
1 

 

Operationalizing equity in multipurpose water systems 

Guang Yang1, Matteo Giuliani1, Andrea Castelletti1 
1Department of Electronics, Information, and Bioengineering, Politecnico di Milano, Milan, 20133, Italy. 

Correspondence to: Matteo Giuliani (matteo.giuliani@polimi.it) 

Abstract Participatory decision-making is a well-established approach to address the increasing pressure on water systems 5 

induced by growing multi-sectoral demands and increased competition among different water users. Yet, most existing 

approaches search for system-wise efficient solutions and do not quantify their distributional effect among the stakeholders. 

In this work, we investigate how to operationalize equity principles to design improved water systems operations that better 

balance efficiency and justice. More specifically, we explore to which extent the inclusion of equity principles reshapes the 

space of efficient solutions. Numerical experiments are conducted on the Lake Como system, Italy, operated primarily for 10 

flood control and irrigation water supply while also providing recreation and river ecosystem services. Our results show how 

incorporating equity considerations into the design of water system operations enriches the solution space by generating more 

compromise solutions than those obtained using a traditional multi-objective optimization. Moreover, we find that including 

equity in the operating policy design can indirectly improve the performance of marginalized sectors, such as recreation and 

ecosystem, which are not explicitly considered by the current lake operation. Lastly, we illustrate how the aggregation of multi-15 

sectoral interests into an equity index strongly shapes our results. Eliciting the preference structure of stakeholders and 

policymakers thus becomes paramount for the identification of a fair balance across competing interests. This work bridges 

the gap between multi-objective optimization approaches and equity-informed decision-making for real-world water resources 

planning and management, providing an effective tool to promote efficient and equitable policies. 

1. Introduction 20 

Proper operation of existing water systems is widely recognized as one of the most important and cost-effective ways to 

improve water use efficiency and reduce stresses caused by rapid population growth and socio-economic development (Ehsani 

et al., 2017; Giuliani et al., 2016a; Olsson, 2015). Water reservoirs generally serve multiple and competing purposes, including 

flood control, irrigation, power generation, navigation, and river ecosystem maintenance, but limited water resources make it 

impossible to fully and simultaneously satisfy all these water users (Billington and Jackson, 2006; Groenfeldt, 2019). At the 25 

same time, growing energy and food demands are putting additional pressure on these systems and are exacerbating conflicts 

(Ehsani et al., 2017; Giuliani et al., 2016a; Olsson, 2015), which are often related to emerging adverse social and environmental 

consequences caused by water infrastructure (Graham et al., 2020; Poff et al., 2016; Poff and Schmidt, 2016; Sabo et al., 2017; 

Schmitt et al., 2018) and to water security (D'Odorico et al., 2018; Liu et al., 2018; Scanlon et al., 2017). These challenges 

represent a well-established topic in the water systems analysis community since the Harvard Water Program (Maass et al., 30 

2013), promoting the idea of adopting an a-posteriori decision making based on trade-off analysis between competing 

objectives (Cohon and Marks, 1975; Maier et al., 2014; Nicklow et al., 2010; Reed et al., 2013).  

Traditionally, water system operations are formulated as multi-objective decision-making problems and the underlying 

conflicts among objectives capturing the interests of different stakeholders yield a set of Pareto optimal (or efficient) solutions 

rather than a single optimal solution (Loucks and Van Beek, 2017). A solution is defined as being Pareto optimal (or 35 

nondominated) if no other solution gives a better value for one objective without degrading the performance in at least one 

other objective. In this context, most existing approaches search for the Pareto optimal set to explore trade-offs between 

operating objectives (Geressu and Harou, 2019; Giuliani et al., 2014; Kasprzyk et al., 2009; Schmitt et al., 2018). Yet, Pareto 
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optimality pursues system-wise efficiency and ignores the distributional effects of the optimal solutions among the different 

stakeholders, potentially resulting in inequitable outcomes. Equity here is defined as “the provision of a consistent minimum 40 

quality and quantity, determined at the local level, of water services to all end-users” (Osman and Faust, 2021). The potential 

inconsistency between efficiency and equity might inadvertently bias the analysis on efficient but unfair solutions that the 

stakeholders will hardly accept  (Cai et al., 2002; Cai et al., 2003; Cai, 2008; Loucks, 1997), while including equity among the 

objectives can be useful to ensure that the negotiations on the solution to be implemented succeed smoothly (Jafino et al., 

2021).  45 

There is a growing interest in equity-related research in the water resources literature, with Fletcher et al. (2022) recently 

offering some actionable recommendations about the integration of equity into the water resources planning. For example, 

Wang et al. (2008) developed a cooperative water allocation model to achieve fair and efficient water allocation among 

competing stakeholders at the basin level. Girard et al. (2016) designed cost-effective and equitable portfolios for water 

resource adaptation to climate change in the Orb River basin by implementing cooperative game theory and social justice 50 

approaches. Siddiqi et al. (2018) developed a set of reliability and equity metrics to quantitatively evaluate the water security 

in a canal irrigation system in the Indus basin. Ciullo et al. (2020) proposed a decision criterion to account for the geographical 

distribution of flood risk in the transboundary area of the German-Dutch Lower Rhine River and investigate the impact of 

equity criteria on flood risk management. Gullotta et al. (2021) improved the equity among users of a water distribution 

network in northern Italy by optimizing the placement of control valves to maximize the uniformity coefficient (an equity 55 

index proposed in (Gottipati and Nanduri, 2014)). Kazemi et al. (2020) optimized the water allocation in the Sefidrud basin in 

Iran for the maximum water use revenue and minimum Gini index (which was introduced by Gini (1921) to measure income 

inequality). Although these works promote equity in water resource systems by fairly distributing benefits or risks, the impacts 

of equity on multi-objective decision-making and how equity affects the trade-offs between conflicting objectives have not yet 

been studied.  60 

In this work, we investigate how to operationalize equity principles into the multi-objective design of improved water systems 

operations that better balance trade-offs among competing stakeholders’ interests. The approach is demonstrated on the Lake 

Como system, a regulated lake in Northern Italy historically operated for flood protection and irrigation supply. Over the last 

few years, the increasing frequency and intensity of severe droughts emphasized the importance of additional, so far 

marginalized services provided by the lake operations, such as preventing low lake levels for supporting recreational activities 65 

and ecosystem preservation downstream of the lake.  

The paper provides two main contributions. First, we analyze alternative problem formulations to assess how the inclusion of 

equity principles reshapes the space of efficient solutions with respect to both a traditional optimization considering only 

primary objectives and an inclusive optimization that account for primary as well as historically marginalized objectives. 

Second, we explore the sensitivity of the resulting solutions with respect to the definition of the equity metric, which, in a 70 

multi-objective problem, requires the aggregation of multiple objective functions into a single index (e.g., coefficient of 

variation). Since aggregated objective functions might adversely bias the designed alternatives in unpredictable ways 

(Kasprzyk et al., 2016), this is an important aspect to explore for effectively operationalizing equity in multipurpose water 

systems. Moreover, the aggregation of primary and marginalized objectives into an equity index makes our approach a hybrid 

method that blends a-posteriori decision making with an aggregated objective formulated a-priori, which can become 75 

particularly promising to stretch our ability to solve multi-objective problems with high numbers of objectives. 
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The rest of the paper is organized as follows: in the next section, we introduce the Lake Como study site, while Sect. 3 describes 

the adopted methodology. Then, results and discussion are reported in Sect. 4, while conclusions and final remarks are 

presented in the last section. 

2. Study Site 80 

Lake Como, also known as Lario, is the third-largest lake in Italy and the fifth deepest lake in Europe; it has an active storage 

capacity of 254 million m3 and a depth of over 400 m. The catchment area of Lake Como is approximately 4,552 km2, with 

the lake serving an irrigation-fed cultivated area of about 1,300 km2 (Fig. 1). The major crops within the agricultural area 

include cereals, maize, and temporary grasslands for livestock. The climate of Lake Como is temperate around the lake and 

cold in the upper alpine catchment (Peel et al., 2007). The hydrologic regime is snow-rainfall dominated, with the dry seasons 85 

in winter and summer and wet seasons in late spring and autumn, respectively.  

The lake's shape is close to an inverted letter “Y” and the city Como is located at its southwestern branch. Because of the dead-

end and the lowest elevation on the lake shoreline at Como, this area is prone to flooding. Thus, the regulation of Lake Como 

has been historically studied mostly by looking at the conflict between irrigation water supply and flood control (Denaro et al., 

2017; Giuliani et al., 2020; Guariso et al., 1986). Spring/summer snowmelt primarily creates the seasonal storage of Lake 90 

Como, which can be reallocated to satisfy the summer water demand peak for irrigation. Storing more water in spring will 

benefit the irrigation water supply in summer; however, this strategy could lead to high lake levels for longer periods and thus 

increase flood risk.  

Lake Como is also a popular tourist destination because of its beautiful Alpine landscape and abundant wildlife, and it is a 

scenic spot for sailing, boating, and windsurfing. Interests related to ecosystems, tourism, navigation, and fishing are also 95 

attracting more and more attention in Lake Como water governance in recent years (Carvalho et al., 2019; Grizzetti et al., 

2016). Accordingly, the Lake Como operation design can be formulated as a problem that involves up to four competing 

objectives, where recreation services (e.g., tourism and navigation) and river ecosystem maintenance downstream of the lake 

are added to irrigation water supply and flood control. 

3. Methods and Tools 100 

3.1. Model description 

The model of the system reproduces the dynamics of Lake Como by using a mass-balance equation of the lake storage st (m3) 

assuming a modeling and decision-making time step t = 24 hours, where the lake releases are determined by the lake operating 

policy: 

 𝑠 𝑠 𝑞 𝑟 ∙ ∆𝑡  (1) 105 

where qt+1 (m3/s) and rt+1 (m3/s) are the net inflow (i.e., inflow minus evaporation losses) to the lake and the actual lake release 

in the time period [t, t+1), respectively. Specifically, the release volume rt+1 is determined by a non-linear, stochastic function 

that depends on the release decision ut (Soncini-Sessa et al., 2007) and accounts for the effect of the uncertain inflows between 

the time t (at which the decision is taken) and the time t+1 (at which the release is completed). The release rt+1 does not 

necessarily equal the decision ut due to existing legal and physical constraints on the lake level and release (e.g., spills, dead 110 

storage). According to the daily time step, the Adda River can be described by a plug-flow model to simulate the transfer of 

the lake releases from the lake outlet to the intake of the irrigation canals. The water diversions from the Adda River into the 

irrigation canals are regulated by the water rights of the agricultural districts. 
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The lake operating policies that determine the release decision ut are defined as Gaussian radial basis functions (RBFs; Buşoniu 

et al. (2011)) as follows: 115 

 𝑢 𝛼 ∑ 𝜔 𝜑 𝑋 𝑡 1, … , 𝐻 0 𝜑 1  (2) 

 𝜑 𝑋 𝑒𝑥𝑝 ∑ ,

,
𝑐 , ∈ 1,1 , 𝑏 , ∈ 0,1    (3) 

where K is the number of RBFs, ωk is the weight of the kth RBF, M is the number of input variables Xt, and ck and bk are the 

M-dimensional center and radius vectors of the kth RBF, respectively. Lake level ht, previous day inflow qt, and the day of the 

year τt are used as input variables (i.e., Xt = (st, qt, τt)), and the number of RBFs is set to four (K=4) which proves effective in 120 

our previous works (Giuliani et al., 2016b; Giuliani et al., 2020). The final parameters vector can be summarized as: θ=[, ωk, 

cj,k, bj,k], and it thus contains 29 parameters (decision variables) to determine the release decision ut. The operating policies are 

then optimized using the Evolutionary Multi-Objective Direct Policy Search (EMODPS) method (Giuliani et al., 2016b), a 

Reinforcement Learning approach that combines direct policy search, non-linear approximating networks, and multi-objective 

evolutionary algorithms. 125 

3.2. Operating objectives 

Building on previous works (Galelli and Soncini-Sessa, 2010; Giuliani and Castelletti, 2016; Giuliani et al., 2016c; Zaniolo et 

al., 2021), we formulate four objectives capturing the competing interests introduced in the previous section as follows 

(a) Flood control: the high-level reliability (to be maximized) defined as 

 𝐽 1 F  (4) 130 

where 𝑛F is the number of days in the evaluation horizon H during which the lake level is above a flood level threshold. 

(b) Irrigation water supply: the daily average volumetric reliability (to be maximized) defined as 

 𝐽 ∑ 𝑚𝑖𝑛 , 1   (5) 

where Yt+1 (m3) is the daily volume of water available for irrigation, subject to the minimum environmental flow constraint to 

ensure adequate environmental conditions in the Adda River downstream of the abstraction point, and wt (m3) is the 135 

corresponding irrigation demand. 

(c) Recreation services: the low-level reliability (to be maximized) defined as 

 𝐽 1 R  (6) 

where 𝑛R is the number of days in the evaluation horizon H during which the lake level is below a time-varying, low-level 

threshold equal to the 10th percentile of the historical lake level. 140 

(d) River ecosystem: the reliability of environmental flow (to be maximized) defined as 
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 𝐽 E  (7) 

where 𝑛E  is the number of days in the evaluation horizon H during which 𝑞 𝜎 𝑟  𝑞 𝜎 , with 𝑞  and 𝜎  

representing the mean and standard deviation, respectively, of the Adda river flow in natural conditions. It is worth noting that 

the ecosystem in the case study is sensitive to both high and low flows, thus the target of maintaining the lake release within a 145 

range approximating the natural variability instead of considering only a minimum flow threshold as traditionally done in the 

literature. 

3.3. Operationalizing equity  

The equity index considered in this study is formulated as in Siddiqi et al. (2018) as the ratio between the standard derivation 

() and mean () of the performance in the four objectives introduced in the previous section, i.e. 150 

 𝜁
, , ,

, , ,
  (8) 

The lower the value of ζ, the more equitable the solution is, with low values of ζ obtained for high values of the original 

objectives with a limited performance dispersion across the four objective functions. When the objectives capturing diverse 

stakeholders’ interests are expressed in different units of measure or explore different performance ranges, it could be necessary 

to map the original objectives into a satisfaction value by applying a value function. The latter allows re-scaling all the 155 

objectives into a dimensionless scale, e.g., from 0 to 1, by means of a linear or non-linear transformation. Assessing the equity 

index by computing the mean and standard deviation of satisfaction values rather than objectives is expected to improve the 

analysis by working on commensurable quantities.  

Yet, the ranges of performance attained by the different sets of solutions across the four objectives could be not identical. 

Using the equity index directly computed by aggregating the reliability performance across the four objectives may lead to 160 

some bias in the equity assessment, especially when the minimum and maximum performance values are significantly different. 

For example, if the ranges of JF and JE are [0.7, 1.0] and [0.6, 0.9], a fair solution having 0.85 reliability in all objectives would 

imply that JE would be highly satisfied as the 0.85 is close to the maximum value of 0.9; conversely, the performance in JF 

would be only intermediate as the 0.85 is still much lower than the maximum value of 1.0. To mitigate this bias, a value 

function can be used to first transform each objective into a satisfaction value expressed in a dimensionless scale (e.g., from 0 165 

to 1), with the equity index computed by aggregating the satisfaction values as follows: 

 𝜁
, , ,

, , ,
  (9) 

where 𝑓 ∙ , 𝑓 ∙ ,  𝑓 ∙ , and 𝑓 ∙  are the value functions of JF, JI, JR, and JE, respectively.  

To explore the sensitivity of our results with respect to the use of different value functions, in this work, we examine the 

impacts of adopting both a linear and a non-linear value function (see Figure 2). The linear value function maps a performance 170 

value x to x’ in the range [0, 1] where these extremes correspond to the lowest and highest values of reliability across all the 

solutions, respectively. In the non-linear value function, we hypothesized a function that requires high values of JF and JI to 

get high values of satisfaction in these objectives as the historical operation of the Lake Como is primarily looking at flood 

control and irrigation water supply while accepting lower levels of reliabilities in terms of JR and JE. It should be noted that 

the purpose of this experiment is only testing the sensitivity of the equity index to the use of different values functions rather 175 

than capturing the preference structure of real stakeholders. 
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3.4. Experimental settings 

As mentioned before, the Lake Como operator traditionally considers two primary objectives (irrigation water supply and 

flood control). More recently, other needs such as recreation services and river ecosystem maintenance are emerging due to 

increasingly frequent droughts, which motivates us to investigate how to fairly account for these previously marginalized 180 

objectives into the policy design. In this work, we contrast four rival formulations of the Lake Como EMODPS problem (Table 

1) that can be summarized as follows: 

 F1 – traditional formulation: 𝜃∗ arg max J 𝜃 |𝐽 , 𝐽 | 

 F2 – traditional & fair formulation: 𝜃∗ arg max J 𝜃 |𝐽 , 𝐽 , 𝜁| 

 F3 – inclusive formulation: 𝜃∗ arg max J 𝜃 |𝐽 , 𝐽 , 𝐽 , 𝐽 | 185 

 F4 – inclusive & fair formulation: 𝜃∗ arg max J 𝜃 |𝐽 , 𝐽 , 𝐽 , 𝐽 , 𝜁| 

F1 is a traditional multi-objective optimization problem that only searches for the maximum of the two primary objectives. F3 

is an inclusive optimization that instead considers all four objectives. Finally, F2 and F4 add the equity index from equation 

(8) to the traditional and inclusive formulations, respectively. While the comparison between the traditional and inclusive 

formulations will provide the benefit of including all objectives into the policy design, the comparison between F1 vs. F2 and 190 

F3 vs. F4 will focus on assessing the value of including an equity-related objective function in either the traditional multi-

objective optimization and the inclusive optimization problems. Finally, the comparison between F2 and F3 allows 

investigating the differences between using the equity index as a means for indirectly including in the problem formulation the 

traditionally marginalized objectives or formulating an inclusive optimization that directly includes all stakeholders’ interests 

as separated objectives. 195 

 

Table 1 Summary of the alternative problem formulations. 

Formulation  Name Objectives Including equity (YES/NO) 

F1 Traditional JF, JI NO 

F2 Traditional & fair JF, JI, ζ YES 

F3 Inclusive JF, JI, JR, JE NO 

F4 Inclusive & fair JF, JI, JR, JE, ζ YES 

The parameters in RBFs-based policies are optimized using the Borg MOEA evolutionary algorithm (Hadka and Reed, 2013) 

which proves highly robust in solving many-objective control policy optimization problems (Salazar et al., 2016). The number 

of the function evaluations is 2 million, the same as in previous Lake Como operation optimization (Denaro et al., 2017). To 200 

ensure solution diversity and reduce the impact of stochastic factors on the optimal solutions, each optimization was randomly 

repeated ten times (i.e., the final set of nondominated solutions for each formulation are obtained from 10 random optimization 

trials). In total, the analysis comprises 80 million simulations that required approximately 600 computing hours on an Intel 

Xeon E5-2660 2.20 GHz with 32 processing cores and 96 GB RAM.  
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4. Results and Discussion 205 

4.1. Multi-objective optimization and equity operationalization 

The optimization results of problems F1-F4 can be evaluated in terms of four operation objectives along with the equity index 

using the parallel coordinates plots in Figure 3, where each line crossing multiple axes represents one Pareto optimal solution. 

The leftmost axis represents different problem formulations (e.g., the value “2” refers to F2; apart from the axis, the line color 

is also used to differentiate various problem formulations), and other axes represent solution performance in terms of flood 210 

control, irrigation water supply, recreation, environment, and equity. The axis for equity is reversed to ensure that the direction 

of preference is always upward, and the ideal solution would thus be a horizontal line at the top of each plot. The diagonal 

lines between adjacent axes infer the conflicts between different objectives. The density distributions of the solutions’ 

performance across the four formulations is illustrated in Supplementary Figure S1. 

According to Figure 3 (a), different problem formulations generate diverse solution spaces. F1 attains good performance in the 215 

objectives JF and JI (up to 0.99 and 0.91, respectively) that this formulation is optimizing, but low performance on the non-

optimized objectives JR and JE (lower than 0.67 and 0.72, respectively). Consequently, the equity of these solutions across the 

four objectives is low. Moving from F1 to F2 allows the attainment of better equity values, which, however, induces 

performance degradation in terms of JF. The inclusive optimization supports the full exploration of the trade-offs between the 

four objectives, remarkably improving JR but degrading the performance in terms of JF and JI (i.e., the maximum performance 220 

in JR is equal to 1, while the worst solution in flood and irrigation supply is much lower than with F1 or F2). Notably, the 

solutions of F3 attain worse values of equity than the solutions of F2. Lastly, moving from F3 to F4 produces a small 

improvement in terms of equity with minor differences in the performance across the four objectives. Interestingly, F2 

generates solutions that perform very well in terms of JE although this objective is not directly included in the optimization, 

but only indirectly considered through the minimization of ζ. This happens because the upper bound of JE in F1 is much lower 225 

than other objectives, and thus the equity index tends to decrease as the value of JE increases. Optimizing equity can therefore 

be a way for improving the objective(s) of marginalized stakeholders with the lowest level of satisfaction (e.g., the J E with the 

lowest upper bound in this case study). It needs to be noted that F3 which directly includes JE should theoretically outperform 

F2 in the environmental objective. The difference in the best environment performance between F2 and F3 is likely attributable 

to the increasing challenges introduced by the additional objectives considered in this work. According to the boxplot of best 230 

performance of 10 random optimization trials reported in Supplementary Figure S2, the median of the best performance of F2 

and F3 is indeed almost equivalent. Moreover, a new problem formulation F3b including flood, irrigation, and environment 

(i.e., removing the recreation objective from F3 to have the same number of objectives as F2) can obtain better performance 

than F2 by directly optimizing the environment. Including in F3 an additional and strongly conflicting objective (recreation) 

makes the search for the best environment more challenging. 235 

To better quantify the differences in the solutions obtained with F1-F4, we computed the Hypervolume indicator along with 

the best and worst performance in each objective across the four formulations (see Figure 4). Results show that F3 and F4 have 

similar and the highest hypervolume, followed by F2, while F1 has much lower hypervolume. Apparently, non-dominated 

solutions obtained from F3 and F4 tend to be efficient on JR and JE, which are not explicitly optimized in F1 and F2. It needs 

to be noted that formulation F2 attains a very good performance in the environment objective because the upper bound of JE 240 

is lower than other objectives, and thus the equity index tends to improve as the value of JE increases. 

To further understand the benefit of adding an equity objective to both the traditional (F1) and the inclusive (F3) formulations, 

in Figure 5 we compute the number of compromise solutions for each formulation considering only the policies that exceed 
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increasing performance thresholds in all objectives. There are 0, 47, 30, and 49 solutions having reliability greater than 0.85 

in all objectives in F1, F2, F3, and F4, respectively, clearly demonstrating how including the equity metric discovers favorable 245 

compromises that are not found by conventional formulations. Interestingly, these compromise solutions account for 0%, 

15.8%, 4.3%, and 6.1% of the total number of solutions obtained in each formulation, suggesting that formulation F2 is the 

most “efficient” in finding compromise solutions. This is also confirmed by observing how the slope of the yellow (F3) and 

brown (F4) lines are steeper than the cyan one (F2), meaning that the number of compromise solutions in F3 decreases more 

evidently than in F2 for increasing performance thresholds.  250 

These results motivate investigating how the considered equity metric changes across the different sets of solutions. Figure 6 

shows that the values of the equity index vary mainly with the standard deviation σ of the performance in terms of the four 

objectives instead of the corresponding mean µ: the equity index consistently increases with σ, but can have different values 

for the same µ value, especially in the situation of inequity. The reason is that the trade-off between different objectives can 

lead to notably different σ but similar µ for two different solutions (e.g., in Fig. 2 (b), high values of JI generally correspond to 255 

low values of JR). The results in Figure 5 show that the maximum µ value increases from 0.81 for F1 to 0.90 and 0.91 for F2 

and F3, respectively. The µ here can be considered a proxy of overall performance, and its significant increase indicates the 

advantages of solutions from F2 and F3 over F1. Yet, higher µ does not precisely refer to a better solution as the profits per 

unit increment of the four objectives are different. In the traditional formulation, the non-optimized objectives introduce 

variability in system-wise performance that leads to low equity. Conversely, F2 optimizes the equity index computed across 260 

the 4 objectives, and this generates a substantial improvement at the system level because of the indirect consideration of the 

marginalized objectives in the policy design. When transiting from F3 to F4, the equity index instead conveys smaller 

additional information, so the advantage of F4 over F3 is less evident. 

Lastly, the impacts of problem formulations on the resulting dynamics of Lake Como can be evaluated by comparing the 

simulated trajectories of lake levels under the best equitable solution for F1-F4. Results in Figure 7 show that the best equitable 265 

solution of F1 leads to the lowest water level especially during the late spring to reduce the flood risk and, at the same time, 

the water level drops significantly during the summer for better irrigation water supply, which are the only two objectives 

considered in this formulation. Conversely, the inclusive formulation F3 increases the lake level especially in the late summer, 

as required to attain high performance in JR. The water level under the equitable solutions of F2 and F4 is between that of F1 

and F3, which indicates the identification of a compromise alternative balancing the conflicting objectives. 270 

4.2. Impacts of objectives’ aggregation into the equity index  

To investigate the role of alternative formulations of the equity index corresponding to different aggregations of the multiple 

objectives, we repeated our analysis using a linear and a non-linear value function (see Figure 2) to map the original objectives 

into satisfaction values. Figure 8 illustrates the results for the traditional & fair formulation (F2), where each line represents 

the performance of the optimized solution in terms of JF, JI, JR, JE (as in Fig. 2) along with three equity indexes computed with 275 

either the original values of reliability or the satisfaction values returned by the linear and non-linear value functions. Since 

the performance difference between linear and non-linear value functions is less notable for F4, the corresponding comparisons 

are not reported.  

According to Figure 8 (a), using standard equity (violet lines) yields solutions with a high level of JE, which can be explained 

by the low upper bound of JE as also noted in Figure 3. Conversely, using the equity index computed on satisfaction values 280 

tends to obtain a high level of performance in terms of JF due to the upper bound of JF, leading to relatively lower JE but higher 

JF than using the standard equity. Furthermore, using a linear or non-linear value function also affects the equitable operating 



9 

 

policy design. The non-linear value function tends to get relatively higher JF and JR but lower JE than the linear value function 

because steeper slopes in value function curves occur in a high level of JF and JR (i.e., the improvement of JF and JR will be 

considered more important than the improvement of JE). Thus, the preferences of stakeholders and decision-makers should be 285 

embedded in the equity index formulation to ensure better performance in terms of more important objectives.  

Figure 8 (b-c-d) illustrates the 5% most equitable solutions with respect to the different formulations of the equity index. The 

nearly horizontal lines between axes JF and JE represent solutions attaining an equity index close to zero. Solutions using 

standard equity tend to get higher JE (close to 0.88) but lower JF, JI, and JR than using normalized equity. When JF, JI, and JR 

are higher than 0.88, decreasing the standard equity index will always increase the JE but may deteriorate other objectives (i.e., 290 

there will exist a clear trade-off between equity index minimization and JF, JI, and JR maximization). Standard equity leads to 

all objective performance values close to 0.88 (Figure 8 (b)). In contrast, linearly and non-linearly normalized equity yields 

more evenly distributed performance scores. The horizontal red lines in Figure 8 (c) show all objectives having the same 

linearly normalized score as the y-axis limits of Figure 8 (c) are actually the objective ranges, while cyan horizontal lines in 

Figure 8 (d) mean the same non-linearly normalized score for all objectives. Also, using linearly normalized equity to some 295 

degree improves JI (Figure 8 (c)), while using non-linearly normalized equity tends to get more solutions with a high level of 

JF than linearly normalized equity, which is especially notable from the comparisons of performance scores in Figure 8 (d). It 

is worth noting that the mean of all objective values from solutions using these three types of equity index seems close to each 

other, with non-linear normalization getting higher JF and JR but lower JI and JE than linear normalization, and no normalization 

producing relatively higher JE but lower JF, JI, and JR. This further indicates that a low equity index is achieved mainly by 300 

lowering the standard deviation of the performance instead of increasing the mean of objective values in accordance with the 

results in Figure 6. 

5. Conclusions 

In this paper, we incorporated equity principles into the operation design of multipurpose water reservoirs. Using the real-

world case study of Lake Como in Northern Italy, the potential for operationalizing equity indexes is assessed by means of a 305 

rival framings experiment where we compare the solutions obtained formulating alternative problems with a different number 

of objectives. Moreover, we assess the sensitivity of the proposed approach with respect to the value functions adopted for 

aggregating the different objectives in the computation of the equity index. 

The comparison between operating policies designed with and without considering equity amongst the operating objectives 

shows that (1) including equity in the operation design can indirectly improve marginalized objectives that are not explicitly 310 

considered in the optimization problem; (2) when also explicitly including marginalized objectives, still the addition of an 

equity indicator generates more compromise solutions mitigating the conflicts between the operating objectives.  

Our work also emphasizes that the search for equitable solutions across multisectoral interests depends on how the multiple 

objectives are combined to formulate the equity index. Results show that using an equity index based on the original reliabilities 

can favor or negatively impact some objectives in a difficult way to control. The adoption of participatory approaches for 315 

eliciting the preference structure of stakeholders and policymakers thus becomes paramount for the operationalization of equity 

principles to re-scale the objectives and represent a fair balance across competing interests.  

Our methodology is demonstrated using the Lake Como as a case study where the lake is operated by a single authority (i.e. 

Consorzio dell’Adda), which somehow acts as a social planner that first analyzes the trade-offs across the interests of multiple 

stakeholders and then implements a selected compromise policy. However, the same approach can also serve as the basis for 320 



10 

 

an interactive negotiation with multiple stakeholders that can discuss and analyze the same set of solutions examined by the 

social planner in order to find an acceptable compromise. It is important to stress that in both cases, however, the formulation 

of the equity index should be co-designed with the stakeholders through the identification of suitable value functions to map 

the original objectives into satisfaction values that allow the aggregation of the originally incommensurable objectives into an 

equity index.  325 

The definition of equity is not unique in the literature. Beside the equity index used in this study, it could be interesting to 

investigate the impacts of alternative definitions of equity on water resources decision-making and how to select an appropriate 

equity metric for a specific problem. Moreover, although equitable solutions can help to mitigate the conflicts among multiple 

objectives, it is still not easy to design an objective value function and thus choose an equitable policy agreed by all 

stakeholders. Further research could focus on the formulation of guidelines for the identification of satisfactory alternative 330 

from the set of Pareto optimal solutions. Finally, the equity in this study is assumed static throughout all experiments, but it 

could dynamically change over time according to the potential evolution of stakeholders’ and decision makers’ preferences. It 

would be interesting to evaluate the dynamics of equity under varying conditions, including future climate scenarios and 

modifications in the irrigation systems.  

Code and data availability. Observations of lake inflows were provided by Consorzio dell’Adda 335 

(http://www.addaconsorzio.it, Consorzio dell’Adda, 2020). The source code for the Lake Como simulation and EMODPS 

implementation is available on GitHub (https://github.com/EILab-Polimi/LakeComo). 
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Figure 1 Map of the Lake Como system in the Lombardy region, Northern Italy. The map was generated via Q-GIS using 455 
layers from the Geoportal of Regione Lombardia (http: //www.geoportale.regione.lombardia.it/, last access: July 2016). 

 

 

 

  

(a) (b) 
Figure 2 Linear and non-linear value functions of JF, JI, JR, and JE in the formulation of the equity index.  460 
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(a) 

(b) (c) 

(d) (e) 

Figure 3 Parallel coordinates plot of comparisons between: (a) all formulations, (b) traditional vs traditional & fair, (c) 
traditional vs inclusive, (d) traditional & fair vs inclusive, and (e) inclusive vs inclusive & fair. Each line connecting multiple 
axes represents one optimized solution, the horizontal dash line represents the mean line, and each type of line color 
represents one problem formulation. The axes with labels “Flood”, “Irrigation”, “Recreation”, “Environment”, and 470 
“Equity” refer to the corresponding performances of JF, JI, JR, JE, and ζ, respectively, and the direction of solution 
preference is upward. Note: Panel (a) uses the same lower and upper axis bounds for each objective to better compare their 
best and worst performances and discover compromise solutions (showing with lines approximately horizontal), while 
Panels (b), (c), (d), and (e) use the minimum and maximum performance values of formulations F1-F4 as the lower and 
upper axis bounds, respectively. 475 
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 480 

Figure 4 Hypervolume indicator and best (transparent bar) and worst (solid bar) performance in each objective across the 

four formulations F1-F4.  
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Figure 5 Number of compromise solutions for formulations F1-F4 that exceed increasing performance thresholds in all 485 

objectives.  
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(a) 

(b) 

Figure 6 Comparisons of the relationship between equity index and (a) mean μ and (b) standard derivation σ of JF, JI, JR, 
and JE for solutions from Problems F1-F4. Each dot in the scatter plots represents one optimal solution. Solutions with 
lower equity index ζ and higher performance mean value μ(JF, JI, JR, JE) are generally preferable. The arrow on y-axis 490 
shows the direction of preference. 
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Figure 7 Trajectories of average lake level for the best equitable solution in each problem formulation.  

  



20 

 

 

 500 

 

 
 

(a) (b) 

  

(c) (d) 

Figure 8 Parallel plot of (a) all solutions and (b) (c) (d) 5% solutions with lowest (standard, linearly normalized, or non-
linearly normalized) equity index in problem formulation 2. Type 1, 2, and 3 refer to optimizations minimizing standard, 
linearly normalized, and non-linearly normalized equity index, respectively. Figures (a), (b), and (c) show performance 
value, while figure (d) shows performance scores; Figures (b) and (d) have the same lower and upper bounds for all axes 505 
(of JF, JI, JR, and JE), while figures (a) and (c) use the minimum and maximum performance values of problems F1-F4 as 
the lower and upper axis bounds. 
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APPENDIX 

(a) (b) 

(c) (d) 

Figure S1. Density distribution comparisons of (a) J F, (b) J I, (c) J R, and (d) J E between problems F1 & F2, F1 & F3, F2 & 510 
F3, and F3 & F4. The density distribution is estimated by using kernel density estimation. Horizontal dash line refers to 
the median value of all solutions. The x-axis represents the comparison between various problem formulations.  

 

 

Figure S2. Boxplot of best performance of 10 random optimization trials of F2, F3, and F3b, which refers to a new problem 515 

formulation including flood, irrigation, and environment.  


