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Abstract. Essentially all hydrogeological processes are strongly influenced by the subsurface spatial heterogeneity and the 

temporal variation of environmental conditions, hydraulic properties, and solute concentrations. This spatial and temporal 

variability generally leads to effective behaviors and emerging phenomena that cannot be predicted from conventional 

approaches based on homogeneous assumptions and models. However, it is not always clear when, why, how and at what 40 

scale the 4D (3D + time) nature of the subsurface needs to be considered in hydrogeological monitoring, modelling and 

applicationsneeds to be considered when studying hydrogeological processes in order to employ adequate mechanistic models 

or perform upscaling. The scale at which a hydrogeological system should be characterized in terms of its spatial heterogeneity 

and temporal dynamics depends on the studied process (es); and it is not always necessary to consider the full complexity. In 

this paper, we identify discuss the interest and potential for the monitoring and characterization of spatial and temporal 45 

variability, including 4D imaging, in a series of hydrogeological processes  for which an approach coupling the monitoring of 

spatial and temporal variability, including 4D imaging, is often necessaryrecommended: (1) groundwater fluxes,  that control 

(2) solute transport , mixing and reaction processes, (3) vadose zone dynamics, and (4) surface-subsurface water interactions 

occurring at the interface between different subsurface compartments . We first identify the main challenges related to the 

coupling of spatial and temporal fluctuations for these processes. WThen, we then highlight some recent innovations that have 50 

led to significant breakthroughs in high resolution space-time imaging and modelling the characterization, monitoring and 

modelling of these is domain. We finally discuss how spatial and temporal fluctuations . We finally propose a classification of 

processes and applications at different scales according to their need and potential for high-resolution space-time imaging . 

affect our ability to accurately model them and predict their behavior. We thus advocate a more systematic characterization of 

the dynamic and three-dimensional nature of the subsurface for a series of critical subsurface processes and emerging  55 

applications., and This calls for the validation of 4D imaging techniques at highly instrumented observatories, and the the 

harmonization of of open databases to share store hydrogeological data sets in their four-dimensional components , for 

answering emerging scientific questions and addressing key societal issues. 

 

Short summary. Although invisible, groundwater plays an essential role for the society as a source of drinking water or for 60 

ecosystems by providing baseflow to rivers, but is also facing important challenges in term of contaminations. Characterizing  

groundwater reservoirs with their spatial heterogeneity and their temporal evolution is therefore crucial for their sustainable 

management. In this paper, we review some important challenges and recent innovations in imaging and modelling  the 

groundwater reservoirs4D nature of the hydrogeological systems .   
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1 Introduction  65 

While the surface components of continental water, such as streams, lakes and glaciers, are a very familiar part of our 

landscape, the vast majority of continental water resources resides and flows in the subsurface, and is thus generally 

inaccessible to direct observation (McDonnell, 2017). Growing societal needs imply that subsurface environments, which form 

part of the critical zone of the Earth (Brantley et al., 2007; Fan et al., 2019), are increasingly subject to pressure and multipl e 

(possibly competing) uses for water resources such as groundwater abstraction, artificial recharge and storage (Dillon et al. , 70 

2019; Russo and Lall, 2017; Aeschbach-Hertig and Gleeson, 2012), nuclear waste storage (e.g., Ewing, 2015, Butler, 2010), 

geothermal energy (Rivera et al., 2017; Fleuchaus et al., 2018; Lu, 2018), oil and gas extraction (e.g., Wang et al., 2014) a nd 

climate change mitigation such as energy storage (Arbabzadeh et al., 2019) and CO2 sequestration (Hamza et al., 2021, Kumar 

et al., 2020) while being threatened by anthropogenic contamination (e.g., Riedel et al., 2020). As a result, subsurface systems 

are experiencing profound modifications that affect their basic environmental functions and ecosystem services (Erostate et 75 

al., 2020; Fattorini et al., 2020; Luijendijk et al., 2020). These modifications include, both at the local and the catchment  scales, 

water level depletion (Jasechko et al., 2021), which affects baseflow of many rivers and associated ecosystem services (Conant 

et al., 2019), a growing input of chemicals and pathogens, which threaten water quality (e.g., Szymczycha et al., 2020), 

seawater intrusion (Werner et al., 2013) and soil salinization (Litalien and Zeeb, 2020; Singh, 2021) threatening soil- and water 

resources as well as food security in many arid and semi-arid regions of the world, and massive fluid injections at depth related 80 

to CO2 sequestration or gas extraction, which may lead to increased seismicity (Rathnaweera et al., 2020; Schultz et al., 2020;  

Keranen and Weingarten, 2018). 

The last decade has seen great advances in stochastic subsurface hydrology (e.g., Scheidt et al., 2018), microscale imaging  

(e.g., Gouze et al. 2008, Blunt et al. 2013, Heyman et al. 2020), and geophysical characterization (e.g., Binley at al., 2015;  

Singha et al., 2015). Although geological heterogeneity has been long recognized, these advances have made it even  more 85 

clear that the subsurface is highly heterogeneous at multiple scales  and that this heterogeneity substantially controls many 

flow, transport and biochemical processes (e.g., Hartmann et al., 2017; Comte et al., 2019 Zamrsky et al., 2020). Recent efforts 

have led to an improved ability for monitoring surface-water dynamics or characterizing the state of aquatic systems, but this 

has not been matched by a significant increase in our ability to quantify the dynamics of fluxes and processes in the subsurface 

(e.g., Schilling et al., 2018). A wide gap between common modelling approaches (e.g., homogeneous or multi-Gaussian  90 

representations of parameters, steady state or transient simulations, upscaling approaches) and field reality  prevails. On the 

one hand, data sets often have a very limited 3D spatial extent and are characterized by a low sampling density, preventing a 

full description of the complex nature of the aquifer (e.g., Xu and Valocchi, 2015). On the other hand, studies concerning the 

temporal dynamics of hydrological processes and structures are generally based on point data typically acquired in wells  in 

hydrogeology, potentially missing the underlying spatial variability (e.g., Johnson et al., 2012).  95 

The persistent observation gap between data points results in a lack of knowledge and contributes significantly to the current 

lack of understanding of subsurface processes and our (in)ability to accurately predict the evolution of subsurface systems. 
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 This deficiency in the characterization of aquiferIt limits our ability to answer critical scientific questions of significant societal 

and industrial impacts such as . For example, the magnitude, spatial distribution and temporal dynamics of fluxes between 

subsurface and surface compartments of the Earth are relevant for the management of water quantity, quality and ecology at 100 

the interface between the surface and the subsurface (Fleckenstein et al., 2006, 2010; Brunner et al., 2017; Conant et al., 2019). 

), the fate of contaminant Similarly, the dispersion and residence time distribution of dissolved chemical species in 

heterogeneous porous and fractured media, as well as the coupling between fluid mixing and reactions and the localization of 

hotspots of subsurface biogeochemical reactions , are key aspects to study the fate of contaminationsthrough mixing, reactions 

and the development of biogeochemical hotspots  (e.g., Wallis et al., 2020; Pannecoucke et al., 2020; Robinson and 105 

Hasenmueller, 2017; Bailey, 2017), or understand the contribution of subsurface processes to global cycles of carbon (Zhang 

and Planavsky, 2020; Liu et al., 2014) and nitrogen (Marzadi et al., 2012) (Figure 1). The above-mentioned processes are both 

highly dynamical and strongly influenced by small-scale and across-scale heterogeneity (e.g., Salehikhoo et al., 2013, Dentz 

et al., 2011). In particular, the location and reactivity of biogeochemical hot spots (e.g. McClain et al. 2003), which are thought 

to have a disproportionate influence on macroscale critical zone processes relative to their size, may be largely influence b y 110 

spatial heterogeneity coupled to temporal fluctuations (e.g., Rolle and Le Borgne 2019). The potential of a characterization for 

coupled spatio-temporal monitoring of parameters and state variables and their temporal evolution, including 4D imaging, to 

understand these processes remains largely unexplored. This temporal component should not only include the evolution of 

state variables under transient conditions, but also the evolution of system properties because of coupled processes such as 

hydromechanical effects impacting the pore space or fracture apertures (Davy et al., 2018), colmatation clogging and erosion 115 

processes in streambeds (Partington et al., 2017) or reactive transport inducing changes in the pore space (Izumoto et al., 2020).  

A grand challenge of subsurface imaging methods for dynamic hydrogeological processes (Figure 1) is to deal with systems 

characterized by pronounced structure and process heterogeneity, including preferential flow paths, evolving properties  or 

geometry, unsaturated flow processes, fluctuating redox conditions, and multifunctional microbial communities. Recent 

breakthroughs in hydrogeophysical imaging techniques (e.g., Binley et al., 2015; Singha et al., 2015) and the emergence of 120 

interdisciplinary approaches combining new sensors such as fiber optics (Bense et al., 2016; Zhan, 2020), new experimental 

methodologies like ambient seismic noise correlation (Garambois et al., 2019) and coupled modelling techniques (e.g., Hinnell  

et al., 2010; Jardani et al., 2013; Linde and Doetsch, 2016) may profoundly change our vision and representation of the 

dynamics of processes that take place in these environments (Binley et al., 2015; St. Clair et al., 2015). However, monitoring  

and characterizing dynamical fluxes, transport, reactions and hydromechanical processes that evolve spatially in 3D with 125 

geophysical imaging is still in its infancy in environmental sciences  and engineering. The efficiency of those new methods and 

the full complexity that emerges from their coupling can only be revealed through in-situ exploration with interdisciplinary  

approaches. In that sense, field observatories and case studies constitute a key component of the current research effort (e.g., 

Folch et al., 2020, Palacios et al., 2020, Table 2.B.6). 

Although heterogeneity influences all the processes occurring in the subsurface, an exhaustive characterization of the 130 

subsurface is not always necessary and strongly depends on the objective of the studies. Large -scale water balance approaches, 



5 

 

average advection velocity or aquifer recharge through the vadose zone might be approximated with scarce hydrogeological 

data. However, the integration of recent advances in imagining the spatial and temporal variability in hydrological model is 

still in its early stage and has a huge potential to improve the mechanistic understanding of hydrological processes, the 

upscaling of models and the assessment of model simplifications. The objective of this opinion review paper is, therefore, to 135 

identify and discuss when, why, and for which processes and applications the characterization of dynamic hydrogeological 

processes is crucial. Although heterogeneity influences all the processes occurring in the subsurface, an exhaustive 

characterization of the subsurface is not always necessary and strongly depends on the objective of the studies , the scale and 

the available budget. We identify three categories of processes according to their need for coupled temporal and spatial 

monitoring, including 4D imaging (see Table 1 and Figure 8): : A. Processes that require high-resolution space-time imaging  140 

to develop accurate upscaled models  applicable to less instrumented sites  the mechanistic understanding of hydrological 

processes for which the integration of recent advances in imagining the spatial and temporal variability brings a  potential for 

improvement, B. applications for which spatial and temporal monitoring is critical and desirable at the local scale, such as the 

monitoring of contamination, the assessment of soil moisture for precision agriculture, or induced seismicity, C. applications 

for which limited hydrogeological data are often sufficient for a first approximation such as  large-scale water balance, average 145 

transit time or aquifer recharge. SMore specifically, We we discuss the potential and value of exploring and monitoring  

dynamicshigh resolution space-time imaging in hydrogeology, including 4D imaging, for understanding monitoring and 

modelling groundwater fluxes, transport, mixing and reactions processes, soil moisture dynamics in the vadose zone and 

surface-subsurface water interactions (Figure 1). Based on a non-exhaustive overview of recent advances, we identify key 

scientific challenges and their relation to the heterogeneous and dynamic nature of the subsurface for each of the above-150 

mentioned processes . We then highlight some recent breakthroughs which allowed to advance our understanding of these 

processes. We also discuss the feasibility, advances and challenges of numerical modelling of the identified processes in terms 

of 4D complexity. We finally highlight as well as the important central role of instrumented field observatories and 

corresponding case studies to tackle the scientific challenges and evaluate the performance and scope of recent innovations . 

2 Key processes in hydrogeology and their 4D nature 155 

In this section, we highlight hydrogeological processes at different scales for which the considerations of coupled spatial 

heterogeneity and temporal dynamics are important, present the main challenges related to the representation and inference of  

spatial and temporal variability and point towards a few recent innovations that could help to address these challenges in the 

future (Figure 1). 

2.1 Groundwater fluxes 160 

Inferring and modeling groundwater Darcy fluxes and fluid velocities is crucial in most hydrogeological processes and related  

applications, both for quantitative water quantity (e.g., water storage, groundwater discharge, residence transit time 
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distribution) and qualitative quality (e.g., contaminant transport, reaction and mixing processes , see also section 2.3) purposes 

(Figure 1). Pore-scale advection flow, along with the other transport processes and the influence of the macro-scale geological 

heterogeneity, controls propagation and spreading of natural or contaminant solutes, from fast transfers to late time tailing s 165 

(e.g. Dentz et al. 2011; Hoffmann et al., 2020; Table 2.E.2; Kang et al., 2015). In the context of risk assessment, measuring 

natural solutes or contaminant concentrations may be of limited value if not supported by quantitative flux rates allowing to  

estimate solute mass transfers (Brouyère et al., 2008). Groundwater fluxes drive mixing  processes prevailing at aquifer 

interfaces such as subsurface-surface interactions in hyporheic zones  (see also section 2.4) or transition zones along coastal 

saltwater intrusion (e.g. Werner et al. 2013, Hester et al. 2017, Nogueira et al., 2019). They also influence hydrogeochemical 170 

and biogeochemical reactions by transporting reactants, such as nutrients, to these interfaces. They impact the feasibility o f 

storage applications including the injection and recovery of heat or CO2 in the subsurface (Niemi et al. 2017, Fleuchaus et al. 

2018) and control residence transit times distributions across watersheds (Goderniaux et al., 2013). 

The range of variation of expected groundwater fluxes may be very large, making them difficult to image, with their spatial 

and temporal variation. For decades, the basic approach consisted in first measuring the hydraulic conductivity and then predict 175 

fluxes, based on the hydraulic gradient. This approach however presents the serious disadvantage to av erage local variations 

and offers a limited understanding of the groundwater flux spatial distribution in heterogeneous media (Palmer, 1993; Brouyère 

et al., 2008; Jamin et al., 2015). In addition, many subsurface processes are time-dependent and exhibit an inherent periodicity. 

If deep systems are not expected to vary rapidly, shallow aquifers can exhibit fluctuations ranging from lower (e.g. multi -

annual or seasonal recharge fluctuations) to higher frequencies (e.g. tide dependent saltwater intrusion, aqu ifer exploitation or 180 

artificial storage applications , reaction to rainfall). The accurate quantification of groundwater flux rates including their spatial 

distribution and transient conditions is, therefore, needed to understand and manage these processes.  This should be performed 

at the relevant scale(s), with the appropriate resolution, in adequation with the objectives of the study and the geological context 

(Jimenez-Martinez et al., 2013). 

Recent research efforts have focused on the development of direct or indirect methods allowing for a more accurate assessment 185 

of groundwater fluxes, including their amplitude, spatial distribution and temporal dynamics, with application s in highly 

heterogeneous media. As groundwater fluxes influence many processes, Specific approaches, based on thermal methods for 

instance, have been developed for certain contexts, such as surface-subsurface interactions (section 2.4), while approaches 

based on solute transport (e.g., tracer experiments), are allowing only indirect quantification of the fluxes (Popp et al., 2021, 

see section 2.2)some approaches , discussed in the next sections, have been developed for specific contexts, such as surface-190 

subsurface interactions or solute transport, allowing indirect quantification of the fluxes, for example through tracer 

experiments (Popp et al., 2021). Some oOther techniques are more general and available to directly and accurately measure 

local groundwater fluxes (e.g., Jamin et al., 2015; Le Borgne et al., 2006 ; Brouyère et al., 2008 ; Burnett et al., 2006). For 

instance, point measurements of darcy Darcy fluxes are classically done from dilution methods (Drost et al., 1968; Klotz et 

al., 1980; Pitrak et al., 2007; Novakowski et al., 2006; Jamin et al., 2015). Well-points velocity probes have been also recently 195 

developed (Labaky et al., 2009; Devlin, 2020) to provide promising and complementary velocity measurements although 
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ranges of measurements are still limited. A key aspect of some recent approaches is to allow the monitoring of groundwater 

fluxes dynamics (Jamin and Brouyère, 2018).  

Important challenges, also depending on the media type, however, remain. The number of available methods for direct 

measurement is limited and most methods are suited for porous media rather than fractured aquifers where fluxes are expected 200 

to show stronger spatial variations  (Pouladi et al., 2021). Current methods are still deficient in providing full 3D high-resolution 

3D datasets as they must be performed in wells. Current geophysical imaging techniques are still unable to directly estimate 

fluxes, as they are mostly based on the contrast in water properties induced through tracers. Nevertheless, very promising  

results were obtained through the combination combiningof ambient noise surface wave tomography (ANSWT), and self-

potential (SP) measurements  to image the complex hydrogeology hydrogeological structure and associated groundwater flow 205 

paths at a coastal site (Grobbe et al., 2021). The joint interpretation of the SP and seismic data permits to show that groundwater 

flow occurs in the identified paleo-channels at the erosional surface of the basaltic bedrock (Grobbe et al., 2021). Despite these 

improvements, monitoring the dynamics of fluxes remains resource expensive. Accurate measurements, which often imply  

complex experimental needs and designs, must be repeated regularly, with an adequate time resolution, for example to 

understanding cyclic process evolution. Passive flux methods (e.g., Hatfield et al., 2004) integrate flux measurements over 210 

specific periods, providing mean representative value while avoiding repetitive field operations, but do not capture the 

dynamics. 

Fiber Optic Distributed Temperature Sensing (DTS) allows for the measurement of temperature with high spatial and temporal 

resolution over large distances from a few hundreds m up to several km, using buried or borehole cables (Selker et al., 2006;  

Bense et al., 2016; Simon et al., 2020, see table 1Table 2.C.2). By estimating the rates of temperature change along the cable, 215 

this kind of system allows an indirect estimation of groundwater fluxes intercepting the cable, provided that conditions are 

changing fast enough and that the temperature change is large enough to be detected (. Read et al., (2013). for example resolved 

groundwater fluxes in fractured granite, by combining DTS measurements and hot water injections in a borehole.  Long-term 

changes can also be detected by using DTS systems as permanent monitoring tools (Susanto et al., 2017; McCobb et al., 2018). 

A new generation of active fiber-optics with heated cables designed for hydrogeological investigations is currently being 220 

developed and is a promising approach for inferring borehole or in-situ groundwater fluxes (Read et al., 2014; des Tombes et 

al., 2019; Maldaner et al., 2019; Simon et al., 2021; Del Val et al., 2021). The thermal response during the active heating o f 

the cable and the subsequent cooling period is monitored  as it depends strongly on the water fluxes intercepting the cable, 

allowing an accurate groundwater flux assessment (Simon et al., 2021). Although challenges still remain to deploy such set -

ups on the field, possible DTS applications extend to various domains, including 3D hydraulic tomography (Pouladi et al., 225 

2021) or groundwater-surface water interactions (see section 2.4).   

In summary, tThe development of innovative in-situ methods to characterize the spatial and temporal variability of 

groundwater flow opens a range of new opportunities for understanding, modelling and monitoring  hydrogeological systems. 

These advances may provide much more accurate estimation of subsurface velocity statistics in s pace and time in highly 

instrumented site to establish upscaled transport models , for porous and fracture media, at the decameter scale that capture 230 
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these dynamicsfluxes  is an important element, unravelling the 4D distributions of fluxes remains a major challenge in 

hydrogeology for process understanding or environment characterization. the spatial distribution and dynamics of fluxes  

constitute a key component to many hydrogeological processes but are still poorly resolved. In particular, imaging fluxes at 

high-resolution, in particular for characterizing macro-dispersion at the decameter scale remains a huge challenge(see next  

section and table 1.A and Figure 8). In critical applications such as subsurface energy (thermal affected zone, induced 235 

seismicity related to fluid injection) or waste storage, these novel methods  will likely be increasingly used to reduce the risks 

involved Spatially distributed fluxes measurements are also needed to better understand transit times distribution from the 

local to the catchment scale(table 1.B and Figure 8). Finally, in more standard hydrogeological applications, such as However, 

detailed fluxes measurements as well as heterogeneity characterization do not seem necessary for water balance studies, aquifer 

recharge or average residence time estimation, such a level of characterization is generally not required (table 1.C and Figure 240 

8). Although integrating 4D aspects in flux assessment might not be needed in larger scale water balance studies, they still 

influence residence time at the catchment scale. The development of innovative in-situ methods to characterize fluxes is an 

important element, unravelling the 4D distributions of fluxes remain a major challenge in hydrogeology for process 

understanding or environment characterization.  

2.2 Transport, mixing and reaction 245 

Three-dimensional heterogeneity and temporal fluctuations of fluxes have a first -order impact on transport and reaction 

processes (e.g. Dentz et al. 2011, Rolle and Le Borgne 2019, Valocchi et al. 2019, Figure 1).  The inherent heterogeneity of 

subsurface environments leads to strong dispersion dynamics, which do not follow the conventional Fickian macrodispersion 

framework based on Fickian dispersion dispersion framework (e.g. Berkowitz et al. 2006, Neuman and Tartakovsky 2009). 

Furthermore, mixing dynamics rates in 3D systems can be fundamentally different than predicted from 2D or steady 250 

representations of the subsurface (Lester et al. 2013). At the pore scale, recent 3D imaging techniques (Figure 2) have shown 

that 3D flow topologies driven by pore scale flow patterns lead to chaotic flows that strongly enhance mixing rates (Heyman 

et al. 2020, Souzy et al. 2020). At the Darcy scale, anisotropic permeability fields can generate helical flow that play a similar 

role (Ye et al. 2015). In fractured media, intersection of fractures with fluids of different chemical compositions can create 

microbial hot spots with intermittent activity (Bochet et al. 2020). In coastal aquifers, mixing between freshwater and saline 255 

water trigger reactions, including rock dissolution that leads to increased permeability and karst formation, which develop a s 

hot spots due to medium heterogeneity (De Vriendt et al., 2020). Modelling and laboratory investigations have shown that 

these transport and reaction rates can be further altered by temporal fluctuations in head levels (Pool and Dentz, 2018) and 

variable water content (Jiménez-Martínez et al., 2017). Modelling studies have provided evidence that heterogeneity and 

temporal fluctuations can exert a strong control on biogeochemical reaction rates (Li et al., 2010; Sanz-Prat et al., 2016). 260 

However, there is increasing evidence that reactive transport processes are not well captured by the macrodispe rsion framework 

(Gramling et al. 2002, de Anna et al. 2014). Yet, in the absence of an alternative upscaling framework, the macrodispersion 

modelit is still the main reference for field applications.  
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Characterizing and imaging transport and reaction dynamics in the field is a critical challenge for a range of fundamental and 

applied questions, such as designing efficient remediation strategies for contaminated sites (Kitanidis and McCarty, 2012) or 265 

characterizing transport and reaction dynamics in mixing zones (Rolle and Le Borgne, 2019). Such rReactive hot spots , that 

concentrate a disproportionate amount of reaction relative to their size, tend to develop at the interfaces between surface and 

subsurface compartments (Mcclain et al. 2003), which includes the vadose zone (Jimenez-Martinez et al., 2017, see section 

2.3), the hyporheic zone (Hester et al., 2017, Nogueira et al., 2022, see section 2.4) or the groundwater-seawater interface 

(Pool and Dentz, 2018; Duque et al., 2019).   270 

Classical artificial tracer tests are commonly used to estimate solute transport properties and related parameters. Their use  in 

highly heterogeneous media is, however, challenging due to the difficulty of positioning a limited  amount of recovering points 

leading to low mass recovery (Kemna et al., 2002; Sanford et al., 2006). When interpreting or inverting the tracer breakthrough 

data, with little information on the spatial heterogeneity, the range of possible interpretation in  terms of parameter values can 

be quite large or misleading (e.g. Hoffmann et al., 2019, Table 2.A.1). Combining tracer test recovery with other monitoring  275 

methods, such as geophysics  (e.g.,. Robert et al., 2012; Hermans et al., 2015b, Table 2.A.1), and model inversion provides 

complementary information (e.g.,. Robert et al., 2012) that can narrow down the uncertainty in the interpretation. Combining  

multiple tracers (Klepikova et al., 2016; Hoffmann et al., 2019, 2021a,b, Figure 3, Table 2.A.1, and 2.ETable 2.E) or tracers 

with flux measurements such as seepage meters (Tirado-Conde et al., 2019, Table 2.C.7; Duque et al., 2019) can also provide 

more constraints on tracer test interpretation, exchanges fluxes estimation or heterogeneity. (Hoffmann et al., 2019, 2021a,b , 280 

table 1.E). Tirado-Conde et al. (2019) combined 180 seepage meter measurements with heat used as a tracer in 30 locations, 

to study and characterize surface water-groundwater interactions and saltwater intrusion around a coastal lagoon inlet. 

Hoffmann et al. (2019), Klepikova et al. (2016) combined classical tracers with heat injection, taking advantage of heat 

conduction processes in rocks and sediments to better image the heterogeneity (Figure 3). They coupled these different tracer 

experiments with electrical imaging (ERT) and fiber optics (Hermans et al., 2015b, table 1.A.1) to image highly heterogeneous 285 

alluvial deposits with high resolution (3), in the context of experimental pumping operations performed at short time-scale . 

DTS fiber optics techniques provide the opportunity for spatial monitoring of thermal tracers (de La Bernardie et al., 2018;  

Klepikova et al., 2016, see also section 2.1 and table 1Table 2.C.3 and 1.C.7). The combination of tracer experiments under 

different configurations (convergent, push pull, etc.,…) provides new constraints on transport models, highlighting the 

possibilityproviding the opportunity to capture the effect of complex 3D fracture networks architectures in effective transport 290 

models (Kang et al., 2015; Guilhéneuf et al., 2017). 

New mobile mass spectrometers have opened up new opportunities to use dissolved gas as tracers  and measure them 

continuously in the field  (Brennwald et al., 2016; Chatton et al., 2017; Popp et al., 2021). Dissolved gases, such as Helium, or 

Argon and Xenon, are conservative tracers with larger diffusivity compared to solute tracers, thus , allowing the exploration of 

diffusive processes such as fracture-matrix or mobile-immobile water interactions (. Hoffmann et al. (2020), combined dye 295 

tracers with dissolved gases (Helium, Argon, Xenon) to study preferential flowpaths and mobile -immobile water effects within  
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a dual porous/fractured rock chalk aquifer (table 1Table 2.E.2). Reactive tracers have offered new methods  for characterizing  

transport dynamics, including hyporheic exchange (Knapp et al., 2017, see also section 2.4).  

The use of time-lapse geophysical techniques provides a promising avenue to characterize the spatial distribution and temporal 

evolution of transport and reaction processes, at scale up to a few hundred meters (e.g. Binley et al. 2015, table 1Table 2).  300 

Extensive geophysical imaging of transport processes has mainly been performed using Electrical Resistivity Tomography 

(ERT) and Ground Penetrating Radar (GPR) even if immediate successes have often been hampered by issues of mass recovery 

due to unresolved concentration gradients (Slater et al., 2002; Singha and Gorelick, 2005; Müller et al., 2010; Doetsch et al., 

2012; Dorn et al., 2012b, Fernandez-Visentini et al. 2020). A major challenge is, thus, to upscale the non-stationary and non-

ergodic solute concentration fields as well as the macroscopic heterogeneity unresolved by geophysics (Gueting et al., 2015, 305 

2017, table 1Table 2.D.2) to derive relevant petrophysical relationships. Accounting for realistic heterogeneity patterns in 

inversion remains difficult (both flow and transport) and upscaling is not straightforward (Singha et al., 2015). In smoothness-

constrained tomography inversion, there is usually underprediction of magnitudes and overprediction of target sizes (Day -

Lewis et al., 2006). Overcoming this challenge requires advanced hydrogeophysical imaging (e.g., Hermans et al., 2016b , 

2018, Oware et al;, 2019), adapted regularization consistent with the studied process (e.g., Karaoulis et al., 2014; Hermans et 310 

al., 2016a, Nguyen et al., 2016; Lopez-Alvis et al., 2021), geostatistical post-processing (Moysey et al., 2005; Nussbaumer et 

al. 2019) or coupled inversion (e.g., Hinnel et al. 2010). Recent modelling results suggest that key geostatisical properties of 

permeability fields may be inferred from time-lapse ERT imaging (Fernandez Visentini et al., 2020). New geophysically 

sensitive tracers, allowing density matching with the resident fluid (Shakas et al., 2017, table 1Table 2.B.3), provide images 

of tracer pathways that are not influenced by density effects , a key limitation of geophysical techniques based on dense saline 315 

tracers. Theoretical work has suggested that tracers that change their electrical conductivity when reacting could be imaged by 

electrical methods, providing new opportunities to characterize mixing processes in situ (Ghosh et al., 2018). This idea re mains  

to be tested in the laboratory and field.  

Geophysical techniques that have the potential to map and monitor reactive processes, such as Spectral Induced Polarization  

(SIP), which consists in measuring the phase shift of an alternating electrical signal occurring because of polarization  320 

phenomena in the electrical double layer, by mineral precipitation (Leroy et al., 2017), or by the activity of microorganisms  

(Kessouri et al., 2019) are highly sensitive to pore scale processes and concentration distributions (Izumoto et al., 2020, 2022), 

which make their interpretation challenging but potentially very rewarding. The coupling of geophysical techniques with pore 

scale imaging techniques, including micro and milliflu idics  (Jougnot et al., 2018; Fernandez Visentini et al., 2021, Izumoto et 

al., 2022) and X-ray computed tomography (Johansson et al., 2019;), represents a new avenue of research to understand and 325 

quantify the geophysical signature of unresolved pore scale processes  (Jougnot et al., 2018; Fernandez Visentini et al., 2021, 

Izumoto et al., 2022).  

Geophysical methods are also thus increasingly used for mapping biogeochemical processes (Atekwana and Slater, 2009;  

Knight et al., 2010). Self-potential (SP) signals have, under specific conditions, been shown to beare sensitive to redox 

conditions in contaminated groundwater (Naudet et al., 2003; Revil et al., 2009; Arora et al., 2007). Laboratory studies have 330 
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shown the correlation between SIP and bacteria activity using column experiments (Davis et al., 2006; Abdel Aal et al., 2010;  

Zhang et al., 2014) and the SIP method has been applied to detect biogeochemical reactions or root activities in the field  

(Wainwright et al., 2016; Flores Orozco et al., 2012; Ehosioke et al, 2020). However, current interpretations are largely  

qualitative or empirical through correlation. It remains challenging to mechanistically relate the SIP signal to biological and 

physiological processes or simply to the biomass itself. For many applications, the underlying mechanisms of the observed 335 

polarization are still subject of active research and debate (see e.g., Leroy et al. 2017, Ehosioke et al., 2020), while field  

applications remain limited (Flores Orozco et al., 2021). 

The coupling of heterogeneity, transport and reaction often lead to scale effects influencing effective reactive transport 

parameters (Dentz et al., 2011, Salehikhoo et al., 2013, Dentz et al., 2011), making leading to a major upscaling a major 

challenge in transport characterization and reactive transport modelling at the catchment scale (Li et al., 2017). Improved time 340 

and space resolution of geophysical and inversion techniques, and the development of systems capable of surveying large areas 

repeatedly with multiple hydrogeophysical methods  open new perspectives for mapping and monitoring these dynamics in  the 

field (Folch et al., 2020; Palacios et al., 2020, Table 2.B.6).  As discussed above, hydrogeophysical imaging of transport and 

reaction processes is very attractive, but it requires upscaling the effects of sub -scale transport dynamics to the scales resolved 

by geophysical techniques (Fernandez Vis sentini et al., 2020). Processes occurring at unresolved scales require imaging by 345 

combining multiple methods across scales, different tracers, and use of integrating data with geostatistics, modeling and 

inversion (Linde and Doetsch, 2016). Similar challenges occur when imaging the water content distribution in the vadose zone 

as discussed in section 2.3. 

Recent innovations have demonstrated promising research avenues for overcoming the above -mentioned challenges. Recent 

modelling and field work have provided a new understanding of the role of heterogeneity and temporal fluctuations in the 350 

development of mixing and reaction hot spots and hot moments. In fractured rocks, three -dimensional fracture patterns trigger 

localized mixing of fluids of different chemical compositions, leading to highly reactive hot spots at fracture intersections  that 

develop intermittently depending on hydrological fluctuations (Bochet et al., 2020). In coastal aquifers, mixing between 

freshwater and saline water trigger reactions, including rock dissolution that leads to increased permeability and karst 

formation, which develop as hot spots due to medium heterogeneity (De Vriendt et al., 2020). Improved time and space 355 

resolution of geophysical and inversion techniques, inverse modeling advances to monitor time-dependent processes, and the 

development of systems capable of surveying large areas repeatedly with multiple hydrogeophysical methods  open new 

perspectives for mapping and monitoring these dynamics in the field (Folch et al., 2020; Palacios et al., 2020, table 1Table 

2.B.6).  

In summary, there is increasing evidence that conventional sampling monitoring techniques and models are not able to capture 360 

mechanisms underlying the 3D heterogeneity and temporal fluctuations playing a key role incontrolling transport and reaction 

processes. 4D imaging of transport and reaction at laboratory and field scale is critical to define new effective models able to 

upscale these dynamics and predict them in less instrumented sites  (table 1.A and Figure 8). Furthermore, recent Laboratory 

experiments identifying tracer behaviors at the pore scale and linking them to upscaling properties such as geophysical signal 
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will help to enable the development of new mechanistic models that effectively capture these dynamics and allow for accurate 365 

upscaling approaches. Applied at the field-scale, these Recent recent advances combined within 4D imaging discussed here 

will open new opportunities for the exploration of transport and reaction processes from lab to field scales, whichmonitoring  

the fate of contaminants  when risk management requires it (e.g. contamination remediation and monitoring, nuclear waste 

disposalstorage, table 1.B and Figure 8). Current monitoring techniques and models may be sufficient only in applications 

where accurate predictions of transport dynamics are less critical (table 1.C and Figure 8). while it will remain unnecessary 370 

for lower impact activities (e.g. natural attenuation of soil contamination) will help to enable the development of new 

mechanistic models that effectively capture these dynamics and allow for accurate upscaling approaches. 

2.3 Water content dynamics in the vadose zone 

The vadose or unsaturated zone is the upper part of the critical zone. The distribution of fluid phases and their evolution with 

time makes it a very complex media, where root systems and soil micro-organisms further complexify this dynamic 375 

environment (Figure 1). Understanding, monitoring and predicting the quantity (i.e. water content) and movement (i.e., water 

flow) of water are needed to address water quality and availability issues (e.g., Vereecken et al., 2015). Vadose zone hydrology 

usually relies on punctual measurements of physical variables with established sensors: TDR (Time -Domain Reflectometry , 

to infer the water content from dielectric permittivity) or tensiometers (to determin e the matric potential). Vadose zone 

hydrology is still too often viewed by hydrogeologists as a vertical 1D transit compartment with homogeneous sources 380 

(rainwater infiltration) and sinks (evaporation or evapotranspiration) on the way to the aquifer. If s uch approach might be 

sufficient to estimate average aquifer recharge rate, punctual measurements and 1D modelling approaches provide limited  

information for the characterization of this strongly 3D environment and its dynamics  and; thus it is not sufficient for 

applications such as precision agriculture. The varying water content (in time and space) and biological interactions (e.g. with 

the roots) are adding a layer of complexity compared to the saturated zone, making its spatial and dynamical characterization  385 

even more challenging.  

While geophysical methods can provide fast and integrated measurements to characterize the spatial heterogeneity of the 

vadose zone and imaging the water content distribution (within the limitation of their resolution: e.g., Daily et al. 1992, Day-

Lewis et al. 2005), the quantifications of dynamic processes related to water flow and (reactive) transport still remain an 

important challenge. 390 

In vadose zone hydrogeophysics, the most promising approaches to tackle these challenges rely on using multiple methods 

and integrating the measured data in 4D numerical simulations with joint inversion strategies together with appropriate 

petrophysical knowledge (e.g., Hubbard and Linde, 2011, table 1Table 2). Surface-based and cross-borehole imaging of the 

water content in the vadose zone through measurements of the electrical conductivity or dielectric permittivity distribution is 

well established (e.g., Carrière et al., 2015, 2022, table 1Table 2.B.5). The electrical conductivity can be obtained using low-395 

frequency electrical and electromagnetic methods such as Electrical Resistivity Tomography and Induced Polarization (e.g., 

Kemna et al., 2012; Revil et al., 2012). Higher frequency methods such as the  Time Domain or Frequency Domain  
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Electromagnetics can also be employed from the surface (e.g., Pelerin, 2002) or the air (Auken et al., 2020) allowing to cove r 

large areas in a limited amount of time, but show generally a poor vertical resolution at the scale of the vadose zone. Electrical 

and electromagnetic methods are well established in static conditions but also in monitoring applications (e.g., Singha et al . 400 

2015). The main limitation of these methods is the downside of their integrative nature: a limited resolution that masks 

heterogeneities and can mislead quantitative estimation of water content or solute concentration using petrophysical 

relationships established in the laboratory (Day-Lewis et al., 2005; Jougnot et al., 2018) as already discussed in section 2.2. 

Combining several methods (e.g., Blazevic et al., 2020, table 1Table 2.B.1) and improving the petrophysical-based approaches  

(e.g., Day-Lewis et al., 2017) is needed to move towards a more quantitative use of electrical and electromagnetic  methods.  405 

Ground-Penetrating Radar (GPR) is the most developed geophysical method to obtain the water content at high spatio -temporal 

resolution through the dielectric permittivity (e.g., Huisman et al., 2003, Roth et al. 1990; Klotzsche et al., 2018; Looms et al., 

2008). Time-lapse studies using GPR to monitor water infiltration can provide insights about the hydrodynamic (e.g., Léger 

et al., 2014; Klotzsche et al., 2019a) and transport properties (e.g., Haarder et al. 2015) of the vadose zone, and reveal. 

Commonly, geophysical studies of vadose zone processes use 1D approximations although  the 3D nature of the heterogeneous 410 

vadose zone can obviously result in lateral flow processes, including lateral flow (Scholer et al., 2012). 

Nuclear Magnetic Resonance (NMR) allows to obtain a signal that is directly related sensitive to the quantity of water in the 

subsurface. It is based on the resonance of the magnetic moment of the protons from water molecules. NMR can be used from 

the surface or boreholes to infer the water content in the vadose zone (e.g., Schmidt and Rempe, 2020). Recent works have 

also shown its value for monitoring the water dynamics through time-lapse measurements (e.g., Mazzili et al. 2020, Lesparre 415 

et al. 2020, Table 2.C.1). 

From established P-wave velocity tomography (e.g., Bradford, 2002) to more recent imaging of surface wave velocities and 

Poisson ratios (e.g., Pasquet et al., 2015, table 1Table 2.B.4), active seismic methods are developing toward a much more 

quantitative characterization of the water content distribution (e.g., Pride, 2005). Surface waves appear promising for 

monitoring of water content dynamics in the vadose zone (Dangeard et al., 2018, table 1Table 2.B.4) and combining time-420 

lapse imaging of seismic tomography and ERT will allow providing a more quantitative imaging (Blazevic et al., 2020, Figure 

4 table 1Table 2.B.1). Figure 4Figure a shows the acquisition set-up used by Blazevic et al. (2020) to jointly monitor the 

infiltration of water in a delimited area above a pit instrumented with TDR (Fig. ure 4Figure b). Figure 4 Figure c and Figure 

4Figure d show the developments of the relative changes in ERT and seismic inversions results during the infiltration along 

the North-South line, respectively. One can see the preferential water flow from North to South, indicating lateral flow in the 425 

vadose zone. This use of complementary methods, in terms of resolution and sensitivity to properties (electrical conductivity 

and mechanical properties), opens up new perspective such as joint inversion (e.g., Doetsch et al., 2010) and petrophysical-

based inversion (e.g., Wagner et al., 2019).  

Passive seismic is also receiving increasing attention as ambient noise can be used as a source to monitor hydrosystems. Recent 

works on seismic noise monitoring have been conducted using ballistic waves to monitor water table variations (Garambois et 430 
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al., 2019). The development of distributed acoustic sensing will allow the acquisition of denser and larger-scale monitoring  

data in this direction (e.g., Zhan, 2020). 

Another passive method that is increasingly used in the vadose zone is the self-potential method (e.g., Revil and Jardani, 2013). 

It consists in measuring naturally occurring electrical voltages that results from various coupling mechanisms, for instance, 

electrokinetic coupling when water flows in a porous medium or in a fractured system (e.g., Jougnot et al. 2020; Robert et al, 435 

2011). A promising approach to monitor water movement in the vadose zone is to implant the SP electrodes in the ground at 

different locations and depths, the measured signal is then integrated over the volume delimited by  the electrodes, allowing 

vertical and lateral monitoring. Recent works of SP monitoring have shown the usefulness of SP to monitor infiltration (Jougnot 

et al. 2015, Hu et al., 2020, see table 1Table 2.C.6) and root water uptake (Voytek et al., 2019). These works have shown the 

need for further improving petrophysical models to shift the use of SP towards a more quantitative paradigm. 440 

Lastly, gravity is a well-established passive geophysical method that is suitable to monitor water movement   in the vadose 

zone (Fores et al., 2017, 2018, table 1Table 2.C.4). Due to its very large footprint that integrate the density distribution from 

the center of the Earth, there is a crucial need for more accurate and sensitive gravimeters, such as e.g. quantum absolute 

gravimeters (Cooke et al., 2021, Table 2.C.5). The non-uniqueness of gravity signals requires the inclusion of complementary  

information (e.g. geodetic or hydrological data) for signal separation. Time-lapse gravimetry has been used to identify and 445 

constrain subsurface water storage changes, e.g. in artificial recharge facilities (Kennedy et al., 2016), to separate precipitation 

and groundwater mass signals (Delobbe et al., 2019), to locate karst storage dynamics (Pivetta et al., 2021) and identify 

evapotranspiration patterns (Carrière et al., 2021). Time-lapse gravity data have also been successfully used to improve the 

calibration of groundwater models (Christiansen et al., 2011a, 2011b). Further data acquisition procedures and treatments that 

enhance sensitivity to local processes (e.g., gravity gradients and hydrological modelling coupled with gravity measurements 450 

(Cooke et al., 2020, table 1Table 2.C.5) are needed to provide more quantitative interpretations. 

In summary, the 3D nature of the subsurface is made even more complex in the vadose zone by its partial saturation and the 

evolution of the water phase, both in term of saturation and spatial distribution, as well as by the presence of root systems  and 

microorganisms. While quantitative assessments of aquifer recharge can often be achieved by integrative approaches, the 

spatial and temporal distribution of the water content in the vadose zone is crucial for assessing water available to the pla nts 455 

through their roots, to identify preferential flow paths for contaminants or infiltration in karstic aquifers, or for optimizing  

irrigation practices. Careful Detailed studies of processes in the vadose zone at highly instrumented sites open new 

opportunities for the quantification of transport and reaction processes from lab to field scales (e.g., for tracer loss, see Jougnot 

et al., 2018table 1.A and Figure 8). At a more intermediate scale, the 4D imaging unveils preferential flow paths for infiltration  

or contaminant  and transport processes and water availability for plants through their root system allowing to optimize 460 

irrigation systems (table 1.B and Figure 8) (see Blazevic et al, 2020). While, aAt a much larger scale, such precise imaging is 

rendered impossible due to the subsurface complexity, in which case simple 1D hypothesis can lead to quantitatively 

interestingreliable results (e.g., for quantitative assessment of mass balance or aquifer recharge, table 1.C and Figure 8r mass 

balance, see Carrière et al., 2021). 



15 

 

2.4 Groundwater – surface water interactions 465 

The interface between groundwater (GW) and surface water (SW) is a structurally complex, dynamic transition zone that 

modulates fluxes of water, solutes and heat between the two adjoining compartments (Lewandowski et al., 2019, Figure 1). 

These fluxes in turn affect several processes that are relevant for the management of water quantity (e.g. water supply via b ank 

filtration, groundwater recharge), quality (e.g. pollutant attenuation, nutrient transformations – eutrophication) and aquatic 

ecology (e.g. environmental flows, habitat and refugia) (Fig. 5).  470 

Exchange and turnover patterns in the GW-SW transition zone are defined by nested spatial controls ranging from regional 

topography and geology (Winter 1999) to local variability of streambed permeability (Kalbus et al. 2009, Irvine et al. 2012;  

Tang et al., 2017) and morphology evolution (Trauth et al. 2015; Partington et al., 2017), the spatial arrangement of subsurface 

hydrofacies (Fleckenstein et al. 2006, Frei et al. 2009; Carlier et al., 2018) and their anisotropy (Gianni et a., 2018) and reactive 

zones (Frei et al. 2012, Loschko et al. 2016). Temporal dynamics are mainly imposed by the surface water system (Dudley–475 

Southern and Binley 2015, Trauth and Fleckenstein 2017, Song et al. 2020), as SW heads can change significantly over short 

– event – time scales while head changes in GW occur more gradually (e.g. at seasonal time scales). The resulting fluctuations 

in hydraulic gradients affect subsurface mixing (Hester et al. 2017, Bandopadhyay et al. 2018, Nogueira et al., 2022), as well 

as transit times and reactive turnover (Zarnetske et al. 2012, Trauth and Fleckenstein 2017). 

 While  a sufficient, mechanistic Uunderstanding of the linksages and feedbacks between spatial and temporal controls of flow 480 

and turnover processes at small spatial and temporal scales is will clearly be needed for a sound management of water quality 

and ecosystem services of in coupled GW-SW systems and their ecosystem services (Hester and Gooseff 2010, Morén et al. 

2017, Hester et al. 2018), the same level of process detail may not be required to evaluate conjunctive use of GW and SW for 

the management of larger-scale water quantity (Scanlon et al. 2016).. In other words, the level of detail needed will also depend 

on the scale of the problem and the questions asked.This understanding clearly hinges on innovative methods and the ability  485 

to test them at dedicated field sites. The insights gained at these sites may provide a basis for simplifications and 

generalizations, which can be used to improve modeling concepts for management of GW -SW systems beyond the specific 

field sites.  

Recent years have seen significant advances in methods and technologies for the small-scale characterization and simulation  

of coupled GW-SW systems. Methods particularly suited for the study of GW-SW interactions, to name a few, include in situ 490 

and high resolution sensing of temperatures (Constant, z 2008, Vogt et al. 2010) and solute concentrations (Blaen et al. 2016, 

Brandt et al. 2017), tracer techniques to characterize exchange flows (Mallard et al. 2014; Schilling et al., 2017a; Popp et al., 

2021), transit times and reactions (Schmidt et al. 2012, Knapp and Cirpka 2017), as well as process -based, integrated modeling 

of coupled GW-SW systems (Schilling et al. 2017b, Trauth and Fleckenstein 2017, Broecker et al. 2019, Nogueira et al., 

2021b, Table 2.E.3) and geophysics (McGarr et al., 2021, Table 2.A.2). Here, we briefly discuss some key research fields 495 

related to the heterogeneous and dynamical nature of the GW-SW interactionsystems, which have, and likely will continue to 

contribute to an improved understanding of GW-SW interactions. 
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The use of heat as a natural tracer has become a popular tool to characterize GW -SW exchange patterns due to the natural 

temperature differences between GW and SW and the relative ease and accuracy of temperature measurement s using standard 

sensors. This field has evolved significantly since some of the earlier seminal works (Stonestrom and Constantz 2003, Schmidt  500 

et al. 2006) and has embraced novel technologies such as DTS (Krause et al. 2012, Rose et al. 2013) and hand -held (Glaser et 

al. 2016, Marruedo Arricibita et al. 2018) or airborne infrared imagery (Lewandowski et al. 2013). The suite of methods 

available today allows for high-resolution assessment of temperatures in space and time for a qualitative mapping of GW -SW  

exchange patterns (Anibas et al. 2011, Krause et al. 2012) or a quantification of exchange fluxes (Schornberg et al. 2010, Mun z 

and Schmidt 2017). Temperature data can further be used to constrain and improve numerical models of coupled GW-SW  505 

systems (Munz et al. 2017). Due to their relative ease of use, heat-based methods have become a robust and standard tool to 

characterize GW-SW exchange patterns. New opportunities may arise from a smart combination of different techniques 

(Tirado-Conde et al. 2019, Table 2.C.7) or the use of actively heated fiber optics (Simon et al. 2021), a technique (see also 

section 2.1) that has been used punctually to quantify streambed flow dynamics in zones of groundwater upwelling (Briggs et 

al. 2016), and which is in current development for quantifying GW-SW exchange patterns along stream sections (Simon et al., 510 

2022, Table 2.C.2). 

The concentration of oxygen is a key variable that defines the redox state of the transition zone between GW and SW and with 

that the potential for important reactions like denitrification (Zarnetske et al. 2012). Understanding the dynamics of oxygen 

consumption is therefore important for evaluating nutrient turnover in hyporheic and riparian zones (Marzadri et al. 2012, 

Trauth et al. 2015, 2018). A key reaction consuming oxygen in these zones is aerobic respiration, which has been shown to 515 

depend on transit times (Zarnetzke et al. 2011a, Diem et al. 2014) and the availability of labile organic carbon as the main  

electron donor (Zarnetske et al. 2011b). Field deployable optode-based oxygen sensors have enabled high-resolution 

measurements of oxygen concentrations in time (Diem et al. 2014, Vieweg et al. 2016) and space (Brandt et al. 2017) allowing  

for robust assessments of respiration dynamics at the GW-SW interface (Vieweg et al. 2016). Based on such data, the strong 

temperature dependence of aerobic respiration rates has been demonstrated (Diem et al. 2014), which may dominate turnover 520 

rates compared to the effects of variable transit times (Nogueira et al., 2021a, Table 2.E.3). Similar effects were found to affect 

complex spatio-temporal patterns of riparian denitrification, which seem to be jointly controlled by hydraulically driven 

variability in exchange fluxes and transit times, supply of organic carbon as an electron dono r from stream water and riparian  

sediments and seasonal temperature variations (Trauth et al. 2018, Lutz et al. 2020, Nogueira et al. 2021b, Table 2.E.3). Besides 

high-resolution data sets of key variables like oxygen concentration, it is often the combina tion of these rich data sets with 525 

innovative methods for analysis and modeling (e.g., Diem et al. 2014, Lutz et al. 2020, Nogueira et al. 2021a, 2021b, Table 

2.E.3) that advances our mechanistic understanding of the processes and feedbacks that define the functionality of GW-SW 

interfaces.  

Another promising and still evolving field in the area of GW -SW interactions has been the use of mechanistic models in 

explorative mode to test hypotheses and to investigate process interactions and feedbacks (Fleckenste in et al. 2010, Brunner 530 

et al. 2017). Important insights into physics of flow, transport and turnover processes in the hyporheic zone (HZ) have been 
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gained based on such modeling studies. This includes the effects of ambient groundwater flow on hyporheic e xchange 

(Cardenas and Wilson 2007, Trauth et al. 2013, 2015), intermeander and parafluvial flows (Boano et al. 2006), reactions and 

turnover in the HZ (Boano et al. 2010, Trauth et al. 2014, 2015), effects of geologic heterogeneity on hyporheic flows and 

reactions (Laube et al. 2018, Bardini et al 2013) as well as the influence of stream flow dynamics on hyporheic exchange and 535 

turnover (Trauth and Fleckenstein 2017, Singh et al. 2020). Similar modeling studies have been conducted for riparian zones 

and river corridors addressing aspects such as the effects of streamflow variations on riparian solute turnover (Gu et al. 2012), 

effects of bank filtration processes on solute mobilization from riparian zones (Mahmood et al. 2019), the effects of riverbed 

heterogeneity on GW-SW exchange patterns (Tang et al. 2017) or the presence and dynamics of unsaturated conditions at the 

stream-aquifer interface (Schilling et al. 2017). Some studies have also used modeling experiments to address mixing processes 540 

at GW-SW interfaces, which are important for mixing-dependent reactions (Hester et al. 2017). These studies have addressed 

effects of flow geometries and hydraulics on mixing in hyporheic and riparian zones (Bandopadhyay et al. 2018; Lee et al., 

2021, Nogueira et al., 2022)  or effects of geologic heterogeneity at the groundwater-seawater interface on calcite dissolution 

and karstification (De Vriendt et al. 2020) as discussed in more detail in section 2.2. Advances in modeling capabilities, 

including a seamless, integral simulation of flow and reactive transport in of GW-SW systems (Broeker et al. 2019; Li et al., 545 

2020), together with rich data sets from highly instrumented field sites to confront test these models with, will help to improve 

our mechanistic understanding of small-scale GW-SW interactions. Such approach will provide a solid basis for generalizing  

and developing new concepts allowing the use of more parsimonious models , focusing on the dominant processes, which could 

be more largely applied for management-relevant scales (Gomez-Velez and Harvey, 2014). 

In summary,  the many functionality functionalities of the GW-SW interface related to water quality (e.g. hyporheic attenuation 550 

of nutrients and pollutants) and aquatic ecology (provision of habitat and refugia for aquatic organisms) are  is clearly defined 

by small-scale processes operating in 4D and need to be characterized and evaluated accordingly. . AA suite of field methods 

and modeling tools exists to characterize the relevant process patterns and dynamics in sufficient detail to develop new 

conceptual ideas about system functioning or to advise solutions to site-specific problems (table 1.A and Figure 8). New 

methodological developments as well as innovative improvements to existing methods, and th eir systematic use at dedicated 555 

field sites, will open up new opportunities to advance our mechanistic understanding of GW -SW interactions and to develop 

more parsimonious models, which are needed to develop appropriate measures for the management of coupled GW-SW  

systems. Although the heterogeneity of the SW-GW interface leads to a large variability in the exchange fluxes  at (deca)metric 

scale (e.g., Ghysels et al., 2019, table 1.B and Figure 8), ,In contrast,  larger-scale assessments of GW-SW exchange for water 

quantity (e.g. conjunctive use scenarios) or base flow management (e.g. environmental flows) can often be achieved with much 560 

simpler, integral approaches  (table 1.C and Figure 8). 
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3 Numerical methods development for 4D data integration and inversion  

Numerical representation methods and numerical techniques have become essential tools in both understanding and forecasting 

subsurface models (e.g., Karatzas, 2017). Most common software suites in hydrogeology allow to model the subsurface using 

properties distributed in 3D. The temporal derivatives being an essential component of underlying physical equations, the 565 

transient character of hydrogeological processes is most often already included. When a mathematical formulation of the 

process exists, numerical methods allow simulating the response to any scenarios as long as the distribution of the involved 

hydrogeological parameters is provided. Specific models can handle non -linearity related to time-varying properties as 

illustrated by coupled models for unsaturated flow or geomechanics (Simunek et al., 2018; Davy et al., 2018). However, next  

to accuracy related to solvers and their parameterization (numerical dispersion, instability, non -convergence), numerical 570 

models remain dependent on the accuracy of the underlying mathematical representation  of the modelled process . Previous 

sections have highlighted that experimental work remains necessary to characterize complex processes such as mixing and 

transport or GW-SW interactions (Heyman et al., 2020).   

Nevertheless, several challenges remain to properly simulate heterogeneous groundwater reservoirs and their dynamics with 

numerical models. As highlighted in the previous sections, aA key aspect is to feed the models with the appropriate data input 575 

(e.g., Schilling et al., 2019). Subsurface processes are influenced by the heterogeneity in subsurface properties. If the latter is 

essential for the purpose of the model, this should be reflected in the data input through sufficiently dense spatially distributed 

data (e.g., Guillaume et al., 2019). Even with powerful computers, simulating the transient response of a catchment -scale 

model with limited resolution might still take several hours , days or even weeks (e.g., Hayley et al., 2014). The same is true 

for high-resolution geophysical models such as full-waveform GPR or 3D electromagnetics (e.g., Oldenburg et al., 2013;  580 

Klotzsche et al., 2019b; Zhou et al., 2020; Haruzi et al., 2022) and coupled approaches (Coulon et al., 2021). Including 

geophysical data in hydrogeological models is thus even more challenging. Surrogate models can be used to speed up 

simulation processes, but their accuracy remains dependent on the training process, which can be problematic in highly 

heterogeneous media (Linde et al. 2017; Köpke et al., 2018; Mo et al., 2020). Small-scale heterogeneity is present in many 

geological contexts (e.g., Bayer et al., 2011). Even if it is relevant for the objective of the model, it must thus often be neglected 585 

due to limited computational resources. This  sometimes leads to unrealistic outputs , in particular for transport processes (e.g., 

Hoffmann et al., 2019, Table 2.A.1). This may be addressed by upscaling heterogeneous systems and defining equivalent 

properties at larger scale, but this is very challenging for transport processes with multiple physical scales and non-equilibrium 

phenomena (Li et al., 2017; Icardi et al., 2019).  

Even if simulating small-scale heterogeneity would become possible, the actual distribution of properties is always unknown. 590 

The limited amount of noise-contaminated data does not allow to unequivocally recover this distribution through inverse 

modeling (Zhou et al., 2014), even when distributed geophysical data is available (Hermans et al., 2015a; Mari et al., 2009, 

table 1Table 2.D.1). On the one hand, deterministic approaches have to simplify the parameter estimation problem to make it 

well-posed (e.g., smoothing, zonation or pilot-points) and are therefore, limited, for tackling uncertainty related to 4D 
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processes. On the other hand, stochastic approaches such as Markov chain Monte Carlo (McMC) methods (e.g., Vrugt et al., 595 

2013), using more or less complex and realistic geostatistical representations of the heterogeneity and more or less wide prior 

distribution (Linde et al., 2015b), often require thousands to millions of simulations to converge, especially when spatial 

uncertainty is included (e.g., De Pasquale et al., 2019). The transient aspects are also commonly simplified, due to a lack of 

data or the simplification of boundary conditions. In most applications, resolving  numerically a time-dependant dependent 

system of partial derivative equations  based on spatially distributed parameters in 3D with a high spatial and temporal 600 

resolution to represent a relatively large system remains utopic. It is therefore of uttermost importance to understand which 

simplifying assumptions can be applied without degrading the predictive capability of the model (Schilling et al., 2019).  

Fractured aquifers are even more complicated to model. Fracture networks have complex 3D geometries and are, therefore, 

difficult to characterize from mostly 1D or 2D data (Le Goc et al., 2017; Day-Lewis et al., 2017). Modeling flow in fractures 

requires another scale compared to matrix flooccurs at a swmaller scale, which brings additional challenges in terms of gridding 605 

(Schädle et al., 2019) and inversion (Ringel et al., 2019). Combined with a higher degree of heterogeneity and uncertainty than 

in porous media, it increases the above-mentioned issues preventing efficient modeling.  

Nevertheless, recent advances shed light on some innovative solutions to tackle those problems. For fractured aquifers, recent 

studies in fracture modeling such as realistic flow characterization and mechanical coupling using discrete fracture networks  

(Davy et al., 2018; Maillot et al., 2016; Lei et al., 2017), innovative inverse methodologies (Pieraccin i, 2020) and 610 

characterization techniques (Dorn et al., 2013; Shakas and Linde, 2017; Molron et al., 2020, 2021, table 1Table 2.B.2) pushed 

forward our ability to account for the complexity of fractured media.  

More generally, Cloud cloud computing combined with increasing computational power should allow tois one avenue to allow 

modelling the subsurface at a higher 4D resolution for an increasing number of applications in the future , including for (small) 

consulting companies and field practitioners (Hayley, 2017; Kurtz et al., 2017). The ongoing efforts for coupling different  615 

simulators, both in hydrogeology and hydrogeophysics will also favor the incorporation of larger, more informative data sets 

in modelling efforts (e.g., Commer et al., 2020). The incorporation of geophysical data, especially at the large-scale has 

remained limited for a long time by the use of empirical and local petrophysical relationship (Rubin and Hubbard, 2005). The 

combination of large-scale airborne electromagnetic data combined with advanced machine learning approaches for their 

integration will likely contribute to the broader use of 3D and 4D data sets in hydrogeology accounting for the inherent 620 

uncertainty at that scale (e.g., Vilhelmsen et al., 2019; Gottschalk et al., 2022). 

Although Bayesian methods such as McMC are widely recognized in the scientific literature for inversion, prediction and 

uncertainty quantification (Ferré, 2020), they have not been widely adopted by practitioners because of their co mputational 

burdens, especially for complex uncertain geometries. Recent developments in machine learning such as deep neural networks 

(DNN) have shown that complex spatial patterns can be efficiently reduced to a manageable number of dimensions. DNNs  625 

allow to simplify complex subsurface models with millions of cells to a few tens of dimension s, while maintaining their 

geometrical complexity represented by a prior parameter distribution. This opens the possibility to apply McMC or global 

optimization methods at a reasonable cost as recently demonstrated by Laloy et al. (2018) and Lopez-Alvis et al., (2021) (see  
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Figure 6Figure ). Since the parameterization of the prior is a key to obtain realistic solutions, the identification of realistic 

geological scenarios through falsification techniques (e.g., Hermans et al., 2015a; Linde et al., 2015a; Lopez-Alvis et al., 2019, 630 

2022) or assembled prior (Lopez-Alvis et al., 2022) can further improve stochastic inversion by reducing the range of the prior.  

Another recent innovation is to propose physically-based geostatistical upscaling allowing to translate the small-scale spatial 

uncertainty at a larger scale (Benoit et al., 2021). Combining those recent advances with accurate fast approximations of the 

forward model (Linde et al., 2017) should allow for more accurate representations of spatial variability within affordable 

computational time. As an alternative, approximations of the inverse problems using Ensemble Kalman generator (e.g., 635 

Nowak, 2009, Bobe et al., 2020, Tso et al., 2021) or normalization and linearization approaches (e.g., Holm-Jensen and Hansen, 

2019) can also provide a relatively fast, though realistic, approximation of the solution to the inverse problem. 

Alternatively, recent studies have proposed to investigate more prediction -oriented strategies to simulate complex 

hydrogeological systems (Sun and Sun, 2015; Ferré, 2017; Scheidt et al., 2018). For example, Bayesian Evidential Learning  

(BEL) proposes to use a set of simulations from realistic numerical models including the 4D complexity to learn a statistical 640 

relationship between a predictor (data set) and a target (model output, see  Figure 7Figure ), making it a model-driven machine-

learning approach, circumventing the challenges of non-linear inversion while providing a proxy for global sensitivity analysis 

(Hermans et al., 2018). The statistical learning requires reducing the dimensionality of the problem, so that part of the 

complexity may remain unresolved (Park and Caers, 2020). If such a statistical relationship exists, this approach has the 

advantage to require only a limited amount of simulations to derive the posterior distribution of the prediction, typically only 645 

a few hundreds to a few thousands. The latter are independent and can be fully parallelized. Propagating noise in the statistical 

relationship is also straightforward (Hermans et al., 2016). Such direct forecasting is possible because predictions often have 

a much-lower dimensionality than models. The efficiency of such an approach makes it particularly interesting for 

experimental and optimum design studies under uncertainty (Thibaut et al., 2021). Nevertheless, when the data-prediction 

relationship is complex and highly non-linear, BEL might overestimate uncertainty (Michel et al., 2020a), for instance when 650 

the prior uncertainty is large (Hermans et al., 2019). In such a case, classical inversion might still be needed (Scheidt et al., 

2018). Recent advances have shown that BEL can also estimate the model parameter distributions and be used as a more 

traditional inversion technique (Yin et al., 2020; Michel et al., 2020a). However, such more advanced applications require 

further development of appropriate tools to identify highly non-linear relationships (Park and Caers, 2020) which will 

inevitably come at a larger computational cost (Michel et al., 2020b).  655 

Although these recent developments are promising solutions to integrate large 4D data sets within efficient simulation and 

inversion framework to forecast the behavior of aquifers, they still need to be more widely evaluated and used, including for 

complex field cases. New mechanistic models developed based on 4D data sets will need to be integrated in numerical models. 

The validation with case studies in different contexts will demonstrate if new inversion and prediction methods, including 

machine learning approaches  are adapted to the incorporation of the 4D complexity of hydrogeological processes . Synthetic 660 

numerical studies and global sensitivity analysis should help us to identify which simplification s can be reasonably made in 

applications at the large scale and/or with limited budget preventing the acquisition of dense data sets. 
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4 When is a 4Dcoupled spatial and temporal characterization needed ? 

Although spatial heterogeneity and temporal variations by default influence all the processes occurring in the subsurface, a 

full 4D characterization coupled with a numerical model is not always necessary. Throughout the paper, we identified three 665 

levels of applications requiring a decreasing amount of resolution. Table 1 and Figure 8 summarize and classifies the different  

scales and processes according to their requirement for spatio-temporal monitoring, including 4D imaging.  

 

A. Processes for which high-resolution space-time data are needed to improve mechanistic models . Previous 

sections have discussed how the acquisition of spatially and temporally distributed data is crucial for hydrological 670 

processes understanding. Observation gaps severely impede our ability to understand, model and predict a series of 

critical subsurface processes  (see table 1.A and Figure 8). The acquisition of dense 4D data sets is needed to obtain 

new insights into internal mechanisms and proces s hierarchies, identify the dominant processes, which govern a 

specific response of the system, and ultimately develope upscaled models that capture these dynamics. High-

resolution space-time data can thus help us to characterize the influence of heterogeneity and temporal dynamics, and 675 

tothus understand and quantify how the small-scale processes must be upscaled to larger scales, or to which level they 

can be simplified., This is crucial to develop new conceptual ideas about system functioning, to  advise solutions to 

site-specific problems or to design accurate numerical models.  

B. Processes for which high-resolution space-time monitoring is desirable at the scale of individual sites . This is 

for example the case for precision agriculture for which knowing the spatio-temporal distribution of the soil moisture 680 

is cruciala central element to implement efficient irrigation solutions or for site-risk management to avoid the 

spreading of contaminations. The oil industry has been aware of the importance of the spatio-temporal variations of 

their reservoirs for decades, and related research has been supported by economic interests. It has less been the case 

for hydrogeology, except maybe for the characterization of storage site for nuclear waste, or more recently induced 

seismicity related to geothermal exploitations.  An increase in the number of applications includeing 4D investigations 685 

and monitoring (see table 1.B and Figure 8). Hydrology has been using remote sensing data for decades, and a similar 

trend is now visible with airborne electromagnetic data in hydrogeology. This is a first step towards the generalization  

of the integration, to some extent, of 3D and 4D data in groundwater models, even at the catchment scale and beyond.  

A key challenge will be to determine which resolution and which sampling rate is necessary to properly account for 

the underlying subsurface complexity, which requires testing and validating these methods at  highly instrumented 690 

observatories and sharing the produced space-time datasets.  

C. Processes for which 4D data  may not be necessary. In some such cases, the principle of parsimony applies, and 

simple models can be calibrated explaining sparse data (see table 1.C and Figure 8). For example, the management  

of water resources based on meteorological and production data using simple water balance approaches has been 

applied successfully in many contexts for decades. We may obtain reasonable estimates o f groundwater volumes and 695 
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fluxes from sparse hydrogeological data, so that a fine scale characterization of the heterogeneity might not be needed 

or working in steady-state conditions might be sufficient. Estimating an average recharge rate for by -passing the 

complex processes occurring in the vadose zone has been proved to be efficient in many contexts. In such cases, the 

principle of parsimony applies, and simple models can be calibrated explaining sparse data.  

In summary, although a few large-scale applications do not require a high level of spatial characterization and temporal 700 

monitoring, a large spectrum of processes are highly sensitive to 4D dynamics . We identify two complementary strategies to 

deal with this challenge. The first consists in developing upscaled models that capture the effect of spatial and temporal 

fluctuations. This requires first acquiring and sharing high resolution space-time datasets at highly instrumented observatories  

(see section 5). The second is to implement a site-specific 4D imaging strategy in critical applications that require it and have 

the corresponding budget. This requires as a first step to validate recent 4D imaging techniques in some dedicated 705 

observatories, where the degree of knowledge is sufficient to establish the relevant space-time resolution depending on the 

targeted process and application (see section 5).   

It is not evident to know a priori if 4D imaging is desirable. If a more systematic use of global sensitivity analysis and the 

multiplication of case studies should help the community to reveal when this is actually necessary , we also propose to consider 

some key elements when evaluating the need for a thorough spatio -temporal characterization of the reservoir at the three 710 

envisaged scales: 

- Is there evidence for small-scale heterogeneity influencing the considered phenomenon ?  

- Are there any existing mechanistic models explaining the observed phenomena ? Are these  effective models in 

agreement with available observations at highly instrumented sites  ?  

- Is there a technology available to monitor the desired 4D variations ? Is there evidence for small-scale heterogeneity 715 

influencing the considered phenomenon ? 

- Do transient phenomena have an influence on the results ?  

- Does the lack of data has an influence on the decision to ignore spatial heterogeneity or temporal variations ? 

- Is there evidence in the literature (e.g. global sensitivity analysis ) that the processes at hand are not sensitive to the 

heterogeneity ? 720 
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4 5 The added-value ofneed for highly instrumented and long term instrumented field siteshydrogeological  

observatories 

Over the last decades, highly instrumented field sites have been equipped to explore ,  and monitor and model subsurface 725 

processes , often with detailed geological models available (e.g. Bogena et al. 2018). Long-term observations of subsurface 

environments, typically more than ten years, are motivated by the broad range of responses and residence transit times of these 

systems that provide resilience to hydrological systems to environmental changes. When characterizing processes beyond the 

laboratory scales, the exhaustive 4D characterization of processes becomes a  challenging n insurmountable task. While it is 

illusory and not necessary to equip all subsurface systems with 4D imaging techniques, the use of high spatial and temporal 730 

resolution techniques in few highly instrumented field observatories during passive monitoring and active experime nts is a 

key step to establish effective models that capture the effect of 3D heterogeneity and temporal dynamics and can be used and 

parametrized in other less instrumented sites. may be a key step to upscale laboratory observations to a scale relevant fo r 

practical applications. The insights gained at these sites  may provide  is thus a basis for simplifications and generalizations, 

which can be used to improve modeling concepts for management beyond the specific field sites . In particular, these datasets 735 

should allow unraveling the importance of 4D dynamics and the influence of different processes on hydrogeophysical signals. 

Furthermore, these field observatories provide platforms to test and validate emerging 4D imaging techniques, evaluate their 

accuracy and potential, and establish the required space-time resolution depending on the targeted process. We thus argue that 

these fieldhydrogeological observatories provide a key step between theory and laboratory experiments on one side and 

practical field applications on the other side.    740 

Available datasets related to such sites often combine fixed geophysical and hydrogeological sensing systems for the short-

term monitoring of experimental campaigns, but also for the long-term monitoring of natural systems required to characterize 

physical and chemical heterogeneity and target hotspots, which cannot be easily accessed by classical observations. Relat ed 

studies often provide parametrized hydrological models for the interpretration.  

A non-exhaustive list of time-lapse hydrogeological and hydrogeophysical datasets available online, selected based on their 745 

on-line availability and relevance for illustrating this studspace-time resolutiony, is given in Table 1Table 2. As can be seen, 

4D data openly available are still scarce given the large variability of geological systems and applications . Because such 

extensive spatially and temporally resolved imaging can only be achieved on few sites, we argue that it is important to archive 

and share such datasets  in open databses. In particular, these data are critical to i) test and validate model hypotheses and 

predictive capabilities, ii) to develop appropriate inverse modeling approaches adapted to the high level of h eterogeneity of 750 

subsurface environments, iii) evaluate the added value of different imaging techniques in order to optimize the design of 

monitoring strategies on other sites. Table 1Table 2 will be made available through the website 
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https://hplus.ore.fr/en/database/4d-hydrogeology-dataset, which will be open to contributions to enrich the datasets  with new 

data. 

5 6 Concluding remarks 755 

In this paper, we have illustrated that advances  in our understanding of complex subsurface processes hinge on our ability to 

observe/image key parameters and state variables with the relevant spatial and temporal resolution.  Key applications where 

the coupling of spatial heterogeneity and temporal fluctuations might be essential include flow heterogeneity and dynamics, 

transport and reaction, unsaturated flow and transport, and surface-groundwater interactions. heat and solute transport, mixing 

and reaction processes occurring in the subsurface and at the interface between the subsurface and rivers. Identifying spatial 760 

and temporal fluctuations of groundwater flow is, thus, key to unravel important processes such as the transport of contaminant 

or the biodegradation of pollutants. In specific applications, data availability is always limited, due to budget, time and space 

constraints, and conceptual simplifications are required. In this context, field observatories linked to open database and 

techniques dedicated to the acquisition of spatially and temporally resolved data sets are essential to i) build appropriate models 

based on spatially and temporally resolved measurements and ii) test and validate relevant sensors and methodologies . 765 

 

 Although spatial heterogeneity and temporal variations by default influence all the processes occurring in the subsurface, a 

full 4D characterization coupled with a numerical model is not always necessary. For example, the management of water 

resources based on meteorological and production data using simple water balance approaches has been applied successfully 

in many contexts for decades. We may obtain reasonable estimates of groundwater volumes and fluxes from sparse 770 

hydrogeological data, so that a fine scale characterization of the heterogeneity might not be needed or working in steady -state 

conditions might be sufficient. Estimating an average recharge rate for by-passing the complex processes occurring in the 

vadose zone has been proved to be efficient in many contexts.  

Nevertheless, key applications where the coupling of spatial heterogeneity and temporal fluctuations might be  essential include 

heat and solute transport, mixing and reaction processes occurring in the subsurface and at the interface of rivers. Identifying 775 

spatial and temporal fluctuations of groundwater flow is, thus, key to unravel important processes such as the transport of 

contaminant or the biodegradation of pollutants. In specific applications, data availability is always limited, due to budget, 

time and space constraints, and conceptual simplifications are required. In this context, field observatories linked to open 

database and techniques dedicated to the acquisition of spatially and temporally resolved data sets are essential to buildlt 

appropriate models based on spatially and temporally resolved measurements. 780 

New technologies are advancing our ability to close observation gaps and image the subsurface heterogeneity and dynamics  

for processes of relevance in hydrogeology. The development of techniques and sensors directly sensitive to transient fluxes  

(finite-volume point dilution method, active-DTS), constitutes a major advance towards understanding the complex processes 

taking place in the subsurface, although further developments are still needed to combine these techniques with classical 

https://hplus.ore.fr/en/database/4d-hydrogeology-dataset
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geophysical methods to allow full 4D imaging. Similarly, the combination of classical salt and dye tracer with heat and 785 

dissolved gasses has the potential to further discriminate the different transport processes and to understand the exchanges 

between mobile and immobile water, both in porous and fractured media, but also for surface-subsurface interactions. Such 

data collected across scales and with dense networks could lead to a better description of the processes and the development 

of new mechanistic models as well as the proper definition of effective parameters and upscaling approaches to do away with 

the complexity at larger scales.  790 

Considering the spatial heterogeneity of the subsurface quickly requires the use of efficient and reliable numerical models. 

Including small-scale heterogeneity automatically calls for high-resolution models with refined grids leading to high if not 

unacceptable computation times. In addition, the uncertainty inherent to subsurface systems can only be properly dealt with 

by stochastic approaches that require many simulations to characterize the ensemble of possible outcomes. The current 

computational power available for the scientific community, and for practitioners in the industry, is not sufficient to 795 

systematically tackle groundwater reservoirs with their full 4D complexity.  

Simplifications, such as ignoring the small-scale heterogeneity or ignoring some transient processes, are always needed and 

can in many cases provide useful results for groundwater management. Nevertheless, the hydrogeological community is still 

often facing model predictive outcomes that are not consistent when validation data become available. Even though the 4D 

complexity is not always the cause, it can probably explain why some models have poor predictive capability. Ideally, 800 

hydrogeological conceptual models should initially consider the 4D complexity of the system, and only deviate from this 

rigorous description when there is no significant effect on the prediction or decision -making process. Such conceptual 

simplifications of hydrogeological systems should be based on strong experimental or numerical evidences, and should not 

constitute the default hypothesis because of lack of data or computational power. High-resolution space-time observations are 

needed for improve mechanistic models of hydrological processes and for their upscaling, as well as for the monitoring at the 805 

field-scale when significant risks for humans or the environment are associated. Although 4D data are less needed at larger 

scales for which averaging models are often satisfactory, we expect they will become more crucial at this scale as well in the 

future to tackle the challenges of sustainable development linked to water availability. 

 In that sense, the existence of large 4D data sets linked to field observatories and models can only  be beneficial for the 

community. Similarly, the more systematic use of Monte Carlo simulations , prediction-oriented approaches or global 810 

sensitivity analyses, although computationally expensive, can provide the necessary background information, at least for 

processes that can be properly characterized by mathematical models.  
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Figure 1: Illustration of the 4D nature of hydrogeological processes inaccessible from punctual data only: a) imaging subsurface 1645 
fluxes and their contribution to surface fluxes through the combination of borehole and surface imaging; b) monitoring water 

content and temperature fluctuations for quantifying preferential flows and heat transfer; c) characterizing tracer motion to 

elucidate transport processes and related parameters; d) analyzing and upscaling pore -scale signals produced by microscale reactive 

transport processes. 
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 1650 

Figure 2: A. Experimental evidence of helical flow at Darcy scale (top, modified from Ye et al., 2015): the black lines show simulated 

streamlines, the colored surfaces iso-pressure surfaces and the red dots are experimental sampling points. B. Experimental evidence 

of chaotic mixing at the pore scale in three-dimensional porous media (bottom modified from Heyman et al., 2020): the color field 

shows the concentration of a continuously injected fluorescent dye, the red line is the intersection of the plume with a 2D plane 

transverse to the mean flow, which shows the stretching and folding patterns that produce chaotic mixing, the grey spheres represent 1655 
selected grains in the bead pack that create the first successive folding of the plume.  
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Figure 3. Hydraulic conductivity fields (A-B) and related simulations (C-D) obtained by inversion of temperature (A-C) and solute 

tracer concentration data (B – D) from heat and solute tracer experiments (modified from Hoffmann et al., 2019, table 1Table 2.A.1). 
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 1660 

Figure 4. (A) Acquisition set-up used by Blazevic et al. (2020) to jointly monitor monitor the infiltration of water with ERT and 

seismic, lines that cross in the infiltration area. (B) Picture of the infiltration test, above a pit instrumented with TDR. Temporal 

evolution of relative change in properties inferred from (C) the ERT and (D) the seismic data along the North-South profile at 

different times (i.e., successive acquisitions) during the infiltration, respectively (modified after Blazevic et al., 2020, table 1Table 

2.B.1). One can see the preferential water flow from North to South, indicating lateral flow in the vadose zone. 1665 
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Figure 5. Conceptual depiction of the GW-SW interface and the nested controls of spatio-temporal patterns of exchange and solute 

turnover in the transition zone between GW and SW (using a river-aquifer system as an example). A: primary spatial controls 

defined by regional topography and geology, B: secondary spatial controls defined by local aquifer and stream bed geologic 1670 
heterogeneities as well as streambed morphology, C: temporal controls caused by river flow dynamics. Processes and management  

aspects that are affected by these exchange and turnover patterns are shown in light blue. 
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Figure 6: Adapted deep neural network (DNN) based  inversion scheme using a variational autoe cncoder (VAE) to represent 

complex geological structure in a latent space represented by sparse variable in which a stochastic gradient-descent (SGD) can be 1675 
applied to converge towards the a more geologically realistic solution modified from Lopez -Alvis et al., (2022). 
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Figure 7: Framework of Bayesian Evidential Learning applied to the prediction of heat storage in an aquifer from a tracer 

experiment monitored by geophysics. 1. A prior model of the spatial heterogeneity is defined and sampled. 2. Both the predictor 

(data set such as a tracer experiment) and the target (prediction of heat storage) are simulated. For the predictor, a petrophysical 1680 
transform is used to generate the corresponding geophysical data. 3. Dimension reduction techniques are applied to both data and 
prediction. 4. A statistical relationship between data and prediction is learned. 5. The posterior distribu tion of the prediction for 

field observed data is generated using the statistical relationship. 6. The posterior is back-transformed in the physical space (modified 

from Hermans et al., 2018). 
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 1685 

 

 

Figure 8: Indicative temporal and spatial scales of some processes in hydrogeology for which accurate mechanistic models are still 

lacking (in reddish colors), for which 4D monitoring might be crucial (blueish and greenish colors), and for which 4D might be 

unnecessary (greyish colors), see also Table 1. 1690 

 

 

 

 

 1695 

 

 



59 

 

Table 1. Classification of Non-exhaustive list of processes requiringaccording to their need for high resolution 4D dataspace-time 

imaging 

Type of processes Typical Scales Examples 

A. Processes for which high resolution 

space-time imaging is needed for 

developing mechanistic models that 

upscale these dynamics 

From the pore-scale to 

(deca)metric scale 

 

Seconds to hours or days  

- Subsurface velocity statistics and dynamics  

- Fracture dominated flow 

- Transport, mixing and reactive transport 

- Geophysical characterization of 

biogeochemical processes 

- Preferential infiltration and lateral 

unsaturated flow 

- Transport and reaction in the unsaturated 

zone 

- Conceptual models of interface exchanges 

- Upscaling mechanistic models  

B. Processes for which high resolution 

space-time monitoring is desirable or 

crucial in applications 

From metric scale to 

kilometric scale 

 

A few hours to years 

- Soil moisture characterization for precision 

agriculture 

- Monitoring of contaminations (natural 

attenuation, in-situ bioremediation, reactive 

barriers) 

- Thermal affected zone for energy storage 

- Storage of nuclear waste 

- Induced seismicity resulting from 

geothermal exploitation or fluid injections in 

the subsurface 

- Variability in groundwater-river exchanges 

C. Processes for which space-time 

characterization may not be critical 

From decametric scale to 

catchment and global scale 

 

Months to centuries 

- Water balance at the catchment scale 

- Average transit and residence time 

- Average recharge towards aquifer 

- Evaluation of the fate of contaminants when 

the risk for receptors is limited 

- River baseflow 

  1700 
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Table 12: Selection of datasets available on-line for multi-dimensional hydrogeological system characterization and monitoring. 
Datasets were selected based on their on line availability, their link with a dynamic component of the subsurface and their relevance 

for illustrating the paper. This table will be available on line  https://hplus.ore.fr/en/database/4d-hydrogeology-dataset with the 

possibility to contribute to enrich the datasets with new data. 

Dimensio

n 
Dataset Site  Link to dataset Publications  

A
+

 3
D

 +
 t

im
e

 

A.1 Time-lapse geophysical 

monitoring of heat 

transport: 2D time-lapse 

ERT cross-sections + 3D 

multiple nested wells data 

during heat tracer test 

Hermalle, 

Belgium 

https://hplus.ore.fr/en/associated-

sites/enigma/data-hermalle 

 

Hermans et al., 

(2015b, 2018) 

(Hoffmann et 

al. 2019) 

A.2 Time-lapse geophysical 

monitoring of hyporheic 

zone processes: 2D surface 

Electromagnetic Induction + 

2D time-lapse ERT (section) 

Theis site, 

Ohio, USA 

https://doi.org/10.4211/hs.69204f1ee49c41

76a8aab5f4832c7b76  

McGarr et al., 

(2021) 

B
. 

2
D

 +
 t

im
e

 

B.1 Time-lapse geophysical 

monitoring of water 

infiltration in the vadose 

zone : 2D time-lapse ERT 

and seismic cross-sections + 

TDR monitoring of water 

content during irrigation 

Ploemeur, 

France 

http://hplus.ore.fr/en/blazevic-et-al-2020-

water-data1 

Blazevic et al. 

(2020)  

                                                                 
1 with login and password provided upon request 

https://hplus.ore.fr/en/database/4d-hydrogeology-dataset
https://hplus.ore.fr/en/associated-sites/enigma/data-hermalle
https://hplus.ore.fr/en/associated-sites/enigma/data-hermalle
https://doi.org/10.4211/hs.69204f1ee49c4176a8aab5f4832c7b76
https://doi.org/10.4211/hs.69204f1ee49c4176a8aab5f4832c7b76
http://hplus.ore.fr/en/blazevic-et-al-2020-water-data
http://hplus.ore.fr/en/blazevic-et-al-2020-water-data
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B.2 GPR imaging of 

fracture opening during 

hydraulic test:  borehole and 

surface GPR+ optical 

televiewer + core logging 

during high pressure 

injection test 

Aspö hard 

rock 

laboratory, 

Sweden 

http://hplus.ore.fr/en/molron-et-al-2021-

eg-data1 

http://hplus.ore.fr/en/molron-et-al-2020-

eg-data1 

Molron et al. 

(2020, 2021) 

B.3 GPR imaging of  tracer 

transport in fractured 

media: borehole GPR + 

conductivity and 

fluorescence monitoring 

during tracer test  

Ploemeur, 

France 

http://hplus.ore.fr/en/shakas-et-al-2017-

grl-data1  

 

Shakas et al. 

(2017, 

2016) 

B.4 Use of Vp/Vs ratio to 

monitor subsurface water 

content: 2D time-lapse 

seismic cross-sections P-  

and  surface-wave  survey, 

SH-wave refraction 

acquisition, travel-time 

tomography 

Ploemeur, 

France 

http://hplus.ore.fr/en/pasquet-et-al-2015-

nsg-data  

Pasquet et al. 

(2015) 

Dangeard et al. 

(2018) 

B.5 Time-lapse geophysical 

monitoring of water 

infiltration in karstic 

environment: 

2D time-lapse ERT cross-

sections during rainfall 

events 

LSBB, 

France 

https://hplus.ore.fr/en/carriere-et-al-2022-

dib-data  

 

 

Carrière et al. 

(2015, 2022) 

 

http://hplus.ore.fr/en/molron-et-al-2021-eg-data
http://hplus.ore.fr/en/molron-et-al-2021-eg-data
http://hplus.ore.fr/en/molron-et-al-2020-eg-data
http://hplus.ore.fr/en/molron-et-al-2020-eg-data
http://hplus.ore.fr/en/shakas-et-al-2017-grl-data
http://hplus.ore.fr/en/shakas-et-al-2017-grl-data
http://hplus.ore.fr/en/pasquet-et-al-2015-nsg-data
http://hplus.ore.fr/en/pasquet-et-al-2015-nsg-data
https://hplus.ore.fr/en/carriere-et-al-2022-dib-data
https://hplus.ore.fr/en/carriere-et-al-2022-dib-data
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B.6 Time-lapse geophysical 

monitoring of seawater 

intrusion: 2D time-

lapse cross-hole ERT in 

coastal aquifer 

Argentona, 

Spain 

http://hplus.ore.fr/en/palacios-et-al-2020-

hess-data1 

Palacios et al. 

(2020) 

C
. 

1
D

 +
 t

im
e

 

C.1 Nuclear Magnetic 

resonance monitoring of 

water in a headwater 

catchments: Time-lapse 

magnetic resonance sounding 

Strengbach, 

France 

http://hplus.ore.fr/en/lesparre-et-al-2020-

joh-data 

Lesparre et al. 

(2020) 

C.2 Fiber optic DTS 

monitoring for estimating  

thermal conductivity and 

groundwater flux in porous  

media: fiber optic DTS and 

heat tracer experiments in a 

sand tank 

Poitiers, 

France 

 

http://hplus.ore.fr/en/simon-et-al-2020-

wrr-data 

Simon et al. 

(2020, 2022) 

C.3 Fiber-optic monitoring 

of heat transfer in 

fractured media: Fiber 

optic-DTS monitoring during 

thermal and solute tracer 

tests,  

Ploemeur, 

France  

http://hplus.ore.fr/en/delabernardie-et-al-

2018-wrr-data1 

De La Bernardi

e et al. (2018) 

C.4 Use of gravimeter time 

series for hydrological 

model calibration in a karst 

aquifer: 

Ten years gravimetry time 

series using iGrav 

superconducting gravimeter 

Larzac, 

France 

https://hplus.ore.fr/en/igrav-gravity-

dataset 

Fores et al. 

(2018, 2017) 

 

http://hplus.ore.fr/en/palacios-et-al-2020-hess-data
http://hplus.ore.fr/en/palacios-et-al-2020-hess-data
http://hplus.ore.fr/en/lesparre-et-al-2020-joh-data
http://hplus.ore.fr/en/lesparre-et-al-2020-joh-data
http://hplus.ore.fr/en/simon-et-al-2020-wrr-data
http://hplus.ore.fr/en/simon-et-al-2020-wrr-data
http://hplus.ore.fr/en/delabernardie-et-al-2018-wrr-data
http://hplus.ore.fr/en/delabernardie-et-al-2018-wrr-data
https://hplus.ore.fr/en/igrav-gravity-dataset
https://hplus.ore.fr/en/igrav-gravity-dataset
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C.5 Time-lapse absolute 

quantum gravity 

measurements to monitor 

water storage in kartic 

environments: gravimeter 

time series 

 

 

Larzac, 

France 

https://zenodo.org/record/4279110#.YdlFq

WCZOM8 

 (Cooke et al, 

2021) 

 

C.6 Self-potential 

monitoring of natural 

rainfall and saline tracer 

infiltrations at the 

agricultural test site of 

Voulund, Denmark (HOBE 

network): Self-potential, 

time series 

Voulund, 

Denmark 

https://data.mendeley.com/datasets/6r8898

657w/1 

(Hu et al., 

2020) 

C.7. Fiber-optic and 

borehole temperature 

monitoring of heat transfer 

in stream valleys: Fiber 

optic-DTS and borehole 

temperature monitoring of 

naturally occurring 

temperature fluctuations in 

groundwater upwelling 

areas in wetlands. 

Holtum 

stream 

lowlands, 

Denmark. 

https://water.columbia.edu/people/up

manu-lall 

https://hplus.ore.fr/en/associated-

sites/enigma/data-evi-1 

Tirado-Conde 

et al. (2019) 

D
. 

H
ig

h
 

r
e
so

lu
ti

o
n

 

im
a

g
in

g
 o

f 

h
e
te

r
o

g
e
n

ei
ty

 

c
o

m
b

in
e
d

 

w
it

h
 t

r
a

c
e
r
 

te
st

s 

D.1 3D Seismic imaging of 

a karstic aquifer combined 

with multiple cross 

Poitiers, 

France 

http://hplus.ore.fr/en/mari-et-al-2009-ogst-

data1 

https://hplus.ore.fr/en/poitiers/data-

poitiers1 

 

Mari et al. 

(2009) 

https://zenodo.org/record/4279110#.YdlFqWCZOM8
https://zenodo.org/record/4279110#.YdlFqWCZOM8
https://data.mendeley.com/datasets/6r8898657w/1
https://data.mendeley.com/datasets/6r8898657w/1
https://water.columbia.edu/people/upmanu-lall
https://water.columbia.edu/people/upmanu-lall
https://hplus.ore.fr/en/associated-sites/enigma/data-evi-1
https://hplus.ore.fr/en/associated-sites/enigma/data-evi-1
http://hplus.ore.fr/en/mari-et-al-2009-ogst-data
http://hplus.ore.fr/en/mari-et-al-2009-ogst-data
https://hplus.ore.fr/en/poitiers/data-poitiers
https://hplus.ore.fr/en/poitiers/data-poitiers
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borehole tracer tests: 3D 

seismic bloc and tracer tests 

D.2 GPR Imaging of sand 

layered aquifer with 

multiple 2D profiles and 

tracer tests: Crosshole GPR 

and tracer tests 

Krauthausen, 

Germany 

https://teodoor.icg.kfa-

juelich.de/geonetwork/aaps/search/?uuid=a

d404c9f-419a-4b14-b6e0-6ee9acd8f80e1 

Gueting et al. 

(2015, 2017) 

E
. 

M
u

lt
ip

le
 t

r
a

c
e
r
 e

x
p

e
ri

m
en

ts
 

E.1 solute and heat tracer 

tests for characterizing 

heat transfer in fractured 

granite: Convergent and 

push-pull tests with injection 

of hot water, cold water and 

salt 

Choutuppal, 

India 

http://hplus.ore.fr/en/hoffmann-et-al-2021-

groundwater-data 

Hoffmann et al. 

(2021b) 

E.2 solute and dissolved gas 

tracer tests for 

characterizing transport in 

Chalk: Convergent and 

push-pull tests with heat,  

helium, argon, xenon and 

uranine 

Mons, 

Belgium 

https://hplus.ore.fr/en/hoffmann-et-al-

2020-hydrogeology-of-the-chalk-data1 

http://hplus.ore.fr/en/hoffmann-et-al-2020-

grl-data1 

Hoffmann et al. 

(2020, 2021a) 

E.3 salt and dissolved 

oxygen tracer tests for 

characterizing transport 

and transit-times in a 

riparian zone: time-series of 

Selke River, 

Falkenstein, 

Germany 

https://www.hydroshare.org/resource/5

1b3933c4987427e94e51e3339237755/ 

 

https://www.hydroshare.org/resource/4

76a188d9f894a77a3ed404949680cab/ 

Nogueira et al. 

(2021a, 2021b) 

https://teodoor.icg.kfa-juelich.de/geonetwork/aaps/search/?uuid=ad404c9f-419a-4b14-b6e0-6ee9acd8f80e
https://teodoor.icg.kfa-juelich.de/geonetwork/aaps/search/?uuid=ad404c9f-419a-4b14-b6e0-6ee9acd8f80e
https://teodoor.icg.kfa-juelich.de/geonetwork/aaps/search/?uuid=ad404c9f-419a-4b14-b6e0-6ee9acd8f80e
https://teodoor.icg.kfa-juelich.de/geonetwork/aaps/search/?uuid=ad404c9f-419a-4b14-b6e0-6ee9acd8f80e
http://hplus.ore.fr/en/hoffmann-et-al-2021-groundwater-data
http://hplus.ore.fr/en/hoffmann-et-al-2021-groundwater-data
https://hplus.ore.fr/en/hoffmann-et-al-2020-hydrogeology-of-the-chalk-data
https://hplus.ore.fr/en/hoffmann-et-al-2020-hydrogeology-of-the-chalk-data
http://hplus.ore.fr/en/hoffmann-et-al-2020-grl-data
http://hplus.ore.fr/en/hoffmann-et-al-2020-grl-data
https://www.hydroshare.org/resource/51b3933c4987427e94e51e3339237755/
https://www.hydroshare.org/resource/51b3933c4987427e94e51e3339237755/
https://www.hydroshare.org/resource/476a188d9f894a77a3ed404949680cab/
https://www.hydroshare.org/resource/476a188d9f894a77a3ed404949680cab/
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EC, dissolved oxygen, and 

water temperature and stage  
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