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Reply to Reviewers’ comments (Reviewer#1) 

Legend 

Reviewers’ comments  

Authors’ responses 

Direct quotes from the revised manuscript 

 

Reviewer #1:  

The paper proposes a new CHUP-BMA ensemble forecasting method by incorporating 

the CHUP-derived posterior distribution of the observed flow into the BMA framework. 

It has the advantage that the initial state constraints can be considered in the BMA while 

avoiding the normal quantile transformation of the HUP-BMA method. Based on deep 

learning, an ensemble forecasting scheme considering input, model structure, and 

parameter uncertainty is constructed in Three Gorges Reservoir, China, and the 

effectiveness of the CHUP-BMA method in reducing forecast uncertainty is verified. 

The study is innovative and theoretically rigorous and has promising results with solid 

application potential. Some questions need further discussion. 

Response: We deeply appreciate your constructive comments and the time you spent 

on reviewing the paper. We have accepted all the revision comments. Point-by-point 

replies to the comments or suggestions made can be found below. 

 

1. The sources of Figure 3 and Table 2 need to be explained to improve the 

reasonableness of the paper. 

Response: The values of Figure 3 and Table 2 are obtained from the Hydrological 

Bureau of the Changjiang Water Resources Commission (HBCWRC). In addition, 

Figure 3 can be referred to the paper by Zhong et al. (2018b). We make the following 

changes in subsection 3.2.1: 

 

The rainfall-runoff relationship graph method (Fedora and Beschta, 1989) commonly 

used in the Yangtze River basin can calculate the effective precipitation. The antecedent 

precipitation index, which is the key variable of the method, can be calculated by the 
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following equation to represent the soil moisture content (Zhong et al., 2018b). 

𝑃𝑎,𝑡+1 = 𝑘(𝑃𝑎,𝑡 + 𝑃𝑡) (16) 

𝑃𝑎,𝑡+1 ≤ 𝐼𝑚 (17) 

where Pa denotes the antecedent precipitation index, Pt is the daily precipitation, Im is 

the water storage capacity of the basin, k denotes evaporation reduction index.  

The values of k and Im for these three sub-basins are listed in Table 2, which are 

obtained from the Hydrological Bureau of the Changjiang Water Resources 

Commission (HBCWRC). Since the rainfall-runoff relationship graph method have 

been widely used for runoff generation calculation in the Yangtze River basin, the 

rainfall-runoff relationship between Xiangjiaba and Three Gorges Dam-site 

uncontrolled interval basin are established and plotted in Fig. 3, which is used to 

calculate the effective precipitation based on the antecedent precipitation index (Pa) and 

observed (or forecasted) precipitation for these three sub-basins.  

 

Reference 

Zhong, Y., Guo, S., Liu, Z., Wang, Y., and Yin, J. Quantifying differences between reservoir inflows 

and dam site floods using frequency and risk analysis methods. Stoch. Environ. Res. Risk 

Assess., 32, 419-433. https://doi.org/10.1007/s00477-017-1401-4, 2018b. 

 

2. Various model inputs (e.g., rainfall, tributary flows, etc.) exist in the interval basins. 

The article only considers the input uncertainty of rainfall, and it is suggested to add a 

reason for this in subsection 3.2.1. 

Response: Thanks to the reviewers for the constructive comments. There are five flow 

discharge inputs from five large tributaries (Jinsha, Min, Jialing, Tuo, and Wu Rivers) 

in our case study. The flow discharges are observed at the Pingshan, Gaochang, Fushun, 

Beibei, and Wulong hydrological controlled stations, respectively. Since these observed 

(or forecasted) flows are respectively regulated by their upstream cascade reservoirs, 

these flow data inputs are more accurate than the rainfall inputs.  

We collected the forecasted precipitation data from the European Centre for 

https://doi.org/10.1007/s00477-017-1401-4
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Medium-Range Weather Forecasts (ECMWF) and HBCWRC during the 2017-2021 

flood season in the three sub-basins. Since the rainfall data is more diverse and has 

relatively large uncertainty, so the forecast rainfall input variable is used to explore the 

impact of forecast rainfall uncertainty on the Three Gorges reservoir inflow forecasts. 

We also make the following changes in subsection 3.2.1: 

 

There are five flow discharge inputs from five large tributaries (Jinsha, Min, Jialing, 

Tuo, and Wu Rivers) in this case study. The flow discharges are observed at the 

Pingshan, Gaochang, Fushun, Beibei, and Wulong hydrological controlled stations, 

respectively. Since these observed (or forecasted) flows are respectively regulated by 

their upstream cascade reservoirs, these flow data inputs are more accurate than the 

rainfall inputs. This study collected the forecasted precipitation data from the European 

Centre for Medium-Range Weather Forecasts (ECMWF) and HBCWRC during the 

2017-2021 flood season in these three sub-basins. Since the rainfall data is more diverse 

and has relatively large uncertainty, only the forecast rainfall input variable is used to 

explore the impact of forecast rainfall uncertainty on the Three Gorges reservoir inflow 

forecasts.  

 

3. Line 255. You should briefly introduce the LSTM in subsection 3.2.2 to improve the 

paper's readability. In addition, it is recommended to cite references more relevant to 

the LSTM. 

Response: Thanks for your valuable comments. We will add a brief introduction to 

LSTM neural networks and cite more relevant literatures as follows: 

 

The structure of LSTM neural network includes forgetting gate, input gate, updating 

the state of the memory unit, and output gate (Hochreiter and Schmidhuber, 1997). The 

forgetting gate can select the relatively important information in the previous memory 

unit. The input gate can select useful information from the input variables at the current 

moment. The memory unit state can store relatively important information extracted 

from historical moments, which is updated under the control of the forgetting gate and 
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the input gate. The output gate selects and outputs useful information from the memory 

cell state. More detailed procedures of the LSTM neural network formulation have been 

described by Kratzert et al. (2018). 

 

Additional references: 

Hochreiter, S., Schmidhuber, J. Long short-term memory. Neural Computation, 9(8), 1735-1780. 

https://doi.org/10.1162/neco.1997.9.8.1735, 1997. 

Kratzert, F., Klotz, D., Brenner, C., Schulz, K., Herrnegger, M. Rainfall–runoff modelling using 

long short-term memory (LSTM) networks. Hydrology and Earth System Sciences, 22(11), 

6005-6022. https://doi.org/10.5194/hess-22-6005-2018, 2018. 

 

4. Deep learning parameters significantly impact forecast accuracy, so it is 

recommended to show the values of deep learning parameters. The study should 

concentrate on ensemble forecasting methods rather than deep learning models. 

Therefore, the model parameter values can be shown in the appendix. 

Response: Thanks for your valuable comments. We supplement the appendix with 

model parameter values for the ensemble members. An appendix will be added in the 

revised manuscript as follow: 

 

Appendix: 

We set the number of neural network layers and neurons to be the same for the 

encoding and decoding processes, with trial-and-error preferences for the number of 

hidden layers, neurons, and dropout. Meanwhile, the batch size, epoch, and learning 

rate are set to 100, 500, and 0.001, respectively. The different model parameters are 

shown in Table A. 

 

Table A The different model parameters for ensemble membership 

Ensemble member type Neuron Hidden layers Dropout 

ECMWF&DA-LSTM-RED&MSE 64 1 0.001 

ECMWF&LSTM-RED&MSE 64 1 0.001 

https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.5194/hess-22-6005-2018
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ECMWF&DA-LSTM-RED&MAE 32 1 0.01 

ECMWF&LSTM-RED&MAE 64 1 0.1 

HBYRWRC &DA-LSTM-RED&MSE 32 1 0.1 

HBYRWRC &LSTM-RED&MSE 32 1 0.001 

HBYRWRC &DA-LSTM-RED&MAE 64 1 0.001 

HBYRWRC &LSTM-RED&MAE 48 1 0.01 

 

5. Line 369, add a description of the member type with better forecast accuracy, i.e., the 

input composition, the model structure, and the objective function of the selected 

parameters. 

Response: Thanks for your insightful comments. We have added relevant content to the 

article: 

 

The member with relatively optimal forecast accuracy is composed of the forecast 

rainfall from ECWMF, the DA-LSTM-RED model, and the objective function with 

mean square error to optimize the parameters.  

 

6. There are numerous evaluation metrics in deterministic and probabilistic forecasting. 

Briefly explain the reasons for the metrics chosen in the paper. 

Response: Thanks for your suggestion. The article is added below: 

 

The Nash-Sutcliffe efficiency (NSE) is one of the most important metrics in flood 

forecasting, reflecting the degree of fit between forecasted and observed flows (Nash 

& Sutcliffe, 1970). Since the accurate runoff volume predictions is more important than 

peak discharge for the operation of a large reservoir (Cui et al., 2023), the relative error 

for total runoff volume (RE) is also chosen. The mean absolute error (MAE) can reflect 

the forecast error for each moment, and compared with the continuous ranked 

probability score (CRPS) of the ensemble forecast (Raftery et al., 2005), which can 

reflect the effectiveness of the ensemble forecast correction. Therefore, three metrics, 

NSE, RE, and MAE, are selected to evaluate the deterministic forecast results. 

 

The average coverage rate (CR) is one of the most necessary metrics for evaluating the 
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reliability of forecast intervals (Li et al., 2021). The average interval width (IW) is the 

metric that directly reflects the level of forecast uncertainty, which is an important 

metric for evaluating the effectiveness of the proposed methods. The percentage of 

observations bracketed by the unit confidence Interval (PUCI) is a comprehensive 

metric for evaluating the performance of forecast intervals in quantifying uncertainty 

(Xiong et al., 2009). Therefore, the CR, RB, and PUCI metrics are selected to evaluate 

the forecast intervals performance. 

 

The α_index metric can quantitatively assess the reliability of ensemble probabilistic 

forecasts from the perspective of distribution function values (Renard et al., 2010). The 

ignorance score (IGS) metric can quantitatively assess the sharpness of the posterior 

density function and quantify forecast uncertainty from the perspective of the 

probability density (Gneiting et al., 2005). The continuous ranked probability score 

(CRPS) is one of the most important composite metrices for assessing the overall 

performance of probabilistic forecasts (Raftery et al., 2005) and can represent both the 

reliability and sharpness of forecasted posterior distribution function. Therefore, the 

α_index, IGS, and CRPS metrics are selected to evaluate the probabilistic forecast 

performance. 

 

Additional references: 

Li, D., Marshall, L., Liang, Z., Sharma, A., Zhou, Y. Bayesian LSTM with stochastic variational 

inference for estimating model uncertainty in process‐based hydrological models. Water 

Resources Research, 57(9), e2021WR029772. https://doi.org/10.1029/2021WR029772, 2021. 

Xiong, L., Wan, M. I. N., Wei, X., O'connor, K. M. Indices for assessing the prediction bounds of 

hydrological models and application by generalised likelihood uncertainty estimation. 

Hydrological sciences journal, 54(5), 852-871. https://doi.org/10.1623/hysj.54.5.852, 2009. 

 

7. Line 465, replacing 'concentration' with 'sharpness' as 'reliability (α_index), 

concentration (IGS),' should correspond to the name of Figure 13. 

Response: Thank you for reminder. We have changed "concentration" to "sharpness" in 

https://doi.org/10.1029/2021WR029772
https://doi.org/10.1623/hysj.54.5.852
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the revised manuscript. 

 

8. To improve modeling rationality, explain why observations are used as model 

tributary inputs in training and validation periods. 

Response: Thanks for your well-considered suggestions. Three Gorges Reservoir (TGR) 

is the largest hydraulic project in the world and controls a watershed area of 1 million 

km2. There are more than 300 larger-scale reservoirs have been built in the upstream 

Yangtze River basin with a total storage of 163.3 billion m3. The operational flow 

forecasting procedure is from the sources of tributaries, each larger-scale reservoir 

inflows, interval basin flow forecasting and river flow routing to downstream sections, 

and so on. Since the forecast data series at the outlets of five large tributaries (Jinsha, 

Min, Jialing, Tuo, and Wu Rivers) are inconsistent, we used the observed flows to train 

and validate the proposed models or forecasting schemes. We have added the following 

in subsection 3.2.2: 

 

In the actual TGR inflow forecasting model, the observed flow discharge data at the 

outlets of five large tributaries (Jinsha, Min, Jialing, Tuo, and Wu Rivers) in the 

interval-basin between Xiangjiaba and TGR dam-site are used to train and validate the 

proposed models or forecasting schemes since the forecast data series at the outlets of 

tributaries are inconsistent. 

 

9. In the outlook, adding the construction of the CHUP-BMA method using a more 

flexible vine copula will make the CHUP-BMA method more competitive. 

Response: Thank you for your foresighted suggestions. Our additions to the article are 

as follows: 

 

In the future, the vine copula, which facilitates multivariate joint distribution modelling, 

can be considered for constructing the CHUP-BMA method and exploring its 

advantages and effectiveness in ensemble flood forecasting. 


