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Dear Professor Lelys Bravo de Guenni 

We have carefully revised our manuscript according to the valuable comments 

and suggestions. On behalf of all authors, I am pleased to submit the revised version 

of our manuscript titled “Quantify and reduce flood forecast uncertainty by the 

CHUP-BMA method”. 

The manuscript has been revised along the lines suggested by the Referees. All 

comments have been modified or addressed in the revised version. All newly added 

parts (except minor language corrections) are marked in BLUE for easy review. We 

sincerely hope that you will find the revised version to your satisfaction. All authors 

have reviewed the revision and agree to the submission.  

Thank you very much for your time and efforts on our manuscript again. 

 

Best Regards, 

 

Prof. Shenglian Guo 

State Key Laboratory of Water Resources Engineering and Management,  

Wuhan University,  

Wuhan 430072, P. R China 

E-mail: slguo@whu.edu.cn 

April 12, 2024 
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Reply to Reviewers’ comments (Reviewer#1) 

Legend 

Reviewers’ comments  

Authors’ responses 

Direct quotes from the revised manuscript 

 

Reviewer #1:  

The paper proposes a new CHUP-BMA ensemble forecasting method by 

incorporating the CHUP-derived posterior distribution of the observed flow into the 

BMA framework. It has the advantage that the initial state constraints can be 

considered in the BMA while avoiding the normal quantile transformation of the 

HUP-BMA method. Based on deep learning, an ensemble forecasting scheme 

considering input, model structure, and parameter uncertainty is constructed in Three 

Gorges Reservoir, China, and the effectiveness of the CHUP-BMA method in 

reducing forecast uncertainty is verified. The study is innovative and theoretically 

rigorous and has promising results with solid application potential. Some questions 

need further discussion. 

Response: We deeply appreciate your constructive comments and the time you spent 

on reviewing the paper. We have accepted all the revision comments. Point-by-point 

replies to the comments or suggestions made can be found below. 

 

1. The sources of Figure 3 and Table 2 need to be explained to improve the 

reasonableness of the paper. 

Response: The values of Figure 3 and Table 2 are obtained from the Hydrological 

Bureau of the Changjiang Water Resources Commission (HBCWRC). In addition, 

Figure 3 can be referred to the paper by Zhong et al. (2018b). We make the following 

changes in subsection 3.2.1: 

 

The rainfall-runoff relationship (Fedora and Beschta, 1989) commonly used in the 

Yangtze River basin to calculate the effective precipitation. The antecedent 

precipitation index, which is the key variable of the method, can be calculated by the 

following equation to represent the soil moisture content (Zhong et al., 2018b). 

𝑃𝑎,𝑡+1 = 𝑘(𝑃𝑎,𝑡 + 𝑃𝑡) (16) 
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𝑃𝑎,𝑡+1 ≤ 𝐼𝑚 (17) 

where Pa denotes the antecedent precipitation index, Pt is the daily precipitation, Im is 

the water storage capacity of the basin, k denotes evaporation reduction index.  

The values of k and Im for these three sub-basins are listed in Table 2, which are 

obtained from the Hydrological Bureau of the Changjiang Water Resources 

Commission (HBCWRC). Since the rainfall-runoff relationship graph method have 

been widely used for runoff generation calculation in the Yangtze River basin, the 

rainfall-runoff relationship between Xiangjiaba and Three Gorges Dam-site 

uncontrolled interval basin are established and plotted in Fig. 3, which is used to 

calculate the effective precipitation based on the antecedent precipitation index (Pa) 

and observed (or forecasted) precipitation for these three sub-basins.  

 

Reference 

Zhong, Y., Guo, S., Liu, Z., Wang, Y., and Yin, J. Quantifying differences between reservoir 

inflows and dam site floods using frequency and risk analysis methods. Stoch. Environ. Res. 

Risk Assess., 32, 419-433. https://doi.org/10.1007/s00477-017-1401-4, 2018b. 

 

2. Various model inputs (e.g., rainfall, tributary flows, etc.) exist in the interval basins. 

The article only considers the input uncertainty of rainfall, and it is suggested to add a 

reason for this in subsection 3.2.1. 

Response: Thanks to the reviewers for the constructive comments. There are five flow 

discharge inputs from five large tributaries (Jinsha, Min, Jialing, Tuo, and Wu Rivers) 

in our case study. The flow discharges are observed at the Pingshan, Gaochang, 

Fushun, Beibei, and Wulong hydrological controlled stations, respectively. Since 

these observed (or forecasted) flows are respectively regulated by their upstream 

cascade reservoirs, these flow data inputs are more accurate than the rainfall inputs.  

We collected the forecasted precipitation data from the European Centre for 

Medium-Range Weather Forecasts (ECMWF) and HBCWRC during the 2017-2021 

flood season in the three sub-basins. Since the rainfall data is more diverse and has 

relatively large uncertainty, so the forecast rainfall input variable is used to explore 

the impact of forecast rainfall uncertainty on the Three Gorges reservoir inflow 

forecasts. We also make the following changes in subsection 3.2.1: 

 

There are five flow discharge inputs from five large tributaries (Jinsha, Min, Jialing, 

https://doi.org/10.1007/s00477-017-1401-4
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Tuo, and Wu Rivers) in our case study. The flow discharges are observed at the 

Pingshan, Gaochang, Fushun, Beibei, and Wulong hydrological controlled stations, 

respectively. Since these observed (or forecasted) flows are respectively regulated by 

their upstream cascade reservoirs, these flow data inputs are more accurate than the 

rainfall inputs. This study collected the forecasted precipitation data from the 

European Centre for Medium-Range Weather Forecasts (ECMWF) and HBCWRC in 

these three sub-basins. Since the rainfall data is more diverse and has relatively large 

uncertainty, the forecast rainfall input variable is used to explore the impact of 

forecast rainfall uncertainty on the TGR inflow forecasts.  

 

3. Line 255. You should briefly introduce the LSTM in subsection 3.2.2 to improve 

the paper's readability. In addition, it is recommended to cite references more relevant 

to the LSTM. 

Response: Thanks for your valuable comments. We will add a brief introduction to 

LSTM neural networks and cite more relevant literatures as follows: 

 

The structure of LSTM neural network includes forgetting gate, input gate, updating 

the state of the memory unit, and output gate (Hochreiter and Schmidhuber, 1997). 

The forgetting gate can select the relatively important information in the previous 

memory unit. The input gate can select useful information from the input variables at 

the current moment. The memory unit state can store relatively important information 

extracted from historical moments, which is updated under the control of the 

forgetting gate and the input gate. The output gate selects and outputs useful 

information from the memory cell state. More detailed procedures of the LSTM 

neural network formulation have been described by Kratzert et al. (2018). 

 

Additional references: 

Hochreiter, S., Schmidhuber, J. Long short-term memory. Neural Computation, 9(8), 1735-1780. 

https://doi.org/10.1162/neco.1997.9.8.1735, 1997. 

Kratzert, F., Klotz, D., Brenner, C., Schulz, K., Herrnegger, M. Rainfall–runoff modelling using 

long short-term memory (LSTM) networks. Hydrology and Earth System Sciences, 22(11), 

6005-6022. https://doi.org/10.5194/hess-22-6005-2018, 2018. 

 

4. Deep learning parameters significantly impact forecast accuracy, so it is 

https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.5194/hess-22-6005-2018
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recommended to show the values of deep learning parameters. The study should 

concentrate on ensemble forecasting methods rather than deep learning models. 

Therefore, the model parameter values can be shown in the appendix. 

Response: Thanks for your valuable comments. We supplement the appendix with 

model parameter values for the ensemble members. An appendix will be added in the 

revised manuscript as follow: 

 

Appendix: 

We set the number of neural network layers and neurons to be the same for the 

encoding and decoding processes, with trial-and-error preferences for the number of 

hidden layers, neurons, and dropout. Meanwhile, the batch size, epoch, and learning 

rate are set to 100, 500, and 0.001, respectively. The different model parameters are 

shown in Table A. 

 

Table A The different model parameters for ensemble membership 

Ensemble member type Neuron Hidden layers Dropout 

ECMWF&DA-LSTM-RED&MSE 64 1 0.001 

ECMWF&LSTM-RED&MSE 64 1 0.001 

ECMWF&DA-LSTM-RED&MAE 32 1 0.01 

ECMWF&LSTM-RED&MAE 64 1 0.1 

HBYRWRC &DA-LSTM-RED&MSE 32 1 0.1 

HBYRWRC &LSTM-RED&MSE 32 1 0.001 

HBYRWRC &DA-LSTM-RED&MAE 64 1 0.001 

HBYRWRC &LSTM-RED&MAE 48 1 0.01 

 

5. Line 369, add a description of the member type with better forecast accuracy, i.e., 

the input composition, the model structure, and the objective function of the selected 

parameters. 

Response: Thanks for your insightful comments. We have added relevant content to 

the article: 

 

In order to analyze the deterministic forecast performance of ensemble forecasts, one 

member with the best forecast accuracy is selected for comparative analysis based on 

the criteria of the relatively low RE and MAE values and relatively high NSE values, 
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which is composed of the forecast rainfall from ECWMF, the DA-LSTM-RED model, 

and the objective function with mean square error to optimize the parameters.  

 

6. There are numerous evaluation metrics in deterministic and probabilistic 

forecasting. Briefly explain the reasons for the metrics chosen in the paper. 

Response: Thanks for your suggestion. The article is added below: 

 

The Nash-Sutcliffe efficiency (NSE) is one of the most important metrics in flood 

forecasting, reflecting the degree of fit between forecasted and observed flows (Nash 

& Sutcliffe, 1970). Since the accurate runoff volume predictions is more important 

than peak discharge for the operation of a large reservoir (Cui et al., 2023), the 

relative error for total runoff volume (RE) is also chosen. The mean absolute error 

(MAE) can reflect the forecast error for each moment, and compared with the 

continuous ranked probability score (CRPS) of the ensemble forecast (Raftery et al., 

2005), which can reflect the effectiveness of the ensemble forecast correction. 

 

The average coverage rate (CR) is one of the most necessary metrics for evaluating 

the reliability of forecast intervals (Li et al., 2021). The average interval width (IW) is 

the metric that directly reflects the level of forecast uncertainty, which is an important 

metric for evaluating the effectiveness of the proposed methods. The percentage of 

observations bracketed by the unit confidence Interval (PUCI) is a comprehensive 

metric for evaluating the performance of forecast intervals in quantifying uncertainty 

(Xiong et al., 2009). Therefore, the CR, RB, and PUCI metrics are selected to 

evaluate the forecast intervals performance. 

 

The α_index metric can quantitatively assess the reliability of ensemble probabilistic 

forecasts from the perspective of distribution function values (Renard et al., 2010). 

The closer the α_index value is to 1, the more reliable the probabilistic forecast is. 

The IGS and CRPS metrics can reflect the reliability and sharpness of the 

probabilistic forecast. The former can quantify the forecast probability density at the 

observation, while the latter can indicate the fit performance between the posterior 

probabilistic distribution and the actual probabilistic distribution of Qo (Raftery et al., 

2005). Both CRPS and IGS are negative scores, i.e., the smaller the value, the better. 

The IGS imposes severe penalties for particularly poor probabilistic predictions and 
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may be extremely sensitive to outliers and extreme events, yet also lacks robustness 

(Raftery et al., 2005). 

 

Additional references: 

Li, D., Marshall, L., Liang, Z., Sharma, A., Zhou, Y. Bayesian LSTM with stochastic variational 

inference for estimating model uncertainty in process‐based hydrological models. Water 

Resources Research, 57(9), e2021WR029772. https://doi.org/10.1029/2021WR029772, 2021. 

Xiong, L., Wan, M. I. N., Wei, X., O'connor, K. M. Indices for assessing the prediction bounds of 

hydrological models and application by generalised likelihood uncertainty estimation. 

Hydrological sciences journal, 54(5), 852-871. https://doi.org/10.1623/hysj.54.5.852, 2009. 

 

7. Line 465, replacing 'concentration' with 'sharpness' as 'reliability (α_index), 

concentration (IGS),' should correspond to the name of Figure 13. 

Response: Thank you for reminder. We have changed "concentration" to "sharpness" 

in the revised manuscript. 

 

8. To improve modeling rationality, explain why observations are used as model 

tributary inputs in training and validation periods. 

Response: Thanks for your well-considered suggestions. Three Gorges Reservoir 

(TGR) is the largest hydraulic project in the world and controls a watershed area of 1 

million km2. There are more than 300 larger-scale reservoirs have been built in the 

upstream Yangtze River basin with a total storage of 163.3 billion m3. The operational 

flow forecasting procedure is from the sources of tributaries, each larger-scale 

reservoir inflows, interval basin flow forecasting and river flow routing to 

downstream sections, and so on. Since the forecast data series at the outlets of five 

large tributaries (Jinsha, Min, Jialing, Tuo, and Wu Rivers) are inconsistent, we used 

the observed flows to train and validate the proposed models or forecasting schemes. 

We have added the following in subsection 3.2.2: 

 

Since the forecast data series at the outlets of tributaries are inconsistent, the observed 

flow at the outlets of five large tributaries are used to train and validate the proposed 

models. 

 

9. In the outlook, adding the construction of the CHUP-BMA method using a more 

https://doi.org/10.1029/2021WR029772
https://doi.org/10.1623/hysj.54.5.852
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flexible vine copula will make the CHUP-BMA method more competitive. 

Response: Thank you for your foresighted suggestions. Our additions to the article are 

as follows: 

 

Meanwhile, the vine copula, which facilitates multivariate joint distribution modelling, 

can be considered for constructing the CHUP-BMA method and exploring its 

advantages and effectiveness in ensemble flood forecasting. 
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Reply to Reviewers’ comments (Reviewer#2) 

Legend 

Reviewers’ comments  

Authors’ responses 

Direct quotes from the revised manuscript 

 

Reviewer #2:  

The authors combine the copula-based hydrological uncertainty processor (CHUP) 

and Bayesian model averaging (BMA) to obtain a novel approach to statistical post-

processing of hydrological ensemble forecasts. The proposed approach is promising 

and the presented results are fair, but the paper needs some improvement and it also 

raises some questions. 

Response: We deeply appreciate your constructive comments and the time you spent 

on reviewing the paper. We have accepted all the revision comments. Point-by-point 

replies to the comments or suggestions made can be found below. 

 

Major comments: 

1. L28: The cited paper Sloughter et al. (2010) deals with post-processing wind speed 

forecasts. The BMA model for precipitation is introduced in Sloughter et al. (2007). 

Response: Firstly, thank you very much for your careful and detailed suggestions. We 

have found the equivalent in line 48 and have made the following supplementary 

revisions: 

 

The BMA method is initially successfully applied to the ensemble forecast of 

meteorological elements such as temperature, precipitation, and wind speed (Raftery 

et al 2005; Sloughter et al, 2007; Sloughter et al, 2010). 

Additional references: 

Sloughter, J. M., Raftery, A. E., Gneiting, T. and Fraley, C. (2007) Probabilistic 

quantitative precipitation forecasting using Bayesian model averaging. Mon. Weather 

Rev. 135, 3209–3220. 

 



10 
 

2. I am also missing references to BMA models for hydrological forecasts, e.g. Hemri 

et al. (2013) or Baran et al. (2019). 

Response: Thanks for your constructive comments. References have been added to 

the paper. 

 

In order to ensure that the quantiles of forecast distributions after Box-Cox 

transformation are within the actual physical range, Baran et al. (2019) introduced 

upper and lower truncated normal distributions into the BMA, and found that the 

double truncated BMA had reliable forecasting ability compared to ensemble model 

output statistics. The advantage was more obvious when rolling window training 

periods are used. Hemri et al. (2013) introduced the principle of geostatistical output 

perturbation into the BMA method and proposed a multivariate BMA, which extended 

the membership probability distribution into a multivariate normal distribution 

function. Relative to the univariate BMA method, the multivariate BMA can not only 

consider the temporal correlation between forecast flows, but also improve the 

forecast reliability when the forecast system was changing, i.e., fewer models were 

available due to dropping out at particular lead times. 

Additional references: 

Baran, S., Hemri, S. and El Ayari, M. (2019) Statistical post-processing of water level 

forecasts using Bayesian model averaging with doubly-truncated normal components. 

Water Resour. Res. 55, 3997–4013. 

Hemri, S., Fundel, M. and Zappa, M. (2013) Simultaneous calibration of ensemble 

river flow predictions over an entire range of lead times. Water Resour. Res. 49, 

6744–6755. 

 

3. Eq.4: In the original description of the HUP, different CDFs are considered for the 

forecasts and the observations, moreover, in the former case it is considered as an 

initial estimate. Does such a relaxation make sense here as well? 

Response: Thanks for your insightful suggestions. We will add the following changes 

to the paper. 

 

The HUP method assumes that flow series transformed to normal space obey the 
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Gaussian distribution. The cumulative distribution function is different for forecasted 

and observed flows. The common normal quantile transformation is key to the 

application of the HUP method, which its significance is to make the HUP method 

applicable to variables with any marginal distributions, heteroskedasticity, and 

nonlinear dependence structures (Krzysztofowicz and Kelly, 2000; Darbandsari and 

Coulibaly, 2021). 

 

4. Section 3.1.2. introducing the HUP follows the structure of Sections 2.1.2 – 2.1.4 of 

Darbandsari and Coulibaly (2021); however, one should mention that the Markov 

process of Eq.5 is stationary and define exactly how θt in L169 is related to Eq.7 (see 

Darbandsari and Coulibaly, 2021, Eq.10). 

Response: Thanks for your perceptive suggestions. We will add the following changes: 

 

The HUP method assumes that the observed flow obeys the strictly stationary first-

order Markov process (Krzysztofowicz and Kelly, 2000) 

 

𝑄̂𝑏 , 𝑄̂𝑜 , and 𝑄̂𝑓,𝑖  are assumed to obey a linear relationship. The expression of the 

likelihood function in normal space is as follows. 

𝑄̂𝑓,𝑖,𝑡 = 𝑎𝑡 × 𝑄̂𝑜,𝑡 + 𝑑𝑡 × 𝑄̂𝑏 + 𝑏𝑡 + 𝜃𝑡 

(7) 
𝑝(𝑄̂𝑓,𝑖,𝑡|𝑄̂𝑜,𝑡, 𝑄̂𝑏) =

1

𝜎𝑡
𝑛 {

𝑄̂𝑓,𝑖,𝑡 − (𝑎𝑡 × 𝑄̂𝑜,𝑡 + 𝑑𝑡 × 𝑄̂𝑏 + 𝑏𝑡)

𝜎𝑡
} 

where, 𝜃𝑡  is an independent variable obeying N(0,𝜎𝑡
2). 𝑎𝑡 , 𝑑𝑡, and 𝑏𝑡  are regression 

coefficients. 

 

5. L310: “The IGS metric indicates the sharpness of the probabilistic forecast”. The 

IGS, similar to the CRPS addresses simultaneously both calibration and sharpness, as 

indicated in the cited work of Gneiting et al. (2005). Hence, I think referring to IGS as 

a measure of concentration is slightly misleading. 

Response: Thanks for your valuable comments. We will correct the misleading 
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content and make a corresponding change: 

 

The α_index metric can quantitatively assess the reliability of ensemble 

probabilistic forecasts from the perspective of distribution function values (Renard et 

al., 2010). The closer the α_index value is to 1, the more reliable the probabilistic 

forecast is. The IGS and CRPS metrics can reflect the reliability and sharpness of the 

probabilistic forecast. The former can quantify the forecast probability density at the 

observation, while the latter can indicate the fit performance between the posterior 

probabilistic distribution and the actual probabilistic distribution of Qo (Raftery et al., 

2005). Both CRPS and IGS are negative scores, i.e., the smaller the value, the better. 

The IGS imposes severe penalties for particularly poor probabilistic predictions and 

may be extremely sensitive to outliers and extreme events, yet also lacks robustness 

(Raftery et al., 2005). 

 

Meanwhile, Fig.13(a), (b), and (c) show the evaluation metrics of α_index, IGS, 

and CRPS metrics for the two ensemble probabilistic forecasts, respectively. 

 

It can be seen from Fig.13(b) that the IGS values of the two methods gradually 

increase with the increase of the forecast horizon, indicating that the forecast 

uncertainty gradually increases. The maximum, minimum, and mean of the IGS 

metric for the CHUP-BMA method are 9.10, 8.33, and 8.87, respectively, and 9.16, 

8.59, and 8.98 for the HUP-BMA method, respectively. It can be seen that the IGS 

metrics of the CHUP-BMA method are consistently lower than those of the HUP-

BMA method, which indicates that the CHUP-BMA method has better ensemble 

forecast performance relative to the HUP-BMA method by assigning a higher 

probability density around the actual values. 

 

6. In Section 4, I would definitely consider the corresponding scores (or at least some 

of them) for the ensemble forecasts as well. 

Response: Thanks very much for your insightful suggestions. Some of the evaluation 
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metrics with a high degree of acceptance corresponding to ensemble forecasts, such as 

the IGS and CRPS metrics, have been used in the paper, supplemented by the 

probability integral transform (PIT) histogram, which is more intuitive relative to the 

Q-Q diagram. 

 

 

Fig. 12 The probability integral transform (PIT) histograms of the HUP-BMA and CHUP-BMA 

methods for the ensemble forecasts of the 24, 96, and 168h forecast horizons.  

 

Fig.12 shows the PIT histograms of the HUP-BMA and CHUP-BMA methods 

for 24, 96, and 168h forecast horizons. It can be significantly observed that the PIT 

plots of the HUP-BMA method show a ∩-shaped distribution, which indicates that the 

forecast distribution is over-dispersed and overestimates the forecast uncertainty, 

explaining the phenomenon of wide intervals. Meanwhile, the PIT plot of CHUP-

BMA is more uniformly distributed than that of the HUP-BMA method, which can 

obtain a better calibration performance. 

 

7. What can be said about the statistical significance of the score differences between 

HUP-BMA and CHUP-BMA? 

Response: Thanks for your valuable suggestions. We supplemented the statistical 

significance of the score differences between HUP-BMA and CHUP-BMA. 
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Table 5 T-test results of ensemble forecast metrics at 0.05 significance level 

Metric 

α_index IGS CRPS 

HUP-

BMA 

CHUP-

BMA 

HUP-

BMA 

CHUP-

BMA 

HUP-

BMA 

CHUP-

BMA 

Mean 0.93 0.97 8.98 8.87 1188 1074 

Variance 0.0003 0.0001 0.02 0.03 32247 33716 

Degree of freedom 46.00 52.00 54.00 

T-statistic -10.76 2.36 2.34 

T-threshold 1.68 1.67 1.67 

Difference significance 

analysis 
Significant Significant Significant 

 

From the Table 5, it can be seen that the T-statistics at the 0.05 significance level for 

all three metrics are higher than the threshold value, indicating that there is a 

significant difference between the scores of the CHUP-BMA and HUP-BMA methods, 

i.e., the CHUP-BMA method is significantly better than the HUP-BMA method for 

ensemble forecasting metrics and performance. 

 

Minor remarks, typos: 

1. L205-206: “It has been studied that the BMA method with sliding windows can 

obtain better probabilistic forecast performance”. Better compared to what? 

Response: Thanks for your thoughtful suggestions for changes. The following 

changes have been made: 

 

Parrish et al. (2012) and Darbandsari and Coulibaly (2019) have shown that the BMA 

method with the sliding window can obtain better probabilistic forecast performance 

compared to the method without the sliding window.  

 

2. L307: “indicative function” → “indicator function” 

Response: Thanks for your detailed suggestions for changes. The following changes 

have been made: 

𝐼(∙) denotes the indicator function. 
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Reply to CC1’ comments 

Legend 

Reviewers’ comments  

Authors’ responses 

Direct quotes from the revised manuscript 

 

 

Cui et al. (2023) mainly proposed a CHUP-BMA method to solve the unreasonable assumption of 

normal distribution of the BMA framework in hydrological forecast field. This specialized theory 

has been applied to the Three Gorges region of China to demonstrate its feasibility. The study is 

interesting and meaningful to the hydrological forecast community. However, it needs some 

revision before it is up to the publication standard of HESS. 

Response: We deeply appreciate your constructive comments and the time you spent on reviewing 

the paper. We have accepted all the revision comments. Point-by-point replies to the comments or 

suggestions made can be found below. 

 

1. Lines 8-10, the statement is not accurate. As I know, few existing literature (with Copula tool or 

without it) has been devoted to avoiding the normal transformation in the HUP-BMA method. 

Response: After further careful review by the authors, it is found that this paper is indeed the first 

article used to solve the problem of the normal distribution assumption of the HUP-BMA method. 

In order to be more rigorous, the corresponding content is modified to “This study proposed the 

CHUP-BMA method by introducing a copula-based HUP in the framework of BMA to bypass the 

need for normal quantile transformation of the HUP-BMA method.”. 

 

2. Lines 68-70 are not clear. It is ambiguous that " When the member forecasts are the same, the 

ensemble forecasts produce the same conditional probability distribution and lack rationality". The 

parameters of the BMA method include membership weights and variances, and the posterior 

distribution of the ensemble forecast is not necessarily the same even if the forecast members have 

the same results. In order to reflect the necessity of the initial state, the article should be changed 

to " When the forecast results of a member are the same at different moments, the same forecast 
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conditional probability distribution will be generated, which is not reasonable." It is important to 

highlight that the distribution is the same at different moments. 

Response: Thank you very much for your constructive comments. It has been changed to " 

However, most studies ignore an essential issue: the BMA does not consider the constraint of 

initial conditions (i.e., observed flow at the start of the forecast). It can be shown from Raftery et 

al. (2005) that the conditional distribution of the member (Qf,i) in the BMA is assumed to follow 

the normal distribution with expectation μi = ai+bi·Qf,i (ai and bi are the bias correction coefficients) 

and variance σi, which implies that the conditional distribution is only related to the member's 

forecasted flow and not affected by the observed flow at the forecast start time. It is unreasonable 

to produce the same posterior distribution when the forecast results are the same at different 

moments.". 

 

3. Line 79, missing punctuation. 

Response: The punctuation has been added to the article. 

 

4. Line 120, unit superscript error. 

Response: Error subscripts have been modified. 

 

5. Line 186, the symbol cm() does not appear in Eq. (12). 

Response: The c2 in Eq. (12) denotes the 2-dimensional copula density function. cm denotes the m-

dimensional copula density function. To reduce ambiguity, it has been supplemented with "m 

denotes the dimension." 

 

6. Line 279 is not clear. To improve the readability and logic of the paper, it is suggested to revise 

as “the forecasted flow of the upstream mainstream station”. 

Response: The corresponding content has been revised to "the forecasted flow of the upstream 

mainstream station". 

 

7. Line 339, whether these distributions and Copula functions passed the K-S test or other 

assumption tests? 

Response:  
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Fig.1 The KS statistics of Qo, Qb, and Qf sequence marginal distributions and copula functions. 1, 

2, … ,28 denote 6h, 12h, …, 168h forecast horizons, respectively 

 

Fig.1 illustrates the average of the KS statistics for the eight members. The Lognormal, Gamma 

and P-Ⅲ passed the K-S test for marginal distribution. The Student, Gaussian, and Frank copula 

passed the K-S test for copula function. The Lognormal and Student copula have relatively low 

KS statistics, which follows the same trend as the RMSE values. Therefore, it is found that both 

the K-S test and the RMSE criterion are effective in reflecting the fitting performance of the 

marginal distribution and copula function. To save space in the article, only the RMSE values are 

shown. 

 

8. Line 498, although the authors do not mention it, it is necessary to mention the improvement 

room of the inherent mechanism of the CHUP-BMA method. 

Response: Thanks for the valuable comments. The improvement room of CHUP-BMA method has 

been added in the article “In this study, we proposed a novel CHUP-BMA method that the copula-

based HUP (CHUP) is coupled with the BMA method, which not only can consider the influence 

of the initial state on the ensemble forecast, but also can avoid the assumption of normal 

distribution in the HUP-BMA method and derive the posterior distribution function more 

accurately. An ensemble forecast scheme that consists of two forecasted precipitation, two 

hydrological models, and two objective functions of parameter calibration is established.”. 
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Reply to CC2’ comments 

Legend 

Reviewers’ comments  

Authors’ responses 

Direct quotes from the revised manuscript 

 

The paper couples the Copula-based hydrological uncertainty processor with the Bayesian model 

averaging method to quantify and reduce uncertainty in flood forecasting upstream of the Three 

Gorges Reservoir in the Yangtze River basin, China. The topic is timely and the paper is 

technically sound. The paper could benefit from additional clarification in some sections. 

Response: We deeply appreciate your constructive comments and the time you spent on reviewing 

the paper. We have accepted all the revision comments. Point-by-point replies to the comments or 

suggestions made can be found below. 

 

1. Line 9: The full name of "CHUP-BMA" needs to be given the first time it is mentioned.  

Response: The corresponding content has modified to “This study proposed the CHUP-BMA 

method by introducing a copula-based HUP in the framework of BMA to bypass the need for 

normal quantile transformation of the HUP-BMA method”. 

 

2. Lines 68-70: The description here is not clear to me, e.g. why the BMA ignores the constraint of 

initial conditions. Further explanation of the reason and how the HUP-BMA mentioned later can 

obtain the posterior distribution function of the observed flow is suggested in the Introduction 

section. 

Response: It can be shown from Raftery et al. (2005) that the conditional distribution of the 

member (Qf,i) in the BMA is assumed to follow the normal distribution with expectation μi = 

ai+bi·Qf,i (ai and bi are the bias correction coefficients) and variance σi, which implies that the 

conditional distribution is only related to the member's forecasted flow and is not affected by the 

observed flow at the start of the forecast. Therefore, it is not reasonable to produce the same 

posterior distribution when the forecast results are the same at different moments. The 

corresponding content has been modified as follows: 
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However, most studies ignore an essential issue: the BMA does not consider the constraint of 

initial conditions (i.e., observed flow at the start of the forecast). It can be shown from Raftery et al. 

(2005) that the conditional distribution of the member (Qf,i) in the BMA is assumed to follow the 

normal distribution with expectation μi = ai+bi·Qf,i (ai and bi are the bias correction coefficients) and 

variance σi, which implies that the conditional distribution is only related to the member's forecasted 

flow and not affected by the observed flow at the forecast start time. It is unreasonable to produce the 

same posterior distribution when the forecast results are the same at different moments.  

The hydrological uncertainty processor (HUP) can obtain the posterior distribution function of the 

actual value under the condition of the forecast value and the observed flow at the start time based on 

Bayesian principles and the assumption of perfect rainfall forecasting (Krzysztofowicz and Kelly, 

2000). Darbandsari and Coulibaly (2021) firstly utilized the HUP method to derive the posterior 

distribution of each member considering the initial constraints, and then used the BMA method to 

weight the conditional distribution of all members to obtain the final posterior distribution, which is 

called the HUP-BMA method. Their results showed that the HUP-BMA method outperforms the HUP 

method and improves the BMA method in short-term probabilistic forecasting. In addition, the 

derivability of the posterior distribution for the ensemble members is theoretically enhanced, the 

heteroskedasticity of the ensemble members is considered, and the interpretability and logical 

rationality of the BMA method are improved. 

 

3. Lines 85-86: It seems that this work is motivated by the copula-based HUP method in Liu et al. 

I suggest giving a brief description of this method and how it is used to improve forecast accuracy 

here. 

Response: A modification has been made to the article as follows: 

Liu et al. (2018) adopted the copula to derive the conditional distribution of the observed flow under 

the conditions of the forecasted flow, which avoids the assumption that the flow series obeys a normal 

distribution in the HUP and relaxes the application limitation. The study shows that the CHUP can 

improve the probabilistic forecasting performance of the HUP method.  

 

4. Line 87: I suggest presenting the objectives and research steps one by one. For example, the 

novelty of this work can be introduced in the previous paragraph, along with the shortcomings of 
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current methods, and then the implementation of the proposed method in streamflow forecasting 

can be briefly introduced. 

Response: The corresponding content has been modified as follows: 

The main innovations and research steps are shown as follows: (1) A novel CHUP-BMA method 

is proposed for the first time by coupling CHUP into BMA, which not only avoids the normal 

distribution assumption in HUP-BMA, but also considers the constraints of the initial condition of the 

forecast. (2) An ensemble forecast containing eight members is constructed by combining two types of 

forecast precipitation, two long short-term memory (LSTM) models, i.e., the recursive encoder-decoder 

structure-based LSTM-RED model and the feature-temporal dual attention-based DA-LSTM-RED 

model, and two objective functions of model calibration. (3) The ensemble forecast performance of the 

proposed method is analysed and discussed in comparison to the HUP-BMA benchmark method in 

terms of the deterministic and probabilistic forecasts. The interval basin between Xiangjiaba Dam and 

the Three Gorges Dam in the Yangtze River, China, is selected as case study. 

 

5. Section 3.2: It seems that the model structure uncertainty in this study is considered by using 

two forecast models with LSTM-RED structure. why not using two different types of models (e.g., 

ANN-based vs. tree-based or physical-based vs. data-driven models)? 

Response: It has been demonstrated in many studies that LSTM models have relatively better 

forecasting performance than ANN, tree-based models, and physical mechanism models (Kratzert 

et al., 2018; Hu et al., 2018; Han & Morrison, 2021; Zhang et al., 2022; Hayder et al., 2023). 

Meanwhile, in the interval basin between Xiangjiaba and TGR dam-site, the physical mechanism 

model usually is very complex and has low forecasting accuracy. This study is a further research 

based on Cui et al. (2023), which demonstrated that the DA-LSTM-RED model structure 

improved by the dual-attention mechanism resulted in a substantial improvement in forecast 

accuracy relative to the LSTM-RED model. Therefore, this study uses two advanced LSTM-RED 

and DA-LSTM-RED models for flood forecasting and focuses on the uncertainties associated with 

these two models. 

 

Reference: 

Kratzert, F., Klotz, D., Brenner, C., Schulz, K., and Herrnegger, M.: Rainfall–runoff modelling 
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using Long Short-Term Memory (LSTM) networks, Hydrol. Earth Syst. Sci., 22, 6005–6022, 

https://doi.org/10.5194/hess-22-6005-2018, 2018.  

Hu, C., Wu, Q., Li, H., Jian, S., Li, N., & Lou, Z. Deep learning with a long short-term memory 

networks approach for rainfall-runoff simulation[J]. Water, 10(11): 1543, 

https://doi.org/10.3390/w10111543, 2018. 

Han, H., & Morrison, R. R. Data-driven approaches for runoff prediction using distributed data[J]. 

Stoch. Environ. Res. Risk. Assess., 1-19. https://doi.org/10.1007/s00477-021-01993-3, 2021. 

Zhang, Y., Ragettli, S., Molnar, P., Fink, O., & Peleg, N. Generalization of an Encoder-Decoder 

LSTM model for flood prediction in ungauged catchments[J]. J. Hydrol., 614: 128577. 

https://doi.org/10.1016/j.jhydrol.2022.128577,2022. 

Hayder, I. M., Al-Amiedy, T. A., Ghaban, W., Saeed, F., Nasser, M., Al-Ali, G. A., & Younis, H. A. 

An Intelligent Early Flood Forecasting and Prediction Leveraging Machine and Deep Learning 

Algorithms with Advanced Alert System. Processes, 11(2), 481. 

https://doi.org/10.3390/pr11020481, 2023. 

Cui, Z., Guo, S., Zhou, Y., Wang, J. Exploration of dual-attention mechanism-based deep learning 

for multi-step-ahead flood probabilistic forecasting. J. Hydrol., 622, 129688. 

https://doi.org/10.1016/j.jhydrol.2023.129688, 2023. 

 

6. Also, what is the purpose of using MAE and MSE as prediction evaluation metrics in this work? 

These two metrics are similar to each other. In order to account for model parameter uncertainty, it 

seems more appropriate to use three apparently different evaluation metrics, such as Nash-

Sutcliffe efficiency, mean absolute error (MAE), and relative error of total discharge (RE). 

Response: In this paper, we want to train different model parameters using different loss functions. 

Although the two indicators are similar, MAE and MSE focus on different points, with MAE 

focusing on the magnitude of the error mean, while MSE is sensitive to outliers with large errors. 

As a result, the model can be guided to produce varying parameters to account for parameter 

uncertainty. We make the following changes in the article: 

For example, the mean absolute error function focuses on the magnitude of the error mean. The mean 

square error function usually is sensitive to outliers with large errors, which may make the model 

parameters with different objective functions produce forecast results with different focus points (Duan 

https://doi.org/10.3390/w10111543
https://doi.org/10.1016/j.jhydrol.2022.128577,2022
https://doi.org/10.3390/pr11020481
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et al., 2007).  

 

7. Some reference to the first mentioned methods is suggested, e.g. the reference to the "Adam 

method" is suggested in line 283. 

Response: We make the following changes: 

The model is trained by the Adam method (Kingma& Ba, 2014). 

Additional references: 

Kingma D P, Ba J. Adam: A method for stochastic optimization[J]. arXiv preprint 

arXiv:1412.6980, https://doi.org/10.48550/arXiv.1412.6980, 2014. 
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