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Abstract. Droughts cause enormous ecological, economical and societal damage, and are already undergoing changes due to

anthropogenic climate change. The issue of defining and quantifying droughts has long been a substantial source of uncertainty

in understanding observed and projected trends. Atmospheric-based drought indicators, such as the Standardised Precipitation

Index (SPI) and the Standardised Precipitation Evapotranspiration Index (SPEI), are often used to quantify drought character-

istics and their changes, sometimes as the sole metric representing drought. This study presents a detailed systematic analysis5

of SPI- and SPEI-based drought projections and their differences for Great Britain, derived from the most recent set of regional

climate projections for the UK. We show that the choice of drought indicator has a decisive influence on the resulting projected

changes in drought frequency, extent, duration and seasonality by 2 ◦C and 4 ◦C above pre-industrial levels. The increases

projected in drought frequency and extent are far greater based on the SPEI than based on the SPI. Importantly, compared

to droughts of all intensities, isolated extreme droughts are projected to increase far more in frequency and extent, and show10

more pronounced changes in the distribution of their event durations. Further, projected intensification of the seasonal cycle

is reflected in an increasing occurrence of years with (extremely) dry summers combined with wetter than average winters.

Increasing summer droughts also form the main contribution to increases in annual droughts, especially using SPEI. These

results show that the choice of atmospheric drought index strongly influences the drought characteristics inferred from climate

change projections, comparable to the uncertainty from the climate model parameters or the warming level, and therefore po-15

tential users of these indices should carefully consider the importance of potential evapotranspiration in their intended context.

The stark differences between SPI- and SPEI-based projections highlight the need to better understand the interplay between

increasing atmospheric evaporative demand, moisture availability and drought impacts under a changing climate. The region-

dependent projected changes in drought characteristics by two warming levels have important implications for adaptation

efforts in GB, and further stress the need for rapid mitigation.20

1 Introduction

Anthropogenic climate change is already affecting the frequency and intensity of droughts on all continents, through increases

in atmospheric evaporative demand and in some regions, also through precipitation (Seneviratne et al., 2021). How much larger

1



these changes become depends on current and future emissions, and understanding the impact of climate change on droughts

is crucial importance given the serious ecological and socio-economic damage these events can inflict. However, quantitatively25

assessing changes to droughts is complicated by the difficulty of defining and quantifying droughts (Yevjevich, 1967). Distilled

to its most simple form, a drought can be defined as a deficit of water relative to normal conditions (Sheffield et al., 2012). As

this generalised definition is not very helpful for assessing drought hazards (Lloyd-Hughes, 2014), different types of drought

are typically recognised, based on the context and the moisture quantity in which the deficit takes place (Wilhite and Glantz,

1985). A meteorological drought, indicating a period of below-normal precipitation, can develop into a soil moisture drought,30

also called agricultural drought due to its relevance for crop growth. These conditions can develop into low flows in rivers or

low water levels in lakes, called hydrological drought (of which groundwater drought can be considered a sub-type).

Drought indices, of which a large number can be found in literature (e.g. Keyantash and Dracup, 2002), are frequently

used to quantify different types of drought conditions. While indicators exist for variables relevant to different drought types,

drought indices that only rely on atmospheric data are a popular choice due to (historical) data availability and due to their35

ease of use (they do not require the deployment of an impact model, such as a hydrological model). The Drought Severity

Index (DSI; Phillips and McGregor, 1998), for example, uses precipitation only and has been used in previous studies on

the impact of climate change on drought in the UK (e.g. Blenkinsop and Fowler, 2007; Rahiz and New, 2013; Hanlon et al.,

2021). One of the most widely used drought indicators is the Standardised Precipitation Index or SPI (McKee et al., 1993),

a precipitation-based index recommended by the World Meteorological Organisation (Svoboda et al., 2016). It is one of the40

indicators shown in the UK Water Resources Portal (https://eip.ceh.ac.uk/hydrology/water-resources), and has been used in

earlier work on drought under climate change in the UK (e.g. Vidal and Wade, 2009; Arnell and Freeman, 2021). Since the

introduction of the SPI, other standardised indicators have been developed that apply the standardisation principle of SPI to

different (combinations of) drought-relevant variables. This includes the Standardised Precipitation Evapotranspiration Index

(SPEI; Vicente-Serrano et al., 2009), which gives the anomaly in a simple climatic water balance, computed as the difference45

between precipitation and potential evapotranspiration (PET). This indicator was developed to be sensitive to the effect of

global warming induced increases in atmospheric evaporative demand (AED), the potential of the atmosphere to evaporate

water (depending on radiation, temperature, humidity and wind speed; Robinson et al., 2017). High AED can aggravate the

effects of sustained precipitation deficits and accelerate drought development (e.g. Manning et al., 2018; Bloomfield et al.,

2019; Pendergrass et al., 2020). Contrary to the SPI, SPEI is thus not purely an indicator of meteorological drought, but50

instead an atmospheric-based index that is "mostly related to the actual water balance in humid regions", reflects "an upper

bound for overall water-balance deficits" during dry periods and in water-limited regions, and is also linked to vegetation stress

(Seneviratne et al., 2021). These atmospheric-based indicators are widely used in climate change impact studies, although

the consequences of their implicit assumptions with regards to evaporative stress are not always expressly considered. Along

similar lines, a study by Satoh et al. (2021) found that, if the drought type is considered as a source of uncertainty for projections55

of future droughts, it constitutes a major one in many parts of the world.

This study focuses on Great Britain (GB) to compare projected drought changes as quantified using the SPI and SPEI.

Despite not typically being thought of as a particularly drought-prone area, GB has experienced several droughts in the past
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which lead to widespread impacts, including impacts on ecosystems (including algal blooms and fish kills), agriculture and

domestic water supply (Rodda and March, 2011; Kendon et al., 2013; Turner et al., 2018). The impacts of climate change on60

future droughts in the UK is therefore a key concern for stakeholders including water managers and farmers (e.g. Watts et al.,

2015). In this study, we aim to answer the following questions.

1. Based on atmospheric-based standardised drought indices, how are drought and extreme drought frequency, duration,

extent and seasonal timing expected to change under different global warming levels?

2. What is the potential contribution of changes in PET and precipitation to the changes in these drought characteristics?65

3. How sensitive are the quantified projected changes in drought characteristics to the choice of atmosphere-based drought

indicator, and how does it compare to other sources of uncertainty?

To this end, we identify and characterise droughts and their projected changes in the most recent ensemble of regional climate

projections for GB, using both SPI and SPEI (hereafter, SI for standardised indicators). We compare projected drought char-

acteristics for both indices, to identify the potential role of changing PET. Although previous studies have compared historical70

and projected changes using these SI in different regions of the world (e.g. Stagge et al., 2017; Chiang et al., 2021), this study

adds a new level of detail by an in-depth analysis of different drought characteristics and attention to within-GB regional dif-

ferences, and is the first to use UKCP18 with these SI to assess projected changes in drought characteristics for GB. This helps

further understand the potential future changes in the nature of GB droughts depending on global warming, and demonstrate

the importance of the drought index choice for climate change impact studies and stakeholder usage.75

2 Data

2.1 Observations

Datasets of PET and precipitation observations were needed for evaluation, bias correction of the UKCP18-RCM, calibration of

SI and calculation of historical SI. The CHESS-PE (Robinson et al., 2020) and HadUK-Grid (Hollis et al., 2019) datasets were

used for PET and precipitation respectively, using the following time periods: 1961-2010 for the SI calibration (see Section80

3.4), 1981-2010 for the bias correction, and 1981-2005 for comparison to the reference period UKCP18-data in this study. Both

datasets were first regridded from their native 1km resolution to the 12km resolution grid of the UKCP18-RCM, by averaging

of the 1km grid cells falling in each 12km cell. A land fraction was obtained based on the proportion of 1km grid cells with

observations on land within each 12km grid cell, and used to exclude grid cells with a land fraction lower than 50% from the

analysis. As no observation-based PET was available for Northern Ireland in CHESS-PE, this region was excluded from our85

study. The method used to obtain PET in the production of CHESS-PE is an implementation of Penman-Monteith PET for

a reference grass crop (Allen et al., 1998), in which the calculation of vapour pressure deficit from temperature is based on

Richards (1971) (Robinson et al., 2017).
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2.2 The UKCP18 regional climate projections

UKCP18 is the most recent set of national climate projections for the UK and has been produced by the Met Office Hadley90

Centre (Murphy et al., 2018). This study makes use of its third strand, produced with the aim of providing a range of storylines

to support adaptation efforts in the UK: a perturbed physics ensemble (PPE) of regional climate projections (UKCP18-RCM;

Met Office Hadley Centre, 2018), available from the Centre for Environmental Data Analysis. This ensemble of 12 simula-

tions was constructed by dynamically downscaling global HadGEM3-GC3.05 simulations through one-way nesting with the

same model at finer resolution. At both resolutions, HadGEM3-GC3.05 was perturbed in 47 parameters spread over model95

representations of convection, gravity wave drag, boundary layer, cloud, large-scale precipitation, aerosols, and land surface

interactions (Murphy et al., 2018). The ensemble thus does not sample GCM-RCM structural uncertainty, only parameter un-

certainty, and was designed to cover a range of possible futures. While multiple GCM-RCM structures would add another

interesting dimension to the study, expanding the ensemble was outside the scope and capacity of the study. The horizontal

resolution of the RCM simulations is 12km over GB (available on OSGB36 grid projection). As droughts tend to be more100

spread out in space and time, we judged that the 12km daily resolution of the UKCP18 RCM pose a better trade-off between

practicality and spatiotemporal detail than the higher-resolution convective permitting simulations for this study. Simulations

of different variables are available from 1 December 1980 to 30 November 2080 on a daily time step (for practical reasons,

December 1980 was left out of our analysis).

3 Methods105

3.1 Calculation of potential evapotranspiration

While AED increases with rising temperatures, changes in humidity, net radiation and wind speed can also play a signifi-

cant role. Therefore, we represented AED by PET calculated using Penman-Monteith, which includes the effect of all these

variables. This method leads to a more robust correlation between the resulting SPEI and soil moisture under a warming

climate compared to using the temperature-only Thornthwaite method (Feng et al., 2017) and is recommended over sim-110

pler temperature-based methods (e.g. Dewes et al., 2017), however it is still subject to significant limitations (Milly and

Dunne, 2016; Greve et al., 2019). The calculation of PET for the UKCP18-RCM follows the same variant of the Penman-

Monteith method used by Robinson et al. (2017), to ensure consistency with CHESS-PE. It uses these variables simulated by

the UKCP18-RCM ensemble: specific humidity, pressure at sea level, net downwelling longwave radiation, net downwelling

shortwave radiation, wind speed at 10m and daily average surface air temperature. PET was set to zero wherever a calculated115

value was negative (which occurred for less than 1% of the values overall and, when split by ensemble member and month,

also less than 1% for all cases except December in ensemble member 1 with 1.2% of negative values).
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3.1.1 Detrending temperature

To investigate the influence of the projected temperature trend on changes in SPEI-based droughts and the deviation of SPEI

from SPI, we also computed an alternate version of SPEI projections (SPEIdtr−tas) using a detrended version of UKCP18-120

RCM temperature. For this, a linear trend was fitted to, and subsequently subtracted from, the simulated temperature time series

for each grid cell and month separately. This detrended temperature dataset was used to compute PET as described above,

resulting in a PETdtr−tas variable in which any trend left is due to trends in other variables (specific humidity, radiation, wind

speed and pressure) or in interactions between variables. As these variables are closely intertwined in the climate models, this

unavoidably introduces a physical discrepancy between temperature and the other variables used in the PET calculation. This125

is taken into account in the interpretation.

3.2 Bias adjustment

As comparison to observations revealed significant bias in the simulation of both precipitation and PET (see Figs. S1 and S2),

these variables were statistically post-processed using the ISIMIP3b change preserving bias adjustment method (Lange, 2019)

version 2.4.1 (Lange, 2020). The biases we observed for different quantiles were not equal to the biases observed in the mean,130

which is why we selected a bias adjustment method that took this into account. Similarly, biases also varied between months

and locations, so the bias adjustment needed to be specific for each month and grid cell. The ISIMIP3b bias adjustment method

is based on quantile mapping, but also preserves projected changes in the variables being corrected, and enables separate

adjustment of the frequency of dry days – a desirable feature for drought research. For precipitation, the gamma distribution and

mixed additive/multiplicative per-quantile change preservation were used. For PET and PETdtr−tas, the Weibull distribution,135

detrending and mixed additive/multiplicative per-quantile change preservation were used. A dry threshold of 0.1 mm day-1

was selected below which there is considered to be no precipitation or PET. In what follows, UKCP18-RCM indicates the bias

adjusted data.

3.3 Time slice selection

The UKCP18-RCM simulations used in this study are available for the RCP8.5 emissions scenario, and the models used140

have high global climate sensitivity compared to the CMIP5-ensemble and the probabilistic projections (Murphy et al., 2018).

Therefore, to assess the impact of climate change on drought characteristics in scenarios with lower climate sensitivity and more

mitigation (resulting in lower warming levels above pre-industrial times), a time slice approach was implemented to investigate

changes at two specific global mean warming levels. A common fixed reference period (1981-2005) was used for all ensemble

members to compare to these future time slices and observations. For each ensemble member, a time slice was selected from145

12 years before to 12 years after the year in which the centred 25-year rolling mean global temperature exceeds + 2 ◦C and

+ 4 ◦C above pre-industrial levels (defined as 1850-1900) in the driving global model (see Table 2 in Gohar et al. (2018)).

As opposed to the fixed reference period, the time periods used to represent different levels of warming are thus different for

each ensemble member, depending on when their global driving models reach +2 and +4 ◦C above pre-industrial levels. Both
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warming levels are reached in all 12 ensemble members, however for ensemble member 8 the time slice representing +4 ◦C is150

cut short 2 years by the end of the simulated period.

This approach would result in an accurate assessment of changes in GB drought projected at these warming levels if these

changes would scale directly with global temperature increase (independent of the speed of change), and if the regional model

has the same climate sensitivity as its driving global model. Neither of these requirements are likely to be fully met. UKCP18-

RCM projects slightly weaker UK temperature responses towards the end of the simulated period than the driving global155

simulations (Fig. 5.2 in Murphy et al. (2018)). Also, midlatitude atmospheric circulation patterns in the selected time slices

(which influence UK weather and therefore drought events) may respond to a higher level of radiative forcing than the global

temperature increase levels used to select them (Ceppi et al., 2018). Nevertheless, the applied time slice approach is a reasonable

approximation, and frequently used for investigating impacts at different levels of global warming.

3.4 Drought and aridity indicators160

While drought refers to a period of below-normal water availability for a given context, aridity refers to the climatic average

moisture availability (Dai, 2011). This is included in this study in order to help establish an understanding of the mean climatic

changes projected for precipitation and PET in UKCP18-RCM, before proceeding to assessing projected changes in drought

characteristics. To this end, the aridity index (AI) was calculated as the annual average ratio of precipitation to PET (e.g. UNEP,

1992; Feng and Fu, 2013; Greve et al., 2019), which is more intuitive to interpret than the standardised indicators. For time165

slices of 25 years, this gives:

AI =
1

25

25∑
y=1

Precipitationy
PETy

The drought indices compared in this study are SPI and SPEI. Both are widely used in the literature to quantify droughts,

and they imply contrasting assumptions of the surface water balance: for SPI, no evaporation takes place, while for SPEI,

evaporation takes place and is not limited by moisture availability. Multi-scalar standardised climate indicators such as these170

allow for comparison of unusually dry (or wet) periods across locations with different climates. The SI are calculated as follows.

First, the time series of a variable D (precipitation for SPI, precipitation minus PET for SPEI) is aggregated using a specified

accumulation period length of n months, such that the value for each month in the resulting time series is the average of that

month and the n preceding months. Then, a suitable distribution FD for that variable is fit to the aggregated time series, for

each month and location. The SI value for an accumulation period length n at a time step t is then defined as follows:175

SInt = φ−1(FD(Dn,t))

with Dn,t indicating D accumulated over the n time steps preceding t (inclusive), and φ the standard normal distribution.

Monthly values of SPI and SPEI are calculated using n of 3 to 24 months. Following recommendations provided by Stagge

et al. (2015b), the two-parameter gamma distribution was used for calculating SPI and the generalised extreme value (GEV)

distribution was used for calculating SPEI. For shorter SPI accumulation periods (1-3 months) and further into the future in180
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the UKCP18-RCM simulations (with drying summers), there may be occurrences of zero accumulated precipitation for grid

cells in drier regions. To take this possibility into account, the SPI values corresponding to the probability of zero accumulated

precipitation were calculated separately following the method proposed by Stagge et al. (2015b), which avoids the mean SPI

becoming larger than 0. A 50-year period (1961-2010) of observation-based data (regridded HadUK-Grid and CHESS-PE)

was used to fit the distributions for the SPI and SPEI calculation. This observation-based calibration was also applied to the185

UKCP18-RCM data to allow a direct comparison of the results between climate model ensemble members and observations.

This is appropriate because the bias adjustment brings the distributions of the reference period climate model data close to the

observed distributions.

3.5 Drought characteristics

In order to compare changes in overall drought conditions to changes in more extremely dry conditions, we consider a category190

of "all/total drought" covering all SI of -1 and lower, and a category of "extreme" drought covering SI values of -2 and

lower. These threshold values are a subset of the classification originally introduced by McKee et al. (1993), which has been

extensively used in studies using standardised drought indicators. As in Stagge et al. (2015b), SI values were capped at -3 to

limit the uncertainty induced by extrapolating into the very extreme tails of a distribution fitted to the relatively short time

series available (see Section 3.4).195

Given the importance of both space (e.g. extent, spatial connectivity, local vulnerability) and time (e.g. seasonal timing,

duration) for drought impacts, the spatiotemporal characterisation of droughts is an important element of any drought study. It

is approached here in three ways. First, the frequency (fraction of the time in drought) of dry and extremely dry conditions was

computed for each individual grid cell of GB separately, for each ensemble member and the observations. Second, the drought

area extent was quantified as the fraction of the total GB area simultaneously in (extreme) drought. We then compute the200

frequency with which different drought extents are exceeded (fraction of time). Third, regionally averaged SI values were used

to investigate drought seasonality and duration. For computing these regional averages, we used the UKCP18 administrative

regions (ukcp18 data, 2021) shown in Fig. 1, as they represented a decent trade-off between the sizes of the regions, number

of regions to compare and relevant differences in climatology, projected changes and societal relevance. For investigating the

seasonal contributions to longer-term deficits (seasonality), we compared the 6-month aggregated regionally averaged SI (SI6)205

for March and September for each year to represent the winter and summer contributions to that year’s overall dryness (SI12).

Durations of individual drought events are defined as periods of continuously negative regionally averaged SI values reaching

a threshold value of -1 or lower, following the theory of runs (Yevjevich, 1967). Each event is then assigned to the time slice

(reference period, +2 ◦C or +4 ◦C) that contains its central time step, and the number of occurrences of droughts with different

duration categories is assessed. Extreme droughts are identified as events that have a peak (i.e. minimum) SI value below -2.210

To assess changes in drought duration and the occurrence of multi-year droughts, SI computed with an aggregation period

of 6 months was used. This sub-yearly aggregation period is frequently used and linked to impacts (e.g. Stagge et al., 2017;

Parsons et al., 2019), and ensures any resulting drought durations of a year or longer were sustained throughout all seasons. For
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Figure 1. Map of administrative UKCP18 regions used for regional drought characterisation. Regions for which results are shown in the

main text are highlighted in yellow.

seasonality, duration as well as the seasonal cycles of precipitation and PET, four regions are shown in the main text to represent

the main results found across all regions, while results for the other regions are included in the Supplementary materials.215

4 Projected climatic changes

Regionally averaged seasonal cycles of precipitation (blue) and PET (yellow) are shown in Fig. 2 for North Scotland, North

East England, South West England and East of England, and in Fig. S3 for all regions. The four regions shown in Fig. 2 were

selected to represent the spread of climatic regions and projected changes in climate and drought indicators of all 12 regions,

and will be used throughout this paper to discuss the spatial variability in projected changes. The observations plotted in the220

reference period column show a very close match with the UKCP18-RCM ensemble, which is the result of successful bias

adjustment for each season. In all regions, existing seasonal patterns become more pronounced under a warming climate, and

in most regions there is a shift in rainfall seasonality delaying the driest months (clearly visible in South West England). In

summer, especially in the South and in the East, the combination of increasing PET and decreasing precipitation lead to an

increasing gap between the two, and an increasing period where atmospheric demand for moisture exceeds supply (light yellow225
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Figure 2. Seasonal cycle of precipitation (P; blue lines) and potential evapotranspiration (PET; orange lines) for the 12 bias-adjusted

UKCP18-RCM ensemble members, for four selected regions. The different lines represent different ensemble members, while the obser-

vations are plotted in the first column in darker, dashed lines. See Fig. S3 seasonal cycles for all 13 regions.

area). In some areas (e.g. North Scotland), the reference period precipitation exceeds PET year-round (light blue area), but a

warming climate causes this gap to diminish or even crossed in late spring to summer. The ensemble spread in the simulated

changes of precipitation, which is driven more by dynamical processes, is greater than that of PET. However, the ensemble

broadly agrees on the pattern of projected changes.

Considering the annual average ratio of precipitation and PET, parts of GB are projected to become more arid in most230

ensemble members (Fig. 3). This is mostly the case in the (south-) east and the English Midlands, where in the reference period

the AI was already closer to 1 (annual PET roughly equal to annual precipitation), and PET starts to exceed precipitation on an

annual basis under a +2 ◦C warming scenario. While the ensemble agrees very well on the spatial patterns of aridity changes,

there is significant ensemble spread in the magnitude of change. In the +4 ◦C scenario, widespread AI decreases in the (south-)

east and the Midlands are projected by all ensemble members, but only three ensemble members simulate small isolated areas235

in the South East crossing the threshold from humid to a dry sub-humid climate (aridity index < 0.65). The strong similarity of

the reference period simulations to the observations (top row maps) is showing successful bias adjustment of daily precipitation

and PET in the ratio of annual averages.
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Figure 3. Aridity index (average annual P/PE) for the 12 bias-adjusted UKCP18-RCM ensemble members. The contours shown in black are

powers of 2 and the level of 0.65 (below which a climate is classified as dry sub-humid).

5 Projected changes in drought characteristics

5.1 Drought frequency240

Figure 4 shows the spatially averaged frequency of dry and extremely dry conditions based on SPI6 and SPEI6 for three time

slices representing different warming levels. The scatter plots show the relationship between GB-averaged drought frequencies

using SPI6 and SPEI6, as projected at different GMWL in the 12 ensemble members and the observations. Considering a GB

average, the UKCP18-RCM ensemble generally projects an increased frequency of moderate to extreme drought conditions

with each warming level using both indicators. In the scatter plots, all points move upwards (more frequent SPEI6 events) with245

increasing global warming level, and most move to the right (more frequent SPI6 events), except for a few ensemble members

for +2 ◦C. However, the GB-averaged drought frequency increases and future projections are, for each ensemble member and

warming level, greater when quantified using SPEI6 than using SPI6. For those 3 ensemble members that project a slight

decrease in total drought frequency based on SPI6 for +2 ◦C, including PET in the drought indicator (SPEI6) changes the sign

of the projected change. To compare the differences between SI and GMWL, the SPEI6-based GB-average drought frequency250

projected at +2 ◦C is equal to or greater than the SPI6-based frequency projected at +4 ◦C for at least half the ensemble

members in each drought category. For drought frequency quantified with SPI6, by +4 ◦C, the projected increases range from

a few percent points to more than double the reference frequency, and between two- and eightfold for the extreme droughts.

At the same high warming level, the ensemble projects SPEI6-based drought almost half of the time (ensemble average: 46%),

about half of which (ensemble average: 23%) are classed as extremely dry conditions. The ensemble spread (scatter) of future255

projections is substantial and grows with increasing warming level. Importantly, the projected relative increase for extreme

drought frequency is far greater than for the total drought frequency. By +4 ◦C, the ensemble mean spatially averaged total

drought frequency increases by a factor 1.7 for SPI6 and by a factor 3.1 for SPEI. For extreme droughts, however, these

multiplication factors are 3.7 and 11.5, respectively. This disproportionate increase in the extreme drought category, which
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Figure 4. Spatially averaged projections of drought frequency, expressed as the fraction of months SI is below the threshold, for each

ensemble member (rows) and the ensemble mean (bottom row), for three time slices (subcolumns) that correspond to the reference period and

two different levels of global mean surface warming compared to pre-industrial levels, using both drought indices (columns). Frequencies

are shown for all droughts (left), extreme droughts (middle), and as scatter plots (one point per ensemble member) comparing SPI6- and

SPEI6-based frequencies of all droughts (top-right) and of extreme droughts (bottom-right). Spatial averages are across the whole of Great

Britain.

shows in projections based on both indicators, has potentially important implications for drought impacts, such as stakeholders260

or ecosystems vulnerable only to extremely dry conditions (e.g. Parsons et al., 2019).

The maps in Fig. 5 show the spatial patterns of these drought frequency changes (for the ensemble average) and their

differences between SPI6 and SPEI6. For the reference period, the ensemble-averaged GB mean total and extreme drought

frequencies are 0.15 and 0.023 respectively, which are close to the theoretically expected values of 0.158 and 0.022. There

is some variation around these values in space (Fig. 5) and among ensemble members (Fig. 4), which is not unexpected.265

Imperfections of the distribution fits in the calculation of SPI and SPEI, differences between the climates of the 1961-2010 and

1981-2005 periods (black markers in Fig. 4), any model errors remaining after bias adjustment and internal climate variability

can all result in differences between the simulated drought frequency in the reference period and the theoretical frequencies

that would be expected for the calibration data.

There is significant regional variability in projected drought frequency across GB inferred with either drought indicator,270

especially for extreme drought (Fig. 5). Both SI show a similar pattern, with the mildest increases or even decreases along the

west coast, most notably in north-west Scotland. However, the areas projected to experience the greatest increase in frequency

of dry conditions differ between the drought indices. In the SPI6-based projections, the greatest increases are projected in the
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rain shadows of highly elevated areas. For SPEI6, the largest increases are seen in these areas plus a larger area covering most

of England (except near the west coast), including the East Midlands and East England where SPEI6-based drought conditions275

are projected around 60% of the time under +4 ◦C. These are already the least humid regions of GB (Fig. 3). For both indices,

these regional patterns of change are amplified when looking at the higher warming level and when isolating extreme droughts.

The bottom row of Fig. 5 shows SPEI6dtr-tas, which is the SPEI6 using PET calculated with detrended temperature simula-

tions. With the projected temperature increase removed, SPEI6 shows only minor changes in drought frequency. Furthermore,

at +4 ◦C, the projected drought frequencies using SPEI6dtr-tas are much less than those found for the precipitation-only SPI6. On280

the face of it, that suggests non-temperature influences may reduce PET (offsetting some of the temperature-driven increase)

and that PET calculation methods which only rely on temperature (e.g. Thornthwaite) may overestimate drought risk based

on the UKCP18-RCM simulations. However, the effects of physically inter-dependent variables (especially temperature and

humidity) cannot be truly separated. Crucially, here we use simulated specific, not relative, humidity to compute PET (Robin-

son et al., 2017). Whereas specific humidity is projected to increase over GB, relative humidity is projected to decrease as the285

saturated humidity increases faster with rising temperatures (not shown), contributing to the increased future PET. However, by

detrending the temperature, the saturation humidity level computed in the PET calculation was reduced for future simulations,

which, combined with the unadjusted specific humidity projections, resulted in artificially increased relative humidity and thus

a decreased vapour pressure deficit term. The temperature effect shown by the SPEI6 - SPEI6dtr-tas difference (Fig. 5) therefore

implies a far greater effect of temperature than if a PET formulation using the relative humidity projections would have been290

used (Fu and Feng, 2014; Robinson et al., 2017).

5.2 Spatial extent

Figure 6 and Fig. 7 show the observed and simulated extent-frequency curves of drought conditions for SPI and SPEI re-

spectively, for different global warming levels (i.e. time slices) and using different aggregation levels. Moving upwards in this

plot means an increase in the frequency of drought conditions with at least the spatial extent given by the horizontal axis (not295

necessarily in the same locations). Moving to the right in this plot means an increase in the spatial extent of drought conditions

that is exceeded with a particular frequency (given by the vertical axis).

The relationship between frequency and drought extent for the reference period simulations generally match well with

the observations. However, as the aggregation period increases, the frequencies of smaller drought extents are increasingly

overestimated in the simulations, while the frequencies of larger drought extents are on average well represented (SPI) or300

become slightly underestimated (primarily SPEI), especially for the 12 and 24 month aggregation periods. The ensemble

spread for the reference period simulations also increases with the aggregation level, enveloping the observations in all cases.

The bias adjustment was done on the distributions of daily values of individual grid cells, not considering the spatial coherence

in longer-term statistics, and without considering correlations between precipitation and PET. These might be the reasons for

these minor mismatches.305

For a given drought extent, the relative change in frequency as global temperature increases is far greater for extreme

droughts than for all droughts (for both SPI and SPEI). For instance, based on SPI6, the frequency that at least 20% of GB
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Figure 5. Ensemble averaged projected frequency of all (left) and extreme (right) dry conditions, expressed as the fraction of time SI falls

below -1 or -2 respectively. Top: SPI6, middle: SPEI6 with projected temperature changes, bottom: SPEI6 with detrended temperature.

simultaneously experiences a drought is 26% currently, and 44% with +4 ◦C of warming (mean of the ensemble). In contrast,

SPI6-based extreme droughts covering 20% GB have a frequency of occurrence currently less than 4% of the time, but this

frequency is projected to jump to 16% for a +4 ◦C warming (mean of the ensemble). Climate change-induced changes in310

the relationship between frequency and extent of droughts depend strongly on the drought metric used. SPI and SPEI both

show increasing frequency of droughts of most extents, however the increase is much greater for SPEI. Moreover, different

frequency changes are projected for droughts with different extents, e.g. greater changes for smaller drought extents using SPI.

Using longer aggregation periods, the future projections move toward higher frequencies and extents, the ensemble spread

increases, the difference between GMWL grows, and differences between drought indicators become more pronounced. For315

the extreme drought class, the maximum extent is projected to increase greatly with global warming, based on both SPI and

SPEI. The ensemble mean maximum SPI6 area fraction in drought increases from just over 51.2% (an underestimation of

observation-based maximum extent) to just over 71.1% by +2 ◦C and to 80.0% by +4 ◦C. For SPEI6, the ensemble-averaged

simulated maximum extent and the overall frequency-extent relationship matches observations very closely, and the maximum

extent is projected to increase from just over 51.8% to 86.5% by +2 ◦C, and to 95.4% (i.e. almost all of GB simultaneously320

in extreme drought) at +4 ◦C. The relative increase of maximum extreme drought extent projected due to global warming is
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Figure 6. Extent-frequency curves for all (left) and extreme (right) drought extents based on SPI at different aggregation levels (subplots).

The horizontal axis gives the drought extent (as fraction of GB area) that is reached or exceeded with a frequency given by the vertical axis.

greater for longer aggregation periods, for both indicators. Finally, the drought-free frequency, given by the difference between

100% and the intercept on the y-axis, is generally projected to decrease under climate change, again far more strongly for the

extreme drought category and for SPEI-based drought.

5.3 Seasonal timing325

Figure 8 shows the contributions that summer and winter deficits make to annual droughts according to SPI and SPEI for

three global warming levels for the selected GB regions. Results for the other regions can be found in Figs. S4 and S5. The

horizontal and vertical axis show SI6 for March and September respectively, indicating how dry or wet the hydrological winter

and summer were in a given year. The September SI12, indicating the dryness of the corresponding hydrological year, is

represented by the colours of the dots. For example, a grey dot with coordinates (1.1, -2.2) represents a normal annual value330

consisting of a wet winter and an extremely dry summer.

The increasing summer dryness is reflected by a general downwards shift of the point cloud, while a rightward shift reflects

wetter winters in some regions. Increases in the proportion of dry years are projected in most regions and can be attributed

mainly to the summers of those dry years, especially for SPEI-based droughts. In several regions, such as the East of England,

most summers in the ensemble are classified as dry by +4 ◦C, leading to their respective years to be classified as dry in about335

half (SPI +4 ◦C and SPEI +2 ◦) or almost all (SPEI +4 ◦C) cases. With increasing global warming levels, a growing number
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Figure 7. As Fig. 6 but for SPEI rather than SPI

of years consist of a wet winter followed by a dry summer (bottom right corner beyond the (1, -1) coordinate), which is rare

in the reference period simulations. In South West England, this even becomes the norm under +4 ◦C in these simulations

(grey centroid dots). Using the SPEI, in all except the Scottish regions, an increasing number of these "contrasting" years is

categorised as dry (or even extremely dry, in some regions under +4 ◦), which is not observed at all for the SPI. Using the340

SPI, in most of the western regions the number of "contrasting" years classified as wet based on their SI12 increases, which

is observed to a lesser extent in SPEI. The implicit assumptions on evapotranspiration in these indicators thus have a decisive

influence on seasonal droughts and how they tip the annual water balance, demonstrating the importance of understanding the

influence of these PET increases.

5.4 Duration345

Figure 9 shows the number of simulated drought events within 6 drought duration categories (horizontal axis), based on SPI6

and SPEI6. Results for the other regions as well as droughts that reach extreme levels are shown in Figs. S6 and S7.

Overall, the drought indicator makes a large difference in the projected changes in the distribution of drought durations.

The ensemble spread of the number of events in each drought category is large, for both indicators, and there is often a strong

overlap between GMWL which is diminished when isolating droughts that reach extreme levels. In most regions, the SPI6-350

based projections show increases in droughts shorter than 6 months, while the SPEI6-based projections for this category are

divided between decreases in the drier region (south and central to east), and increases or little change in the other regions.
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Figure 8. Values of September SI12 (hydrological year) plotted against the September SI6 (hydrological summer) and March SI6 (hydrolog-

ical winter) from the same year used to compute SI12 for SPI (left) and SPEI (right). All years are shown for each time slice and ensemble

member. SI6 values that exceed -3 or +3 are plotted at -3 or +3. The larger, transparent markers show the centroids of 5 SI12 classes:

extremely dry, dry but not extremely dry, normal, wet but not etremely wet, extremely wet. See Figs. S4 and S5 for results for all 13 regions.

In almost all regions, however, there is an increase in 6-11 month droughts using both indicators. The decreases projected in

the shortest SPEI6-drought category in half of the regions are generally paired with increases in longer droughts, suggesting

that the larger projected drought frequency in these regions (see Fig. 5) is concentrated in fewer consecutive dry periods, with355

seasonal droughts getting pooled together into longer events.

Sustained multi-year droughts are a major concern for water managers (e.g. Marsh et al., 2007). They can also have less

occurrences in a 25 year time slice by definition, and a larger share of the ensemble members contains zero multi-year events

for a given time slice and region. Droughts lasting at least 2 years rarely occur more than once in a given time slice in our

analysis, and never more than twice for a given duration bin. Therefore, for these events we discuss the total number of360

ensemble members that project at least 1 such event in any given time slice. Based on the SPI6, the number of ensemble

members projecting at least one drought lasting from 2 to 3 years is not projected to change for most regions, although an

increasing share of events reaching extreme levels is found in about half of the regions. Using the SPEI6, the number of

ensemble members projecting at least one 2-3 year event increases with GMWL in the southern and central to eastern regions,

and for events reaching extreme levels this increases in almost all regions. The number of these events simulated in a single time365
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Figure 9. Number of drought events of all severities by duration for three 25-year periods corresponding to progressive warming scenarios

in the selected regions, based on SPI6. White circles indicate the ensemble mean, boxes show the interquartile range, whiskers show the

ensemble range except for members exceeding 5 x the interquartile range (diamonds). See Fig. S6 for other regions.

slice by a single ensemble member also increases in several regions using the SPEI6. Droughts lasting three years or longer

in the reference period are simulated in either none or one of the ensemble members depending on the region, irrespective

of the SI (with exception of the West Midlands for SPEI6: 2 ensemble members). A drought of four years or longer in the

reference period is only simulated by one ensemble member in one region for each indicator. With increasing warming levels,

more ensemble members simulated at least one +3 year SPEI6-drought event in the English regions and Wales, most of which370

reaching extreme levels at some point. This is in contrast with SPI6, where little change can be found in the number of ensemble

members simulating such events (max. 2 ensemble members in any time slice and region). As increasing multi-year droughts

across the ensemble are almost exclusively seen using SPEI, any indication toward a possible increased likelihood of these

events depends on the influence of AED.
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6 Discussion375

6.1 Projected changes in atmospheric droughts

This section discusses the results presented above in the context of previous studies that have used meteorological and atmo-

spheric based drought indices to investigate climate change impacts on droughts in the GB.

The spatial pattern of drought frequency changes in Fig. 5 is very broadly in agreement with the spatial patterns of drought

intensity found by Hanlon et al. (2021) using UKCP18-RCM and the DSI, and increases in drought event occurrence found by380

Spinoni et al. (2018) using EURO-CORDEX and a combined atmosphere-based drought indicator. Nevertheless, the differences

between our SPI6 drought frequency maps and the DSI6 drought severity maps in Hanlon et al. (2021) reveal how drought

projections can be sensitive to the exact method used for drought quantification and characterisation, even considering the same

variable (precipitation) and aggregation time scale (6 months). For example, the SPI6 drought frequency increase hot spots in

Fig. 5 are further west than the DSI6 drought severity increases along the east of GB found by Hanlon et al. (2021). Moreover,385

by discriminating between all and extreme drought, we showed how the spatial patterns of drought frequency projections are

similar but amplified in the extreme drought class. Furthermore, this study analysed for the first time the projected changes

in drought extent as a function of its frequency. The difference in the shape of the observation-based extent-frequency curves

between extreme and all drought conditions (Fig. 6 and Fig. 7) confirms the finding byTanguy et al. (2021) that the most

extreme droughts tend to be more localised than when all droughts are considered, and shows this is also true using a drought390

definition including PET. Rahiz and New (2013) found a projected increase in drought spatial coherence using UKCP09 and the

DSI6. Here, we not only showed increased drought extent and frequency, but notably a larger relative increase in the frequency

of widespread extreme drought conditions, as well as strong increases in more localised extreme droughts. This is the case for

SPI, but greatly amplified when including PET. Moreover, we showed that the observed and projected drought extent-frequency

relationship is time scale-dependent. As discussed in Section 6.4, widespread dry and extremely dry conditions identified using395

a SI with one specific aggregation period, would likely lead to differential agricultural and water resources impacts depending

on the relevant time scales in the affected regions.

Previous studies have often assessed changes in drought duration through the mean and/or median duration or overall trends

(e.g. Touma et al., 2015; García-Valdecasas Ojeda et al., 2021; Vicente-Serrano et al., 2021). Instead, here we isolated changes

in events of different duration categories, which revealed a possibility of increasing multiyear droughts in some regions based400

on the SPEI6, but not the SPI6. Multi-year droughts were also assessed by Lehner et al. (2017), who found that for some

studied regions (including Central Europe and the Mediterranean), progressive climate change is projected to increase the risk

of 4 consecutive drought years (based on the PDSI, which is also sensitive to projected increases in PET). Rahiz and New

(2013) considered changes in drought events lasting at least 3, 6, 10 and 12 months based on the DSI6 using the previous

generation of UKCP regional projections (UKCP09), and found widespread increases in the number of events of at least 3405

months, generally with stronger increases and ensemble agreement toward the south west. Seasonal timing and contributions

of drought were assessed by investigating changes in the combination of March SI6, September SI6 and September SI12 for

a given year. By visualising the relationship between annual conditions and the summer and winter half-years, this approach
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goes beyond assessing changes in seasonal and annual SI independently (e.g. Spinoni et al., 2018; Vicente-Serrano et al.,

2021) in making use of the multiscalar property of these indices. In this way, it was shown that the dominant contribution to410

increasing deficits in the annual SI in many regions consists of increasing deficits in the hydrological summer SI6 (especially

for SPEI), and that more years consisting of a dry summer preceded by a wet winter are projected in many regions. With an

accumulation period of 3 months, Spinoni et al. (2018) found decreasing occurrence of drought events in winter and increasing

occurrence in the other seasons, with the strongest increases in summer, with a spatial pattern dependent on the scenario and

drought intensity considered. These and our results are in disagreement with Rahiz and New (2013), who found larger and more415

widespread drought frequency and intensity in the hydrological wet season, most likely due to a methodological difference in

delineating seasons.

6.2 Differences between SPI and SPEI projections

We show that the magnitude of the difference between SPI- and SPEI-inferred projected changes is substantial for all considered

drought characteristics. For drought frequency, using the 6 month aggregation period, it is comparable to the difference between420

+2 ◦C and +4 ◦C of warming above pre-industrial levels for the extent and frequency of drought and extreme drought. Within

both warming scenarios, the difference in GB-averaged projected total drought frequency between SPI and SPEI is similar

to the ensemble range, for either SI. For extreme drought, the difference between SPI6 and SPEI6 is similar in size to the

ensemble range according to SPI at +2 ◦C, and lies between the ensemble ranges of SPI and SPEI at +4 ◦C.

Previous studies found divergence in trends of drought characteristics between SPI and SPEI in observations (Stagge et al.,425

2017; Karimi et al., 2020; Ionita and Nagavciuc, 2021), historical climate simulations (Chiang et al., 2021) and future climate

projections (e.g. Arnell and Freeman, 2021; García-Valdecasas Ojeda et al., 2021; Wang et al., 2021), with SPEI indicating

increased drying compared to SPI. Increases in PET under a changing climate, combined with the high sensitivity of SPEI to

PET changes, cause amplified projections of climatological drying and even a reversal of wetting trends in some parts of the

world compared to when only changes in precipitation are considered (Cook et al., 2014). For the UK, Arnell and Freeman430

(2021) found that projected increases in drought frequency based on SPEI6 exceeded those based on SPI3, which is attributed

to the inclusion of the effect of PET in SPEI, although the difference in aggregation period should also have contributed.

Ionita and Nagavciuc (2021) found a divergence of observed SPI12 and SPEI12 trends over Europe for 1901-2019, with the

strongest drying trends located over the Mediterranean and Central Europe regions. For GB, they found mostly non-significant

SPEI12 trends from wetting in the north-west to drying in the south-east (mostly due to a summer drying trend), alongside435

(also mostly non-significant) wetting SPI12 trends, especially toward the north. For 1958-2014, Stagge et al. (2017) found

a decreasing SPI6-based drought extent not being reflected in SPEI6-based drought extent trends over Europe. For GB, they

found a non-significant difference between SPI6- and SPEI6-based drought frequency trends, with both SI6 showing significant

wetting in the north. Through a detailed analysis, the present study showed substantial differences between SPI- and SPEI-

based projections for drought frequency, the distribution of drought spatial extents (using different temporal aggregations), the440

distribution of drought event durations and the seasonal contributions to 12-month deficits. The stark differences between SI

in projections of all these drought characteristics, combined with their emerging divergence in observations documented in
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literature, invites more critical consideration before using one of these indicators in drought studies or monitoring, based on an

understanding of the likely impacts of increasing PET.

6.3 The role of AED445

The strong sensitivity to global warming of drought projections based on drought indicators relying on PET has been discussed

before (e.g. Seneviratne, 2012; Dewes et al., 2017; Berg and Sheffield, 2018; Manning et al., 2018; Scheff et al., 2021),

considering the following aspects. First, overly warming-sensitive PET formulations can lead to overestimating increases in

drought. This is not only true for temperature-based methods such as Thornthwaite (Sheffield et al., 2012), but also for the

FAO56 reference crop Penman-Monteith method used in this study and many others. Assuming a fixed stomatal resistance of450

the reference crop neglects the effects of increasing CO2 on plant growth and stomatal conductivity, which has been identified

as an important source (Milly and Dunne, 2016; Greve et al., 2019), but not the full explanation (Scheff et al., 2021), of

off-line PET overestimation in climate change studies. The impact of the representation of influences of CO2, temperature and

vapour pressure deficit (Grossiord et al., 2020) on transpiration is likely highly relevant for the results presented in this study, as

transpiration and bare soil evaporation respectively make up the largest and smallest fractions of total evapotranspiration in GB,455

with transpiration constituting the majority of AET in the English Lowlands (Blyth et al., 2019). Second, when looking at the

variables standardised in SPI and SPEI as proxies for the surface water balance, the assumptions are respectively that no AET

occurs, or that AET always occurs at its maximum rate (PET), neglecting possible limitations from moisture supply. In reality,

the response of AET to increasing AED is complex, and the land-atmosphere interactions contributing to drought development

and propagation, including the role of evapotranspiration under high AED, are active areas of ongoing research (e.g. Miralles460

et al., 2019; Vicente-Serrano et al., 2020; Gampe et al., 2021; Denissen et al., 2022; Massari et al., 2022; Zhao et al., 2022).

Intuitively, enhanced AED leads to enhanced AET until moisture availability becomes limiting, after which the effect of AED

on AET reduces. This implies a temporally variable response of AET to AED during drought development, evolution and

recovery, dependent on moisture availability (e.g. Zhao et al., 2022), and different responses based on the regional climate (e.g.

Vicente-Serrano et al., 2020). The sensitivity of SPEI to AED also varies between climates (Tomas-Burguera et al., 2020).465

Moreover, the behaviour of AET under drought crucially depends on land cover and plant physiology (e.g. Teuling et al., 2010;

Grossiord et al., 2020), soil structure (e.g. Massari et al., 2022; Zhao et al., 2022), and geology (e.g. Bloomfield et al., 2019).

Finally, due to equal aggregation periods used for precipitation and PET in SPEI, it is inherently implied that the drought

development contributions of low precipitation and high PET anomalies are influential over the same time scales, which is not

always the case (Manning et al., 2018).470

Interestingly, GB sits in the transition between humid, radiation-controlled Northern and Central Europe and more arid,

precipitation-controlled Southern Europe (Teuling et al., 2009). Evaporation is generally more water-limited and negatively

correlated with temperature in summer toward the south and east, and more energy-limited and positively correlated with

temperature in summer in the north and west of GB on an annual basis (Seneviratne et al., 2006; Kay et al., 2013). This has

important implications for the expected impacts of increasing AED on future droughts across GB, as the influence of AED475

varies between energy- and water-limited evaporation regimes, and the effect of AED increases can be more complicated in
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transitional regions (Vicente-Serrano et al., 2020). Indeed, Kay et al. (2013) found that observed trends in PET between 1961

and 2012 are greater than those for AET for England and Wales, while in energy-limited Scotland PET and AET trends are

very similar. This is in contrast to Blyth et al. (2019), who found that modelled AET increased at a greater rate than PET in

GB between 1961 and 2015, due to increases in precipitation and the large contribution of interception to total AET. Enhanced480

AED has already been shown to enhance streamflow droughts in GB, with a stronger effect in some regions than in others

(Vicente-Serrano et al., 2019; Massari et al., 2022), as well as groundwater droughts in the major aquifer in south-east GB

(Bloomfield et al., 2019).

The importance of the range of evaporation regimes for explaining drought propagation and drought impacts across GB

has not received much attention in existing literature, but presents a valuable direction for further research. For example, the485

currently least humid areas of GB are projected to experience large increases in SPEI-drought, increases in aridity, and on

average longer and more intense seasons where PET exceeds precipitation. The effect of extreme SPEI-drought conditions on

soil moisture and streamflow droughts in these areas could be smaller than suggested by the magnitude of the PET contribution

due to moisture availability becoming limited. In such conditions, vegetation may still be significantly impacted due to high

AED and its components (Schönbeck et al., 2022). Understanding potential shifts in these evaporation regimes under climate490

change could help inform climate change adaptation strategies related to land and water use. To better understand the PET

component of the projected SPEI-based drought projections for GB, we detrended temperature (which affected the vapour

pressure deficit term and the slope of the Clausius-Clapeyron relation), after which no increases in SPEIdtr-tas drought frequency

were projected in most regions of GB. Further research into projected changes for the different variables influencing PET

(radiation, temperature, relative and specific humidity, wind speed) is needed to better understand the strong contribution of495

PET to SPEI-based drought projections, and to help understand possible shifts in evaporative regimes over GB.

Based on the discussion above, and depending on the drought type or impact of interest, the SPEI-based results in this work

may present a (conservative) upper limit of future drought risk, while using the SPI (and other precipitation-only indicators)

is expected to underestimate these increases. Future changes in other drought types may thus end up in the range between

SPI- or SPEI-based projections depending on the region (Touma et al., 2015; Lee et al., 2019). Thus, these results highlight500

the importance of understanding (changes in) the role AED plays in GB droughts and overall hydroclimatic changes under a

changing climate.

6.4 From atmospheric indicators to impacts

Many studies have used a range of drought impact-related data to investigate the relationships of SI with different aggrega-

tion periods in GB and beyond (Stagge et al., 2015a; Folland et al., 2015; Barker et al., 2016; Bachmair et al., 2016, 2018;505

Haro-Monteagudo et al., 2018; Parsons et al., 2019; Gampe et al., 2021). This is not straightforward, as impact variables and

reports of past droughts (based for instance on observed flow) are also influenced by water fluxes driven by the land surface

(e.g. evaporation limited by soil moisture) and human actions (e.g. irrigation and water abstractions), which are not accounted

for by SPI or SPEI. While studies linking SI to impacts agree in some aspects (e.g. longer SI aggregation periods for predicting

streamflow drought in the south east than the north west; Bachmair et al., 2016; Barker et al., 2016), there is a lot of uncertainty510
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left. In the UK, due to regional differences in climatology, hydrogeology and agricultural practice, the links between SI and

various impacts are more meaningful at regional or local levels than at the national scale (Barker et al., 2016; Parsons et al.,

2019). Socio-economic and physical vulnerability factors also influence the impacts resulting from droughts characterised by

certain SPEI or SPI values (Blauhut et al., 2016). Additionally, previously established relationships between drought indicators

and impacts may change under a changing climate (Feng et al., 2017). Therefore, despite established links between SI and im-515

pacts, it is difficult to quantitatively infer changes in agricultural, ecological and hydrological drought from drought projections

based on SPI and SPEI alone. For example, agricultural drought impacts may be expected to increase due to projected increase

in summer drought frequency and intensity (Stagge et al., 2015a; Haro-Monteagudo et al., 2018; Parsons et al., 2019), which

is found for both indicators in most of GB, including in agriculturally important regions (Fig. 8). However, as the projections

based on SPI are much milder than those based on SPEI, the magnitude of this increase depends on the importance of increasing520

AED and temperature for root zone accessible soil moisture and crop growth, as well as crop response to components of AED

itself. The greater frequency and intensity of dry years (SI12), as well as the increasing extent and frequency of drought and

extreme drought with longer aggregation periods, may indicate greatly increased risk of drought impacts on water resources in

the southeast and east, and by extension irrigated agriculture in these regions. Smaller projected increases in drought frequency

based on SI3 may indicate similarly smaller increases in streamflow drought in the northwest (Barker et al., 2016; Bachmair525

et al., 2016).

6.5 Study limitations

The set of regional climate projections in UKCP18, which this study relies upon, is not intended to represent a comprehensive,

probabilistic view of possible changes, but rather to sample a broad range of possible futures and provide storylines suited

for analysis of impacts (Murphy et al., 2018). The UKCP18-RCM projections were produced using the same GCM and RCM530

structure with perturbed parameter values, meaning that the climate model structural uncertainty has not been sampled. Finally,

as opposed to an ensemble where only the initial conditions differ, the projections of such a perturbed physics ensemble cannot

be combined in order to obtain longer time series for each level of global warming. This primarily limits our analysis of multi-

year droughts. For those events, the length of the time slices used is also a limiting factor for investigating projected changes

in the occurrence of such events.535

The drought indices this study uses are among the most widely used ones. However, other indices exist that rely on precip-

itation or some combination of precipitation and AED. Choosing a different drought index that includes both moisture supply

and demand, with a different degree of sensitivity to each component, could lead to slightly different results (Vicente-Serrano

et al., 2015). Indeed, as emphasised in this study, the drought index choice itself can be a substantial source of uncertainty, due

to the use of different variables representing different drought types (Satoh et al., 2021), but also between different drought540

quantifications based on the same variable (Sutanto and Van Lanen, 2021).

Aside from the vegetation assumptions in the PET calculation (see Section 6.3), vegetation assumptions in the UKCP18-

RCM projections themselves present another potentially important limitation. In the UKCP18 "Soil Moisture and the Water

Balance" fact sheet, Pirret et al. (2020) write that "the models use prescribed vegetation, which means that the model does
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not represent how increasing atmospheric carbon or reduced soil moisture would affect vegetation, or any feedbacks that this545

may have on the atmosphere or land surface". This may lead to unrealistic changes in AET under a warming atmosphere with

increasing CO2, and thereby introduce errors in the simulated temperature and humidity, affecting PET.

Finally, using a different observation-based dataset for bias adjustment of PET such as the recently produced Hydro-PE

dataset (Robinson et al., in review), may also lead to quantitative differences in the results.

7 Conclusions550

We used the regional climate model perturbed parameter ensemble from the latest set of national climate projections for the

UK, UKCP18, to quantify projected changes in drought characteristics. For this, two related but contrasting atmospheric-

based standardised drought indices were used and their results compared: the Standardised Precipitation Index (SPI) and the

Standardised Precipitation Evapotranspiration Index (SPEI). The SPI gives the standardised anomaly of n-month aggregated

precipitation. The SPEI is similar, except the variable being standardised is a climatological moisture balance given by pre-555

cipitation minus potential evapotranspiration. When regarding these indicators as standardised proxies of the surface water

balance, their implied assumptions are either that no evapotranspiration occurs (SPI) or that evapotranspiration is never limited

by moisture availability (SPEI). We assess in detail the difference between these indices for investigating the impact of climate

change on drought frequency, extent, seasonality and duration, for two categories of drought intensity. This is the first detailed

systematic analysis of SPI- and SPEI-based drought projections and their differences for Great Britain.560

Drought risk over Great Britain increases almost everywhere with increasing global mean surface temperature, including

extreme drought risk. We find projected increases in drought frequency and extent with increasing global warming levels.

These changes are far more pronounced for extremely dry conditions than for all drought conditions. The projected changes in

drought frequency, seasonality and duration show large regional differences across GB, with the greatest increases generally

found in English regions and Wales, notably including some of the already least humid regions toward the south east, and565

little change (or even decreases) in drought in North and West Scotland. By assessing the relationship between drought spatial

extents and their frequency in observations, reference period simulations and future projections, we showed that the reference

period simulations capture the observed extent-frequency relationship quite well for both extreme and all droughts, and all

(extreme) drought extents are projected to increase in frequency. Moreover, extreme droughts with extents greater than the

most widespread drought in the reference period are projected to occur more often, depending on the warming level and570

especially for SPEI. Linking shorter-term contributions to longer-term deficits is an under-utilised possibility of (standardised)

drought indicators that are applied over different time scales. By exploiting the multi-scalar nature of the standardised drought

indicators, we found that increasing summer droughts are found to be the main contributor of increasing frequency of increasing

longer-term dry conditions. Additionally, contrasting years, consisting of a wet winter combined with a dry summer, are also

projected to increase in occurrence. However, the combined result of contrasting seasonal changes is a projected increase in575

dry years for most regions. Finally, the distribution of drought event durations is also projected to change. For both indicators
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(but especially for the SPI), the changes are far greater by +4 ◦C than by +2 ◦C, supporting the consensus that every additional

degree translates into increasing extreme events.

The choice of atmosphere-based drought indicator can have a great impact on the derived drought characteristics, and thus

great care should be taken when selecting a drought index for climate change studies. This study clearly showed this for580

drought frequency, the distribution of drought extents, drought event durations, and the seasonal character of annual deficits.

The difference between the 6 month aggregation period based SPI and SPEI is similar in magnitude to the UKCP18-RCM

ensemble range of GB-averaged total and extreme drought frequency, and the +2 ◦C SPEI projections better resemble the SPI-

based projections under +4 ◦C than under +2 ◦C for drought and extreme drought frequency, spatial extent and seasonality.

The spatial pattern of simulated drought frequency is similar between the indicators, although there are differences in the585

regions with the strongest projected changes. Projected changes in the distribution of drought durations also differ between

the indicators. Droughts shorter than 6 months are projected to increase in occurrence in most regions based on the SPI, but

projected to decrease based on the SPEI in about half of these regions. On the other end, multi-year droughts lasting over 3

years (based on 6-month aggregated indicators) only occur in some of the SPEI-based projections.

With the sizeable divide between projections based on both indicators, it becomes increasingly important to understand590

how atmospheric evaporative demand and temperature affect droughts and their propagation to impacts in GB. The large

difference between SPI and SPEI in our results calls attention to the need to understand the influence of atmospheric evaporative

demand changes on GB drought through land-atmosphere interactions, and its adequate representation in models. In particular,

further research is needed to understand the effects of the contribution of PET to projected drought conditions across the range

of climatological evaporation regimes in GB (from energy-limited to transitional and water-limited), and likely changes in595

these regimes. Moreover, analysing the contributions of changes in radiation, relative and specific humidity, temperature and

wind speed can shed light on the PET component itself. Different modelling approaches can help understand how changes in

atmospheric moisture demand and precipitation can affect future droughts. This can include making use of the simulated soil

moisture, evaporation and runoff calculated in the UKCP18-RCM itself (Pirret et al., 2020), as well as land surface modelling

and hydrological modelling approaches which are valuable to shed light on projected changes in different components of600

the hydrological system (e.g. Lane and Kay, 2021; Kay et al., 2022). More generally, this work raises the question of how

these changing drought characteristics translate into impacts for agriculture, water resources and ecosystems in GB. Under the

current climate, according to the reviewed literature there is little difference between SPI and SPEI in their ability to predict

different drought impacts. However, this is likely to change as SPI and SPEI diverge due to increasing PET. Understanding

how the projected increases in atmospheric evaporative demand can be expected to affect different drought types through605

land-atmosphere interactions is therefore of paramount importance for understanding future drought risk in GB.

Code and data availability. The SPEI and SPI data produced in this study are available on Zenodo (doi:10.5281/zenodo.6123020) (Reyniers

et al., 2022b) alongside the bias adjusted UKCP18- based PET (doi:10.5281/zenodo.6320707) (Reyniers et al., 2022a). Python code for the

computations and analyses is available upon reasonable request. The CHESS-PE data used in this study was obtained from the UK CEH En-
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