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Abstract.

In the coming decades, a changing climate, growing global population, and rising food prices will have

significant yet uncertain impacts on both water and food security. The loss of high-quality land, the slowing

in annual yield of major cereals, and increasing fertilizer use, all indicate that strategies are needed for mon-

itoring and predicting ongoing and future water deficits on farms for better agricultural water management5

decisions. Most such activities are based on in-situ measurements which are costly, hard to scale, and ignore

the wealth of spatial and temporal information from remotely-sensed data. In this study, we designed Farm-

Can, a novel and robust climate-informed machine learning (ML) framework to predict crop water demand

at the farm scale with up to 14 days lead time. We use a diverse set of simulated and observed near-real-time

(NRT) remote sensing data coupled with inputs from farmers, a Random Forest (RF) algorithm, and precip-10

itation (P) prediction from MSWEP to predict the amount and timing of evapotranspiration (ET), potential

ET (PET), soil moisture (SM), and root zone soil moisture (RZSM). Our study shows that SM and RZSM

are the variables that are more correlated with P, while PET and ET do not show a strong correlation with P,

SM, and RZSM. Our case study of 4 farms in the Canadian Prairies Ecozone (CPE) using R2, RMSE, and

KGE indicators, shows that our algorithm was able to forecast crop water requirements 14 days in advance15

reasonably well. We also found that during 2020, RF forecasted ET and PET and needed irrigation (NI) with

more accuracy than SM and RZSM, although this might vary based on the soil type, location, year of study,
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and crop type. Due to the forecasting capability and transferability of the mechanism developed, FarmCan is

a promising tool for use in any region of the world to help stakeholders make decisions during prolonged peri-

ods of drought or waterlogged conditions, schedule cropping and fertilization, and address local government’20

policy concerns.

1 Introduction

The FAO estimates that global food production must increase 50-70% by 2050 to feed the growing popula-

tion of 9.1 billion (UN/ISDR, 2007; FAO, 2009). Combined with the increasing frequency of drought due

to climate change, non-sustainable use of groundwater, and increasing competition from municipal, environ-25

mental, and industrial water needs, farmers are facing the challenge of maximizing crop production without a

growing water supply (Han et al., 2018). Farmers, however, may lack adequate means and incentive to char-

acterize crop water use, and thus agricultural water management often operates under conditions of unknown

water deficiency (Levidowa et al., 2014). Needed Irrigation (NI) is the amount of water to satisfy crop water

demand and is a critical measure for enhancing agricultural Water Use Efficiency (WUE) (Kirda, 2000). In30

irrigated farms, information on NI can help in regulating water deficit to achieve higher levels of crop pro-

duced per unit water consumed (Han et al., 2018; Chalmers et al., 1981). However, information on NI is also

important for rainfed farms as it gives farmers incentives for more efficient practice, and helps them adapt to

climate change by implementing viable solutions to gain more benefits from farming(Levidowa et al., 2014;

White et al., 2020). Therefore, the development of tools that enable estimation of NI is critical for farm deficit35

water management strategies to minimize potential crop failure and losses (White et al., 2020; Levidowa et al.,

2014; Th.F.Stocker et al., 2013; Geerts and Raes, 2009).

Although hydrological practices have significantly advanced the study of large catchments for water re-

sources purposes, they have—to date—limited implications for real-time agriculture and farm-scale NI (Jia

et al., 2011). The major portion of agricultural studies has focused on model-based crop water stress, mostly40

because of the difficulty associated with measuring water availability for specific agricultural periods such as

crop growth or yield (Ash et al., 1992; Wittrock and Ripley, 1999; Quiring, 2004). Some studies (Smilovic

et al., 2016; Andarzian et al., 2011) employed the crop-water model, Aquacrop, to evaluate the timing and

spatial distribution of irrigation water between farms within a watershed in western Canada. They showed that
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wheat production alone could be maintained while reducing water use by 77% and production could increase45

by 27% without increasing irrigation water use. Despite their advantages, crop water stress models can be too

complicated to operate and cannot easily be used as operational forecasting tools due to the limited spatial

and temporal availability of models’ input data. Plant hydraulic models, for example, have relatively complete

mechanistic representations of humidity, temperature, and Leaf Area Index (LAI), but they are usually too

complex, with many parameters that are hard to measure for crops (Yang et al., 2020).50

In recent years, Machine Learning (ML) models have become a useful calculation tool for minimizing

farm crop loss. ML models can learn from training data and construct regression and classification models

for multivariate and non-linear systems. Combined with Near-Real-Time (NRT) remote sensing, farm-level

information with reasonable confidence and with potential for better-informed water resources management

is now achievable. Remotely-sensed data are especially useful for areas where more advanced, on-farm tech-55

nologies may be too costly. The use of ML for the potential evaluation of water stress continues to be under-

explored and the existing methods can still be greatly improved (Virnodkar et al., 2020; Yang et al., 2020;

ScienceDaily, 2021).

In this study, we focus on combining NRT remote sensing observations from various platforms and farm-

specific information with ML and stochastic analysis to develop FarmCan. FarmCan is a hybrid physical-60

statistical-ML model for agricultural applications trained on surface soil moisture (SM), root zone soil mois-

ture (RZSM), precipitation (P), Evapotranspiration (ET), and Potential ET (PET) to monitor and forecast NI

on daily basis and up to 14 days in advance. Our goal is to develop the FarmCan model to (i) use farm coor-

dinates, crop type, and the length of the growing season as user inputs, and retrieve and analyze NRT remote

sensing data at the farm scale in real-time; (ii) establish a methodology to forecast PET, SM, and RZSM using65

P prediction; and (iii) develop a climate-informed forecast of subfield crop NI volume and its timing with up

to 14 days lead time. Our analysis and framework are developed for the Canadian Prairies Ecozone (CPE)

farms but can be transferred anywhere to inform farmers and other stakeholders where and when additional

water is potentially needed to compensate for water deficits. FarmCan also provides information that can be

useful to governments, water managers, agriculturalists, and industries’ sustainable initiatives to grow more70

food with better-managed water. The remainder of this paper is organized as follows: section 2 describes the

study area and the datasets used to train and test FarmCan. Section 3 describes FarmCan model development,

performance, and validation of model results. Major conclusions of the study are presented in Section 4.
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2 Materials and Methods

2.1 Study Area75

The CPE region covers the southern portions of the Prairie Provinces (Alberta (AB), Saskatchewan (SK),

and Manitoba (MB)). Over 80% of Canadian farms are concentrated in the CPE (Wheaton et al., 2005). This

makes the region ideal for developing and testing robust crop NI methodologies. The climate of the CPE

is predominately continental with long, cold winters, short, hot summers, and relatively low precipitation

amounts during the growing season. Average winter and summer temperatures are -10 ◦C and 15◦C, respec-80

tively (Hadwen and Schaan, 2017). A total of 4 study sites, on average 160 ha each, were selected within the

provinces of SK and MB (Fig1 and Table1). These farms were selected based on the fact that they are sites for

other soil moisture core validation networks, such as the Agriculture and Agri-Food Canada (AAFC) RISMA

network in Manitoba (Bhuiyan et al., 2018) along with the Kenaston Network in Saskatchewan for NASA

Soil Moisture Active Passive (SMAP) validation (Sadri et al., 2020; Tetlock et al., 2019). All of the 4 farms85

are rainfed and have alternating crop years (ECCC, 2013). To avoid farrow and water-logged conditions in

spring, farmers use pasture, spring wheat, shrubland, and other cover crops. Planting typically occurs in late

April and early May depending on field and weather conditions. Throughout this study, we consider a fixed

7-month window for the growing season: from April 1 to October 31.
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Saskatchewan Manitoba

S1

S2
M1

M2
Canada

Kenaston

Carman

Figure 1. Location of 4 study farms in Saskatchewan (S1 and S2) near Kenaston, and in Manitoba (M1 and M2) near
Carman (©Google Earth 2021).
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Table 1 shows that between 2015 to 2019, at least 7 different crops were planted in the 4 study farms. The90

majority of crops were canola and spring wheat, although there were also soybeans, oats, barley, peas, and

lentils. All of these crops have low to medium sensitivity to drought and their root depth at maximum growth

is anywhere from 0.6 m (lentils and soybeans) to 1.5 m (canola, barley, and spring wheat). The average crop

water needs through the total growing season is 550 mm; much less was provided by rain (Shuval and Dweik,

2007; Brouwer and Heibloem, 1986). Table 1 also shows the amount of precipitation, mostly as snow, outside95

of the growing season. Establishing soil-water reservoirs or having stubble fields (Pomeroy et al., 1990) can

improve snow contribution to SM in the future, and consequently, can be incorporated into the FarmCan

model.

In addition, comparing PET with the total annual precipitation confirms that the amount of water supplied

by precipitation is insufficient to meet optimum crop growth. The growing season aridity index (P/PET)100

of each farm is shown in the last column of Table 1. This index is used across the globe to represent the

biogeographical distribution of vegetation and to estimate crop yield (Franz et al., 2020). Based on the aridity

index, Manitoba farms have a higher expected crop yield than those in Saskatchewan. Such contribution of

melting snow toward meeting future crop water requirements is not substantial, and for that reason, is not

considered in the FarmCan model.105

2.2 Model Components

Needed Irrigation (NI) (sometimes called Irrigation Consumptive Water Use, ICU) is the volume of water

needed to compensate for the deficit between PET as a demand factor, and P (over the crop growing period)

and change in soil moisture content (∆SM) as supply factors (FAO, 2021).

NI ≈
∑

P −
∑

PET + ∆SM (1)110

Both PET and SM are key climate variables that link the water, energy, and the carbon cycle (Fisher et al.,

2017; Entekhabi et al., 1996).

The two main requirements for the datasets used to develop FarmCan are: 1) they are collected since 2015

or earlier; and 2) they are available and accessible in NRT. These two factors would allow the FarmCan

algorithm to update automatically on a daily basis and be responsive to the users’ inquiries. Note that various115
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other datasets were considered, such as topography, Leaf Area Index (LAI), and the ET product from the

NASA ECOSTRESS satellite, but they did not meet one or both requirements for FarmCan. SMAP SM

products, on the other hand, are available/accessible in NRT and provide a highly accurate descriptor of

crops such as canola stress across the CPE region (White et al., 2020). SM is a direct measure of agricultural

drought (Sadri et al., 2020; Vergopolan et al., 2021). Reduced precipitation amount affects SM available120

for crops consequently reducing crop yield, inflicting enormous economic impacts in developed countries,

and suffering by millions of people in less developed regions of the world (Sadri et al., 2018; Sheffield and

Wood, 2007; Wilhite et al., 2007; EM-DAT, 2020). RZSM becomes important during particular growth stages

(mid-season and late season) and affects crop growth at maturity stages, as well as final crop yield(Smilovic

et al., 2019). The inclusion of SM as a dynamic parameter within numerical modeling has improved forecast125

capabilities for hydrological and meteorological models(Tetlock et al., 2019; Wanders et al., 2014; Koster

et al., 2009). For FarmCan, therefore, we used SM in lieu of LAI. Other NRT variables used are PET, ET, and

P from a combination of satellite-observed and modelled variables, each of which have been identified as key

predictors of crop water stress (Pendergrass et al., 2020; Brust et al., 2021).

The list of all the datasets used in this study is summarized in table 2. All input variables were clipped to130

the CPE domain.

Table 2. Datasets and the periods used to train and run the model in this study.

Variable Dataset Source Depth
(cm) Period Gridded res.

(km)
Temporal.

res. Reference

SM SMAP Level-3 RS* 5 2015/03/31- 36 Every 3-4 (Entekhabi et al., 2014)
(SPL3SMP) 2020/12/30 days

RZSM SMAP Level-4 Assimilated 100 2015/03/31 9 Daily (Reichle et al., 2019)
(SPL4MAU) model 2020/12/30

P MSWEP V280 Assimilated 5 1979/01/01- 5 Daily (Beck et al., 2019)
in-situ and model 2020/12/30

ET MODIS RS - 2015/01/01- 0.5 Every 8-day** (Running, 2001)
2018/12/30

PET MODIS RS - 2015/01/01- 0.5 Every 8-day** (Running, 2001)
2020/12/30

* RS: Remote Sensing
**8-day composite values
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SMAP Level 3 soil moisture (0-5cm) (SPL3SMP) is a composite based on daily passive radiometer re-

trievals of global land SM in the top 5 cm of the soil that is resampled to a global, cylindrical ~36 km

Equal-Area Scalable Earth Grid, Version 2.0 (EASE-Grid 2.0). For this study, we use version 4 of SPL3SMP

retrievals from the morning overpasses, in order to minimize uncertainties and bias from the in-situ data (Al135

Bitar et al., 2017). Because the SMAP satellite was launched in 2015, SMAP data are only available from 31

March 2015, to present.

The SMAP Level 4 (SPL4SMAU) data provide continuous, daily global RZSM estimates (0-1m) by as-

similating low frequency (L-band) microwave brightness temperature observations (for which SPL3SMP is

the gridded version) into the GEOS-5 Catchment land Surface Model (CLSM) (Reichle, 2017; Reichle et al.,140

2015; Sadri et al., 2018), which is driven by surface meteorological data from the NASA Goddard Earth Ob-

servation System (GEOS) weather analysis (Brust et al., 2021; Rienecker et al., 2008). Additional corrections

are applied using gauge- and satellite-based estimates of precipitation that are downscaled to the temporal

and 9 km scale of the model using the disaggregation methods described in (Liu et al., 2011) and (Reichle

et al., 2011).145

ET and PET data are derived from MODIS, a modified MOD16A2/A3 Terra Version 6 (Running, 2001)

ET/Latent Heat Flux algorithm. MODIS ET is an 8-day composite dataset produced at 500 meters (m) pixel

resolution globally. The units are 0.1 kg/m2/8day (i.e. 0.1 mm/8day) which is the summation of total daily ET

through 8 days. 0.1 is the scale factor meaning that the data had to be corrected by multiplying them by 0.1

(Running et al., 2019). The last acquisition period of each year is a 5 or 6-day composite period, depending150

on the year. The algorithm used for the MOD16 data product collection is based on the Penman-Monteith

equation, which includes inputs of daily meteorological reanalysis data along with MODIS remotely sensed

data products such as vegetation property dynamics, albedo, and land cover. Provided in the MOD16A2 v006

product are layers for composited ET and PET along with a quality control layer from 2001-01-01 to present.

MODIS data are available from 2010 to present.155

Daily precipitation (P) from Multi-Source Weighted-Ensemble Precipitation (MSWEP) Version V220 was

used as the meteorological input for FarmCan. MSWEP is a global P product with a 3-hourly 0.1◦ resolution

covering the period 1979 to the near present (Beck et al., 2019). The product blends gauge-, satellite-, and

(re)analysis-based P estimates to improve the accuracy of the estimates globally. MSWEP Version 1 (0.25◦

spatial resolution) was released in May 2016, and since then has been applied regionally and globally for160
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modeling SM and ET (Beck et al., 2019; Martens and Coauthors, 2017), estimating plant rooting depth (Yang

et al., 2016), evaluating root-zone soil moisture patterns (Zohaib et al., 2017), evaluating climatic controls

on vegetation (Papagiannopoulou et al., 2017), and analyzing diurnal variations in rainfall (L. Chen and

Dirmeyer, 2017), and various other applications (Beck et al., 2019). MSWEP V280 is largely consistent with

MSWX-Mid and -Long forecasts. Here, we used only the MSWEP V280 product for the purpose of building165

the FarmCan algorithm, however, for the future software development application, we will use the MSWEP

V280 combined with the MSWX product (?), which provide forecasts.

For validation, we performed a spatial and temporal generalization test for understanding the ability of the

FarmCan in training and prediction on all days of crop planting in 2020 and for all of the 4 study farms using

R2, RMSE, and KGE parametric tests.170

A unique aspect of this work is that it takes advantage of specific farm characteristics that can be provided

by the farmer. These inputs are used as static data and match crop phenology, based on FAO guidelines, with

the relevant depth of soil moisture in real-time. These additional model inputs include the coordinates of the

farm, the crop type, the crop date from sowing, the total number of expected growing days, and the day of the

year the forecast is made for.175

2.3 Model Structure

Figure 2 summarizes the design of the main steps for the FarmCan algorithm. The steps include:

1. User inputs the coordinates of a farm, crop type, planting date, and total growing days.

2. The algorithm locates the farm and calculates the dates of each of the 4 phenological stages of crop

growth.180

3. Gridded RS Data (i.e. P, SM, RZSM, ET, PET, P) are clipped from the main datasets within calculated

radii from the farm center in a way that each radius for each variable includes the closest-distance

gridded data surrounding the farm. After averaging the data, each farm has one time series for each

variable. Data are further processed for the 8-day composite or change values and are saved into the

system. This can accelerate the process of calculations for the same farm after the first round of data185

retrievals and processing.
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4. Using RF, we fill in the missing values of the ∆RZSM and ∆SM so their data can be extended to 2010.

By extending the soil moisture variable to a longer period, we make it consistent with the ET and PET

record length which also provides a better prediction quality of FarmCan.

5. Composite 8-day P is used as the predictor and since ∆RZSM has the highest correlation with 8-day P,190

it is the first predictant used with 8-day P in RF to forecast up to two weeks of ∆RZSM. The predicted

∆RZSM will then be jointly used with the 8-day P as predictors in the next step to predict ∆SM. The

process repeats and in every step, a new variable first is predicted and then used as a predictor.

6. Using equation 1, 8-day NI is calculated. We distributed the composite 8-day NI for the 8 past days

by calculating adjusted daily weights (wadj) and deficit precipitation Pdeficit in a way that days with195

more P get less portion of the NI and vice versa. Pdeficit is the daily percentage of missing rain from

the 8-day P. For example, a day i with no precipitation has Pdeficit=100% of the 8-day P and a day

with 45% of 8-day P, has a Pdeficit=55%. Daily wadj (in %) can then be calculated as:

wi
adj =

(800−Σ8
i=1P

i
deficit)

8
+ P i

deficit (2)

where 800 is the total deficit percentage in the absence of no rain in 8-days (
∑i

wadj
= 800%), wadj is200

then multiplied by the average daily NI to find the daily supplementary water amount. The sum of daily

average NI should be the equivalent to 8-day NI.

2.4 Random Forest (RF) algorithm

RF was selected based on its promising capabilities in function estimation and high accuracy in nonparametric

regression in geospatial hydroclimatic and spaceborne data, even in the presence of collinearity (Clewley205

et al., 2017; Vergopolan et al., 2021). RF is a method for ML and is used for classification or regression

problems. The RF algorithm works by aggregating the predictions made by multiple decision trees of varying

subsets. Every decision tree in the forest is trained on a subset of the dataset called the bagged or bootstrapped

dataset. Bagged sampling is a way of de-correlating the trees by showing them different training sets (Sonth

et al., 2020). This also decreases the variance of the model without increasing the bias which ultimately leads210
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Farm coordinates

Crop type

Inputs (from farmer)

3-week timeseries 
of P, ET, and PET

Data Acquisition

RF to predict future 
ΔSM, ΔRZSM, ET, and 

PET

Processing Outputs

Theoretical daily 
breakdown of NI

Filtered data (SM, 
RZSM, ET, PET, and P) 
from global data for 

the farm with a 
reasonable radius 

(radius is calculated 
based on farm's size 
and data resolution)

4 stages of crop 
growth dates

Planting date

Total growing days

Farm record (ΔSM, 
ΔRZSM, 8-day ET, 8-day 

PET, and 8-day P) 
[2010-2020]

8-day P, ΔSM, and 
ΔRZSM

ΔSM and ΔRZSM 
conversion to depth 

based on the date. For 
past years all depth is 
500 mm. Observed NI 
with and without ΔSM

Calculate NI

Show 4 stages of 
crop growth dates

Locate farm

Figure 2. A chart description of the structure of FarmCan.

to better model performance. This means that while the predictions of a single tree are highly sensitive to

noise in its training set, the average of many trees is not, as long as the trees are not correlated.

If RF is used for classification and is presented with a new sample, the final prediction is made by taking

the majority of the predictions made by each individual decision tree in the forest. If RF is used for regression

and is presented with a new sample, the final prediction is made by taking the average of the predictions made215

by the individual decision trees in the forest. For example, if a training set X = x1, ...xn (n being the number

of training samples) has responses Y = y1, ...yn, the algorithm selects random samples with replacement of

the training set for B times. For b = 1, ...B training samples from X , Y , called Xb,Yb, produce a regression

tree fb. After training, predictions for unseen samples x′ can be made by averaging the predictions from all

the individual regression trees.220

f̂ =
1
B

B∑

b=1

fb(x′) (3)
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FarmCan model uses RF in two stages: 1) to fill in the gaps of missing ∆SM and ∆RZSM based on P

from 2010 to 2020; and 2) to predict ∆RZSM, ∆SM, 8-day ET, and 8-day PET up to 14 days in advance.

The datasets from 2010 to 2020 were divided into training and testing in a 0.7 to 0.3 ratio. The first round of

running RF uses 500 decision trees. The optimum number of trees is the one that minimizes the MSE between225

the training and testing datasets. The second round of running RF, involves dictating the optimum number of

trees.

2.5 Relative importance of FarmCan inputs to P

At its core, FarmCan is based on the P as it is the only product with an available predicted value. Other

variables (ET, PET, SM, and RZSM) are used first as predictants and then as predictors to provide the model230

with antecedent information to ultimately produce NI forecasts. In order to decide on the order of variables

being used with P in RF, we determined the relative importance of the other 4 variables in relation to P. We

did so by running a two-by-two Pearson correlation analysis of variables (Figure 3) with 99% significance

level for the 4 selected farms and for the 7-month periods of growing seasons from 2015 to 2020 based on

8-day temporal resolution. The correlation plots in Figure 3 are color-coded to show the significance of the235

correlation level. The analysis for all 4 farms’ cumulative 8-day P showed similar patterns. ∆RZSM and

∆SM, respectively showed the highest correlation with 8-day P. The 8-day P is less correlated with the 8-day

ET and PET. Here we do not see significant feedback from ET to SM and vice versa. This can be due to the

fact that the relationship between SM and ET, in terms of feedback, mostly depends on the climate of the

location. During the growing season, the condition in CPE is either too wet, which makes the total energy for240

ET independent of soil moisture; or too dry, which makes ET show little impact on fluxes because there is

little or no moisture available (I.Seneviratne et al., 2010).

Generally, a significant impact of SM on ET should be more noticeable in a transitional regime, where soil

water supply is available and sufficient (Yang et al., 2020; Running et al., 2019; I.Seneviratne et al., 2010;

Famiglietti and Wood, 1994).245

∆ SM or ∆ RZSM volumetric values in the equation 1 were converted into their equivalent depth by

multiplying them by the equivalent depth of the soil (mm) (Allen et al., 1998a, b). We make the assumption

that soil moisture is distributed evenly across the depth. For example, a 0.2m3/m3 of the surface SM (in

the first 50 mm of the topsoil) is equivalent to: 0.2× 50 = 10mm/day, whereas the same volumetric soil

13

https://doi.org/10.5194/hess-2022-96
Preprint. Discussion started: 31 March 2022
c© Author(s) 2022. CC BY 4.0 License.



moisture for root zone (with consistent depth of 1000 mm) is equivalent to 0.5× 1000 = 200mm/day. That250

is, hypothetically, 200 mm of water can be drawn from 1 m deep soil. In our algorithm, the choice of using

50 mm or 1000 mm depth depends on the crop’s development stage. When the crop is in stages 1 or 2, the

algorithm uses the first 50 mm depth, and when the crop is in stage 3 or 4, the 1000 mm depth is used.
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Figure 3. Relationship between ET, PET, P, SM and SM changes for farms S1, S2, M1, and M2.
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3 Results

3.1 Climatology comparison of hydrological variables255

Figure 4 shows the climatology of the variables used in this study at 20th, 50th, and 80th percentiles from 2015

to 2020 during the growing season (April to October). From Figure 4, growing season precipitation ranges

from 400-1200 mm. This amount of rain is typical of sub-humid and semi-arid climates (Allen et al., 1998a),

i.e., that amount of rainfall is often not sufficient to satisfy the water needs of crops. With the exception of

portions of the province of AB, the majority of CPE farming relies on rainfall and therefore, is vulnerable to260

agricultural drought (Maybank et al., 1995; McGinn and Shepherd, 2003; White et al., 2020). Consequently,

the yields in the CPE are expected to be less than optimal. Comparing precipitation with the ET and PET map

shows that, region-wide, crops do not receive the water needed from rain to reach an optimal yield.

Most of MB and northern AB receive the highest amount of precipitation, so their need for supplementary

water to cover the water needs of the various crops is less relative to the CPE. Surface soil moisture is265

generally lower than RZSM across all three provinces. This might be due to the soil type (brown-black

chernozemic clay) that holds the water for longer times. Most of Saskatchewan is identified by the lowest

amount of soil moisture, precipitation, and ET throughout the growing season.

3.2 The feedback from a supply-demand mechanism

To understand the relationship between water supply and demand in the CPE we compared the variability270

among 8-day ET, 8-day PET, 8-day P, ∆SM, and ∆RZSM and showed the results in Figure 5. In this experi-

ment, we also analyzed each province separately to see if there are significant differences among the variables

of each province. A color gradient shows the changes of a 3rd variable which is the demand variable. For each

province, the two left plots show the linear relationship between 8-day P and ∆ SM, however, one changes

color with 8-day PET and the other with 8-day ET. While the organization of the points remains the same in275

the two left plots the 8-day PET is constantly higher than the 8-day ET. The same is true for the two right

plots, except that the supply changes indicate 8-day P and ∆ RZSM. This confirms that at the CPE a higher

than supplied atmospheric demand exists throughout the growing season. For all three provinces, there is

a stronger linear relationship between 8-day P and ∆ RZSM than between 8-day P and ∆ SM, especially
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Figure 4. Spatial patterns of climatology. Data was collected from 2015-2020 for the agricultural months (Apr-Oct).

for Manitoba. Alberta has the weakest linear relationship between the supply variables perhaps due to be-280

ing heavily affected by irrigation. Both Saskatchewan and Alberta have more 8-day periods when the 8-day

PET is above 50 mm even though the 8-day P and the ∆ RZSM are at their maximum values. This can be

due to the fact that during the growing season, higher amounts of rainfall occur, or are followed by warmer

days with little cloud coverage. For 8-day periods with less P, the atmospheric demand can be low or high

but generally, higher 8-day PET corresponds with a decrease in RZSM and SM (negative ∆ values). Due to285
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relatively negligible differences among the patterns observed in the three provinces in the scope of the study,

we do not further analyze the provinces separately.
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Figure 5. Scatter plots of changes of ∆ SM and 8-day P (supply) with 8-day ET and 8-day PET (demand). Each row
shows one province. Data was collected from 2015-2020 for the agricultural year (months of Apr-Oct).
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3.3 Historic data and calibration period

Figure 6 is the variability plot of farm S2 during the 7-month agricultural period (shown as pink background)

during 2015-2020. A negative ∆RZSM or ∆ SM means a decrease in SM or RZSM, respectively, over the290

past 8 days and a positive ∆RZSM or ∆SM means an increase in SM or RZSM over the past 8 days. Changes

of ∆SM with time are more drastic than those for ∆RZSM. Furthermore, the 8-day PET is consistently higher

than 8-day ET suggesting, once more, that crops in farm S2 receive less than the optimal amount of their water

demand throughout the year. We plotted variability plots for the other three farms (not shown here) and the

patterns were consistent with that of farm S2.295
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3.4 FarmCan prediction process

To illustrate the FarmCan real-time forecast process, we describe an example where 2020/07/02 is “today’s

date”, the crop type is barley, the planting date is 2020/04/01, and the total growing season during is 150 days.

The past dates are also used for validation purposes. The FarmCan algorithm takes these inputs and uses FAO

guidelines to provide the expected dates of stages 1 to 4, as shown in Table 3.300

Stage Stage ending date
1: initial 2020/04/15
2: crop development 2020/05/14
3: mid season 2020/07/17
4: late season 2020/08/25

Table 3. Key dates relevant to barley planted on 2020/04/01. From FAO guidelines (Allen et al., 1998a).

For the assumed date, the available and observed variables are plotted in Figure 7(a). The total period

shown in the plot is 21 days from 2020/06/22 to 2020/07/12. The green bars are the daily precipitation from

MSWEP including the forecast values. The hindcast NI, shown by the grey bars, is distributed by calculation

of wadju. Because 2020/07/02 corresponds to the 3rd stage of crop development, FarmCan uses ∆RZSM

data instead of ∆SM for training and predictions. If today’s date is in the middle of the 8-day observation, it305

is unavoidable that a few days before today’s data do not have updated 8-day ET and 8-day PET. So after the

RF predicts the 8-day ET and 8-day PET, the algorithm fills in the few days antecedent to today’s date. NI (in

mm) is calculated for the remaining number of days (here, 10 days) of the next two weeks shown in Figure

7(b). Forecast results for the rest of the study farms are shown in Figure 8.
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0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

D
ai

ly
 s

oi
l m

oi
st

ur
e 

[m
3

m
3 ]

22
 J

un
 2

0

23
 J

un
 2

0

24
 J

un
 2

0

25
 J

un
 2

0

26
 J

un
 2

0

27
 J

un
 2

0

28
 J

un
 2

0

29
 J

un
 2

0

30
 J

un
 2

0

01
 J

ul
 2

0

02
 J

ul
 2

0

03
 J

ul
 2

0

04
 J

ul
 2

0

05
 J

ul
 2

0

06
 J

ul
 2

0

07
 J

ul
 2

0

08
 J

ul
 2

0

09
 J

ul
 2

0

10
 J

ul
 2

0

11
 J

ul
 2

0

12
 J

ul
 2

0

20/06/22

20/06/23

20/06/24

20/06/25

20/06/26

20/06/27

20/06/28

20/06/29

20/06/30

20/07/01

20/07/02

20/07/03

20/07/04

20/07/05

20/07/06

20/07/07

20/07/08

20/07/09

20/07/10

20/07/11

20/07/12

P
 a

nd
 N

I [
m

m
/d

]
60

50
40

30
20

10
0

0
2

4
6

8
10

E
T 

an
d 

P
E

T 
[m

m
/d

ay
]

farm S2, Prediction for the next 10 days: totET0=66.51[mm], totET=31.93[mm],totP=30.46[mm], 
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(b) Farm S2, after prediction using RF.
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farm S2, Prediction for the next 10 days: totET0=66.51[mm], totET=31.93[mm],totP=30.46[mm], 
needed irrigation=71.24 [mm]
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Figure 7. Farm S2 before and after prediction relative to the date 2020/07/02. Over the next 10 days the total predicted
PET = 66.51 mm, total predicted ET = 31.93 mm, total P = 30.46 mm and NI = 71.24 mm.
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farm S1, Prediction for the next 10 days: totET0=62.48[mm], totET=32.69[mm],totP=36.45[mm], 
needed irrigation=52.1 [mm]
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(a) Farm S1 predictions over the next 10 days: total predicted PET = 62.48 mm, total predicted ET = 32.69 mm, total P = 36.45 mm
and NI = 52 mm.
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farm M1, Prediction for the next 10 days: totET0=69.63[mm], totET=37.53[mm],totP=18.36[mm], 
needed irrigation=41.29 [mm]
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(b) Farm M1 predictions over the next 10 days: total predicted PET = 69.63 mm, total predicted ET = 37.53 mm, total P = 18.36 mm
and NI = 41.3 mm.
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farm M2, Prediction for the next 10 days: totET0=76.23[mm], totET=43.46[mm],totP=17.25[mm], 
needed irrigation=43 [mm]
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(c) Farm M2 predictions over the next 10 days: total predicted PET = 76.23 mm, total predicted ET = 4.46 mm, total P = 17.2 mm
and NI = 43 mm.
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farm S2, Prediction for the next 10 days: totET0=66.51[mm], totET=31.93[mm],totP=30.46[mm], 
needed irrigation=71.24 [mm]
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Figure 8. (a) Example of predictions from farms S1, M1, and M2 for 2020/07/02 as “today’s date”.
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3.5 Tool Validation310

Figure 9 shows the R2 and RMSE values between the testing and predicted values of NI and for all the study

farms. The ability of the FarmCan model to generalize the spatial regions (farms) was assessed by compar-

ing these values. Spatially and across all of the 4 farms of study, FarmCan showed the highest correlations

between observed and predicted values of 8-day ET, 8-day PET, and 8-day NI, and the lowest RMSE for

∆RZSM and ∆SM values. FarmCan forecast performance in the value estimation of 8-day NI was slightly315

lower than the observed values. The high R2 and high RMSE for 8-day NI values suggest that the amount of

NI might be under-predicted in FarmCan although the temporal patterns of water deficiency are well captured

by the model. To confirm this result further, Table 4 shows the KGE values of 8-day ET, 8-day PET, and 8-day

NI for the four study farms.

Table 4. KGE values of different covariates for different farms.

Farm ET PET NI
S1 0.70 0.52 0.43
S2 0.78 0.87 0.43
M1 0.76 0.83 0.45
M2 0.76 0.83 0.53

The KGE of soil moisture values showed that the FarmCan model was not well-trained for ∆SM and320

∆RZSM. This can be improved in the future as more data are gathered. Further studies on the effect of soil

moisture inputs on the FarmCan can help to improve the model. Generally, there is inherent uncertainty in

FarmCan forecasts since we cannot know the true value of the water deficiency and other controlling factors

that maximize the crop yield. Despite this shortcoming, FarmCan showed an effective prediction capability

of NI and improvement of our understanding of NI and some of its main controlling factors in the CPE.325
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Figure 9. 8-day correlation and RMSE plot for agricultural period of Farms S1, S2, M1, and M2 [2020].
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4 Conclusions

This study evaluated the use and benefits of NRT remotely sensed datasets and ML for the CPE region.

Crop water deficit data, P, and SM can be available to the farmer through in-situ measurements and weather

stations, but gathering information and analytics for future planning from these data remains a challenge.

We demonstrated the potential of managing sustainable productivity of land by timing and tuning of water330

available to the crop through the design of FarmCan, a parsimonious supply-demand crop water monitor

and forecasting mechanism. The methodology uses NASA’s NRT remote sensing data representing both

atmospheric and soil properties coupled with the information from the farmer, water balance, and ML to

generate crop NI up to 14 days in advance as well as the historic graphs of data for the farm. We succeeded

to quantify the relative importance of both ET and SM on understanding the predictive value for NI in the335

CPE. We found that, compared to the daily data, 8-day ET, 8-day PET, 8-day P, ∆SM, and ∆RZSM are

more useful calculators for predicting NI. The phenological stage of the crop had a determinant factor in

using ∆SM or ∆RZSM in the model as well as converting the volumetric values of SM to depth. ∆RZSM

and ∆SM are the two variables that showed a strong correlation with 8-day P. The 8-day ET and 8-day PET

showed to be more effective predictors of NI and FarmCan forecasting ability. We saw very little impact on340

fluxes between ET and SM in the CPE during the agricultural year. We speculate that is due to the cropping

season climate at the CPE that is too wet at the bagging and too dry in the middle to the end of the agricultural

season. In other transitional climates, we expect to see that the total energy of ET is more dependent on SM.

More studies are needed to understand such feedback in the CPE and elsewhere and how that would affect

the development of FarmCan in the future. We also showed that in the CPE optimum crop production in345

the dry season should only be possible with an extra supply of water, while crop production in the rainy

season may be possible but unreliable. The future version of this product could use weather forecast data for

driving this model such that the predicted NI is based on forecast rather than climatology. Although FarmCan

presented the potential benefits of saving water for farmers while calculating the NI for limiting crop water

stress, decisions about how much water should be supplied will need to be made within a larger community350

dialogue within management goals.
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FarmCan can become a promising tool to help users focus their investment decisions during prolonged pe-

riods of drought or waterlogged conditions, schedule cropping and fertilizer applications, and address policy

issues.

Future developments will focus on the role of the water retention capacity of the soil and crop type as two355

important factors potentially affecting NI measurements. Plants in sandy soils, for example, may undergo

water stress quickly under water-deficient conditions, whereas plants in deep soil of fine texture may have

ample time to adjust to low moisture conditions and may remain unaffected by any water deficiencies. Cotton

shows complex responses to water stress because of its deep root system and it has the ability to maintain

low leaf water potential. Future developments also will focus on addressing how farmers can access FarmCan360

data, how using supplementary irrigation versus rain-only farming can help farm cost/benefit management,

and how the NI predictions and management advisory actually aid in better on-farm water management and

crop yield. Coupling fertilization timing and amount is another direction that can benefit farmers, especially in

the context of food and water security. As part of this effort, we will be developing an online tool to make the

information available and responsive to farmers’ inquiries. In order to conduct yield and cost-benefit analysis365

from using supplementary irrigation versus rain-only farming, future work will focus on receiving feedback

data from the farm managers.

Despite some shortcomings, FarmCan is a step toward providing knowledge that can assist farm managers

to make better decisions about excess water needs, drainage requirements, and even timing and amount of

fertilizer consumption.370
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