
1 

 

Operationalizing equity in multipurpose water systems 

Guang Yang1, Matteo Giuliani1, Andrea Castelletti1 

1Department of Electronics, Information, and Bioengineering, Politecnico di Milano, Milan, 20133, Italy. 

Correspondence to: Matteo Giuliani (matteo.giuliani@polimi.it) 

Abstract Participatory decision-making is a well-established approach to address the increasing pressure on water systems 5 

induced by growing multi-sectoral demands and increased competition among different water users. Yet, most existing 

approaches search for system-wise efficient solutions and do not quantify their distributional effect among the stakeholders. 

In this work, we investigate how to operationalize equity principles to design improved water systems operations that better 

balance efficiency and justice. More specifically, we explore to which extent the inclusion of equity principles reshapes the 

space of efficient solutions. Numerical experiments are conducted on the Lake Como system, Italy, operated primarily for 10 

flood control and irrigation water supply while also providing recreation and river ecosystem services. Our results show how 

incorporating equity considerations into the design of water system operations enriches the solution space by generating more 

compromise solutions than those obtained using a traditional multi-objective optimization. Moreover, we find that including 

equity in the operating policy design can indirectly improve the performance of marginalized sectors, such as recreation and 

ecosystem, which are not explicitly considered by the current lake operation. Lastly, we illustrate how the aggregation of multi-15 

sectoral interests into an equity index strongly shapes our results. Eliciting the preference structure of stakeholders and 

policymakers thus becomes paramount for the identification of a fair balance across competing interests. This work bridges 

the gap between multi-objective optimization approaches and equity-informed decision-making for real-world water resources 

planning and management, providing an effective tool to promote efficient and equitable policies. 

1. Introduction 20 

Proper operation of existing water systems is widely recognized as one of the most important and cost-effective ways to 

improve water use efficiency and reduce stresses caused by rapid population growth and socio-economic development (Benson, 

2016;Gaupp et al., 2015;Ho et al., 2017;Rodell et al., 2018;Wallington and Cai, 2020). Water reservoirs generally serve 

multiple and competing purposes, including flood control, irrigation, power generation, navigation, and river ecosystem 

maintenance, but limited water resources make it impossible to fully and simultaneously satisfy all these water users (Billington 25 

and Jackson, 2006;Groenfeldt, 2019). At the same time, growing energy and food demands are putting additional pressure on 

these systems and are exacerbating conflicts (Ehsani et al., 2017;Giuliani et al., 2016a;Olsson, 2015), which are often related 

to emerging adverse social and environmental consequences caused by water infrastructure (Graham et al., 2020;Poff et al., 

2016;Poff and Schmidt, 2016;Sabo et al., 2017;Schmitt et al., 2018) and to water security (D'Odorico et al., 2018;Liu et al., 

2018;Scanlon et al., 2017). These challenges represent a well-established topic in the water systems analysis community since 30 

the Harvard Water Program (Maass et al., 2013), promoting the idea of adopting an a-posteriori decision making based on 

trade-off analysis between competing objectives (Cohon and Marks, 1975;Maier et al., 2014;Nicklow et al., 2010;Reed et al., 

2013).  

Traditionally, water system operations are formulated as multi-objective decision-making problems and the underlying 

conflicts among objectives capturing the interests of different stakeholders yield a set of Pareto optimal (or efficient) solutions 35 

rather than a single optimal solution (Loucks and Van Beek, 2017). A solution is defined as being Pareto optimal (or 

nondominated) if no other solution gives a better value for one objective without degrading the performance in at least one 

other objective. In this context, most existing approaches search for the Pareto optimal set to explore trade-offs between 
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operating objectives (Geressu and Harou, 2019;Giuliani et al., 2014;Kasprzyk et al., 2009;Schmitt et al., 2018). Yet, Pareto 

optimality pursues system-wise efficiency and ignores the distributional effects of the optimal solutions among the different 40 

stakeholders, potentially resulting in inequitable outcomes. This potential inconsistency between efficiency and equity might 

inadvertently bias the analysis on efficient but unfair solutions that the stakeholders will hardly accept. Including equity among 

the objectives can be useful to ensure that the negotiations on the solution to be implemented succeed smoothly. 

There is a growing interest in equity-related research in the water resources planning and management literature. For example, 

Wang et al. (2008) developed a cooperative water allocation model to achieve fair and efficient water allocation among 45 

competing stakeholders at the basin level. Girard et al. (2016) designed cost-effective and equitable portfolios for water 

resource adaptation to climate change in the Orb River basin by implementing cooperative game theory and social justice 

approaches. Siddiqi et al. (2018) developed a set of reliability and equity metrics to quantitatively evaluate the water security 

in a canal irrigation system in the Indus basin. Ciullo et al. (2020) proposed a decision criterion to account for the geographical 

distribution of flood risk in the transboundary area of the German-Dutch Lower Rhine River and investigate the impact of 50 

equity criteria on flood risk management. Most previous equity-related studies in water resources mainly focus on evaluating 

equity and how to promote equity by fairly distributing benefits or risks. Some recent literature has proposed that equity can 

be improved by integrating it into water resources operation design. For example, Gullotta et al. (2021) improved the equity 

among users of a water distribution network in northern Italy by optimizing the placement of control valves to maximize the 

uniformity coefficient (an equity index proposed in (Gottipati and Nanduri, 2014)). Kazemi et al. (2020) optimized the water 55 

allocation in the Sefidrud basin in Iran for the maximum water use revenue and minimum Gini index (which was introduced 

by Gini (1921) to measure income inequality). Although these works promote equity in water resource operation, the impacts 

of equity on multi-objective decision-making and how equity affects the trade-offs between conflicting objectives have not yet 

been studied.  

In this work, we investigate how to operationalize equity principles into the multi-objective design of improved water systems 60 

operations that better balance trade-offs among competing stakeholders’ interests. The approach is demonstrated on the Lake 

Como system, a regulated lake in Northern Italy historically operated for flood protection and irrigation supply. Over the last 

few years, the increasing frequency and intensity of severe droughts emphasized the importance of additional, so far 

marginalized services provided by the lake operations, such as preventing low levels from supporting recreational activities 

and ecosystem preservation downstream of the lake.  65 

The paper provides two main contributions. First, we analyze alternative problem formulations to assess how the inclusion of 

equity principles reshapes the space of efficient solutions with respect to both a traditional optimization considering only 

primary objectives and an inclusive optimization that account for primary as well as historically marginalized objectives. 

Second, we explore the sensitivity of the resulting solutions with respect to the definition of the equity metric, which, in a 

multi-objective problem, requires the aggregation of multiple objective functions into a single index (e.g., coefficient of 70 

variation). However, aggregated objective functions might adversely bias the designed alternatives in unpredictable ways 

(Kasprzyk et al., 2016). This is an important aspect to explore the operationalization of equity in multipurpose water systems.  

The rest of the paper is organized as follows: in the next section, we introduce the Lake Como study site, while Sect. 3 describes 

the adopted methodology. Then, results and discussion are reported in Sect. 4, while conclusions and final remarks are 

presented in the last section. 75 
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2. Study Site 

Lake Como, also known as Lario, is the third-largest lake in Italy and the fifth deepest lake in Europe; it has an active storage 

capacity of 254 million m3 and a depth of over 400 m. The catchment area of Lake Como is approximately 4,552 km2, with 

the lake serving an irrigation-fed cultivated area of about 1,300 km2 (Fig. 1). The major crops within the agricultural area 

include cereals, maize, and temporary grasslands for livestock. The climate of Lake Como is temperate around the lake and 80 

cold in the upper alpine catchment (Peel et al., 2007). The hydrologic regime is snow-rainfall dominated, with the dry seasons 

in winter and summer and wet seasons in late spring and autumn, respectively.  

The lake's shape is close to an inverted letter “Y” and the city Como is located at its southwestern branch. Because of the dead-

end and the lowest elevation on the lake shoreline at Como, this area is prone to flooding. Thus, the regulation of Lake Como 

has been historically studied mostly by looking at the conflict between irrigation water supply and flood control (Denaro et al., 85 

2017;Giuliani et al., 2020;Guariso et al., 1986). Spring/summer snowmelt primarily creates the seasonal storage of Lake Como, 

which can be reallocated to satisfy the summer water demand peak for irrigation. Storing more water in spring will benefit the 

irrigation water supply in summer; however, this strategy could lead to high lake levels for longer periods and thus increase 

flood risk.  

Lake Como is also a popular tourist destination because of its beautiful Alpine landscape and abundant wildlife, and it is a 90 

scenic spot for sailing, boating, and windsurfing. Interests related to ecosystems, tourism, navigation, and fishing are also 

attracting more and more attention in Lake Como water governance in recent years (Carvalho et al., 2019;Grizzetti et al., 2016). 

Accordingly, the Lake Como operation design problem can be formulated as a problem that involves up to four competing 

objectives, where recreation services (e.g., tourism and navigation) and river ecosystem maintenance downstream of the lake 

are added to irrigation water supply and flood control. 95 

3. Methods and Tools 

3.1. Model description 

The model of the system reproduces the dynamics of Lake Como by using a mass-balance equation of the lake storage st (m3) 

assuming a modeling and decision-making time step t = 24 hours, where the lake releases are determined by the lake operating 

policy: 100 

 𝑠𝑡+1 = 𝑠𝑡 + (𝑞𝑡+1 − 𝑟𝑡+1) ∙ ∆𝑡  (1) 

where qt+1 (m3/s) and rt+1 (m3/s) are the net inflow to the lake and the actual lake release in the time period [t, t+1), respectively. 

Specifically, the release volume rt+1 is determined by a non-linear, stochastic function that depends on the release decision ut 

(Soncini-Sessa et al., 2007) and accounts for the effect of the uncertain inflows between the time t (at which the decision is 

taken) and the time t+1 (at which the release is completed). The release rt+1 could not be equal to the decision ut due to existing 105 

legal and physical constraints on the lake level and release (e.g., spills, dead storage). According to the daily time step, the 

Adda River can be described by a plug-flow model to simulate the transfer of the lake releases from the lake outlet to the intake 

of the irrigation canals. The water diversions from the Adda River into the irrigation canals are regulated by the water rights 

of the agricultural districts. 

The lake operating policies that determine the release decision ut are defined as Gaussian radial basis functions (RBFs; 110 

(Buşoniu et al., 2011)) as follows 
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 𝑢𝑡 = 𝛼 + ∑ 𝜔𝑘𝜑𝑘(𝑋𝑡)𝐾
𝑘=1 𝑡 = 1, … , 𝐻 0 ≤ 𝜑𝑘 ≤ 1  (2) 

 𝜑𝑘(𝑋𝑡) = 𝑒𝑥𝑝 [− ∑
((𝑋𝑡)𝑗−𝑐𝑗,𝑘)

2

𝑏𝑗,𝑘
2

𝑀
𝑗=1 ] 𝑐𝑗,𝑘 ∈ [−1,1], 𝑏𝑗,𝑘 ∈ (0,1]   (3) 

where K is the number of RBFs, ωk is the weight of the kth RBF, M is the number of input variables Xt, and ck and bk are the 

M-dimensional center and radius vectors of the kth RBF, respectively. Lake level ht, previous day inflow qt, and the day of the 115 

year τt are used as input variables (i.e., Xt = (st, qt, τt)), and the number of RBFs is set to four (K=4). The final parameters vector 

can be summarized as: θ=[, ωk, cj,k, bj,k], and it thus contains 29 parameters (decision variables) to determine the release 

decision ut. The operating policies are then optimized using the Evolutionary Multi-Objective Direct Policy Search (EMODPS) 

method (Giuliani et al., 2016b), a Reinforcement Learning approach that combines direct policy search, non-linear 

approximating networks, and multi-objective evolutionary algorithms. 120 

3.2. Operating objectives 

Building on previous works (Galelli and Soncini-Sessa, 2010;Giuliani and Castelletti, 2016;Giuliani et al., 2016c;Zaniolo et 

al., 2021), we formulate four objectives capturing the competing interests introduced in the previous section as follows 

(a) Flood control: the high-level reliability (to be maximized) defined as 

 𝐽𝐹 = 1 −
𝑛𝐹

𝐻
  (4) 125 

where nF is the number of days in the evaluation horizon H during which the lake level is above a flood level threshold. 

(b) Irrigation water supply: the daily average volumetric reliability (to be maximized) defined as 

 𝐽𝐼 =
1

𝐻
∑ (𝑚𝑖𝑛 (

𝑌𝑡+1

𝑤𝑡
, 1))𝐻

𝑡=1   (5) 

where Yt+1 (m3) is the daily volume of water available for irrigation, subject to the minimum environmental flow constraint to 

ensure adequate environmental conditions in the Adda River downstream of the abstraction point, and wt (m3) is the 130 

corresponding irrigation demand. 

(c) Recreation services: the low-level reliability (to be maximized) defined as 

 𝐽𝑅 = 1 −
𝑛𝑅

𝐻
  (6) 

where nR is the number of days in the evaluation horizon H during which the lake level is below a time-varying, low-level 

threshold equal to the 10th percentile of the historical lake level. 135 

(d) River ecosystem: the reliability of environmental flow (to be maximized) defined as 

 𝐽𝐸 =
1

𝐻
∑ 𝑔(𝑟𝑡+1)𝐻

𝑡=1   (7) 
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where the function g(rt+1) returns 1 if 𝑞𝑡
𝑛 − 𝜎𝑡

𝑛 ≤ 𝑟𝑡+1 ≤  𝑞𝑡
𝑛 + 𝜎𝑡

𝑛 , with 𝑞𝑡
𝑛  and 𝜎𝑡

𝑛  representing the mean and standard 

deviation, respectively, of the Adda river flow in natural conditions, otherwise it returns 0. 

3.3. Operationalizing equity  140 

The equity index considered in this study is formulated as in Siddiqi et al. (2018) as the ratio between the standard derivation 

() and mean () of the performance in the four objectives introduced in the previous section, i.e. 

 𝜁 =
𝜎(𝐽𝐹,𝐽𝐼,𝐽𝑅,𝐽𝐸)

𝜇(𝐽𝐹,𝐽𝐼,𝐽𝑅,𝐽𝐸)
  (8) 

The lower the value of ζ, the more equitable the solution is, with low values of ζ obtained for high values of the original 

objectives with a limited performance dispersion across the four objective functions. When the objectives capturing diverse 145 

stakeholders’ interests are expressed in different units of measure or explore different performance ranges, it could be necessary 

to map the original objectives into a satisfaction value by applying a value function. The latter allows re-scaling all the 

objectives into a dimensionless scale, e.g., from 0 to 1, by means of a linear or non-linear transformation. Assessing the equity 

index by computing the mean and standard deviation of satisfaction values rather than objectives is expected to improve the 

analysis by working on commensurable quantities.  150 

3.4. Experimental settings 

As mentioned before, the Lake Como operator traditionally considers two primary objectives (irrigation water supply and 

flood control). More recently, other needs such as recreation services and river ecosystem maintenance are emerging due to 

increasingly frequent droughts, which motivates us to investigate how to fairly account for these previously marginalized 

objectives into the policy design. In this work, we contrast four rival formulations of the Lake Como EMODPS problem (Table 155 

1) that can be summarized as follows: 

• P1 – traditional formulation: 𝜃∗ = arg max
𝜃

J(𝜃) = |𝐽𝐹 , 𝐽𝐼| 

• P2 – traditional & fair formulation: 𝜃∗ = arg max
𝜃

J(𝜃) = |𝐽𝐹 , 𝐽𝐼 , −𝜁| 

• P3 – inclusive formulation: 𝜃∗ = arg max
𝜃

J(𝜃) = |𝐽𝐹 , 𝐽𝐼 , 𝐽𝑅 , 𝐽𝐸| 

• P4 – inclusive & fair formulation: 𝜃∗ = arg max
𝜃

J(𝜃) = |𝐽𝐹 , 𝐽𝐼 , 𝐽𝑅 , 𝐽𝐸 , −𝜁| 160 

P1 is a traditional multi-objective optimization problem that only searches for the maximum of the two primary objectives. P3 

is an inclusive optimization that instead considers all four objectives. Finally, P2 and P4 add the equity index from equation 

(8) to the traditional and inclusive formulations, respectively. While the comparison between the traditional and inclusive 

formulations will provide the benefit of including all objectives into the policy design, the comparison between P1 vs. P2 and 

P3 vs. P4 will focus on assessing the value of including an equity-related objective function in either the traditional multi-165 

objective optimization and the inclusive optimization problems. Finally, the comparison between P2 and P3 allows 

investigating the differences between using the equity index as a means for indirectly including in the problem formulation the 

traditionally marginalized objectives or formulating an inclusive optimization that directly includes all stakeholders’ interests 

as separated objectives. 

 170 
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Table 1 Summary of the alternative problem formulations. 

Problem  Formulation Objectives Including equity (YES/NO) 

P1 Traditional JF, JI NO 

P2 Traditional & fair JF, JI, ζ YES 

P3 Inclusive JF, JI, JR, JE NO 

P4 Inclusive & fair JF, JI, JR, JE, ζ YES 

The parameters in RBFs-based policies are optimized using the Borg MOEA evolutionary algorithm (Hadka and Reed, 2013), 

which proves highly robust in solving many-objective control policy optimization problems (Salazar et al., 2016). The number 

of the function evaluations is 2 million, the same as in previous Lake Como operation optimization (Denaro et al., 2017). To 

ensure solution diversity and reduce the impact of stochastic factors on the optimal solutions, each optimization was randomly 175 

repeated ten times (i.e., the final set of nondominated solutions for each problem are obtained from 10 random optimization 

trials). In total, the analysis comprises 80 million simulations that required approximately 600 computing hours on an Intel 

Xeon E5-2660 2.20 GHz with 32 processing cores and 96 GB RAM.  

4. Results and Discussion 

4.1. Multi-objective optimization and equity operationalization 180 

The optimization results of problems P1-P4 can be evaluated in terms of four operation objectives along with the equity index 

using the parallel coordinates plots in Fig. 2, where each line crossing multiple axes represents one Pareto optimal solution. 

The leftmost axis represents different problem formulations (e.g., the value “2” refers to P2; apart from the axis, the line color 

is also used to differentiate various problem formulations), and other axes represent solution performance in terms of flood 

control, irrigation water supply, recreation, environment, and equity. The axis for equity is reversed to ensure that the direction 185 

of preference is always upward, and the ideal solution would thus be a horizontal line at the top of each plot. The diagonal 

lines between adjacent axes infer the conflicts between different objectives.  

According to Fig. 2 (a), different problem formulations generate diverse solution spaces. P1 attains good performance in the 

objectives JF and JI (up to 0.99 and 0.91, respectively) that this formulation is optimizing, but low performance on the non-

optimized objectives JR and JE (lower than 0.67 and 0.72, respectively). Consequently, the equity of these solutions across the 190 

four objectives is low. Moving from P1 to P2 allows the attainment of better equity values, which, however, induces 

performance degradation in terms of JF. The inclusive optimization supports the full exploration of the trade-offs between the 

four objectives, remarkably amplifying the trade-offs between JR and JF/JI (i.e., the maximum performance in JR is equal to 1, 

while the worst solution in flood and irrigation supply is much lower than with P1 or P2). Notably, the solutions of P3 attain 

lower values of equity than the solutions of P2. Lastly, moving from P3 to P4 produces a small improvement in terms of equity 195 

with minor differences in the performance across the four objectives. 

Figure 2 motivates investigating how the considered equity metric changes across the different sets of solutions. Fig. 3 shows 

that the values of the equity index vary mainly with the standard deviation σ of the performance in terms of the four objectives 

instead of the corresponding mean µ: the equity index consistently increases with σ, but can have different values for the same 

µ value, especially in the situation of inequity. The reason is that the trade-off between different objectives can lead to notably 200 

different σ but similar µ for two different solutions (e.g., in Fig. 2 (b), high values of JI generally correspond to low values of 

JR). The results in Fig. 3 show that the maximum µ value increases from 0.81 for P1 to 0.90 and 0.91 for P2 and P3, respectively. 

The µ here can be considered a proxy of overall performance, and its significant increase indicates the advantages of solutions 

from P2 and P3 over P1. Yet, higher µ does not precisely refer to a better solution as the profits per unit increment of the four 
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objectives are different. In the traditional formulation, the non-optimized objectives introduce variability in system-wise 205 

performance that leads to low equity. Conversely, P2 optimizes the equity index computed across the 4 objectives, and this 

generates a substantial improvement at the system level because of the indirect consideration of the marginalized objectives in 

the policy design. When transiting from P3 to P4, the equity index instead conveys smaller additional information, so the 

advantage of P4 over P3 is less evident. 

The density distribution of the solutions from different problems (Fig. 4) can be used to investigate further the consequences 210 

of adopting alternative problem formulations. Apparently, the solution space generally increases with the number of 

optimization objectives: for example, the values of JF and JI in the traditional formulation (with 2 objectives) are more 

concentrated (with most of the solutions ranging from 0.95 to 1) than in P2 (with 3 objectives), with the latter that are more 

concentrated than in P3 (with 4 objectives) (see Fig. 4 (a) and (b)). It is worth noting that the solutions’ distribution for P3 and 

P4 (with 4 or 5 objectives) are very similar because the additional equity objective in the inclusive & fair formulation is highly 215 

correlated with all other objectives.  

The results in Fig. 4 show that P2 outperforms P1 in terms of all objectives except JF, with large improvements in the 

traditionally marginalized objectives of JR and JE while having similar performance in JI. This asymmetric result can be 

explained because a good performance in JF is attained by keeping low lake levels in order to minimize the flood risk (see also 

Fig. 5), with this condition that negatively impacts the other three objectives. To minimize the standard deviation across the 220 

four objectives while maximizing their average values, P2 hence tends to generate solutions that keep relatively high-water 

levels to increase the performance in JI, JR, and JE, and consequently increase the value of , while accepting a reduction in 

terms of JF that is anyway positively contributing in terms of equity by reducing .  

Interestingly, P2 generates solutions that perform very well in terms of JE although this objective is not directly included in 

the optimization, but only indirectly considered through the minimization of ζ. This happens because the upper bound of JE in 225 

P1 is much lower than other objectives, and thus the equity index tends to decrease as the value of JE increases. Optimizing 

equity can therefore be a way for improving the objective(s) of marginalized stakeholders with the lowest level of satisfaction 

(e.g., the J E with the lowest upper bound in this case study).  

The impacts of problem formulations on the resulting dynamics of Lake Como can be evaluated from the density distribution 

comparisons of median, 25th percentile, and 75th percentile (representing normal, dry, and wet conditions, respectively) of lake 230 

water levels (see Fig. 5). P1 tends to get lower water levels than other problem formulations because it only focuses on flood 

control and irrigation water supply. The reduction of flood risk suggests maintaining low water levels during the wet season 

(to maximize JF), and satisfying irrigation water demand (to maximize JI) further decreases water levels during the dry summer. 

Both P2 and P3 tend instead to produce higher water levels than P1 (see Fig. 5 (a)) because high water levels could deteriorate 

JF but will improve the performance in other objectives. For example, a high-water level at the end of the flood season provides 235 

enough water for the recreation and environmental water release requirements in the coming dry season.  

Although both P2 and P3 get higher lake levels than P1, the highest water level of the inclusive formulation is always above 

that of the traditional & fair one. More specifically, according to Fig. 5 (b), solutions from P3 have the highest 75th percentile 

of water level close to the flood level threshold (1.24 m), while the highest 75th percentile of the water level from P2 is 

approximately 1.2 m. By searching for the full range of trade-offs between the four objectives without considering the equity 240 

index, the inclusive optimization emphasizes more JF-JR conflict and design solutions that perform exceptionally well in one 

objective (e.g., recreation water level maintenance JR) but very poorly in the other one (e.g., flood control JF). These solutions, 

however, will also attain low levels of equity due to a high standard deviation between the objectives’ values. In contrast, P2 
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avoids exploring such extreme solutions by keeping lower lake levels in wet conditions (see Fig. 5 (b)) and higher water levels 

in dry conditions (see Fig. 5 (c)). This confirms the potential discrepancy between efficiency and equity. The inclusive 245 

optimization better supports the full exploration of trade-offs but generates less equitable solutions, while the traditional & fair 

formulation yields to more equitable operating policies without exploring the full range of trade-offs. The inclusive & fair 

formulation emerges as a win-win approach able to simultaneously explore the full range of trade-offs and lake dynamics as 

P3 (see Fig. 4 and Fig. 5) as well as to attain the best performance in terms of equity (see Fig. 2). 

4.2. Impacts of objectives’ aggregation into the equity index  250 

The ranges of performance attained by the different sets of solutions across the four objectives are not identical (see Fig. 2 (a)). 

More specifically, the obtained minimum and maximum values of JF, JI, JR, and JE across the different problem formulations 

are 0.69 and 0.99, 0.84 and 0.91, 0.53 and 1.00, and 0.63 and 0.88, respectively. According to the equity index considered in 

this study (see equation (8)), the most equitable solution is obtained when all objectives have the same performance. Assuming, 

for example, that a fair solution was a policy having a 0.875 reliability in all objectives, this would imply that JE would be 255 

highly satisfied as the 0.875 is close to the maximum value of 0.88; conversely, the performance in JF would be only 

intermediate as the 0.875 is still much lower than the maximum value of 0.99. Thus, using the equity index directly computed 

by aggregating the reliability performance across the four objectives may lead to some bias in the equity assessment, especially 

when the minimum and maximum performance values are significantly different.  

Applying a value function that transforms each objective into a satisfaction value defined over a homogenous 0-1 scale can, 260 

to some extent, correct this bias. To explore the sensitivity of our results with respect to the use of different value functions in 

the formulation of the equity index, in this work, we examine the impacts of adopting both a linear and a non-linear value 

function (see Fig. 6). The linear value function (Fig. 6 (a)) maps a performance value x to x’ in the range [0, 1] where these 

extremes correspond to the lowest and highest values of reliability across all the solutions, respectively. In the non-linear value 

function (Fig. 7b), we hypothesized a function that requires high values of JF and JI to get high values of satisfaction in these 265 

objectives as the historical operation of the Lake Como is primarily looking at flood control and irrigation water supply while 

accepting lower levels of reliabilities in terms of JR and JE. It should be noted that the purpose of this experiment is only testing 

the sensitivity of the equity index to the use of different values functions rather than capturing the preference structure of real 

stakeholders. 

The results of this analysis are reported in Fig. 8(a) for the traditional & fair formulation, where each line represents the 270 

performance of the optimized solution in terms of JF, JI, JR, JE (as in Fig. 2) along with three equity indexes computed with 

either the original values of reliability or the satisfaction values returned by the linear and non-linear value functions. Since 

the performance difference between linear and non-linear value functions is less notable for P4, the corresponding comparisons 

are not reported. According to Fig. 7 (a) (violet lines), using standard equity yields solutions with a high level of JE, which can 

be explained by the low upper bound of JE (as aforementioned in the analysis of Fig. 4 in Sect. 4.1). More specifically, because 275 

the maximum value of JE is much lower than other objectives, further increment of JE based on its high levels of JF and JI will 

decrease the values of the standard equity index. Similarly, using the equity index computed on satisfaction values tends to 

obtain a high level of performance in terms of JF due to the upper bound of JF, leading to relatively lower JE but higher JF than 

using the standard equity. Furthermore, using a linear or non-linear value function also affects the equitable operating policy 

design. The non-linear value function tends to get relatively higher JF and JR but lower JE than the linear value function because 280 

steeper slopes in value function curves occur in a high level of JF and JR (i.e., the improvement of JF and JR will be considered 

more important than the improvement of JE). Thus, the preferences of stakeholders and decision-makers should be embedded 
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in the equity index formulation. More specifically, the optimization of an equity index is able to consider the stakeholders’ 

preferences through a value function by getting better performance in terms of more important objectives.  

Figure 7 illustrates the 5% most equitable solutions with respect to the different formulations of the equity index to better 285 

analyze the results. The nearly horizontal lines between axes JF and JE in Fig. 7 (b), (c), and (d) represent solutions attaining 

an equity index close to zero. Solutions using standard equity tend to get higher JE (close to 0.88) but lower JF, JI, and JR than 

using normalized equity. When JF, JI, and JR are higher than 0.88, decreasing the standard equity index will always increase 

the JE but may deteriorate other objectives (i.e., there will exist a clear trade-off between equity index minimization and JF, JI, 

and JR maximization). Standard equity leads to all objective performance values close to 0.88 (Fig. 7 (b)). In contrast, linearly 290 

and non-linearly normalized equity yields more evenly distributed performance scores. The horizontal red lines in Fig. 7 (c) 

show all objectives having the same linearly normalized score as the y-axis limits of Fig. 7 (c) are actually the objective ranges, 

while cyan horizontal lines in Fig. 7 (d) mean the same non-linearly normalized score for all objectives. Also, using linearly 

normalized equity to some degree improves JI (Fig. 7 (c)), while using non-linearly normalized equity tends to get more 

solutions with a high level of JF than linearly normalized equity, which is especially notable from the comparisons of 295 

performance scores in Fig. 7 (d). It is worth noting that the mean of all objective values from solutions using these three types 

of equity index seems close to each other (non-linear normalization gets higher JF and JR but lower JI and JE than linear 

normalization, no normalization tends to get relatively higher JE but lower JF, JI, and JR), which further indicates that a low 

equity index is achieved mainly by lowering the standard deviation of the performance instead of increasing the mean of 

objective values (this finding is in accordance with the results in Fig. 3). 300 

5. Conclusions 

In this paper, we incorporated equity principles into the operation design of multipurpose water reservoirs. Using the real-

world case study of Lake Como in Northern Italy, the potential for operationalizing equity indexes is assessed by means of a 

rival framings experiment where we compare the solutions obtained formulating alternative problems with a different number 

of objectives. Moreover, we assess the sensitivity of the proposed approach with respect to the value functions adopted for 305 

aggregating the different objectives in the computation of the equity index. 

The comparison between operating policies designed with and without considering equity amongst the operating objectives 

shows that (1) including equity in the operation design can indirectly improve marginalized objectives that are not explicitly 

considered in the optimization problem; (2) when also explicitly including marginalized objectives, still the addition of an 

equity indicator generates more solutions mitigating the conflicts between the operating objectives.  310 

Our work also emphasizes that the search for equitable solutions across multisectoral interests depends on how the multiple 

objectives are combined to formulate the equity index. Results show that using an equity index based on the original reliabilities 

can favor or negatively impact some objectives in a difficult way to control. The adoption of participatory approaches for 

eliciting the preference structure of stakeholders and policymakers thus becomes paramount for the operationalization of equity 

principles to re-scale the objectives and represent a fair balance across competing interests. 315 

The definition of equity is not unique in the literature. Beside the equity index used in this study, it could be interesting to 

investigate the impacts of alternative definitions of equity on water resources decision-making and how to select an appropriate 

equity metric for a specific problem. Moreover, although equitable solutions can help to mitigate the conflicts among multiple 

objectives, it is still not easy to design an objective value function and thus choose an equitable policy agreed by all 

stakeholders thus further research is required to formulate guidelines for the identification of satisfactory alternative from the 320 
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set of Pareto optimal solutions. Finally, the equity in this study is assumed static throughout all experiments, but it could 

dynamically change over time according to the potential evolution of stakeholders’ and decision makers’ preferences. It would 

be interesting to evaluate the dynamics of equity under varying conditions, including future climate scenarios and 

modifications in the irrigation systems.  

Code and data availability. Observations of lake inflows were provided by Consorzio dell’Adda 325 

(http://www.addaconsorzio.it, Consorzio dell’Adda, 2020). The source code for the Lake Como simulation and EMODPS 

implementation is available on GitHub (https://github.com/EILab-Polimi/LakeComo). 
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Figure 1 Map of the Lake Como system in the Lombardy region, Northern Italy. The map was generated via Q-GIS using 440 

layers from the Geoportal of Regione Lombardia (http: //www.geoportale.regione.lombardia.it/, last access: July 2016). 
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(a) 

  
(b) (c) 

  
(d) (e) 

Figure 2 Parallel coordinates plot of comparisons between: (a) all formulations, (b) traditional vs traditional & fair, (c) 

traditional vs inclusive, (d) traditional & fair vs inclusive, and (e) inclusive vs inclusive & fair. Each line connecting multiple 450 

axes represents one optimized solution, the horizontal dash line represents the mean line, and each type of line color 

represents one problem formulation. The axes with labels “Flood”, “Irrigation”, “Recreation”, “Environment”, and 

“Equity” refer to the corresponding performances of JF, JI, JR, JE, and ζ, respectively, and the direction of solution 

preference is upward. Note: Figures (b), (c), (d), and (e) use the minimum and maximum performance values of Problems 

1-4 as the lower and upper axis bounds, respectively. 455 
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(a) 

 
(b) 

Figure 3 Comparisons of the relationship between equity index and (a) mean μ and (b) standard derivation σ of JF, JI, JR, 

and JE for solutions from Problems P1-P4. Each dot in the scatter plots represents one optimal solution. Solutions with 

lower equity index ζ and higher performance mean value μ(JF, JI, JR, JE) are generally preferable. The arrow on y-axis 

shows the direction of preference. 460 
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(a) (b) 

  
(c) (d) 

Figure 4 Density distribution comparisons of (a) J F, (b) J I, (c) J R, and (d) J E between problems P1 & P2, P1 & P3, P2 & 

P3, and P3 & P4. The density distribution is estimated by using kernel density estimation. Horizontal dash line refers to 

the median value of all solutions. The x-axis represents the comparison between various problem formulations.  465 
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(a) 

  
(b) (c) 

Figure 5 Density distribution comparisons of (a) median, (b) 75th percentile, and (c) 25th percentile of lake water levels 

between problems P1 vs P2, P1 vs P3, P2 vs P3, and P3 vs P4. The density distribution is estimated by using kernel density 

estimation. The horizontal dash line refers to the median value of all solutions. The x-axis represents the comparison 470 

between various problem formulations. 

 

 

  

(a) (b) 

Figure 6 Linear and non-linear value functions of JF, JI, JR, and JE in the formulation of the equity index.  

 475 
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(a) (b) 

  

(c) (d) 

Figure 7 Parallel plot of (a) all solutions and (b) (c) (d) 5% solutions with lowest (standard, linearly normalized, or non-

linearly normalized) equity index in Problem 2. Type 1, 2, and 3 refer to optimizations minimizing standard, linearly 

normalized, and non-linearly normalized equity index, respectively. Figures (a), (b), and (c) show performance value, while 

figure (d) shows performance scores; Figures (b) and (d) have the same lower and upper bounds for all axes (of J F, J I, J R, 480 

and J E), while figures (a) and (c) use the minimum and maximum performance values of problems P1-P4 as the lower and 

upper axis bounds. 
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