13) 

The posterior density function in Eq. (3) can be derived as follows. 206 

𝑝(𝑄𝑜|𝑄𝑓,𝑖 , 𝑄𝑏) =
𝑐3(𝑃(𝑄𝑜), 𝑃(𝑄𝑓,𝑖), 𝑃(𝑄𝑏))

∫ 𝑐3(𝑃(𝑄𝑜), 𝑃(𝑄𝑓,𝑖), 𝑃(𝑄𝑏))𝑑𝑃(𝑄𝑜)
1

0

∙ 𝑝(𝑄𝑜) (14) 

(2) Copula-based HUP-BMA method 207 

Applying CHUP to the i-th ensemble member, the posterior probability distribution function 𝑝(𝑄𝑜|𝑄𝑓,𝑖 , 𝑄𝑏) of 𝑄𝑜 based 208 

on 𝑄𝑓,𝑖 and 𝑄𝑏  can be obtained. Coupling 𝑝(𝑄𝑜|𝑄𝑓,𝑖 , 𝑄𝑏) into the BMA framework, the copula-based HUP-BMA (CHUP-209 

BMA) method can be constructed, and Eq. (2) can become as follows. 210 

𝑝(𝑄𝑜|𝑄𝑓,1, 𝑄𝑓,2, … , 𝑄𝑓,𝑘 , 𝑄𝑏) = ∑ 𝑤𝑖 ∙

𝑘

𝑖=1

𝑐3(𝑃(𝑄𝑜), 𝑃(𝑄𝑓,𝑖), 𝑃(𝑄𝑏))

∫ 𝑐3(𝑃(𝑄𝑜), 𝑃(𝑄𝑓,𝑖), 𝑃(𝑄𝑏))𝑑𝑃(𝑄𝑜)
1

0

∙ 𝑝(𝑄𝑜) (15) 

The forecast uncertainty is quantified by the forecast interval with a 90% confidence level. Before constructing the 211 

copula, selecting the marginal distribution and the copula type is usually necessary. This study intends to select the 212 

appropriate marginal distribution and copula function from five common distribution functions, such as Pearson type III (P-213 

III), Gamma, Normal, Lognormal, and Weibull, and five common copula functions, such as Gumbel-Hougaard, Frank, 214 

Clayton, Student-t (Student) and Gaussian copula, according to the root mean square error (RMSE) minimization criterion, 215 

respectively. The definition and mathematical expressions of copula functions can be referred to Liu et al. (2018) and Chen 216 

and Guo (2019). 217 

Darbandsari and Coulibaly (2021) demonstrated that the HUP-BMA method could improve the probabilistic forecasting 218 

performance of the HUP and BMA methods in the short forecast horizons. Therefore, this paper focuses on analyzing and 219 

comparing the performance of the HUP-BMA and CHUP-BMA methods. The HUP-BMA and CHUP-BMA methods only 220 

calibrate the ensemble members’ weights through the Expectation-Maximization (EM) algorithm (Darbandsari and 221 

Coulibaly, 2021). Meanwhile, since the forecast accuracy of ensemble members may change with time due to seasonality 222 

and other factors (Zhong et al., 2020), the sliding window approach is used to update the weighting parameters. Parrish et al. 223 

(2012) and Darbandsari and Coulibaly (2019) have shown that the BMA method with the sliding window can obtain better 224 

probabilistic forecast performance compared to the method without the sliding window.  225 
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3.2 Ensemble forecasting scheme 226 

An ensemble forecast scheme containing multi-source uncertainties in the model input, the model structure, and the 227 

parameter is constructed using a multi-member approach consisting of two forecasted precipitation, two models, and two 228 

objective functions used to calibrate parameters, as shown in Fig. 2. 229 

 230 

 231 

Fig. 2 The TGR’s flood ensemble forecast scheme 232 

 233 

3.2.1 Model input uncertainty 234 

There are five flow discharge inputs from five large tributaries (Jinsha, Min, Jialing, Tuo, and Wu Rivers) in our case 235 

study. The flow discharges are observed at the Pingshan, Gaochang, Fushun, Beibei, and Wulong hydrological controlled 236 

stations, respectively. Since these observed (or forecasted) flows are respectively regulated by their upstream cascade 237 

reservoirs, these flow data inputs are more accurate than the rainfall inputs. This study collected the forecasted precipitation 238 

data from the European Centre for Medium-Range Weather Forecasts (ECMWF) and HBCWRC in these three sub-basins. 239 

Since the rainfall data is more diverse and has relatively large uncertainty, the forecast rainfall input variable is used to 240 

explore the impact of forecast rainfall uncertainty on the TGR inflow forecasts. The TGR is a river-type reservoir, so 241 

building a river confluence model for flood forecasting is necessary. The observed and forecasted precipitations are 242 

converted to effective precipitation, i.e., the precipitation after the loss of plant retention, infiltration, evaporation, etc., to 243 

consider the runoff yield in the three sub-basin areas. The rainfall-runoff relationship (Fedora and Beschta, 1989) commonly 244 

used in the Yangtze River basin to calculate the effective precipitation. The antecedent precipitation index, which is the key 245 

variable of the method, can be calculated by the following equation to represent the soil moisture content (Zhong et al., 246 

2018b). 247 

𝑃𝑎,𝑡+1 = 𝑘(𝑃𝑎,𝑡 + 𝑃𝑡) (16) 

𝑃𝑎,𝑡+1 ≤ 𝐼𝑚 (17) 
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where Pa denotes the antecedent precipitation index, Pt is the daily precipitation, Im is the water storage capacity of the basin, 248 

k denotes evaporation reduction index.  249 

The values of k and Im for these three sub-basins are listed in Table 2, which are obtained from the Hydrological Bureau 250 

of the Changjiang Water Resources Commission (HBCWRC). Since the rainfall-runoff relationship graph method have been 251 

widely used for runoff generation calculation in the Yangtze River basin, the rainfall-runoff relationship between Xiangjiaba 252 

and Three Gorges Dam-site uncontrolled interval basin are established and plotted in Fig. 3, which is used to calculate the 253 

effective precipitation based on the antecedent precipitation index (Pa) and observed (or forecasted) precipitation for these 254 

three sub-basins.  255 

 256 

 257 

Fig. 3 Rainfall-runoff relationship between Xiangjiaba and Three Gorges Dam-site uncontrolled interval basin 258 

 259 

Table 2 The k and Im values for the three sub-basin areas 260 

Sub-basin k Im 

Pingshan-Cuntan 0.90 50 

Cuntan-Wanxian 0.95 80 

Wanxian-TGR dam-site 0.95 80 

 261 

After obtaining the daily antecedent precipitation index at 8:00, the antecedent precipitation index for the 6-h time scale 262 

is calculated as follows. 263 

𝑃𝑎,𝑡,𝑚 = (𝑃𝑎,𝑡 + ∑ 𝑃𝑡,𝑛) × 𝑘
ℎ

24 (18) 
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where, 𝑃𝑎,𝑡,𝑚  denotes the antecedent precipitation index at m:00 on the t-th day. ∑ 𝑃𝑡,𝑛  denotes the cumulative observed 264 

precipitation from 8:00 to m:00 on the t-th day. h denotes the time gap from 8:00 to m:00 on the t-th day. 265 

3.2.2 Model structure uncertainty 266 

The TGR inflow forecasting is influenced by the upstream mainstream and tributary reservoir scheduling decisions, the 267 

rainfall intensity and distribution in the interval basin, and the changes in the subsurface characteristics, which is challenging 268 

to establish complex and physical-based hydrological models (Yang et al., 2019; Cho et al., 2022; Hauswirth et al., 2023). 269 

The simulation or forecast accuracy in this interval-basin needs to be improved to meet the needs of the work. Therefore, two 270 

advanced data-driven models for obtaining multi-step-ahead flood processes forecasting, namely the long short-term 271 

memory (LSTM-RED) model based on an encoder-decoder structure and the coupled dual attention LSTM-RED (DA-272 

LSTM-RED) model, are used for confluence calculations as a way to consider the uncertainty in the model structure. Since 273 

the forecast data series at the outlets of tributaries are inconsistent, the observed flow at the outlets of five large tributaries 274 

are used to train and validate the proposed models. 275 

(1) Long short-term memory model based on encoder-decoder structure 276 

The structure of LSTM neural network includes forgetting gate, input gate, updating the state of the memory unit, and 277 

output gate (Hochreiter and Schmidhuber, 1997). The forgetting gate can select the relatively important information in the 278 

previous memory unit. The input gate can select useful information from the input variables at the current moment. The 279 

memory unit state can store relatively important information extracted from historical moments, which is updated under the 280 

control of the forgetting gate and the input gate. The output gate selects and outputs useful information from the memory cell 281 

state. More detailed procedures of the LSTM neural network formulation have been described by Kratzert et al. (2018). 282 

This study nests an LSTM neural network into a recursive encoder-decoder (RED) structure that can be obtained for 283 

forecasting flood processes to build an LSTM-RED model. Among them, the RED structure is similar to that of Kao et al. 284 

(2020). The description of the LSTM neural network can be found in Cui et al. (2022). The encoding process of the RED 285 

structure is used to extract the critical information (Ct) of the input (Xiang et al., 2020). In the decoding process, forecast 286 

information of the same category as the encoding process is input to neural network of the latter moment, besides the Ct and 287 

the output of the hidden layer at the previous moment. 288 

(2) LSTM-RED neural network coupled dual attention mechanism 289 

The LSTM-RED model based on the dual attention mechanism (DA-LSTM-RED) is established by adding the feature-290 

temporal dual attention mechanism to the LSTM-RED model, which can enable the model to highlight effective information 291 

in different types and moments of the input. The DA mechanism (Fig. 4) consists of the feature attention module, the 292 

temporal attention module, and the forecast input processing module. 293 

The feature attention module can adaptively highlight the critical input types by assigning feature weights to the input 294 

of the encoding process (Qin et al., 2017). The temporal attention module can highlight the information (hidden layer states) 295 

extracted at critical time step by assigning temporal weights to the information extracted at all time step in the encoding 296 



13 

 

process (Ding et al., 2020). Meanwhile, the feature weights are averaged based on temporal weights and applied them to the 297 

forecast information inputted in the decoding process, thus highlighting the key forecast input variables. The principle of the 298 

DA-LSTM-RED model can be found in Cui et al. (2023). 299 

 300 

 301 

Fig. 4 Schematic diagram of the DA-LSTM-RED model. e and d are the encoding and decoding processes, respectively. k is the number of 302 

input types. Xz,e is the input variables of encoding process, Xz,e={𝑥𝑧,𝑒
1 , 𝑥𝑧,𝑒

2 , … , 𝑥𝑧,𝑒
𝑘−1, 𝑦𝑧,𝑒}. αz denotes the weights of the input variables, 303 

αz={𝛼𝑧
1 , 𝛼𝑧

2 , … , 𝛼𝑧
𝑘}. m is the input time-steps in the encoding process. S is the hidden layer output. n is the maximum forecast horizon. He 304 

is the hidden layer state, He={ℎ1
𝑒 , ℎ2

𝑒 , … , ℎ𝑚
𝑒 }. βt denotes the weights of the hidden layer states of the encoding process, βt={𝛽𝑡

1 , 𝛽𝑡
2 , … , 𝛽𝑡

𝑚}. 305 

C denotes the key information highlighted by the temporal attention. �̅� denotes the forecast input weights.  306 

 307 

(3) Model input and hyperparameter selection 308 

In this study, the input types for the encoding process include effective precipitation in the three sub-basins, flow 309 

discharge in the mainstream and tributaries (i.e., five hydrological stations in Table 1), and previously observed inflow to the 310 
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TGR for a total of nine types data. In order to make the model learn comprehensive information, input variables with the last 311 

11-time steps (66h) are inputted to the encoding process according to the flow propagation times from the hydrological 312 

stations to the TGR dam site in Table 1.  313 

The forecasted effective precipitation, the forecasted flow of the mainstream and tributaries, and the forecasted flow for 314 

the previous forecast horizon are used as inputs of the decoding process. Among them, the forecasted effective precipitation 315 

is calculated by the observed precipitation during the training period and by the forecast precipitation during the validation 316 

period. The forecasted flow of the upstream mainstream and tributaries is replaced by the observed flow during the training 317 

and validation periods. The TGR’s observed inflow for the 6-168h forecast horizons is the target output, needed for practical 318 

forecasting. 319 

The input and output data are handled by the normalization method. Moreover, the trial-and-error method is used for 320 

debugging the network hyperparameters. The model is trained by the Adam method (Kingma& Ba, 2014).  321 

3.2.3 Model parameter uncertainty 322 

Different parameter-optimization objective functions may focus on different forecast results (Zhong et al., 2020). For 323 

example, the mean absolute error function focuses on the magnitude of the error mean. The mean square error function 324 

usually is sensitive to outliers with large errors, which may make the model parameters with different objective functions 325 

produce forecast results with different focus points (Duan et al., 2007). Therefore, it is necessary to consider the uncertainty 326 

of the model parameters. Neural network models usually train model parameters (such as model internal weights and bias 327 

values, etc.) based on loss functions, so this paper uses two common loss functions, namely the mean absolute error and the 328 

mean square error, to train the model as a way to consider the uncertainty of model parameters. 329 

3.3 Evaluation metrics 330 

3.3.1 Deterministic forecast evaluation metrics 331 

The accuracy of deterministic forecast is evaluated by three metrics: the Nash-Sutcliffe efficiency (Nash and Sutcliffe, 332 

1970) (NSE), the mean absolute error (MAE) and the relative error of total runoff (RE). 333 

𝑁𝑆𝐸 = 1 −
∑ (𝑄𝑜,𝑖 − 𝑄𝑓,𝑖)

2𝑁
𝑖=1

∑ (𝑄𝑜,𝑖 − 𝑄𝑜
̅̅̅̅ )2𝑁

𝑖=1

 (19) 

𝑅𝐸 =
∑ 𝑄𝑓,𝑖

𝑁
𝑖=1 −∑ 𝑄𝑜,𝑖

𝑁
𝑖=1

∑ 𝑄𝑜,𝑖
𝑁
𝑖=1

× 100% (20) 

𝑀𝐴𝐸 =
1

𝑁
∑|𝑄𝑜,𝑖 − 𝑄𝑓,𝑖|

𝑁

𝑖=1

 (21) 

where, N is the sample number. 𝑄𝑜
̅̅̅̅  and 𝑄𝑓

̅̅̅̅  are the average of the observed and forecasted flow, respectively. 334 
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The Nash-Sutcliffe efficiency (NSE) is one of the most important metrics in flood forecasting, reflecting the degree of 335 

fit between forecasted and observed flows (Nash & Sutcliffe, 1970). Since the accurate runoff volume predictions is more 336 

important than peak discharge for the operation of a large reservoir (Cui et al., 2023), the relative error for total runoff 337 

volume (RE) is also chosen. The mean absolute error (MAE) can reflect the forecast error for each moment, and compared 338 

with the continuous ranked probability score (CRPS) of the ensemble forecast (Raftery et al., 2005), which can reflect the 339 

effectiveness of the ensemble forecast correction. 340 

3.3.2 Probabilistic forecast evaluation metrics 341 

(1) Forecast interval evaluation metrics 342 

The forecast interval is evaluated by three metrics: the average coverage cate (CR), average interval width (IW), and the 343 

percentage of observations bracketed by the unit confidence Interval (PUCI) (Li et al., 2011). 344 

𝐶𝑅 =
𝑛𝑐

𝑁
 (22) 

𝐼𝑊 =
1

𝑁
∑(𝑄𝑢,𝑖 − 𝑄𝑙,𝑖)

𝑁

𝑖=1

 (23) 

𝑃𝑈𝐶𝐼 =
𝐶𝑅

1
𝑁

∑ (
𝑄𝑢,𝑖 − 𝑄𝑙,𝑖

𝑄𝑜,𝑖
)𝑁

𝑖=1

 
(24) 

where, nc denotes the number of Qo located in the forecast interval. Qu and Ql are the upper and lower boundaries of the 345 

forecast interval with a 90% confidence level, respectively. 346 

The average coverage rate (CR) is one of the most necessary metrics for evaluating the reliability of forecast intervals 347 

(Li et al., 2021). The average interval width (IW) is the metric that directly reflects the level of forecast uncertainty, which is 348 

an important metric for evaluating the effectiveness of the proposed methods. The percentage of observations bracketed by 349 

the unit confidence Interval (PUCI) is a comprehensive metric for evaluating the performance of forecast intervals in 350 

quantifying uncertainty (Xiong et al., 2009). Therefore, the CR, RB, and PUCI metrics are selected to evaluate the forecast 351 

intervals performance. 352 

(2) Probabilistic forecast evaluation metrics 353 

The probabilistic forecast is evaluated by three metrics: the α_index (Renard et al., 2010), the ignorance score (IGS) 354 

(Gneiting et al., 2005), and continuous ranked probability score (CRPS) (Raftery et al., 2005). 355 

𝛼_𝑖𝑛𝑑𝑒𝑥 = 1 −
2

𝑁
∑|𝑞𝑒,𝑖 − 𝑞𝑡ℎ,𝑖|

𝑁

𝑖=1

 (25) 

𝐼𝐺𝑆 = −
1

𝑁
∑ 𝑙𝑛 (𝑝(𝑄𝑜,𝑖))

𝑁

𝑖=1

 (26) 
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𝐶𝑅𝑃𝑆 =
1

𝑁
∑ ∫ (𝑃𝑖(𝑟) − 𝐼(𝑟 − 𝑄𝑜,𝑖))

2

𝑑𝑟

+∞

0

𝑁

𝑖=1

,  

𝐼(𝑟 − 𝑄𝑜,𝑖) = {
1 𝑟 ≥ 𝑄𝑜,𝑖

0 𝑟 < 𝑄𝑜,𝑖
 

(27) 

where, 𝑞𝑒,𝑖 and 𝑞𝑡ℎ,𝑖  denote observed and theoretical p-values of 𝑄𝑜,𝑖, respectively. p-value denotes the posterior probability 356 

distribution value of the 𝑄𝑜,𝑖 (Renard et al., 2010). 𝐼(∙) denotes the indicator function. r denotes the flow variable. 357 

The α_index metric can quantitatively assess the reliability of ensemble probabilistic forecasts from the perspective of 358 

distribution function values (Renard et al., 2010). The closer the α_index value is to 1, the more reliable the probabilistic 359 

forecast is. The IGS and CRPS metrics can reflect the reliability and sharpness of the probabilistic forecast. The former can 360 

quantify the forecast probability density at the observation, while the latter can indicate the fit performance between the 361 

posterior probabilistic distribution and the actual probabilistic distribution of Qo (Raftery et al., 2005). Both CRPS and IGS 362 

are negative scores, i.e., the smaller the value, the better. The IGS imposes severe penalties for particularly poor probabilistic 363 

predictions and may be extremely sensitive to outliers and extreme events, yet also lacks robustness (Raftery et al., 2005). 364 

4 Results evaluation 365 

4.1 Deterministic forecast results of ensemble member 366 

Since the study focuses on the differences in ensemble forecast performance between the HUP-BMA and CHUP-BMA 367 

methods, the overall forecast accuracy of members is analysed (Fig. 5), and the differences in forecast accuracy between 368 

members are not explicitly analysed. As shown in Fig. 5, using the observed values as input during the training period, high 369 

forecast accuracy can be acquired in different forecast horizons, with the NSE values exceeding 0.95 and the MAE values 370 

below 1400 m³/s, and the absolute value of RE within 4%. 371 

After combining the forecasted precipitation during the validation period, the NSE values show a decreasing trend, and 372 

the MAE and RE values show an increasing trend with the increase of the forecast horizon. Taking the NSE metrics of the 1-373 

7d forecast horizons as an example (Table 3), the average value of the NSE metric decreases from 0.97 to 0.89, which 374 

indicates that the forecast accuracy gradually decreases. Meanwhile, the range of evaluation metrics gradually increases with 375 

the increase of the forecast horizon. It can be seen from Table 3 that the difference between the maximum and minimum 376 

values of NSE indicators for the 1d forecast horizon is only 0.01. In contrast, the difference for the 7d forecast horizon is as 377 

high as 0.05, which indicates that the difference in forecast accuracy of members is also more significant, and the forecast 378 

uncertainty gradually increases. Overall, the NSE values of the forecast members in the 6-168h forecast horizons are higher 379 

than 0.88, and the absolute values of the RE metrics are within 7%. Hence, the forecast accuracy of members is relatively 380 

high, and the forecast error is low, which can be used for flood ensemble forecasting. 381 

 382 
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 383 

 384 

Fig. 5 Statistical chart of evaluation metrics of 8 ensemble members 385 

 386 

 387 
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Table 3 Mean, minimum, and maximum values of NSE metrics for 8 ensemble members in the validation period 388 

Forecast horizon (h) Mean Max Min Forecast horizon (h) Mean Max Min 

6 0.96 0.97 0.96 90  0.93 0.95 0.91 

12 0.97 0.97 0.96 96 0.93 0.95 0.91 

18 0.97 0.98 0.97 102 0.92 0.94 0.90 

24 0.97 0.97 0.97 108 0.92 0.94 0.91 

30 0.96 0.97 0.95 114 0.93 0.95 0.91 

36 0.96 0.97 0.95 120 0.92 0.94 0.90 

42 0.96 0.97 0.95 126 0.91 0.93 0.89 

48 0.96 0.96 0.95 132 0.91 0.93 0.90 

54 0.94 0.95 0.93 138 0.92 0.94 0.90 

60 0.94 0.95 0.93 144 0.91 0.94 0.89 

66 0.95 0.96 0.93 150 0.90 0.93 0.88 

72 0.94 0.96 0.93 156 0.90 0.93 0.89 

78 0.93 0.95 0.92 162 0.91 0.93 0.89 

84 0.93 0.95 0.92 168 0.91 0.93 0.88 

 389 

4.2 Ensemble forecast results 390 

4.2.1 Marginal distribution and copula function selection 391 

It is necessary first to fit the marginal distributions of the observed flow and the forecasted flow of the 6~168h forecast 392 

horizons. The Qo and Qb obey the same distribution. The RMSE criterion is used to select the marginal distribution type. In 393 

each forecast horizon, the RMSE values of the 8 members are averaged to obtain the marginal distribution suitable for the 394 

forecasted flow intuitively. Meanwhile, according to Eq.(14), the three-dimensional joint distribution of Qo, Qb, and Qf needs 395 

to be constructed. The RMSE criterion is used to select the copula function. Similarly, the RMSE values for the 8 members 396 

of each forecast horizon were averaged. 397 

Figs.6(a) and (b) show the RMSE values generated by fitting the marginal distribution and copula function, respectively. 398 

It can be seen from Fig. 6(a) that the Lognormal distribution has the lowest RMSE value among the five alternative marginal 399 

distributions and is chosen as the sequence marginal distribution type. As shown in Fig.6(b), the student copula has the 400 

lowest RMSE value in the 6-168h forecast horizons and is chosen to construct the three-dimensional joint distribution 401 

function of Qo, Qb, and Qf. 402 

 403 
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 404 

Fig. 6 The RMSE values of Qo, Qb and Qf sequence marginal distributions and copula functions. 1, 2, … ,28 denote 6h, 12h, …, 168h 405 

forecast horizons, respectively. 406 

4.2.2 Sliding window length selection 407 

Since there is no specific method or rule to calculate the sliding window length, this study adopts the CRPS metric as 408 

the objective function and the trial-and-error method to select the sliding window length. The range of window lengths is [40, 409 

200].  410 

 411 

 412 

Fig. 7 The average CRPS values of the CHUP-BMA and HUP-BMA methods with different window lengths 413 

 414 
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To facilitate the selection of the sliding window lengths, Fig. 7 shows the average CRPS values of the HUP-BMA and 415 

CHUP-BMA methods for all forecast horizons with different window lengths. It can be seen from Fig. 7 that the HUP-BMA 416 

and CHUP-BMA methods all have the lowest CRPS values at the sliding window length of 80. Therefore, 80 is the optimal 417 

window length for the ensemble forecasting study. 418 

4.2.3 Deterministic forecast results of ensemble forecast 419 

The HUP-BMA and CHUP-BMA methods use expectation values of ensemble forecasts as deterministic forecast 420 

results. In order to analyze the deterministic forecast performance of ensemble forecasts, one member with the best forecast 421 

accuracy is selected for comparative analysis based on the criteria of the relatively low RE and MAE values and relatively 422 

high NSE values, which is composed of the forecast rainfall from ECWMF, the DA-LSTM-RED model, and the 423 

objective function with mean square error to optimize the parameters.  424 

 425 

 426 

Fig. 8 Deterministic forecast evaluation metrics for the HUP-BMA, the CHUP-BMA, and the selected member with the best forecast 427 

accuracy 428 

 429 

Fig.8(a), (b), and (c) show the NSE, MAE, and RE metrics of three deterministic forecast results, respectively. It can be 430 

seen that the NSE metrics show a decreasing trend, and the MAE metrics show an increasing trend as the forecast horizon 431 

increases, indicating a gradual decrease in forecast accuracy. 432 

As shown in Fig. 8(a), the NSE metrics of three forecast results are at least 0.92 during the 6-168h forecast horizons. 433 

The difference between the two is small, not more than 0.02. Among them, the CHUP-BMA method has the best NSE 434 

metrics. However, the advantage value gradually decreases as the forecast horizon increases. The NSE metrics of the HUP-435 

BMA method are better than those of the selected forecast member in most forecast horizons. From Fig.8(b), the maximum 436 

and mean values of MAE are 1923 and 1513 m³/s for the CHUP-BMA method, 1999 and 1582 m³/s for the HUP-BMA 437 

method, and 2179 and 1719 m³/s for the selected forecast member, respectively. The CHUP-BMA method has the best MAE 438 
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metric, with the maximum and average reduction of 10.69% and 4.36% relative to the HUP-BMA method, respectively. 439 

Meanwhile, the MAE values of two ensemble forecasting methods are lower than those of the selected forecast members. As 440 

shown in Fig.8(c), the maximum and mean of the RE metric are 0.02% and -0.27% for the CHUP-BMA method, 2.97% and 441 

1.36% for the HUP-BMA method, and 1.20% and 0.34% for the selected forecast member, respectively. The CHUP-BMA 442 

method can reduce the RE metrics of the selected forecast member in most forecast horizons, while the HUP-BMA method 443 

has no advantage in the RE metric. Overall, ensemble forecast methods can somewhat improve the selected best member 444 

forecast accuracy. The CHUP-BMA method’s expectation forecast has the best accuracy, which indicates that the copula-445 

based CHUP-BMA method can improve the performance of the HUP-BMA method in correcting errors. 446 

To further analyze the accuracy of ensemble forecast methods, seven floods with peaks exceeding 50,000 m³/s during 447 

the 24 and 168h forecast horizons in the validation period (2017-2021) are selected for analyzing. The average relative error 448 

metric of peak (PRE) (Cui et al., 2022) is added to analyze the forecasting performance for flood peaks. Table 4 449 

demonstrates the forecast evaluation metrics for the seven flood events. With the increase in the forecast horizon, the NSE 450 

metric shows a decreasing trend, and the RE and MAE metrics show an increasing trend, indicating a gradual decrease in 451 

forecasting performance. It can be seen from Table 4 that (1) in the 24h forecast horizon, the forecast accuracy of the two 452 

methods is similar for most flood events and quality metrics, (2) in the 168h forecast horizon, the forecast accuracy of the 453 

CHUP-BMA method is better than HUP-BMA method in most flood events and quality metrics. The average values of the 454 

NSE, RE, MAE, and PRE are 0.88, -0.63%, 2980m³/s, and -4.55% for CHUP-BMA, and 0.84, -2.38%, 3188m³/s, and -6.46% 455 

for HUP-BMA, respectively, indicating an overall improvement of CHUP-BMA over HUP-BMA in forecasting accuracy. 456 

 457 

Table 4 Evaluation metrics for forecast flood events for 24 and 168h forecast horizons 458 

Flood event Method Forecast horizon (h) 
Evaluation metric 

NSE RE (%) MAE (m³/s) PRE (%) 

20180703 

(2018/7/1-7/7) 

HUP-BMA 
24 0.93 1.95 1697 -3.29 

168 0.80 1.69 2709 -8.60 

CHUP-BMA 
24 0.94 3.63 1667 1.64 

168 0.78 1.30 2988 -6.26 

20180714 

(2018/7/11-7/17) 

HUP-BMA 
24 0.85 -1.38 2768 -8.04 

168 0.97 0.11 1101 0.88 

CHUP-BMA 
24 0.84 -1.97 2874 -7.70 

168 0.95 -2.37 1587 -1.23 

20200717 

(2020/7/14-7/20) 

HUP-BMA 
24 0.91 -7.02 3094 -10.02 

168 0.64 -11.67 5965 -19.00 

CHUP-BMA 
24 0.91 -4.75 3211 -8.80 

168 0.75 -7.45 5255 -13.58 
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20200727 

(2020/7/25-7/31) 

HUP-BMA 
24 0.97 -0.22 1371 0.02 

168 0.84 -4.73 3044 -13.47 

CHUP-BMA 
24 0.94 4.40 1819 3.62 

168 0.88 0.04 3155 -7.79 

20200815 

(2020/8/12-8/17) 

HUP-BMA 
24 0.93 -1.31 2714 -8.21 

168 0.94 -1.96 2259 -9.25 

CHUP-BMA 
24 0.96 2.06 2062 -3.53 

168 0.95 3.05 2167 -3.82 

20200820 

(2020/8/18-8/24) 

HUP-BMA 
24 0.95 -0.79 2772 0.22 

168 0.92 5.74 3509 11.72 

CHUP-BMA 
24 0.96 2.58 2125 2.60 

168 0.96 4.08 2816 6.06 

20210907 

(2021/9/4-9/10) 

HUP-BMA 
24 0.94 -3.26 2231 -7.43 

168 0.87 -4.66 3042 -13.15 

CHUP-BMA 
24 0.97 -0.64 1722 -4.07 

168 0.94 -0.99 2016 -6.82 

 459 

To further demonstrate the accuracy of flood process forecasting and applicability of the two methods, four relatively 460 

large flood events are selected for comparative analysis for 168h forecast horizon (Fig.9). In the 20180703-flood event (Fig. 461 

9a), the two methods have similar forecast performance, underestimating the peak and rising water processes and 462 

overestimating the receding water process. The CHUP-BMA method has relatively low PRE values and total runoff error. 463 

The HUP-BMA method accurately forecasts the peak present time. In the 20200815-flood event (Fig.9b), two methods 464 

underestimate the flood peak and overestimate the receding water process. The HUP-BMA method has a larger flood peak 465 

error, and the CHUP-BMA method has a better fitting performance. In the 20200820-flood event (Fig.9c), two methods 466 

overestimate the observed flood process, with the CHUP-BMA method having the lower peak and total runoff error than the 467 

HUP-BMA method. In the 20210907-flood event (Fig.9d), the CHUP-BMA and HUP-BMA methods underestimate the 468 

flood peak and delay the forecast peak occurring time. The former has smaller peak and water volume error.  469 

 470 
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 471 

Fig. 9 Forecasted flood events during 168h forecast horizon for the HUP-BMA and the CHUP-BMA methods 472 

 473 

4.2.4 Probabilistic forecast results of ensemble forecast 474 

(1) Evaluation of forecast interval 475 

Figs. 10(a), (b), and (c) show the CR, IW, and PUCI metrics for the forecast interval with a 90% confidence level, 476 

respectively. Fig.10(a) shows that during the 6-168h forecasting period, the maximum, minimum, and mean of the CR metric 477 

for the forecast interval of the CHUP-BMA method are 0.92, 0.88, and 0.89, respectively, and 0.93, 0.88, and 0.91 for the 478 

HUP-BMA method, respectively. The CR values of the two methods’ forecast intervals are close to or exceed the 90% 479 

confidence level, indicating that the forecast intervals are reliable. 480 

It is obvious from Fig.10(b) that the forecast interval width tends to increase with the increase of the forecast horizon, 481 

indicating that the forecast uncertainty gradually increases. The maximum, minimum, and mean of the IW metrics for the 482 

forecast interval of the CHUP-BMA method are 7820, 3337, and 6257 m³/s, respectively, and 8888, 4662, and 7345 m³/s for 483 

the HUP-BMA method, respectively. The forecast intervals of the CHUP-BMA method are significantly narrower than those 484 

of the HUP-BMA method, with the maximum and average reduction of 28.42% and 15.32%, respectively, which indicates 485 

that the CHUP-BMA method can effectively reduce the interval width and forecast uncertainty.  486 

 487 
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 488 

Fig. 10 Evaluation metrics of forecast intervals with the 90% confidence level of the HUP-BMA and CHUP-BMA methods 489 

 490 

From Fig.10(c), the maximum, minimum, and mean of the PUCI metric for the forecast interval of the CHUP-BMA 491 

method are 6.24, 2.65, and 3.48, respectively, and 4.55, 2.35, and 2.95 for the HUP-BMA method, respectively. The CHUP-492 

BMA method has the higher PUCI values, indicating that the forecast interval of the CHUP-BMA method reflects the 493 

forecast uncertainty relatively well. 494 

In summary, the CHUP-BMA outperforms the HUP-BMA method under the premise that the CR values are close to or 495 

exceed the 90% confidence level. The CHUP-BMA method has narrower forecast intervals and better performance in 496 

quantifying forecast uncertainty. Although the HUP-BMA method has a higher CR value, its IW value is larger, and the 497 

PUCI value is smaller for the long forecast horizon, indicating that the forecast interval is too conservative to estimate the 498 

uncertainty range reasonably. 499 

In order to visually analyze the ability of the CHUP-BMA method to quantify forecast uncertainty, the forecast intervals 500 

with a 90% confidence level of the HUP-BMA and CHUP-BMA methods for 168h forecast horizon in the 2020 flood season 501 

are compared. It can be seen from Fig.11 that the forecast intervals of the two ensemble forecasts can cover most of the 502 

observed flows and always cover the annual maximum flood peak, indicating that the forecast intervals are reliable. 503 

Meanwhile, the forecast intervals of the CHUP-BMA method are remarkably narrower than those of the HUP-BMA method, 504 

indicating that the forecast uncertainty of the former is relatively low, which can provide more reasonable risk information 505 

for TGR flood control decisions. 506 

(2) Evaluation of overall probabilistic forecast 507 

Fig.12 shows the PIT histograms of the HUP-BMA and CHUP-BMA methods for 24, 96, and 168h forecast horizons. It 508 

can be significantly observed that the PIT plots of the HUP-BMA method show a ∩-shaped distribution, which indicates that 509 

the forecast distribution is over-dispersed and overestimates the forecast uncertainty, explaining the phenomenon of wide 510 

intervals. Meanwhile, the PIT plot of CHUP-BMA is more uniformly distributed than that of the HUP-BMA method, which 511 

can obtain a better calibration performance. 512 
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 513 

 514 

Fig. 11 Forecast intervals with the 90% confidence level for the HUP-BMA and CHUP-BMA methods from 2020/7/1 8:00 to 9/24 8:00 515 

 516 

Meanwhile, Fig.13(a), (b), and (c) show the evaluation metrics of α_index, IGS, and CRPS metrics for the two 517 

ensemble probabilistic forecasts, respectively. It can be seen from Fig. 13(a) that the α_index metrics of the CHUP-BMA 518 

method-based probabilistic forecasts are significantly higher than those of the HUP-BMA method in the 6-168h forecast 519 

horizons. Among them, the maximum, minimum, and mean of the α_index metric for CHUP-BMA method-based 520 

probabilistic forecasts are 0.98, 0.93, and 0.97, respectively, and 0.95, 0.88, and 0.93 for the HUP-BMA method, 521 

respectively. The α_index metric of the CHUP-BMA method-based probabilistic forecast is closer to the perfect value of 1, 522 

indicating that its probability forecast is the more reliable. 523 

It can be seen from Fig.13(b) that the IGS values of the two methods gradually increase with the increase of the forecast 524 

horizon, indicating that the forecast uncertainty gradually increases. The maximum, minimum, and mean of the IGS metric 525 

for the CHUP-BMA method are 9.10, 8.33, and 8.87, respectively, and 9.16, 8.59, and 8.98 for the HUP-BMA method, 526 

respectively. It can be seen that the IGS metrics of the CHUP-BMA method are consistently lower than those of the HUP-527 

BMA method, which indicates that the CHUP-BMA method has better ensemble forecast performance relative to the HUP-528 

BMA method by assigning a higher probability density around the actual values. 529 
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 530 

 531 

Fig. 12 The probability integral transform (PIT) histograms of the HUP-BMA and CHUP-BMA methods for the ensemble forecasts of the 532 

24, 96, and 168h forecast horizons.  533 

 534 

 535 

Fig. 13 Evaluation metrics of reliability, sharpness, and overall performance of two ensemble forecasts 536 

 537 

As shown in Fig. 13(c), the CRPS values of the two methods are lower than the MAE values of the selected member 538 

(Fig. 8(b)), indicating that the probabilistic forecasts are effective and can fit the probabilistic distribution of the target values 539 

well. Meanwhile, during the 6-168h forecast horizons, the maximum, minimum, and mean of the CRPS metric for the 540 

CHUP-BMA method are 1356, 625, and 1074 m³/s, respectively, and 1425, 662, and 1188 m³/s for the HUP-BMA method, 541 

respectively. It can be seen that the CRPS values of the CHUP-BMA method are lower than those of the HUP-BMA method, 542 
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with a maximum and average reduction of 17.86% and 9.71%, respectively. It can be seen that the CHUP-BMA method can 543 

better fit the posterior distribution of the actual values and effectively improve the probabilistic forecast performance of the 544 

HUP-BMA method. 545 

From the Table 5, it can be seen that the T-statistics at the 0.05 significance level for all three metrics are higher than 546 

the threshold value, indicating that there is a significant difference between the scores of the CHUP-BMA and HUP-BMA 547 

methods, i.e., the CHUP-BMA method is significantly better than the HUP-BMA method for ensemble forecasting metrics 548 

and performance. 549 

 550 

Table 5 T-test results of ensemble forecast metrics at 0.05 significance level 551 

Metric 
α_index IGS CRPS 

HUP-BMA CHUP-BMA HUP-BMA CHUP-BMA HUP-BMA CHUP-BMA 

Mean 0.93 0.97 8.98 8.87 1188 1074 

Variance 0.0003 0.0001 0.02 0.03 32247 33716 

Degree of freedom 46.00 52.00 54.00 

T-statistic -10.76 2.36 2.34 

T-threshold 1.68 1.67 1.67 

Difference significance analysis Significant Significant Significant 

 552 

In summary, the CHUP-BMA method considers the influence of the initial state on the ensemble forecast, bypasses the 553 

normal quantile transformation of the HUP-BMA method, derives the posterior distribution of the target flow without 554 

restrictions, and improves the probabilistic forecast performance of the HUP-BMA method. Therefore, the ensemble 555 

forecasting by CHUP-BMA method can provide more reasonable and reliable risk information for the TGR. 556 

5 Conclusion and prospects 557 

In this study, we proposed a novel CHUP-BMA method that the copula-based HUP (CHUP) is coupled with the BMA 558 

method, which not only can consider the influence of the initial state on the ensemble forecast, but also can avoid the 559 

assumption of normal distribution in the HUP-BMA method and derive the posterior distribution function more accurately. 560 

An ensemble forecast scheme that consists of two forecasted precipitation, two hydrological models, and two objective 561 

functions of parameter calibration is established. The ensemble forecasting performance of the HUP-BMA and CHUP-BMA 562 

methods is discussed from the perspective of deterministic and probabilistic forecasts. The flood ensemble forecasting 563 

experiment with 6-168h forecast horizons is conducted in the Xiangjiaba-TGR dam-site interval basin. The main conclusions 564 

are summarized as follows. 565 
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(1) The two ensemble forecasting methods can improve the members' forecast accuracy. The proposed CHUP-BMA 566 

method performs better than the HUP-BMA method, and the MAE metric value is reduced by a maximum of 10.69%. 567 

(2) The coverage rate of the forecast interval of the CHUP-BMA method is close to or exceeds the specified 90% 568 

confidence level, and the forecast interval is significantly narrower than that of the HUP-BMA method, with a maximum 569 

reduction of 28.42%, which can effectively reduce the forecast uncertainty.  570 

(3) The probabilistic forecast of the CHUP-BMA method has better reliability and sharpness, and its CRPS values are 571 

reduced by a maximum of 17.86% relative to the HUP-BMA method, which indicates that the CHUP-BMA method can 572 

better fit the posterior distribution of the actual values. 573 

(4) The CHUP-BMA method can derive the posterior distribution of the target flow without restriction under the 574 

condition of considering the initial constraint, which makes the BMA method more towards perfection. Therefore, it is more 575 

suitable for the flood forecasting in the 6-168h forecast horizons and provides reliable risk information for reservoir 576 

scheduling decision-making. 577 

The present study focuses on flood ensemble forecasting for the TGR's 6-168h forecast horizons. Future studies can 578 

explore the ensemble forecasting performance of the proposed CHUP-BMA method for longer forecast horizons and further 579 

validate the effectiveness of the proposed method in global basins. Meanwhile, the vine copula, which facilitates multivariate 580 

joint distribution modelling, can be considered for constructing the CHUP-BMA method and exploring its advantages and 581 

effectiveness in ensemble flood forecasting. And the effective way or method of guiding reservoir scheduling based on 582 

ensemble forecasts can be further explored so that ensemble forecasts can be widely used in decision-making.  583 

Appendix: 584 

We set the number of neural network layers and neurons to be the same for the encoding and decoding processes, with 585 

trial-and-error preferences for the number of hidden layers, neurons, and dropout. Meanwhile, the batch size, epoch, and 586 

learning rate are set to 100, 500, and 0.001, respectively. The different model parameters are shown in Table A. 587 

 588 

Table A The different model parameters for ensemble membership 589 

Ensemble member type Neuron Hidden layers Dropout 

ECMWF&DA-LSTM-RED&MSE 64 1 0.001 

ECMWF&LSTM-RED&MSE 64 1 0.001 

ECMWF&DA-LSTM-RED&MAE 32 1 0.01 

ECMWF&LSTM-RED&MAE 64 1 0.1 

HBYRWRC &DA-LSTM-RED&MSE 32 1 0.1 

HBYRWRC &LSTM-RED&MSE 32 1 0.001 
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HBYRWRC &DA-LSTM-RED&MAE 64 1 0.001 

HBYRWRC &LSTM-RED&MAE 48 1 0.01 
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