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Abstract: Assessing eutrophication in lakes is of key importance, as this parameter9

constitutes a major aquatic ecosystem integrity indicator. The trophic state index (TSI),10

which is widely used to quantify eutrophication, is a universal paradigm in scientific11

literature. In this study, a methodological framework is proposed for quantifying and12

mapping TSI using the Sentinel Multispectral Imager sensor and fieldwork samples. The13

first step of the methodology involves the implementation of stepwise multiple14

regression analysis of the available TSI dataset to find some band ratios, such as15

blue/red, green/red, and red/red, which are sensitive to lake TSI. Trained with in situ16

measured TSI and match-up Sentinel images, we established the XGBoost of machine17

learning approaches to estimate TSI, with good agreement (R2=0.87, slope=0.85) and18

fewer errors (MAE= 3.15 and RMSE=4.11). Additionally, we discussed the19

transferability and applications of XGBoost in three lake classifications: water quality,20

absorption contribution, and reflectance spectra types. We selected the XGBoost to map21

TSI in 2019-2020 with good quality Sentinel-2 Level-1C images embedded in ESA to22

examine the spatiotemporal variations of the lake trophic state. In a large-scale23

observation, 10-m TSI products from investigated 555 lakes in China facing24

eutrophication and unbalanced spatial patterns associated with lake basin characteristics,25

climate, and anthropogenic activities. The methodological framework proposed herein26

could serve as a useful resource toward a continuous, long-term, and large-scale27
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monitoring of lake aquatic ecosystems, supporting sustainable water resource28

management.29

1 Introduction30

Lakes, as valid sentinels of global or regional responses, are sensitive to31

anthropogenic activities and climate change (Mortsch et al., 1996; Quayle et al., 2002;32

Tranvik et al., 2009). The commonly used paradigm for studying eco-environmental33

monitoring and controlling of lakes is the status of eutrophication (Carlson, 1977). It is34

a combination of light, heat, hydrodynamics, and nutrients, such as nitrogen and35

phosphorus, which occurs through a series of biological, chemical, and physical36

processes of lakes. As a result of eutrophication, nutrient loading and productivity grow37

sharply, and even hypoxia and frequent outbreaks of harmful algal blooms are likely to38

produce toxins (Paerl et al., 2008, 2011). These processes can cause serious degradation39

of water quality and are detrimental to the ecosystem services functionality of lakes and40

reliable supply of drinking water (OECO, 1982). Once the eutrophication phenomenon41

becomes intense, ecological imbalances generally follow (Smith et al., 2006). Hence,42

knowledge of the process of eutrophication can provide us with an understanding of the43

structure and function of lake ecosystems that give rise to environmental changes. We44

can then predict future trends and develop appropriate mitigation strategies.45

Several lakes experience eutrophication processes because of excessive nutrient46

enrichment (Lund, 1967; Smith et al., 1999; Wetzel, 2001). At the global scale, 63.1%47

of lakes larger than 25 km2 are eutrophic and 54% of Asian lakes (Wang et al., 2018), as48

well as 53% of European lakes (ILEC et al., 1994). Lake eutrophication has become a49

global water quality issue affecting most freshwater ecosystems (Matthews, 2014).50

Currently, many pollutions control measures and management strategies have been51

implemented that are specific to individual lakes or to lakes, in general (USEPA, 2002).52
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However, there is still insufficient information to address lake eutrophication related to53

environmental disturbances or changes. Realization of lake eutrophication has been a54

serious situation for some lakes; therefore, we provided some reasons to suggest the55

need for large-scale research. First, different environmental factors control the trophic56

status of lakes at local and multiple scales (e.g., Wiley et al., 1997). Specifically, biotic57

factors may dominate the eutrophic state of individual lakes, and we can understand the58

mechanism processes by lake-specific sampling. In contrast, abiotic factors and their59

linkages are pivotal factors that determine lake biogeochemistry at multiple scales (Sass60

et al., 2007). It is often necessary to study a number of lakes with different61

characteristics and catchments to understand the mechanisms of spatio-temporal62

patterns. Therefore, an up-scaling study of trophic status is required to understand the63

evolution prospects of lakes in response to changes in global and regional environments.64

Second, multi-year environmental and climatic conditions require long-term field65

studies and observations to understand the temporal pattern in important trophic status66

processes. In addition, relatively large datasets are needed considering the spatial extent67

because environmental factors are integrated to determine the trophic status of lakes. It68

can promote data organization and enable us to address an emergency and establish69

scientific measures for water resource management (Cunha et al., 2013; Smith and70

Schindler, 2009). Thus, eutrophication should be rapidly assessed using easy-to-analyze71

indices and enforcement methods for large-scale and high-frequency applications.72

Evaluating the trophic state of lakes has been an important topic for decades73

(Carlson, 1977; Smith and Schindler 2009). The traditional method uses chlorophyll-a,74

transparency, nutrients, and other variables as water quality indicators by field in situ75

sampling and laboratory measurements (Rodhe, 1969). Subsequently, Carlson (1977)76

introduced a numerical TSI that should have replaced descriptive values like77
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“oligotrophic,” “mesotrophic,” or “eutrophic”. The replacement has not occurred, but78

the TSI proposed by Carlson is a common method to determine the trophic state level of79

aquatic environments (Aizaki et al., 1981). The traditional method for calculating TSI is80

based on collected in situ data. The sampling itself and subsequent laboratory81

measurements are labor-intensive and expensive, often also logistically difficult to82

perform. This limits our capability to monitor hundreds or thousands of lakes for83

eutrophication, not speaking about the majority of 117 million of lakes on Earth84

(Verpoorter et al. 2014). Moreover, the TSI calculated for one or a few discrete samples85

do not represent spatial distribution of TSI within (especially larger) lakes. This could86

limit the large-scale assessment of eutrophication as well as the understanding of87

biogeochemical cycles.88

Satellite remote sensing is a useful tool for monitoring inland waters (Palmer et89

al 2015). Ocean water-color sensors, such as Medium Resolution Imaging Spectrometer90

(MERIS) or Ocean and Land Colour Instrument (OLCI) have too low spatial resolution91

(300 m) for majority of lakes on Earth. Land remote sensing seosor like Landsat92

Operational Land Imager (OLI), Sentinel-2 Multispectral Imager (MSI; 10-60 m) and93

Satellite pour l'Observation de la Terre (SPOT) with high spatial resolution (5–30 m) are94

not designed for water remote sensing (lack critical spectral bands, SNR is not sufficient95

for water, etc.). Compared to OLI and SPOT sensors, MSI has a more adequate96

radiometric resolution (12-bits) and 13 spectral bands, including four visible and SWIR97

channels (Drusch et al., 2012). Inland water TSI has been produced for large lakes using98

MODIS sensor (Wang et al 2018). However, this study is for more than 2000 large lakes99

(due to the spatial resolution of the sensor) while there are 117 million of lakes on Earth100

(Verpoorter et al. 2014). The Copernicus Land Monitoring Service has started to101

produce TSI for lakes large enough to be mapped with 100 m pixel size using Sentine-2102
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MSI. However, this product is available only for Europe and some parts of Africa.103

Instead of individual parameters, several studies (e.g., Morel and Prieur, 1977;104

Gurlin et al., 2011; Huang et al., 2014; Sass et al., 2007; Thiemann & Kaufmann, 2000;105

Yin et al. 2018) have also provided empirical relationships expressed as band106

combinations or baseline methods to acquire Chl-a, Secchi or nutrients related to107

potential TSI calculations in regional lakes. However, the accuracy of these empirical108

relationships for transferring knowledge from some representative lakes to large-scale109

lake groups is limited by large uncertainties (i.e., in areas with different water quality110

concentrations and atmospheric component influences, fewer lakes can be used with111

more heterogeneous influences and uniform algorithms) (Oliver et al., 2017).112

Considering the requirement of a uniform and universal relationship to quantify the113

trophic status of lakes, an alternative method using high-frequency and spatial114

resolution of the sensor is a significant challenge. Recently, technological developments,115

such as machine learning algorithms, have allowed the usage of remotely sensed116

imagery to successfully investigate water quality parameters using artificial intelligence117

(Reichstein et al., 2019; Pahlevan et al., 2020; Cao et al., 2020). The potential118

application and development of machine learning for remote quantification of water119

quality is attributed to the following advantages: requirement of little prior knowledge,120

rich features can be captured, and robust relationships can be obtained. These processes121

avoid bias and uncertainty from the regional environmental background as well as122

complications due to atmospheric components of traditional remote sensing-derived123

relationships over large-scale, i.e. for multiple lakes. Given the novel application of124

remote sensing and machine learning, this is a gap to fill for large-scale research of125

monitoring trophic states.126

Environmental issues fueled by rapid economic growth in China have significantly127
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increased in the last three decades. Lake eutrophication is a serious issue, with large128

variability in terms of trophic status and optical properties. However, most studies (Jin,129

2003, 2005; Fragoso et al., 2011; Huang et al., 2014) have addressed eutrophication130

concerns in only a single lake or two lakes since the 1990s. It is acknowledged that a131

rapidly growing economy and anthropogenic activities (e.g., elevated nutrient loading132

and increasing air pollution) accelerate the aging process of lakes (Wu et al., 2011; Shi133

et al., 2020). Therefore, it is critical to objectively assess the trophic status and pay134

attention to protect the aquatic environment. We aim to provide a robust machine135

learning algorithm and remote sensing flowchart from simultaneously retrieved TSI136

over a wide range of bio-optical compositions in different lakes. The objectives of our137

study were to: (1) examine biogeochemical parameters and assess trophic status, (2)138

calibrate and validate the TSI model using different machining learning algorithms from139

MSI-imagery derived remote sensing reflectance spectra (Rrs), with different lake140

classifications; and (3) quantify and map the trophic status of typical 555 lakes in five141

Chinese limnetic regions.142

2 Materials and methods143

2.1 Study area and sampling process144

China is located in the east of Asia with a land area of 9,600,000 square kilometers145

and a population of over 1.4 billion. The terrain of China descends from west to east in146

three steps. Due to a vast territory span, this country has diverse climatic, geographical,147

and geological conditions. There are 2,693 natural lakes (with area >1.0 km2) that are148

distributed in China (Ma et al., 2011). Protection and sustainable management of these149

lakes have been priorities, considering the degradation of water quality over several150

decades. In this study, a total of 45 lakes were visited and 431 samples were collected in151

early April 2016 to late October 2019 (Table S1 and Fig. 1), which was the highest152
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productive season, as identified by Carlson’s TSI model. These datasets were analyzed153

and published in (Li et al., 2021; Song &Li et al., 2019; Song et al., 2020). Our lake154

dataset was collected from various types of lakes across China, and efforts were made to155

examine lake trophic status from a wide range of water quality parameters, lake sizes156

(0.5 to 4, 256 km2), lake elevation (10 to 4, 525 m), and climatic zones (Song and Li et157

al., 2019). In the field, some lakes were sampled in the middle while others were158

sampled at multiple locations evenly distributed over the lake. The water samples were159

collected approximately 0.5 m below the surface, and then stored in 1 L amber HDPE160

bottles and kept in a portable refrigerator (4°C) before being transported to the161

laboratory. During the sampling process, the Secchi disk depth (SDD, m) was measured162

using a black-and-white Secchi disk. The pH and electrical conductivity (EC, μs cm-1)163

were recorded using a portable multi-parameter water quality analyzer (YSI 6600, 170164

U.S).165

166

Figure 1：Location of lake sites.167
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2.2 Laboratory analysis168

A transferred portion of each bulk water sample was immediately filtered with169

0.45-μm pore size Whatman cellulose acetate membrane filters in the laboratory. It is to170

be noted that some remote Tibet and Qinghai lake samples had to be filtered during171

fieldwork. Chlorophyll-a (Chl-a) was extracted from the filters using a 90 % buffered172

acetone solution at 4°C under 24 h dark conditions. According to the SCOR-UNESCO173

equations (Jeffrey and Humphrey, 1975), the concentration of Chl-a (μg L-1) was174

determined using a UV-2600PC spectrophotometer at 750 nm, 663 nm, 645 nm, and175

630 nm. Dissolved organic carbon (mg L-1) concentrations were determined using a176

total organic carbon analyzer. Total nitrogen (TN) and total phosphorus (TP)177

concentrations (mg L-1) were measured using a continuous flow analyzer (SKALAR,178

San Plus System, the Netherlands) using a standard procedure (APHA/AWWA/WEF,179

1998). In addition, total suspended matter (TSM, mg L-1) concentrations were obtained180

gravimetrically using pre-combusted 0.7-μm pore size Whatman GF/F filters. All181

preprocesses (e.g., filtration and concentration quantification) of all water samples were182

undertaken within two days in the laboratory. The procedures are provided in detail in183

Li et al. (2021).184

The bulk samples were again filtered through a 0.7-μm pore size glass fiber185

membrane (Whatman, GF/F 1825-047) to retain particulate matter. The water from186

particulate matter measurements was then filtered through a 0.22-μm pore size187

polycarbonate membrane (Whatman, 110606) in order to measure chromophoric188

dissolved organic matter (CDOM) absorption of each sample. According to the189

quantitative membrane filter technique (Cleveland and Weidemann, 1993), the light190

absorption of total particulate matter ap(λ) can be separated into phytoplankton pigment191

absorption aph(λ), non-algal particles ad(λ), and CDOM absorption aCDOM(λ). The optical192
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density (OD) of the particulate matter retained in the filters was measured using a193

UV-2600PC spectrophotometer at 380–800 nm, with a blank membrane as a reference194

at 380–800 nm. The filters were then bleached using a sodium hypochlorite solution to195

remove phytoplankton pigment and measured again using a spectrophotometer. Finally,196

the phytoplankton pigment absorption aph(λ) was calculated by subtracting ad(λ) from197

the total particulate matter ap(λ). The absorption coefficients of the optical active198

substance (OACs) were calculated according to Song et al. (2013).199

2.3 Trophic status assessment of lakes200

Several studies have proposed different indices of the lake trophic state (Aizaki et al.,201

1981; Carlson, 1977). Carlson's trophic state index used five variables, such as Chl-a,202

TP, TN, SDD, and chemical oxygen demand (COD), to characterize the trophic state.203

However, there are no optical characteristics for TN, TP and COD to manifest in204

changes of remote sensing reflectance, which may bring more uncertainties or errors.205

Thus, Chl-a, TP, and SDD were selected to assess the trophic status according to the206

modified Carlson’s trophic state index (TSI). The TSI can be calculated using individual207

TSIM(Chl-a), TSIM(SDD), and TSIM(TP) using the following equations:208







 


5.2ln

ln46.210)( aChlChl-aTSIM (1)209

)
5.2ln
ln52.169.346.2(10)( SDDSDDTSIM


 (2)210

)
5.2ln

)ln(15.171.646.2(10)( TPTPTSIM


 (3)211

)(163.0)(297.0)(54.0 TPTSISDDTSIChl-aTSITSI MMM  (4)212

Where, the TSI below 30 correspond to oligotrophic waters, above 50 are eutrophic and213

TSI between 30 and 50 in mesotrophic (Carlson, 1977).214

2.4 Muti-Spectral Instrument imagery and atmospheric correction215

Sentinel-2A/B MSI imagery was acquired from the Copernicus Open Access Hub216
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of the European Space Agency. Altogether, 210 scenes of cloud-free Level-1C images217

covering the lakes were downloaded with a time window of ±7 days from in situ218

measurements. The Case 2 Regional Coast Color processor (C2RCC) was used to219

remove atmospheric effects. An average of 3×3-pixels centered at each in situ sampling220

station was used in the further analysis. All the processes were performed using the221

Sentinel Application Platform (SNAP) version 7.0.0. A flowchart of the process is222

shown in Fig. 2.223

224

Figure 2 ：Workflow of the Sentinel-2 MSI data and machine learning algorithms225

for estimating TSI226

227
2.5 Machine learning algorithms228

As a branch of artificial intelligence, the application of machine learning is229

growing in the field. Machine learning can automatically analyze huge chunks of data,230

develop optimal models, generalize algorithms, and make predictions. These approaches231

have been applied in a variety of eco-environmental and remote sensing fields232

(Mountrakis et al., 2011; Pahlevan et al., 2019). Hence, we employed four233
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representative machine learning algorithms, namely linear regression (LR), support234

vector machine (SVM), XGBoost (XGB), and random forest (RF) (Supplementary data,235

methods), to establish a TSI model. To strengthen the robustness, band combinations236

sensitive to TSI were determined by LR (Fig. 2), and were added to the procedure of237

machine learning algorithms as input variables. Subsequently, the output variable was238

the predicted TSI. The in situ measured samples were then randomly divided into a239

calibration dataset (70%, 287 lake samples) and validation dataset (30%, 144 lake240

samples) using MATLAB software. The TSI modeling procedure considering machine241

learning and Multiple Linear Regression (MLR) was processed using the R software.242

2.6 Classifications of lakes243

In order to provide further feasibility for the application and availability of the TSI244

model, the in situ measured samples were classified in three ways (Fig. 3):245

a) based on water quality: Salinity classification referred to the threshold value of246

electrical conductivity (named EC, EC=1000 μS cm-1) (Duarte et al., 2008), following247

which the lakes were divided into brackish lakes (N=100 samples) and fresh water lakes248

(N=331 samples). Dissolved organic carbon (DOC) in global lake water classification249

referred to the volume weighted averaged DOC level of global lakes (3.88 mg L-1)250

according to Toming et al., (2020), following which lakes were divided into high DOC251

lake (N=224 samples) and low DOC lake (N=207 samples).252

b) based on optical absorption contribution: Optical absorption classification253

referred to Prieur and Sathyendranath (1981), where the total light absorption of water254

can be separated from phytoplankton pigment absorption, non-algal particles, and255

CDOM absorption, respectively. The relative percentage of absorption contribution of256

OACs can be divided into phytoplankton-type (Phy-type) lakes (N=54 samples),257

non-algal particles-type (NAP-type) lakes (N=109 samples), CDOM-type lakes (N=177258
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samples), and mix-type lakes (N=91 samples).259

c) based on reflectance spectra: In order to discern the different optical260

characteristics of lakes, the derived MSI reflectance was clustered using the k-means261

clustering approach with a gap statistic (Neil et al., 2018). We identified 431 MSI262

reflectance Rrs(λ) spectra for three branches (Table S3), and the Rrs(λ) spectra are263

shown in Fig.3.264

265

Figure 3：Lake classifications considering three ways, i.e., water quality, optical266
absorption contribution and reflectance spectra. ANOVA analysis was conducted267
in different classifications (p<0.001) (Table S3).268

269
2.7 Statistical analyses and accuracy assessment270

Statistical analysis, including descriptive statistics, correlation (r), regression (R2),271

and ANOVA analyses, were implemented with Statistical Program for Social Science272

software (version 16.0; SPSS, Chicago, IL, USA). Correlation and regression analyses273

were used to examine the relationships between the water quality parameters and274

absorption coefficients of OACs as well as the TSI model calibration and validation.275

The differences in trophic status, EC classification, DOC classification, absorption276
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coefficients of OAC classification, and MSI reflectance spectra classification for TSI277

model validation were assessed using one-way ANOVA. The significance level was set278

at p<0.05*. The mean normalized error (MAE) and root mean square error (RMSE)279

were used to assess the performance of the TSI model (Supplementary data, accuracy280

assessment).281

3 Results282

3.1 Aquatic environmental scenery283

The water quality and bio-optical properties covered a wide range of nutrient284

compositions, transparencies, and trophic states, revealing different geographical285

environmental scenery (Tables S1 and S2-4). The EC and DOC concentration showed286

high variability, ranging for example, from 3345.31 µs cm-1 (TuoSu, TS20) in287

Tibet-Qinghai region to 0.17 µs cm-1 (Qingnian, QN2) in Northeast region. For the288

water quality parameters to characterize TSI, the Chl-a concentration ranged from 0.12289

to 100.22 µg L-1, with the highest value recorded in TaiPingChi (TPC5) and the lowest290

value in NamoCo (NMC36). The range of TP was from 0.003 mg L-1 (Erlong, EL8) to291

2.17 mg L-1 (Dali, DL7), and SDD ranged from 0.17 m (Chalhu, CH32) to 9.47 m292

(NMC36) for surveyed lakes, respectively. Overall, the maximum values of EC, DOC,293

turbidity, Chl-a, TSM, and SDD were 196782.35, 948.4, 723.3, 770.92, 614.58, and294

55.71 fold greater than the minimum values, respectively, indicating that our dataset295

was representative of diverse water qualities.296

Lake samples were grouped into different classifications based on water quality297

(e.g., EC and DOC), optical absorption contribution, and reflectance spectra (Table 1298

and Fig. 3). The results indicated that all water qualities showed significant differences299

(p<0.05) under different lake classifications. For example, brackish lakes showed higher300

average values of SDD, TP, DOC, and optical attributions of OAC values than those of301
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fresh water lakes, but the turbidity, Chl-a, and TSM concentrations were lower. Lakes302

equipped with low DOC levels had a low average value of SDD than that of lakes with303

high DOC levels. NAP-type lakes exhibited the highest average Chl-a and DOC values,304

whereas Phy-type lakes had the highest average turbidity and TSM values, and the305

highest average SDD and TP values were recorded in CDOM-type and Mix-type lakes,306

respectively. For reflectance spectra classifications (Fig. 3), the highest average EC,307

SDD, and DOC were recorded in cluster-1 lakes, the highest average turbidity and TP308

was shown in cluster-3 lakes and the highest average TSM was found in cluster-2 lakes.309
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310

15
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311

3.2 Trophic status assessment312

The trophic status of 45 lakes across China, from where in situ samples were313

collected, was evaluated (Fig. 4a). Our results showed that there were 13 oligotrophic314

(3.02 %), 199 mesotrophic (46.17 %), and 219 eutrophic (50.81 %) samples. Because315

our samples were collected in different seasons and eutrophication is time-dependent,316

the TSI values of samples within a lake were averaged. It can be shown that only five317

lakes accounting for 11.1% of investigated lakes were characterized with an318

oligotrophic status, 17 lakes accounting for 37.8 % were mesotrophic, and 23 lakes319

accounting for 51.1 % were characterized with eutrophic status. These eutrophic lakes320

were distributed in the eastern region of China (Fig. 4b), and were associated with a321

highly concentrated human population and economic development. Moreover, the322

ANOVA results showed that the TSI of lake samples were significantly different323

considering lake classifications (Fig. 4c, and d).324
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325

Figure 4： (a) is the averaged TSI in collected samples from lakes across China and326
their spatial distribution. The number of lakes can be found in TableS1. The box327
plots of TSI at different classifications of water quality (b), optical absorption328
contribution types (c) and reflectance spectra (d). The balls beside the boxes are329
the lake samples, and the black balls in the boxes represent the mean values. The330
horizontal edges of the boxes denote the 25th and 75th percentiles; the whiskers331
denote the 10th and 90th percentiles.332

333
3.3 Calibration and validation of TSI model334

In this section, multiple linear regression was used to identify significantly335

sensitive spectral variables related to TSI (Table 2 and Fig. 2). Of the band combinations336

validated in the study (N=144), the blue/red [Rrs(443)/Rrs(740), Rrs(492)/Rrs(740)],337

and green/red [Rrs(560)/Rrs(704), Rrs(665)/Rrs(704)] band ratios showed a good338

regression coefficient (R2>0.59) with TSI. These band combinations provided certain339

sensitive spectral variables that responded to the lake eutrophic status. Hence, to340
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strengthen the robustness of the three machine learning models, the blue/red and341

green/red combinations above were considered as the input variables as well as six342

spectral variables (Rrs(λ) at 443, 492, 560, 665, 709, and 740 nm). Likewise, the output343

variables were estimated using TSI to examine the performances (Fig. 5). The results344

showed that when XGBoost was applied to the validation data (N=144), the345

performance of the model was excellent (R2=0.87, slope=0.85) with low errors (MAE=346

3.15, RMSE=4.11). The support vector machine (R2=0.71, slope=0.77, MAE=4.67,347

RMSE=6.11) and random forest (R2=0.85, slope=0.84, MAE=3.31, RMSE=4.34)348

models also showed significant performance. These results demonstrate the potential of349

using XGBoost by considering band combinations to derive TSI from Sentinel products.350

351

Figure 5： Relationships between in situ and derived TSI for both model training352
and testing samples by support vector machine (a), XGBoost (b) and random353
forest (c), as well as their errors (d).354

355

356

357

358
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359

360
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3.4 TSImodel application to lake classifications361

The TSI model calculated by XGBoost was assessed by comparing derived and in362

situ TSI considering different lake classifications (Fig. 6). We aimed to provide a363

universal TSI model and evaluate its feasibility in different aquatic environments.364

Significant agreement (slope>0.91, R2>0.91) between derived and in situ TSI was365

observed in lakes with high DOC levels (DOC>3.88 mg L-1) and EC values (EC>1000366

μS cm-1), with low errors. For lakes classified by different absorption contributions, the367

NAP-type (slope=0.98, R2=0.88) and Phy-type (slope=0.82, R2=0.92) samples generally368

showed a positive derived performance than those of Phy-type, CDOM-type, and369

Mix-type, respectively. In addition, a significant relationship between derived and in370

situ TSI can be described for lakes with cluster-1 reflectance spectra, with slope=0.91,371

R2=0.87, RMSE=2.87, and MAE=2.29.372
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373

Figure 6： Scatter plots of derived- and in situ- TSI by XGBoost for validation374
samples (N=144) according to lake classifications, such as water quality (DOC and375
EC) (a-b), absorption contribution (c), reflectance spectra(d) with the 1:1 line (red376
solid) and errors (e).377

378
3.5 Spatio-temporal patterns of trophic states in a large-scale overview379

Previous studies have demonstrated that some lakes disappeared or increased380

numbers recently according to statistics from Ma et al. (2011). Thus, we selected some381

representative lakes (N=555) to qualify spatiotemporal trophic states using the XGBoost382

algorithm. According to the different geographic and limnological types in China, lakes383
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were divided into five limnetic regions (Wang and Dou 1998, Early National384

Investigation): Eastern Plain Limnetic Region (EPLR, N=123), Northeast Plain385

Limnetic Region (NPLR, N=37), Inner Mongolia-Xinjiang Plateau Limnetic Region386

(IMXPLR, N=56), Yungui Plateau Limnetic Region (YGPLR, N=15), and387

Tibet-Qinghai Plateau Limnetic Region (TQPLR, N=324) (Fig. 1 and Supplementary388

data). In general, there were significant seasonal variations in eutrophic state for lakes389

from the EPLR (F=39.56, p<0.001) and TQPLR (F=5.0, p<0.05) (Fig. 7). The eutrophic390

lakes dominated the proportions of the investigated lakes in the EPLR (93.5 %),391

followed by the NPLR (89.2 %) and YGPLR (86.7 %). In comparison, most392

mesotrophic and oligotrophic lakes were distributed in the TQPLR. The spatio-temporal393

patterns of trophic states in lakes were related to lake basin characteristics, climate, and394

anthropogenic activities.395

396

Figure 7 ：Box plots of TSI derived from XGBoost model in investigated lakes397
from the five limnetic regions (Wang & Dou 1998), i.e., (a) EPLR, (b) IMXPLR, (c)398
YPLR, (d) TQPLR and (e) NPLR. The black line and balls in the boxes represent399
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the median and mean values, respectively. The horizontal edges of the boxes denote400
the 25th and 75th percentiles; the whiskers denote the 10th and 90th percentiles.401

402

403

Figure 8 ：The proportions of lake numbers (%) for different trophic state in the404
five limnetic regions (Wang & Dou 1998), i.e., (a) EPLR, (b) IMXPLR, (c) YPLR,405
(d) TQPLR and (e) NPLR. N represents the lake numbers.406

407
4 Discussion408

4.1 Remote-sensed and machine-learning-based TSI model409

Traditional approaches to quantitatively characterize the trophic status rely on field410

measurements of trophic parameters, for example, Chl-a, nutrients, and SDD, to411

calculate the TSI (Carlson, 1977). It is difficult and costly to make field measurements412

in lakes in remote locations. The TSI calculation does not need all of these trophic413

parameters but just one, for example, Chl-a (Thiemann and Kaufmann, 2000), SDD414

(Olmanson et al., 2008; Song et al., 2020), TP (Kutser et al., 1995) and total absorption415

coefficients (Lee et al., 1999; Shi et al., 2019), etc. There have been many lake studies416
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(Chl-a and SDD, Sheela et al., 2011; Chl-a, SDD and TP, Song et al., 2012) where two417

or three water quality parameters were mapped, which would allow to subsequently418

gather them to calculate comprehensive TSI. Although these studies provided the419

potential to evaluate the trophic status of lakes, TSI is a synthetic indicator that is420

affected by biological, physical, and chemical factors that co-vary in most instances.421

Huang et al. (2014) also tried to derive TSI using remote sensing spectrum reflectance,422

but the accuracy was not completely usable. It shows that variability in remote sensing423

estimates of the TSI are not bad.424

With advances in artificial intelligence technology and the increasing use of425

computer applications in recent years, machine learning has become a useful tool for426

monitoring aquatic environments by remote sensing (Mountrakis et al., 2011). It allows427

us to develop and evaluate a machine-learning-based TSI model that addresses quality428

and accuracy problems more effectively (Li et al., 2021). Hence, we propose a new429

approach to directly characterize the trophic status and accurately reflect spatial430

variations in this study, but should also be conveniently available for the different lake431

classifications (Figs. 5, 6). Using machine learning algorithms, in order to improve the432

robustness and applicability of the TSI model, a sufficient database of trophic state433

parameters (N=431) was collected from lakes with different biogeochemical434

characteristics, such as water quality, absorption contributions of different optically435

active substances, and reflectance spectra (Table1). We first used B1-B6 reflectance as436

input variables of machine learning algorithms, and XGBoost showed a significant437

performance with R2 and a slope of 0.85 (Fig. S1). The support vector machine and438

random forest did not produce the sufficient performance. There was no optical439

response bands or appropriate band ratios for TSI. We thus used a multiple linear440

regression to find some suitable sensitive band combinations responding to the TSI,441
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which made it possible to develop a robust machine-learning-based TSI model. It is442

important to note that the blue/red [Rrs(443)/Rrs(740), Rrs(492)/Rrs(740)], and443

green/red [Rrs(560)/Rrs(704), Rrs(665)/Rrs(704)] band ratios were significantly444

correlated with TSI (Table 2). This result indicated that the blue/red and green/red band445

ratios were more sensitive to the TSI, although the nutrients and SDD had no optical446

response. It was known for decades that the blue part of spectrum is useless when water447

itself is not blue (i.e. outside of ocean or very oligotrophic mountain lakes), owing to448

the noneffective atmospheric correction and complex reflectance signals. However, our449

dataset to train TSI models contain the samples from blue and oligotrophic Tibetan lakes,450

which are like the oceanic environments (Liu et al., 2021). The blue bands responding451

to TSI were thus used in this study. Most empirical Chl-a estimation studies adopted452

red/near infrared (NIR) band ratios to calibrate models using reflectance signatures453

(Gitelson et al., 1992). Similarly, empirical SDD retrieval models provided by previous454

studies used empirical algorithms or models to figure out what bands should work the455

best considered the following ratios: blue/green, red/blue plus red/green, and red/blue456

plus blue (Bindling et al., 2007), and Red/Blue ratio plus Blue (Kloiber et al., 2002).457

Kutser et al. (1995) also built a TP retrieval model using the red and NIR ratios, which458

is consistent with Chl-a empirical models. Overall, it is not surprising for our TSI model459

to have strong correlations with the blue/red and green/red band ratios because the TSI460

incorporates the optical properties.461

For this reason, we used MSI bands in the visible band ratios at six bands,462

considering the comprehensive spectrum information about the trophic status of lakes as463

input variables (Fig. 2). The three representative machine learning TSI models improved464

the accuracy of the traditional linear regression (Table 2 and Fig. 5), and the results465

were better than those obtained with B1-B6 reflectances as input variables (Fig. S1). As466
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a type of supervised machine learning algorithm, linear regression can be used to obtain467

certain learning criteria as expressions (y=w0+w1×x1+…+wp×xp) about the optimal wi468

solution. However, for complex targeted tasks, the fitting ability of linear regression is469

limited, and it cannot represent the real situation well. For example, a support vector470

machine can map data to another space, which can use a linear regression to distinguish471

the categories well. In complex environments (real world in machine learning), such as472

our large-scale database collected from different lakes (Fig. 1), there are various473

environmental factors as well as different seasons within a lake, that have an impact on474

the trophic parameters and optical characteristics of lakes. Likewise, we found that the475

enhanced input variables, like the band ratios, if appropriately corrected for the TSI,476

resulted in a better performance (Fig. S1). This is consistent with some applications of477

machine learning algorithms (Cao et al., 2020), in which the performance of machine478

learning was reduced when covariances of input features were incorporated. This allows479

us to find more interesting TSI-correlated band ratios for MSI imagery in machine480

learning.481

Several machine learning algorithms generally have different advantages and482

applicability owing to their different main principles (Cao et al., 2020; Li et al., 2021).483

This can be found in our results of the validation exercise, which showed that XGBoost484

provided stable TSI estimates, with a slope close to 1 and a good fitting coefficient of485

the measured and derived values (R2=0.87, slope=0.85, MAE= 3.15, RMSE=4.11) (Fig.486

4). Similarly, we can also find an excellent performance (R2=0.85, slope=0.84,487

MAE=3.31, RMSE=4.34) for estimating TSI values by the random forest algorithm.488

This was likely because it is a summation of all weak learners, weighted by the native489

log odds of error. In the case of boosting, we make decision trees into weak learners by490

allowing every tree to make only one decision before prediction. In some cases,491
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XGBoost outperformed random forest. In addition, the support vector machine492

performed worse than XGBoost and random forest (Fig. 4). Li et al. (2021) used a493

support vector machine to estimate Chl-a concentrations with a relatively small dataset494

of 32 samples and 273 samples, respectively. This is consistent with the recent process495

in the development of support vector machines and has many advantages for remote496

sensing applications with a small number of training datasets. Overall, the remote497

sensing and machine learning-based TSI model aims to reduce the dependence of498

traditional field measurements, while also providing a cost-effective approach to rapidly499

quantify the trophic state.500

4.2 TSImodel for lake classifications501

We validated the XGBoost TSI model considering different scenarios of lake502

classification, for example, water quality, optical absorption contributions, and503

reflectance spectra (Figs. 2 and 6). The results indicate three application scenarios for504

our model with low errors. The first one is of the XGBoost TSI model, which in505

particular, performed well (slope>0.91, R2>0.91) in high DOC (>3.88 mg L-1) and EC506

(>1000 μS cm-1) lakes (Fig. 6). We found that lakes with high EC level correspondingly507

showed a high DOC level (Table 1), for example, high average EC value of 5156.02 μS508

cm-1 and high average DOC value of 18.75 mg L-1 for NAP-type lakes. These brackish509

or saline lakes were distributed in the Tibet-Qinghai Plateau Region (e.g., KLK20, TS21,510

QHH22, SLC32, BMC34, ZRNMC36, NMC37) and Inner Mongolia-Xinjiang Plateau511

Limnetic Region (e.g., DL8, HSH10, DH17, HL18, WLSH16) (Table S1). Our results512

are in agreement with those of previous studies that DOC and EC of inland waters513

located in semi-arid region can be attributed to the evapo-concentration and514

accumulation processes (Curtis and Adams, 1995) as well as anthropogenic activities.515

Further, it can be observed that oligotrophic lakes accounting for 11.1% were also516
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distributed in the Tibet-Qinghai (Fig. 4).517

Secondly, we found that our XGBoost TSI model performed well if the trophic518

parameters that correlated to the TSIM(Chl-a) or TSIM(SDD) dominated the lake519

classifications. Specifically, the high Chl-a (averaged 14.26 µg L-1) and aph(440)520

(averaged 0.26 m-1) levels in NAP-type lakes showed the best performance (slope=0.98,521

R2=0.88) than those of other optical absorption contribution classifications (Fig. 6). In522

fact, there was a negligible difference in the performance for application in Phy-type523

and NAP-type lakes. For the third scenario, for the reflectance spectra classification,524

cluster-1 lakes with low TSM (averaged 5.76 mg L-1), turbidity (averaged 4.46 NTU),525

and ad(440) (averaged 0.26 m-1) level, and high SDD level (average 2.38 m) also526

showed good performance (slope=0.91, R2=0.87) (Fig. 6). In general, TSI, as a527

comprehensive index incorporating the optical properties of itself, was calculated using528

trophic state parameters [(TSIM(Chl-a), (TSIM(SDD), and TSIM(TP) in Eq. 7]. Our529

XGBoost TSI model performed best in the present study, which confirmed that the530

performance was mostly determined by biogeochemical environments in larger-scale531

regions. We cannot explain the dependence of the TSI model on the physico-optical532

properties. From another point of view, it can be inferred that the XGBoost TSI model533

applications mostly correlated to the Chl-a and SDD because of their high weight534

allocation in TSI equation.535

536

4.3 Trophic status in five limnetic regions537

According to this study more than 50% of lakes were eutrophic, indicating a538

long-standing status of eutrophication (Fig. 4), as seen by the mapping of 555 lakes by539

our XGBoost TSI model (Fig. 7). Some lake investigations undertaken earlier in China540

during 1978–1980 concluded that 41.2% lakes of eutrophication in China (Jin, 2003),541
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during 1988-1992 demonstrated that 51.2% lakes (Wang & Dou, 1998), during542

2001-2005 indicated that 84.5% lakes, during 2011-2019 showed that 50% lakes (Wen543

et al., 2019) were eutrophic or undergoing eutrophication. In our study, some historical544

records of Chl-a, SDD and TP from in comparison to earlier national investigation by545

Wang and Dou (1998) were collected in typical lakes, e.g., Dongting Lake, Poyang546

Lake, Chaohu Lake, Taihu Lake and Jingpo Lake, respectively (Table S5). Evidently,547

Chinese lakes have deteriorated considerably in terms of water quality at an alarming548

rate for typical lakes, e.g., Jingpo Lake, Dongting Lake and Poyang Lake, during past549

~22 years (Table S5). Lake eutrophication is influenced by both natural (hydrological550

processes, topography, lake depth, and buffer capacity) factors as well as anthropogenic551

factors (land-use changes, urbanization construction, and domestic and industrial552

pollution) (Müller et al., 1998). A large-scale overview of lake eutrophication indicated553

there was a significant difference (ANOVA, F=255.2, p<0.001) in the five limnetic554

regions (Wang & Dou 1998). Owing to the imbalanced development of economic555

(Fig.S2, GDP and population), geological topography (Fig.S3, solar radiation intensity556

and sunshine hours) and climate (Fig.S4, annual temperature and precipitation), it was557

not surprising that the eutrophic lakes were generally distributed in the Eastern Plain558

Limnetic Region and Northeast Plain Limnetic Region, as well as that the oligotrophic559

lakes were found in the Tibet-Qinghai Plateau Limnetic Region (Fig.4 and Fig.7).560

Considering the natural factors for the distributions of Chinese lake eutrophication,561

we could suppose some possibility that lake depth and lake hydrological processes562

cause the eutrophication of lakes in China. Previous studies (Wang & Dou 1998; Huang563

et al., 2014) have demonstrated that lakes with mean depths > 5 m in China are mainly564

located in the Yungui Plateau Limnetic Region, Inner Mongolia-Xinjiang Plateau565

Limnetic Region, and Tibet-Qinghai Plateau Limnetic Region, whereas almost all lakes566
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located in the Eastern Plain Limnetic Region are shallow. Both these lakes in the567

Eastern Plain Limnetic Region are hydraulically connected with the Yangtze River with568

a temporary residence time of approximately 30 days (Fig. S7). In shallow lakes, due to569

wind waves or disturbance by fishes, the phosphorus/nitrogen nutrients stored in the570

sediment can be easily resuspended and released into the overlying water (Niemistö et571

al., 2008). Consequently, an increased frequency of algal blooms can be found in572

Eastern Plain Limnetic Region, in lakes, such as Taihu, Chaohu, and Hongze (Qin et al.,573

2019; Yao et al., 2016). Instead, deeper lakes, such as the ones in YGPLR and TQPLR,574

possess relatively good buffer capacity for waste-water runoff (Huang et al., 2014).575

Carvalho et al. (2009) found that Chl-a levels decreased with lake water depth and576

geographic location. Qin et al. (2020) and Tong et al., (2006) demonstrated that577

phosphorus reduction can mitigate eutrophication in deep lakes, and more efforts to578

reduce both N and P need to be undertaken in shallow lakes. This can be demonstrated579

in our case of Fuxian Lake with changeable eutrophication levels, with an average depth580

of 87 m, which was the deepest lake in southwest China (Fig. S7). In addition, the581

annual precipitation and air temperatures were relatively high in the EPLR (Fig. S4).582

Hydrological and meteorological processes can scour land surfaces and bring nutrients583

into lakes via rivers. Therefore, lake ecosystems were strongly related to the lake basin584

morphology and its hydrologic characteristics, which were higher in shallow lakes than585

in deep ones (Köiv et al., 2011).586

On the other hand, human-induced eutrophication, for example, agricultural587

fertilization (Carpenter, 2008; Huang et al., 2017), aquaculture (Guo & Li, 2003) and588

sewage discharge (Paerl et al., 2011), are increasing terrestrial nutrient phosphorus but589

not nitrogen concentration inputs (Schindler et al., 2008). We suspected that two590

interactive factors, such as land-use and nutrient variations cause lake eutrophication,591
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because this can be found in our investigation of distributed lakes in the EPLR in592

comparison to earlier national investigation by Wang and Dou (1998). Many lakes in the593

EPLR that were naturally connected with rivers have been modified to paddy fields, and594

some small lakes have become isolated for lake aquaculture. For instance, Lake595

Dongting was artificially shifted from being river-fed to dammed/isolated. Logically it596

should a dam can settle down the suspended matter and nutrients via river inputs. But597

the shallow characteristic and wind mixing influence process significantly increased the598

probability of eutrophication (Liu et al., 2019). In EPLR and NPLR, 94% of China’s599

population lives in 43% of its eastern region, which visually demonstrates the600

distribution of GDP with a densely populated east (Fig. S2). Owing to the requirements601

of water source utilization, the EPLR has lost one-third of its original lake areas to602

cropland since 1949 (Yin and Li, 2001). Lake aquaculture is highly active in these areas.603

These processes could lead to terrestrial nutrient loading into lakes, from either604

agriculture or aquaculture, and thereby alter the trophic state levels of a lake ecosystem.605

In 2019, the total fish catch was 4,695,432, 25,588,135, 2,314,603, and 4,841,159 tons606

in Hubei, Jiangxi, Anhui, and Jiangsu in the east, respectively (China rural statistical607

yearbook).608

Although we have not systematically analyzed the effects of environmental factors609

on trophic status, some of the sparse existing comparative literature supported certain610

spatiotemporal patterns. It should be emphasized that China has been facing serious lake611

eutrophication and unbalanced distributions. Almost invariably, lake ecosystem health612

would still be impacted by stresses integrating anthropogenic and overexploitation of613

catchment resources. Consequently, addressing the issue of worsening eutrophication614

requires a better understanding of the environmental interactive mechanisms in the615

future.616
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5 Conclusions617

Our study presents a novel remote sensing- and machine-learning-based algorithm618

applied in that allow to retrieve the lake TSI from Sentinel-2 MSI imagery. We used a619

match-up database (N=431) over a diverse range of bio-optical regimes to train machine620

learning algorithms and validated it against the in situ data. The trophic states of 555621

lakes were then evaluated. These results provide a better understanding how remote622

sensing and machine learning-based models allow to estimate eutrophication over a623

large scale of different lakes. Our main findings can be summarized as follows:624

1) Linear regression enabled us to find certain band combinations sensitive to TSI625

(R2>0.59), for example, the blue/red [Rrs(443)/Rrs(740), Rrs(492)/Rrs(740)] and626

green/red [Rrs(560)/Rrs(704), Rrs(665)/Rrs(704)] band ratios.627

2) XGBoost algorithm resulted in optimum performance with R2=0.87 and628

slope=0.85, considering the low errors (MAE=3.15, RMSE=4.11), compared to the629

support vector machine and random forest algorithms.630

3) If there is some preliminary data available from the study area one can improve631

the performance of the machine learning by dividing the lakes based on high DOC/EC,632

NAP-type and Phy-type, and cluster-1 reflectance spectra.633

4) The trophic states of 555 lakes were evaluated in five limnetic regions;634

eutrophic lakes dominated in Eastern Plain Limnetic Region and Northeast Plain635

Limnetic Region, and most lakes in Tibet-Qinghai Plateau Limnetic Region were636

mesotrophic or oligotrophic.637

In our subsequent research and management, qualification and mapping of TSI will638

be implemented as a remote sensing and machine learning model in a large-scale study,639

allowing for an improved performance. In the future, Sentinel-2 MSI data could be used640

to reveal spatiotemporal variations in lake trophic states in long-term time-series641
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responding to climate and anthropogenic activities.642
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