Dear reviewers, thank you for your valuable feedback. We have taken into account the insightful suggestions provided, which have allowed us to elaborate further on the content and improve the overall quality of the paper. The responses to the comments are presented below in a two-column format.

General Comments	Response
The model should be properly described.	The aim of the paper is to assess the hydrological, ecological, and economic consequences of multiple dams within the study basin. To achieve this objective, a landscape based hydrological model (FLEX-Topo) was first developed and integrated with a reservoir model. The setup of this model was explained in detail, including its inputs, parameters calibrated and calibration results, in Ekka et al. (2022) and are summarized below, for the benefit of the editor and reviewer; but as these have already been published, these cannot be reproduced in the present paper, as this would constitute self-plagiarism. A brief description is provided below and it has been included in the revised manuscript.
	"This integration involves modeling the operations of the reservoirs, as well as the hydrology of the upstream and downstream areas. By combining these models, the impact of reservoirs on the observed downstream flow patterns and the delivery of ecosystem services can be evaluated. The study focuses on four sub-basins, which are defined by the four gauging stations. Each sub-basin is further divided into two sections, representing the upstream and downstream areas of the respective reservoirs. The FLEX-Topo models for the upstream and downstream areas of a reservoir, respectively, contribute to the flow at a gauge station. Each sub-basin consists of reservoir model and command area associated with each reservoir. The flow at the downstream gauge station is measured and calibrated. Foe each sub-basin with reservoir, the outflow from upstream area becomes the inflow for the reservoir, and the outflow from the reservoir model enters downstream area. The outflow from downstream area is then calibrated at the gauge station. If the reservoir is removed, the outflow from upstream area is combined with the outflow from downstream area, forming the outflow at the gauge station. Afterwards, all the reservoirs are integrated to assess the effect of reservoirs on the flow downstream for varying configurations of all the reservoirs."

What are the input and output of the model?	The model inputs consist of two parts: Hydrological Response Units (HRUs) and forcing data. A detailed explanation
	of these components has been included in the revised manuscript as follows:
	"Creation of the Hydrological Response Unit (HRU)
	The creation of hydrological response unit (HRU) involves utilizing Digital Elevation Model (DEM), slope, and
	Height Above the Nearest Drainage (HAND) to categorize the landscape into distinct classes. In the ArcGIS
	software, the slope and HAND data are processed using an 80-meter resolution DEM. The delineation of the
	watershed area of the sun-basin is determined based on the gauge location, while for upstream, the watershed area
	is defined by the location of the dam. Subsequently, downstream area is obtained by extracting the upstream area
	from the entire watershed. The datasets containing DEM, slope, HAND, and basin boundaries are then clipped and
	exported to Matlab for further analysis. To differentiate between the three landscape classes, specific thresholds are
	selected. Areas with HAND greater than 5 meters and slope less than 11 percent are classified as plateaus. Areas
	with HAND greater than 5 meters and slope greater than 11 percent are identified as hillslopes. Finally, areas with
	HAND less than 5 meters are designated as wetlands, following the approach proposed by Gharari et al. (2011).
	These classified maps are then compared with land use maps to determine five distinct Hydrological Response Units
	(HRUs): Hillslope forests, Hillslope crops, Plateau forests, Plateau crops, and Wetlands. The determination of these
	HRUs is based on the proportion of landscape classes in the upstream area and downstream areas of the reservoir
	for each sub-basin. These HRUs are subsequently used to run the Flex-topo model.
	Forcing data:
	Rainfall and potential evapotranspiration data are utilized as inputs for the analysis. Daily gridded rainfall data with
	a resolution of 0.25° x 0.25° and temperature data with a resolution of 1° x 1° are obtained from the Indian
	Meteorological Department, Government of India (Pai et al., 2014; Shrivastava et al., 2009). These data are extracted
	for each sub-basin and used to drive both the FLEX-Topo model and the reservoir model. The potential
	evapotranspiration (ETo) is calculated based on the Hargreaves equation (Hargreaves and Samani, 1982), which
	considers the maximum, mean, and minimum temperature values. Runoff data for the gauges shown in Figure 2b is

	obtained from the Central Water Comm	nission, Governm	ent of India. Info	ormation on the r	eservoirs incl	uding inflow,
	outflow, and storage levels, is accessed	l from the Karnat	aka State Natura	l Disaster Monit	toring Centre,	Government
	of Karnataka, India, through their off	icial website (<u>ht</u>	tps://www.ksndr	nc.org/Reservoir). Modelled
	discharge and actual evapotranspiration	n is obtained as o	utput from the m	nodel which are u	used for furth	er analysis."
How is the model simulated?	The hydrological model simulation is d	lescribed and inc	luded in the revi	sed manuscript a	s follows:	
	"The present study utilizes a hydrologi	ical model called	FLEX-Topo, w	hich is based on	topography a	and is used to
	simulate the behavior of river landsca	pes. The interact	ion between veg	getation, soil, an	d climate is i	nfluenced by
	topography and plays a crucial role in	n shaping the cl	naracteristics of	these landscape	s. The FLEX	-Topo model
	employs a catchment-scale simulation	approach by divi	ding the landsca	pe into distinct h	ydrological r	esponse units
	(HRUs), such as wetlands, hillslopes, a	nd plateaus (Gha	rari et al., 2014).	This parsimonio	ous modeling	approach has
	demonstrated its ability to be applied in	n data-scarce bas	sins, as its struct	ure is constraine	d by topograp	bhy, requiring
	fewer calibration parameters, and yiel	ding reliable flo	w simulations e	ven under chang	ging land-cov	er conditions
	(Gao et al., 2014; Savenije, 2010). Five	-				
	the upstream and downstream areas of	f the reservoir for	r each sub-basin	. Afterwards, the	e model is cal	ibrated using
	rainfall and potential evapotranspiration			,		
It lacks basic explanation of what the variables and parameters are.	There are in total 25 parameters as ind Elitist Non-Dominated Sorting Genetic materials.			· · · ·		U
Which parameters are calibrated?	Table 1. Model parameters prior ranges	s. These define th	e feasible range	within which pa	rameters are o	calibrated.
				rameter Range		
	Parameters	Platea ucrop	Plateau forest	Hillslope crop	Hillslope forest	Wetlan ds
	I _{max} [mm/day]	<u>1-8</u>	6-10	1-8	6-10	1-5

	0.1-1	0.1-1	0.1-1	0.1-1	0.1-1
	•••				•••
	100-				
		100-1000	100-500	100-1000	10-100
	200				
β[-]					
	0.1-5	0.1-5	0.1-5	0.1-5	0.1-5
	015	015			
	0.1-5	0.1-5	-	-	-
			0.0.5	0.0.5	
(The splitter)	-	-	0-0.5	0-0.5	-
C _R max [mm/day]					0.01-1
(Capillary rise)	-	-	-	-	0.01-1
$K_{f}[d]$	0.005				
(Recession coefficient of the fast		0.005 -1	0.005-1	0.005-1	0.005-1
reservoir)	-1				
	С	atchment parar	neters		
K _s [d]					
(Recession coefficient of the slow			0.000	1-0.01	
reservoir)					
$T_{lag}[d]$			0.1	- 30	
(Time lag between the storm and peak					
flow)					
Frac 1 [-]		The value	is fixed (0 -1)	based on the pe	rcentage
					U
					rcentage
					0
		<u> </u>			
ource Ekka et al., 2022					
,					
	$\begin{array}{c} C_R max \left[mm/day\right] \\ (Capillary rise) \\ K_f \left[d\right] \\ (Recession coefficient of the fast reservoir) \\ \hline \\ \hline \\ K_s \left[d\right] \\ (Recession coefficient of the slow reservoir) \\ \hline \\ T_{lag} \left[d\right] \\ (Time lag between the storm and peak flow) \\ \end{array}$	$\begin{array}{c} \mbox{reservoir} & 0.1-1 \\ \mbox{Fraction of S}_{u, max} & 0.1-1 \\ \mbox{(Fraction of S}_{u, max}) & 100- \\ \mbox{(Maximum soil moisture capacity in the root zone)} & 100- \\ \mbox{(Maximum soil moisture capacity in the root zone)} & 0.1-5 \\ \mbox{(Spatial heterogeneity in the catchment/shape parameter)} & 0.1-5 \\ \mbox{(Spatial heterogeneity in the catchment/shape parameter)} & 0.1-5 \\ \mbox{(Maximum percolation rate)} & -1 \\ \mbox{(Capillary rise)} & - \\ \mbox{K}_{f} [d] & 0.005 \\ \mbox{(Recession coefficient of the fast reservoir)} & -1 \\ \mbox{(Recession coefficient of the slow reservoir)} \\ \mbox{T}_{lag} [d] \\ \mbox{(Time lag between the storm and peak flow)} \\ \mbox{Frac 1 [-]} \\ \mbox{(Fraction of forests cover)} \\ \mbox{Frac 2 [-]} \\ \mbox{(Fraction of Irrigation)} \\ \end{tabular}$	reservoir) C _e [-] 0.1-1 0.1-1 (Fraction of S _{u, max}) Su _{max} [mm] 0.1-1 0.1-1 (Maximum soil moisture capacity in 500 100-1000 the root zone) 500 100-1000 the root zone) 500 100-1000 f[-] 0.1-5 0.1-5 0.1-5 catchment/shape parameter) 0.1-5 0.1-5 (Maximum percolation rate) 0.1-5 0.1-5 [-] 0.1-5 0.1-5 0.1-5 D [-]	reservoir) C _e [-] (Fraction of S _{u, max}) Su _{max} [mm] (Maximum soil moisture capacity in the root zone) β [-] (Spatial heterogeneity in the catchment/shape parameter) Pmax [-] (Maximum percolation rate) D [-] (The splitter) Carmax [mm/day] (Capillary rise) K _r [d] (Recession coefficient of the fast reservoir) K _s [d] (Recession coefficient of the slow reservoir) K _s [d] (Recession coefficient of the slow reservoir) Thag [d] (Recession coefficient of the slow reservoir) The value is fixed (0 - 1) H (Fraction of forests cover) Frac 2 [-] (Fraction of Irrigation) (D 1-1 0.1-5 0.1-5 - 0.1-5 - 0.1-5 - 0.1-5 - 0.1-5 - 0.005-1 0.005-1 0.005-1 0.005-1 0.005 -1 0.005 0.1-5 - Catchment parameters K _s (d) (Recession coefficient of the slow reservoir) The value is fixed (0 - 1) H of Irrigated area in the sub-b The value is fixed (0 - 1) H of Irrigated area in the sub-b	$\begin{array}{c} \mbox{reservoir} & & & & & & & & & & & & & & & & & & &$

The calibration results are not presented.	The results of the calibration and valida station is presented in Table 2 taken from	0	the reservoirs and measured	l at the last gauge
	Table 2. The calibration and validation a	fter integration of all the rese	ervoirs	
	Model performance	-NSE [range]	MAE [range] (10 ⁶ m ³ day ⁻¹)	
	Reservoir Calibration (2011-2016)	-0.68 [-0.67 - (-0.69)]	0.71 [0.70 - 0.72]	
	Flex-Topo Calibration (1991-2010)	-0.53 [-0.54 - (-0.52)]	0.92 [0.92 -0.97]	
	Flex-Topo Validation (2011-2016)	-0.50	0.86	
	The MAE is always non-negative, and a range of $0.70 - 0.72 (10^6 \text{ m}^3 \text{ day}^{-1})$ which -0.51 to -0.73. The -NSE value less misunderstanding about our reporting of to its use to maximize as an objective in I which indicates reasonably good perform In the current model, the negative reverse	is in the acceptable range. Si than -0.50 is acceptable (NSE. We had reported nega NSGA II). NSE values are gr nance of a model at daily sca	milarly, the -NSE value was Table 2). Kindly note our tive NSE values instead of p eater than 0.5 and sometime ale that also incorporated res	observed between r response to the positive NSE (due s even around 0.7, servoir operations.
How the flow regime was generated, and which time frame was considered for		ation is indicated in the revis	sed manuscript as follows:	
simulation is unclear.	"To calibrate and validate the FLEX-	Topo models, the dataset of	of topographic maps, rainf	all, and potential
	evapotranspiration was used. Specifically	v, the dataset from January 19	91 to December 2010 was us	sed for calibration,

	and the dataset from 2010 to 2016 was used for validation. The reservoir models were calibrated using the dataset
	composed of inflow, outflow, storage, rainfall, and potential evapotranspiration, for the reservoirs covering the
	period from January 2011 to December 2016."
The overall approach is to compare scenarios	The reviewer makes a very valuable suggestion, namely to consider also the alternative of replacing large reservoirs
of current state of 4 reservoirs vs. not having	by one or more smaller reservoirs. While this is a valuable question for future research, it falls outside the scope and
one or more reservoirs. From rather planning	objective of the present paper. The objective has been refined in the revised manuscript to provide a more precise
perspective, isn't the more important question	description, resulting in a better understanding of the intended goal as follows:
is if the smaller multiple reservoirs are better	
or worse than single or fewer larger reservoirs	"This paper aims to answer how different combinations of spatially located reservoirs of varying sizes in the Upper
given all the water demand needs are met?	Cauvery River basin perform both in terms of economic value, as measured in terms of agriculture production, and
Please mention what are your research	environmental performance, as measured in terms of fish species richness. In this sense the paper evaluates the most
questions.	suited configuration of existing reservoirs that effectively meets water demand needs while considering
	environmental sustainability."
The agriculture production and environmental	The following paragraph is added to the revised manuscript to explain the reservoir operations and seasonal influence
consequences are currently tied to regulated	of streamflow
water and scenarios of the number of	
reservoirs, but it seems like reservoir	"A hydrological model based on the landscape is developed and integrated with a reservoir model. This integration
operations and seasonal influence of	involves modeling the operations of the reservoirs, as well as the hydrology of the upstream and downstream areas.
streamflow is overlooked in result analysis.	The model runs at daily time steps, so reservoir operations and streamflow are simulated at daily time steps. Thus,
As it mentions "embedded reservoir model", I	seasonality is implicitly considered."
believe it is incorporated in the model, but it	
is not clearly described in manuscript.	

	 "Fish species richness refers to the number of different fish species present in a particular area or ecosystem. It is one of the measures of biodiversity and represents the diversity and abundance of fish species within a given habitat or geographical region. Species richness is commonly used to assess the ecological health and complexity of aquatic ecosystems. The higher the fish species richness, the greater the variety of fish species present in an area, indicating a more diverse and potentially healthier ecosystem. Fish species richness can be influenced by various factors, including habitat type, water quality, temperature, and availability of food and resources. Monitoring and understanding fish species richness are important for conservation efforts, ecosystem management, and assessing the impacts of human activities on aquatic environment." The analysis does not focus on a specific fish species but rather considers the presence of various fish species within a riverine ecosystem. This approach is further clarified and added to revised manuscript as follows:
What types of fish species are considered	"The analysis focuses on fish species richness, which refers to the number of different fish species present in a
here?	specific area or ecosystem. As a result, no specific fish species is targeted in this study. By considering the collective presence of various fish species, the analysis provides insights into the overall ecological health and biodiversity of
	the system under investigation. However, the ichthyofauna diversity of the river Cauvery has recorded 146 fish
	species belonging to 52 families (Koushlesh et al., 2021). From an environmental conservation point of view, the Cauvery is critical to the habitat for many fish species. For example, the Mahseer population which is known as
	hump-backed mahseer (Tor remadevii) is listed as endangered on the IUCN red list and is found only in the Cauvery
	basin (Pinder et al., 2015; Sreenivasan et al., 2021). Along the river, many old fish sanctuaries are considered sacred
	which has the potential to contribute significantly to ecological health and biodiversity conservation."
Less the number is considered on their	The fish migration pattern has not been studied due to many limitations which includes tracking efficiency, sample
Just the number is considered or their migration pattern as well.	bias, limited spatial coverage, as well as species-specific challenges. Tracking fish migration often relies on the use of electronic tags, such as acoustic or satellite tags, which may have limitations in terms of accuracy and precision
Ingration pattern as well.	or electronic undo, such as accusate or saterine undo, which may have minitations in terms of accuracy and precision

	(Planque et al., 2011, Elsdon et al., 2008). Fish migration studies typically focus on specific areas or migratory routes
	due to logistical constraints. This limited spatial coverage may overlook other migration pathways or key habitats.
	Different fish species exhibit diverse migration behaviors and ecological requirements, which present unique
	challenges for studying their migration patterns. It would be difficult to incorporate all these parameters in the current
	hydrological model, and is beyond the scope of the present article.
	Fish species richness as an important indicator to describe ecosystem health. It has been explained and included in
Is the fish species richness as an indicator	the revised manuscript as is follows:
enough to describe ecosystem health.	"Aquatic ecosystem health serves as a comprehensive reflection of the physical, chemical, and biological integrity
	of river ecosystems, the overall structure and function of the aquatic ecosystem (Chen et al., 2019; Aazami et al.,
	2019). Previous studies have investigated various factors to identify the key determinants influencing river
	ecological health, including benthic macroinvertebrates, river habitat conditions, and water quality parameters (Chen
	et al., 2019). However, when considering the biological indicators, fish health becomes crucial as it directly links to
	provisioning services like food and human health. Therefore, fish species richness is chosen as an important indicator
	of river health, reflecting the overall health and diversity of the aquatic ecosystem."
Why was the fish species richness only based	The estimation of fish species richness was based on a global statistical model developed by Iwasaki et al. (2012).
on the empirical function, and how the	However, the same formula is validated in 84 major basins worldwide by Yoshikawa et al. (2014). The following
equation 3 was adopted and validated for this	paragraph is added to the revised version of the manuscript.
study basin?	
Given the size of the basin, does a single FSR	"The FSR (Fish Species Richness) value is derived by calculating the species richness of major basins worldwide
value for the whole river networks adequate?	(Yoshikawa et al., 2014; Iwasaki et al. (2012). The value obtained from the equation presented by Iwasaki et al.
	(2012) is centred in the 20-250 range. Other field studies have confirmed that the FSR in cauvery river basin tends
	to be around 146 species (Koushlesh et al., 2021). In the current study, the estimated FSR for the Cauvery River
	basin ranges from 70 to 123 species under different projected scenarios. This range of values provides sufficient
	validation for the results obtained.

	Kindly note that the primary objective of using FSR is not to predict FSR values for the basin, but rather to demonstrate how the characteristics of the river basin and its flow can impact fish species richness and different choices of the configuration of the reservoirs can lead to be different economic values and (fish) biodiversity in the long run (since we are using averages of these two variables over 16 years). This, in turn, affects the overall biodiversity of the river ecosystem and subsequently leads to a decline in river sustainability and resilience. By assessing and understanding these relationships, it becomes possible to identify the potential impacts of flow alterations and basin modifications on the long-run biodiversity and ecological stability of the river systems".
Are there any other indexes which was not used in this study due to any limitations? Any such limitations should be mentioned.	Direct field sampling from the river streams is the best method for developing indices for this study however this approach was not pursued due to cost implications associated with sampling. The following paragraph is added to the revised manuscript to highlight the limitations of the study. "Although directly sampling fish species from the streams and analyzing their richness in relation to river flow characteristics could have provided more conclusive results, this approach was not pursued due to cost implications associated with sampling of all major streams in the Cauvery basin. Hence, this method was intentionally omitted".
Specific comments	Response
Section 2.3: Please mention the quality of data obtained.	The paragraph is revised by providing the source of data obtained as follows: "Rainfall and potential evapotranspiration data are utilized as inputs for the analysis. These are daily gridded rainfall data with a resolution of 0.25° x 0.25° and temperature data with a resolution of 1° x 1° are obtained from the Indian Meteorological Department, Government of India (Pai et al., 2014; Shrivastava et al., 2009), which are generally considered of good quality. Runoff data is obtained from the Central Water Commission, Government of India. Information on reservoirs, including inflow, outflow, and storage levels, is accessed from the Karnataka State Natural Disaster Monitoring Centre, Government of Karnataka, India, through their official website (https://www.ksndmc.org/Reservoir_Details.aspx). Both data sets are considered to be of good quality"

If there are any data gaps, if so, how the data	The data gaps are described and included in the revised manuscript as follows:
gaps were addressed?	"For reservoir model calibration only a time series of six years of daily inflows, storage and outflows was accessible
	However, extended periods of streamflow data for the corresponding gauges, rainfall and temperature data for the
	basins were available. Thus, the six-year reservoir data was used to calibrated the reservoir models and the other
	streamflow and input forcing data were utilized to calibrate the integrated FLEX-Topo and reservoir models. Finally
	since a standardized operating rule curve was applied to all reservoirs (its parameters calibrated for each reservoir)
	it is acknowledged that the specific water discharges of certain dams might not have been accurately captured by
	the reservoir model. The validation results also indicate a bias in the modeled flows of two reservoirs. Therefore
	enhancing the model calibration process may involve incorporating operating rule curves that consider specific
	reservoir functions and flow requirements. which is beyond the scope of this paper. However, it should be noted
	that addressing this aspect is beyond the scope of the current paper."
Section 2.4: Please provide the parameters	The Elitist Non-Dominated Sorting Genetic (NSGA-II) algorithm is used to calibrate the model parameters (Deb e
that are calibrated.	al., 2000). NSGA-II is a multi-objective optimization algorithm. It simultaneously optimizes multiple objectives by
	identifying parameters that yield model performances that are not dominated by any other feasible parameters in the
Also, please mention the population size,	multi-objective space (Efstratiadis & Koutsoyiannis, 2010).
number of generations used, and crossover	In total 25 parameters were calibrated and are indicated in Table 1 of Ekka et al. (2022; reproduced above). The
and mutation probability used and how those	population size, number of generations, crossover and mutation probability were indicated in Table 3.
parameter values were determined?	
	The following paragraph is added to the revised manuscript to provide a detailed explanation:
	"Two objective functions are defined and minimized simultaneously. The first objective (f_l) is the negative of Nash
	Sutcliffe Efficiency (NSE) and the second objective (f_2) is the Mean Absolute Error (MAE). Please note by
	minimizing the negative of NSE, we are in effect maximizing NSE while minimizing MAE.

$$f_{l} = -NSE = -1 + \frac{\sum_{i=1}^{n} (Q_{i}^{m} - Q_{i}^{0})^{2}}{\sum_{i=1}^{n} (Q_{i}^{o} - \bar{Q}_{o})^{2}}$$

$$f_2 = \text{MAE} = \frac{1}{n} \sum_{i=1}^{n} |Q_i^o - Q_i^m|$$

Here, Q_i^m is the *i*th observation for the observed discharge being evaluated. Q_i^o is the *i*th value of the modelled discharge. \overline{Q}_o is the mean of observed discharge and *n* being the total number of observations. Units of discharge are mm/day (which are volumetric flow rates divided by the upstream flow contributing areas). In case of calibrating the reservoirs, Q_i^m is the observed outflow from the reservoir and in the case of calibrating the integrated model, it is the flow measured the corresponding streamflow gauge downstream of the reservoir.

The parameter sets calibrated for the FLEX-Topo model and the reservoir model are provided in the supplementary materials. The NSGA-II parameter setting may have different impacts on computational effectiveness. The population size, number of generations were indicated in Table 3. The population crossing over and population mutation play critical roles during optimization higher fraction of the population crossing over (0.9) and a lower value of mutation value are preferred for better convergence and to prevent the population from getting trapped in local optima (Wang et al., 2019). The population size depends on the number of the decision variables calibrated in the model and keeping the population size five times the number of decision variables is considered ideal for the simulation (Gutierrez et al., 2019). Since for Flex-Topo, there are 20 parameters, the population size is kept at 100. Similarly, for the reservoir model, the number of parameters is five, which translates into a population size of 25. Higher population sizes were also attempted but not used and reported for later analysis because the performance achieved was similar to the reported population sizes. The number of iterations is first tested using 50, 100, 250 and 500 iteration runs and 250 was finally chosen based on the best optimization results".

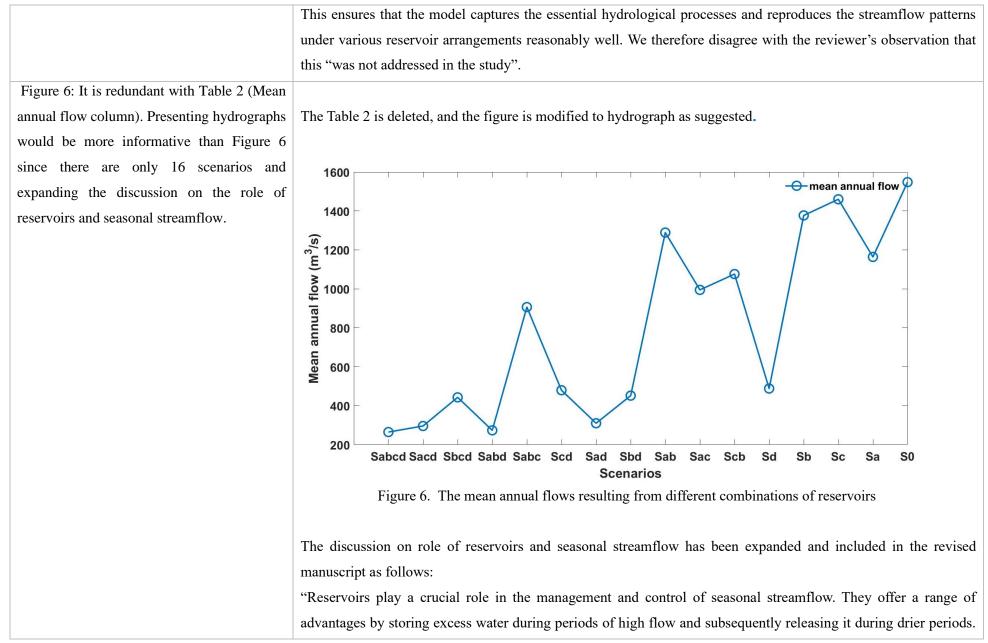
	Table 3. Parameter setting for NSGA II optimization of the model			
	NSGA parameters	Reservoir calibration	Integrated FLEX-Topo Calibration	
	No. of Iterations	250	300	
	No. of decision variables	5-8	25	
	No. of population size	25-40	125	
	Population Crossover	0.7	0.7	
	Mutation probabilities	0.2	0.2	
	New generation selection	Elitist selection	Elitist selection	
	Ordering criteria	Crowding distance	Crowding distance	
	Source: Ekka et al., 2022			
	An explanation is provided and	it is included in the revised	manuscript as follows:	
Line 162 mentions it is calibrated based on				
downstream streamflow, but line 172	The Flex-Topo model operates of	n a daily time scale, and it re	lies on forcing data expressed in mm/day. Conseque	
mentions target range of metrics with unit as	when calibrating the model's sin	mulated discharge, the obse	erved discharge in cubic meters per second (cume	
mm/day. Any reason for not using the flow	converted into mm/day			
unit here? Why only the downstream flow was				
compared, is it because inflow was a model				
input? It is not very clear.				
	The landscape model is explained	ed and included in the revise	ed manuscript as follows:	
Line 181-182: What is landscape model?	"Topography plays a crucial rol	e in shaping the river lands	cape, as it evolves in conjunction with vegetation,	
Also, the sentence is confusing to read.	and climate (Savenije, 2010; Gae	o et al., 2014). Consequently	y, it governs the dominant hydrological processes w	
	a catchment (Gao et al., 2014) and	nd serves as a valuable cons	straint for determining and transferring model struct	
	across space and time (Gao et	al., 2016; Nijzink et al., 20	016). The landscape model (eg. Flex-Topo) effecti	

	simulates catchment responses by dividing them into distinct hydrological response units (HRUs), such as wetlands,
	hillslopes, and plateaus (Gharari et al., 2014) based on the catchment structure and processes."
Figure 5: It looks like station T. Narasipur is	
along the same channel upstream of Kollegal	The figure 3 has been modified to indicate the exact location of gauge stations on the map. Reservoir C is located
as per Figure 3, although reservoir C is on	on tributary and the gauge station T. Narasipur is also located on tributary below Kabini reservoir (C).
tributary. If it is on tributary, it should be	
mentioned somewhere to avoid confusion.	B C C C C C C C C C C C C C
	Command area
	Figure 3, An overview of the study area. The reservoirs in the study area are labelled as A, B, C, and D, representing
	Harangi, Hemavathi, Kabini, and KRS reservoirs, respectively. The labels CA, CB, CC, and Cd are used to denote

What is the significance of the hydrological	The significance of the hydrological sub-basin watershed delineation in this study is explained and included in the	
sub-basin watershed delineation in this study	revised manuscript as follows:	
with regards to hydrology since it is not a		
physical based model.	"The delineation of sub-basins is fundamental for conducting hydrological modeling. In this study, each reservoir is	
	associated with a gauging station, which serves as a watershed or sub-basin. Moreover, each sub-basin is divided	
	into upstream and downstream sections, primarily determined by the location of the dam. The classification of	
	landscape classes for creating hydrological response units is based on the specific areas of the upstream and	
	downstream regions. And therefore, the delineation of watersheds plays a critical role in the present study, as it	
	provides the necessary framework for accurately defining hydrological response units based on the spatial	
	characteristics of the upstream and downstream sections."	
How the watersheds are delineated - is it	The delineation of the watershed is explained and included in the revised manuscript as follows:	
using ArcGIS Hydrology tools, please		
mention that?	"The delineation of the overall watershed area is based on the gauge locations to calibrate the integrated hydrological	
	model with the embedded reservoir model (refer figure 2a and figure 3). The watershed area for F1 is determined	
	by the dam location. To obtain F2, the F1 area is extracted from the entire watershed. The classification of	
	topographic features such as Digital Elevation Model (DEM), slope, and Height Above the Nearest Drainage	
	(HAND) is conducted based on the size of F1 and F2 to categorize the landscape into three main classes. In ArcGIS,	
	slope and HAND are processed using an 80-meter resolution DEM. The raster datasets containing DEM, slope,	
	HAND, and basin boundaries are then clipped and exported to Matlab for further analysis."	
Does the line 184 says the sub-basin for	Yes, the sub-basin corresponding to KRS is delineated by the gauging station Kollegal as outlet. The line 184 is	
reservoir KRS is delineated with Kollegal	elaborated and included in the revised manuscript as follows:	
station as outlet? But it looks like the reservoir		
is far upstream from this point	"The sub-basin corresponding to KRS is delineated by the gauging station Kollegal (and hence the flows are	
	modelled at this station), except those flows generated by contributing areas corresponding to gauge stations Kudige,	
	M.H. Halli and T. Narasipur. Such calibrated models of flows (with or without respective reservoirs) at the gauge	

	stations downstream of each of the 4 reservoirs, instead of observed flows, are then used for simulating flow regimes
	at the gauging station Kollegal for various possible configurations of reservoirs upstream."
Section 2.6: Which indicators are considered,	The importance of IHA has been indicated in the following paragraph and this has been included in the revised
and which are important for this study?	manuscript as follows:
	"The Indicators of Hydrological Alteration (IHA), initially proposed by Richter et al. (1996), are used to measure
	the effects of different reservoir combinations on the flow regime in the Upper Cauvery basin. The IHA indicators
	are grouped into five categories based on monthly flow magnitude, annual extreme flow conditions, and the
	frequency and duration of high and low flow rates. Major indicators used in the study include mean annual discharge,
	low flows, high flows, low pulse rate, high pulse rate. These parameters have significant relationships with river
	ecosystems, which makes them suitable for assessing the impact of dams, barrages, and other water diversion
	structures on the flow regime."
Why the IHA was used? It would be useful to	The paragraph below discusses the practicality or benefits of IHA and this has been included in the revised draft as
mention here.	follows:
	"Earlier methods of assessing the impact of impoundments on river channels have involved field surveys, statistical
	analyses (Yan, 2010), and geomorphic change detection tools (Wheaton, 2015). However, the Range of Variability
	Approach and the associated IHA framework provide a more systematic assessment of flow changes. The IHA
	method utilizes daily streamflow values and characterizes a flow regime based on factors such as magnitude,
	duration, frequency, timing, and rate of change of flows. Although the application of the IHA method has been
	relatively limited in studies of Indian rivers (Mittal et al., 2014, Kumar and Jayakumar, 2020, Borgohain et al.,
	2019), this study aims to use the IHA method to gain valuable insights into the impacts of major dams on the flow
	regime of the Upper Cauvery basin. By doing so, it contributes to a better understanding of the ecological
	consequences of water diversion and reservoir operations in the region"
	consequences of water diversion and reservoir operations in the region

Line 211 – 215: The introduction of PPF can	Thank you for the feedback. The introduction to production possibility frontier (PPF) has been revised and added to
be improved. Currently it seems inadequate,	the revised manuscript linking it to the objective of the study as follows:
linking it to the objective of this study and	
why this tool/graph is ideal would be better.	"The production possibility frontier (PPF), also known as the production possibility curve or boundary, is a graphical
How was it generated should be explained in	representation of the different combinations of goods or services that an economy can produce given its limited
methods? I also think Figure 12 is a great	resources and technology (Martinez-Harms et al., 2015). It shows the maximum output of one good that can be
visualization.	produced in relation to the production of another good, given the existing resources and technology.
	Since dams have the potential to impact ecosystems through habitat alteration, water flow regulation, and the
	disruption of natural processes, the PPF helps to assess the trade-offs and opportunity costs associated with the
	allocation of resources between the production of goods and the provision of ecosystem services. The PPF can
	illustrate the trade-off between the production of goods, often associated with economic development, and the
	provision of ecosystem services. It highlights that allocating resources towards dam construction may result in a
	reduction of certain ecosystem services (Blachly et al., 2023). For instance, the construction of a dam may alter the
	natural flow of a river, affecting downstream water quality and biodiversity. By analyzing the PPF, decision-makers
	can assess the optimal allocation of resources between dam construction and the preservation of ecosystem services.
	The PPF helps in identifying the point at which the trade-off between economic development and ecosystem services
	is balanced, ensuring sustainable resource use and minimizing negative environmental impacts (Gómez-Baggethun
	et al., 2010). Furthermore, the PPF can aid in evaluating the potential gains or losses in ecosystem services resulting
	from dam projects. It allows decision-makers to compare different scenarios and assess the opportunity costs
	associated with alternative resource allocations. This analysis assists in making informed decisions about dam
	construction, considering the ecological consequences and potential benefits of preserving or enhancing ecosystem
	services (Blachly, 2023)."
Section 3.1: The use of term "spatial	The term spatial configuration of reservoirs is appropriate for the study. An explanation is provided to justify the
configuration" is vague. Generally, it could	term and it is included in the revised manuscript as follows:


mean configuration in term of location,	
storage size, total number, or design	"The "spatial configuration of reservoirs" refers to the arrangement or layout of reservoirs within a given geographic
configuration of reservoirs using an	area. It involves the positioning, distribution, and connectivity of individual reservoirs in relation to each other and
algorithmic approach. Currently it is not the	the surrounding landscape. The configuration can have significant implications for the hydrological, ecological, and
case in this study, as it is just combinations of	social aspects of the reservoir system. The spatial configuration determines how water is stored, distributed, and
reservoirs, so it should be rephrased correctly.	managed within a hydrological system. Factors such as topography, river networks, land availability, environmental
	considerations, and engineering constraints influence the spatial configuration."
Section 3.1.1: What is the location in the	The following explanation is provided and included in the revised manuscript as follows:
catchment that the mean annual flow refers to	"All the hydrological indicators are calculated based on the discharges that are simulated at the Kollegal gauge
in Figure 6?	station corresponding to each reservoir spatial arrangement."
Line 282 - "The highest mean annual flow	The explanation is provided and included in the revised manuscript as follows:
was estimated for S0 followed by Sc and Sb".	"It is acknowledged that S0, being an unregulated sub-basin without any reservoir, exhibits the highest flow due to
This seems to be obvious since the flow in	the absence of flow regulation. In contrast, Sc, which is a hydropower reservoir, needs to release water regularly for
unregulated without any reservoir in SO	electricity generation purposes. As a result, S0 is estimated to have the highest mean annual flow, followed by Sc
scenario and the contributing areas of the	and Sb."
reservoirs in Sc and Sb scenarios makes up	
only a small portion of the catchment area.	
Line 289 – "Sabd has less impact compared to	The following explanation is provided and included in the revised manuscript
Sacd despite Kabini (C) having less storage	
capacity compared to the Hemavathi reservoir	"Since the combination Sabd has Hemavathi reservoir which falls in the M.H. Halli sub-basin which receives highest
(B)".	rainfall thereby contributing significantly to the overall flow regime, Sabd has less impact compared to Sacd despite
	Kabini (C) having less storage capacity compared to the Hemavathi reservoir (B)."

The mean annual flow is not only the function of reservoir volume, but perhaps the contributing area, land use, water use, precipitation pattern (not sure what is the time span considered!) and other properties which was not addressed in the study and the results are poorly presented.

As correctly said, the mean annual flow is not only the function of reservoir volume, but also the contributing area, land-use, water use, precipitation pattern including temperature. All these are already factored in the landscape based hydrological model, which has been integrated with reservoir operation models, that is used for simulating the daily streamflow time series corresponding to each reservoir spatial arrangement.

In the methodology section, it is mentioned that a landscape-based hydrological model is employed. This model utilizes 25 parameters that are based on the hydrological response units (HRUs) formed through a classification process. The classification is performed using digital elevation data, Height Above the Nearest Drainage (HAND) information, slope data, and land use patterns. These parameters are essential in characterizing the hydrological behavior of different areas within the study area. By considering factors such as elevation, HAND, slope, and land use, the model can capture the variability in terrain, drainage patterns, and vegetation cover that influence the movement and distribution of water in the landscape

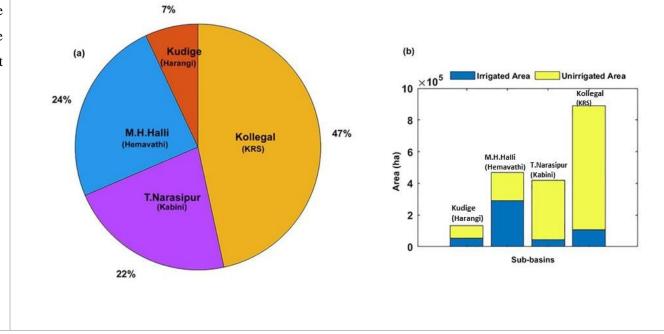
The model requires inputs of rainfall and potential evapotranspiration data to drive the simulation. Rainfall represents the input of water into the system, while potential evapotranspiration represents the loss of water from the system due to evaporation and transpiration processes. To ensure the accuracy and reliability of the model, it undergoes a calibration and validation process. This process involves comparing the simulated streamflow generated by the model with observed streamflow data from a gauging station located downstream. Note this is done before the model is used to simulate various possible reservoir spatial arrangement and its effect assessed at Kollegal gauge station. The performance of the model is evaluated using statistical metrics such as the negative Nash-Sutcliffe efficiency (-NSE) and negative mean absolute error (MAE). The -NSE measures the agreement between observed and simulated streamflow, with values closer to -1 indicating a better fit. The MAE provides an indication of the average difference between observed and simulated streamflow, with lower values indicating better model performance.

	However, the decrease in summer flows is observed in all combinations involving a large reservoir (D), as evidenced
	by the model results. This reduction in flow can have negative consequences on the downstream aquatic habitats, as
	well as the migratory and reproductive behaviors of fish species. The migratory behavior of fish during the spawning
	season relies heavily on the frequency and duration of high and low flow pulses. Wang et al. (2016) highlight the
	critical role of these flow patterns in supporting fish migration. Several studies have also indicated that the
	construction of reservoirs, leading to reduced flows and alterations in natural flow pulses, poses a threat to the
	survival of migratory fish species like Tor pitutora in the Cauvery basin (Pinder et al., 2015)."
Section 3.1.2: Line 300-310-Similar to the	An elaborate explanation is provided and it is included in the revised manuscript as follows:
above comment, the presentation of the result	
is very obvious because KRS (D) has the	"KRS (D) has the largest capacity and any combination with S _D result is lowest annual extreme flow with the
largest capacity and any combination with	exception for S _C which has comparative higher outflows being the only hydroelectric reservoir. The comparison of
S_D result is lowest annual extreme flow with	a scenario with two irrigation reservoirs and one hydropower reservoir (Sabc) to a scenario with two irrigation
the exception for $S_{\rm C}$ which has comparative	reservoirs (Sbd) indicates that the former has less impact on mean annual extreme flow conditions such as 1, 2 and
higher outflows being the only hydroelectric	7-day minimum than the latter. Comparing similar combinations of two reservoirs only for irrigation (Sad and Sbd)
reservoir.	versus those that contain the hydropower reservoir (Scd) indicates that the hydropower reservoir decreases the low
	pulse count and low pulse duration compared to irrigation reservoirs. It indicates that the inclusion of a hydropower
	reservoir in a scenario with irrigation reservoirs can have a mitigating effect on mean annual extreme flow
	conditions, helping to maintain higher minimum flow levels during critical time periods. However, it also highlights
	that the presence of a hydropower reservoir may impact the frequency and duration of low flow pulses more than
	scenarios without hydropower reservoirs. These findings emphasize the importance of considering the specific
	characteristics and objectives of different types of reservoirs when evaluating their impacts on flow dynamics and
	designing sustainable water management strategies."

Table 2: It is not clear what are the other	The hydrological and environmental indicators are defined as suggested and included in the supplementary materials		
hydrological and environmental indicators	as follows:		
besides mean annual flow. Perhaps it is better	Mean annual flow (m3/s): Median (m ³ s ⁻¹) of daily flow condition from January to December		
to define it somewhere.	Low pulse count (days): No of times in a year when the flow is lower than the 25 % percentile of the flow period in analysis		
	High pulse count (days): No. of times in a year when the flow is higher than the 75 % percentile of the flow period in analysis		
	Low pulse duration (days): The median duration of the low pulses (days)		
	High pulse duration (days): The median duration of the high pulses (days)		
	Extreme low peak: Minimum flow event during each water year or season		
	Extreme low frequency: Frequency of extreme low flows during each water year or season		
Line 306 – 310: A reference to figure would be useful here.	Reference to figure is added in the line 306-310 in the revised manuscript as indicated below: "The comparison of a scenario with two irrigation reservoirs and one hydropower reservoir (Sabc) to a scenario with two irrigation reservoirs (Sbd) indicates that the former has less impact on mean annual extreme flow conditions such as 1, 2 and 7-day minimum than the latter (Figure 7)."		
Section 3.1.3: Line 324-333 – Residence time	The operating rules of all the reservoirs have been calibrated and are embedded in the integrated model that is then		
is briefly introduced for the first time here	used to simulate flow regimes of various reservoir spatial arrangement. Since the model runs at daily scale, the		
without introducing reservoir operations at all.	seasonality and operational effects on streamflows have been incorporated. These are then analysed through various		
Also, till here the description was based only	hydrological and environmental indicators mentioned above.		
on the size of reservoirs. It seems there are			
significant seasonal effects of streamflow and	"The residence time for all the reservoirs has been calculated separately as indicated in Table 4. Generally, reservoirs		
reservoirs operation which is overlooked.	with longer residence times tend to have a larger impact on the flow regime compared to reservoirs with a smaller		
Further it describes A is significantly small in	residence time. However, S _A (with Harangi reservoir) has higher impact on the flow regime than S _B (with Hemavathi		

capacity than B, A has short residence time	reservoir). One reason could be that M.H. Halli sub-basin (with Hemavathi reservoir with a large residence time)					
than B, and the unregulated flow in B is less	receives the highest rainfall compared to other regions in the Upper Cauvery (Reddy et al., 2023) which would have					
than in A, however S_A has higher impact in	contributed towards a lower impact of S_B compared to S_A ."					
flow regime than S_B . Does this indicate this		-	-			
larger reservoir is contributing to flow	Table 4. The resid	ence time of the re	eservoirs			
regime? Currently there is not adequate analysis to conclude.	Reservoir	Year of construction	Sub-basin based on gauge location	Catchment area (10 ⁶ m ²)	Gross Storage (10 ⁶ m ³)	Residence time (months)
	Harangi	1982	Kudige	419.58	240.69	7.23
	Hemavathi	1979	M.H. Halli	2810	1050.63	22.63
	Krishna Raja Sagara (KRS)	1938	Kollegal	10619	1400.31	8.68
Line 351: Again, it is unclear how the	Kabini	1974	T. Narasipur	2141.90 ops estimated, the section	552.74	3.57
economic value for different crops is estimated, and Section 2.7.1 and equation 2 offers very little description.	administrative lev available). All the considered in the a are identified and unirrigated land w the crops grown a	el within the state calculations relate nalysis. By utilizin their areas are de ithin and outside th are categorized in crop is determined	e boundaries of the s ed to these crops are p og Geographic Informa etermined. Subsequer ne basin are calculated to four growing seas I proportionally by the	eir distribution is organ states that fall in the performed at this level, ation Systems (GIS), th atly, using the availab l. Based on the known ons: kharif, rabi, sum e acreage of different o	basin where su where a total of e districts falling le data, the area cropping pattern mer, and annua	ch information f nine districts an within each basis a of irrigated an s for each distric l crops. The are

	The mentioned with the initiated and the and the million and the second form of the second form
	The maximum yield under irrigated condition and crop prices are obtained from agricultural census sources.
	Additionally, information on crop coefficients and crop yield response factors is gathered from published literature.
	An average yearly price is estimated for each crop in all the districts within the studied basin. For irrigated areas,
	the maximum yield values from the literature are used to calculate the total production. However, for unirrigated
	areas the reduction in yield is estimated based on the actual evapotranspiration estimates of the hydrological model
	for each reservoir spatial arrangement. The relationship between crop yield and water depends on the corresponding
	relative evapotranspiration deficit (potential - actual). The actual yield is calculated based on the following formula
	by FAO (2012).
	$1 - \frac{Y_a}{Y_o} = K_y \left(1 - \frac{ET_a}{ET_p}\right)$
	io Lip
	Where \mathbf{V}_{i} = actual \mathbf{V}_{i} and \mathbf{V}_{i} = actual \mathbf{E}_{i} = Actual Example actual \mathbf{E}_{i} = Detectial
	Where Y_a = actual Yield, Y_o = optimum Yield, ET_a = Actual Evapotranspiration, ET_p = Potential Evapotranspiration, and K_v = yield response parameter.
	Total agricultural production is equal to agricultural output from both rainfed and irrigated areas, with irrigated areas
	depending on water withdrawn for irrigation. As a result, total agricultural production is a reliable predictor of the
	amount of water utilized for irrigation. The crop specific prices are multiplied by the corresponding production level
	to indicate the economic value of the agricultural service supported by the river."
Figure 11: Although the mean annual flow is	An explanation is provided and included in the revised manuscript as follows:
higher in S_c and S_a , why is FSR lower in Sc	
compared to S_a and S_b , despite S_c being	"The Fish Species Richness (FSR) is a function of mean annual flow, low flow frequency and other river basin
hydroelectric reservoir? Is it also a function of	characterstics. Low flow frequency, which refers to the occurrence of periods with minimal water flow, also
low flow frequency? I think it require more	influences FSR. Fish species adapted to specific flow conditions may be more susceptible to changes in low flow
discussions. And perhaps referring it back to	frequency. Reduced low flow periods can result in reduced habitat availability, altered temperature regimes, and
Table 2 would be helpful.	increased competition for resources, impacting fish diversity and abundance. Additionally, other river basin
L	


	characteristics, such as geomorphology, substrate composition, and habitat complexity, further influence FSR. These
	factors determine the availability of suitable spawning areas, hiding places, and food resources, thereby shaping the
	composition and distribution of fish species within the basin (Angermeier & Schlosser, 1989). This study however
	uses an empirical equation based on various river flow characteristics given the availability of data."
Line 395: "The findings show that the	We acknowledge and agree to your comment and therefore a suitable explanation is provided and it is included in
scenario without any reservoir (S_0) is	the revised manuscript as follows:
advantageous for the diversity of fish	
species." This kind of argument does not offer	"While this observation does not directly provide a practical solution, it highlights an important consideration for
any practical solution, rather what is the	reservoir planning and management. It recognizes the trade-off between the economic benefits of reservoirs for
optimum FSR, or what is the critical threshold	agricultural production and the potential negative impact on fish diversity. However, to address this issue effectively,
that should not be exceeded would be helpful.	further investigation and field information are required. To determine an appropriate threshold level a comprehensive
	assessment of various ecological factors is necessary which includes understanding the specific requirements of fish
	habitats, their migration patterns, and population dynamics in relation to the presence of reservoirs. Understanding
	the habitat requirements of different fish species is crucial to identify the potential impacts of reservoirs on their
	populations. This involves studying factors such as water temperature, dissolved oxygen levels, substrate
	composition, and availability of food sources. Additionally, assessing the migration patterns of fish can help identify
	potential barriers created by reservoirs and develop mitigation measures to facilitate their movement. Furthermore,
	studying population dynamics will provide insights into how the presence of reservoirs affects fish reproduction,
	growth, and overall population size. All this information is essential for making informed decisions regarding
	reservoir management practices, such as implementing fish passage systems or establishing protected areas for
	spawning and nursery habitats."

Section 4.1: As commented above, the	The discussion is modified and included in the revised manuscript as follows:
discussion seems rather superficial. Looking	
into seasonal streamflow effects could be an	"One of the primary effects of reservoirs is flow regulation. By storing water during periods of high flow and
improvement	releasing it during dry periods, reservoirs can help stabilize streamflow throughout the year. This regulation can
	reduce the amplitude of seasonal variations, ensuring a more consistent water supply for various sectors such as
	agriculture, industry, and domestic water use. However, the alteration of natural flow patterns can have ecological
	implications. Aquatic organisms that rely on specific flow regimes for spawning, migration, or habitat availability
	may be affected. Disruptions in flow timing and magnitude can impact the reproductive success of fish species and
	alter the composition of downstream ecosystems.
	Reservoirs also play a crucial role in flood control. By storing excess water during periods of heavy rainfall or
	snowmelt and releasing it gradually, reservoirs can mitigate the risk of downstream flooding. This function is
	particularly important in regions prone to seasonal floods, protecting communities and infrastructure. However, the
	alteration of streamflow by reservoirs can have unintended consequences. Changes in flow patterns can affect
	sediment transport downstream, leading to sedimentation in the reservoir and reduced sediment supply to
	downstream areas. This can impact river channel stability and downstream ecosystems that rely on sediment inputs.
	Furthermore, the regulation of streamflow can influence water quality parameters such as temperature, dissolved
	oxygen, and nutrient levels, with potential impacts on downstream aquatic ecosystems. To mitigate the negative
	effects and enhance the positive impacts of reservoirs on seasonal streamflow, careful reservoir operation and
	management are crucial. The inclusion of environmental flows, which aim to maintain a minimum level of water
	release to sustain downstream ecosystems, is vital to balance human needs with ecological requirements and can
	ensure the sustainable use of water resources and minimize the impacts of reservoirs on seasonal streamflow
	dynamics"

Technical corrections	Response
Just a suggestion, it would be easier for	
readers to visualize the size and contributing	The revised version of Figure 3 includes changes that take into account your comments. Because of technical reasons
area of the reservoirs if Figure 3 and 4 is	it was however not possible to merge Figures 3 and 4.
combined, and even color code the names of	
the reservoirs in Figure 3 as in Figure 4.	
Lat/Long reference in Figure 3 will further	
improve the figure.	
Line 182 - 188: It is unclear how the sub-	
basin is delineated; figure 3 reference would	The reference to figure 3 is provided. How the watersheds were delineated has been explained above.
be useful.	
Table 1: In 1 st row, 4 th column, what is "For	For individual reservoir refers to "combination having one reservoir".
individual reservoir"?	
	It has been made clear in the revised manuscript as "For combination having one reservoir".
Line 276: The whole sentence and the	The sentence has been modified and the meaning of disentangled is elaborated in the revised manuscript as
meaning of "disentangled" is unclear.	follows:
	"Different combinations of reservoirs are analyzed to understand the flow regimes, utilizing major hydrological
	indicators like mean annual flow and annual extreme flow conditions. These indicators help in dissecting and
	understanding the flow patterns. Additionally, the analysis involves classifying the flow regimes based on the storage
	volume of reservoirs and their spatial configurations"
Line 294: "However, in combinations with	The sentence has been revised as follows:
one and no reservoir " The sentence is	
unclear	

	"However, in scenarios involving one or two reservoirs despite having varying storage capacities, the extreme low peaks of flows generated by Sa, Sb, Sac, and Sbc appear to be similar"
Line 347: Cite the relevant source.	The relevant source is included in the text, as follows:
	"Among Horticultural & Plantation crops, the crops like Coffee, Coconut and Cashewnut contribute to 65 percent of the total H&P crops cultivated area (Figure 9, author's estimation).
	According to current estimates, the contribution of plantation crops accounts for 58 percent of the economic value of the H&P crops (see Figure 9, author's estimation)"".
	The figure has been modified along with text in the manuscript where required.

Use of sub-basin name and reservoir name (e.g in Figure 8a and b) and throughout the manuscript is inconsistent. Keeping it consistent would help the readers

Line 363: Generally, instead of saying, "The	The sentence has been modified in the revised manuscript as follows:
scenario of 4 dams generates the highest	
economic value from agricultural	"Presence of all four dams in the basin generates the highest economic value from the agricultural production."
production.", it would be better to write,	
"Presence of all four dams in the basin	
generates the highest economic value from	
agricultural production."	
Figure 9: Please keep the range of vertical	Due to the variations in the economic value range across different sub-basins, the resulting figure became distorted
axes uniform in all figure panels, if possible.	when using a uniform vertical axis. Therefore, the figure has not been altered and is maintained in its original form.

References

Angermeier, P. L., & Schlosser, I. J. (1989). Species-area relationship for stream fishes. Ecology, 70(5), 1450-1462.

Bekele, E. G., Lant, C. L., Soman, S., & Misgna, G. (2013). The evolution and empirical estimation of ecological-economic production possibilities frontiers. Ecological Economics, 90, 1-9.

Blachly, B., Uchida, E., & Roy, S. G. (2023). Integrating public preferences with biophysical production possibilities: an application to ecosystem services from dam removal. Ecology and Society, 28 (1).

Gómez-Baggethun, E., De Groot, R., Lomas, P. L., & Montes, C. (2010). The history of ecosystem services in economic theory and practice: from early notions to markets and payment schemes. Ecological economics, 69(6), 1209-1218.

Chen, J., Wang, Y., Li, F., & Liu, Z. (2019). Aquatic ecosystem health assessment of a typical sub-basin of the Liao River based on entropy weights and a fuzzy comprehensive evaluation method. Scientific Reports, 9 (1), 14045.

Aazami, J., Esmaili-Sari, A., Abdoli, A., Sohrabi, H., & Van den Brink, P. J. (2015). Monitoring and assessment of water health quality in the Tajan River, Iran using physicochemical, fish and macroinvertebrates indices. Journal of Environmental Health Science and Engineering, 13, 1-12.

Planque, B., Loots, C., Petitgas, P., Lindstrøm, U. L. F., & Vaz, S. (2011). Understanding what controls, the spatial distribution of fish populations using a multi-model approach. Fisheries Oceanography, 20(1), 1-17.

Elsdon, T. S., Wells, B. K., Campana, S. E., Gillanders, B. M., Jones, C. M., Limburg, K. E., ... & Walther, B. D. (2008). Otolith chemistry to describe movements and life-history parameters of fishes: hypotheses, assumptions, limitations and inferences. In Oceanography and marine biology (pp. 303-336). CRC Press.

Bhagat, H., Ghosh, P., & Kumar, D. N. (2021). Estimation of seasonal base flow contribution to a tropical river using stable isotope analysis. Journal of Hydrology, 601, 126661.

Tripti, M., Lambs, L., Gurumurthy, G. P., Moussa, I., Balakrishna, K., & Chadaga, M. D. (2016). Water circulation and governing factors in humid tropical river basins in the central Western Ghats, Karnataka, India. *Rapid Communications in Mass Spectrometry*, *30*(1), 175-190.

Turner, S. W., Bennett, J. C., Robertson, D. E., & Galelli, S. (2017). Complex relationship between seasonal streamflow forecast skill and value in reservoir operations. *Hydrology and Earth System Sciences*, 21(9), 4841-4859.

Rueda, F., Moreno-Ostos, E., & Armengol, J. (2006). The residence time of river water in reservoirs. Ecological Modelling, 191(2), 260-274.

Reddy, N. M., Saravanan, S., & Abijith, D. (2023). Streamflow simulation using conceptual and neural network models in the Hemavathi sub-watershed, India. *Geosystems and Geoenvironment*, 2(2), 100153.

Efstratiadis, A., & Koutsoyiannis, D. (2010). One decade of multi-objective calibration approaches in hydrological modelling: a review. *Hydrological Sciences Journal–Journal Des Sciences Hydrologiques*, 55(1), 58-78.