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Abstract: Assessing eutrophication in lakes is of key importance, as this parameter 11 

constitutes a major aquatic ecosystem integrity indicator. The trophic state index (TSI), 12 

which is widely used to quantify eutrophication, is a universal paradigm in scientific 13 

literature. In this study, a methodological framework is proposed for quantifying and 14 

mapping TSI using the Sentinel Multispectral Imager sensor and fieldwork samples. The 15 

first step of the methodology involves the implementation of stepwise multiple 16 

regression analysis of the available TSI dataset to find some band ratios, such as 17 

blue/red, green/red, and red/red, which are sensitive to lake TSI. Trained with in situ 18 

measured TSI and match-up Sentinel images, we established the XGBoost of machine 19 

learning approaches to estimate TSI, with good agreement (R
2
=0.87, slope=0.85) and 20 

fewer errors (MAE= 3.15 and RMSE=4.11). Additionally, we discussed the 21 

transferability and applications of XGBoost in three lake classifications: water quality, 22 

absorption contribution, and reflectance spectra types. We selected the XGBoost to map 23 

TSI in 2019-2020 with good quality Sentinel-2 Level-1C images embedded in ESA to 24 

examine the spatiotemporal variations of the lake trophic state. In a large-scale 25 

observation, 10-m TSI products from investigated 555 lakes in China facing 26 
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eutrophication and unbalanced spatial patterns associated with lake basin characteristics, 27 

climate, and anthropogenic activities. The methodological framework proposed herein 28 

could serve as a useful resource toward a continuous, long-term, and large-scale 29 

monitoring of lake aquatic ecosystems, supporting sustainable water resource 30 

management. 31 

1 Introduction 32 

Lakes, as valid sentinels of global or regional responses, are sensitive to 33 

anthropogenic activities and climate change (Mortsch et al., 1996; Quayle et al., 2002; 34 

Tranvik et al., 2009). The commonly used paradigm for studying eco-environmental 35 

monitoring and controlling of lakes is the status of eutrophication (Carlson, 1977). It is 36 

a combination of light, heat, hydrodynamics, and nutrients, such as nitrogen and 37 

phosphorus, which occurs through a series of biological, chemical, and physical 38 

processes of lakes (Guo et al., 2020). As a result of eutrophication, nutrient loading and 39 

productivity grow sharply, and even hypoxia and frequent outbreaks of harmful algal 40 

blooms are likely to produce toxins (Paerl et al., 2008, 2011). These processes can cause 41 

serious degradation of water quality and are detrimental to the ecosystem services 42 

functionality of lakes and reliable supply of drinking water (OECO, 1982). Once the 43 

eutrophication phenomenon becomes intense, ecological imbalances generally follow 44 

(Smith et al., 2006). Hence, knowledge of eutrophication process can provide us with an 45 

understanding of the structure and function of lake ecosystems that give rise to 46 

environmental changes. We can then predict future trends and develop appropriate 47 

mitigation strategies. 48 

Several lakes experience eutrophication processes because of excessive nutrient 49 

enrichment (Lund, 1967; Smith et al., 1999; Wetzel, 2001). At the global scale, 63.1% 50 

of lakes larger than 25 km
2 

are eutrophic and 54% of Asian lakes (Wang et al., 2018), as 51 
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well as 53% of European lakes (ILEC et al., 1994). Lake eutrophication has become a 52 

global water quality issue affecting most freshwater ecosystems (Matthews, 2014). 53 

Currently, many pollutions control measures and management strategies have been 54 

implemented that are specific to individual lakes or to lakes, in general (USEPA, 2002). 55 

However, there is still insufficient information to address lake eutrophication related to 56 

environmental disturbances or changes. Realization of lake eutrophication has been a 57 

serious situation for some lakes; therefore, we provided some reasons to suggest the 58 

need for large-scale research. First, different environmental factors control the trophic 59 

status of lakes at local and multiple scales (e.g., Wiley et al., 1997). Specifically, biotic 60 

factors may dominate the eutrophic state of individual lakes, and we can understand the 61 

mechanism processes by lake-specific sampling. In contrast, abiotic factors and their 62 

linkages are pivotal factors that determine lake biogeochemistry at multiple scales (Sass 63 

et al., 2007). It is often necessary to study a number of lakes with different 64 

characteristics and catchments to understand the mechanisms of spatio-temporal 65 

patterns. Therefore, an up-scaling study of trophic status is required to understand the 66 

evolution prospects of lakes in response to changes in global and regional environments. 67 

Second, multi-year environmental and climatic conditions require long-term field 68 

studies and observations to understand the temporal pattern in important trophic status 69 

processes. In addition, relatively large datasets are needed considering the spatial extent 70 

because environmental factors are integrated to determine the trophic status of lakes. It 71 

can promote data organization and enable us to address an emergency and establish 72 

scientific measures for water resource management (Cunha et al., 2013; Smith and 73 

Schindler, 2009). Thus, eutrophication should be rapidly assessed using easy-to-analyze 74 

indices and enforcement methods for large-scale and high-frequency applications. 75 

Evaluating the trophic state of lakes has been an important topic for decades 76 
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(Carlson, 1977; Smith and Schindler 2009). The traditional method uses chlorophyll-a, 77 

transparency, nutrients, and other variables as water quality indicators by field in situ 78 

sampling and laboratory measurements (Rodhe, 1969). Subsequently, Carlson (1977) 79 

introduced a numerical TSI that should have replaced descriptive values like 80 

“oligotrophic,” “mesotrophic,” or “eutrophic”. The replacement has not occurred, but 81 

the TSI proposed by Carlson is a common method to determine the trophic state level of 82 

aquatic environments (Aizaki et al., 1981). The traditional method for calculating TSI is 83 

based on collected in situ data. The sampling itself and subsequent laboratory 84 

measurements are labor-intensive and expensive, often also logistically difficult to 85 

perform. This limits our capability to monitor hundreds or thousands of lakes for 86 

eutrophication, not speaking about the majority of 117 million of lakes on Earth 87 

(Verpoorter et al. 2014). Moreover, the TSI calculated for one or a few discrete samples 88 

do not represent spatial distribution of TSI within (especially larger) lakes. This could 89 

limit the large-scale assessment of eutrophication as well as the understanding of 90 

biogeochemical cycles. 91 

Satellite remote sensing is a useful tool for monitoring inland waters (Palmer et 92 

al 2015). Ocean water-color sensors, such as Medium Resolution Imaging Spectrometer 93 

(MERIS) or Ocean and Land Colour Instrument (OLCI) have too low spatial resolution 94 

(300 m) for majority of lakes on Earth. Land remote sensing seosor like Landsat 95 

Operational Land Imager (OLI), Sentinel-2 Multispectral Imager (MSI; 10-60 m) and 96 

Satellite pour l'Observation de la Terre (SPOT) with high spatial resolution (5–30 m) are 97 

not designed for water remote sensing (lack critical spectral bands, SNR is not sufficient 98 

for water, etc.). Compared to OLI and SPOT sensors, MSI has a more adequate 99 

radiometric resolution (12-bits) and 13 spectral bands, including four visible and SWIR 100 

channels (Drusch et al., 2012). Inland water TSI has been produced for large lakes using 101 
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MODIS sensor (Wang et al 2018). However, this study is for more than 2000 large lakes 102 

(due to the spatial resolution of the sensor). The Copernicus Land Monitoring Service 103 

has started to produce TSI for lakes large enough to be mapped with 100 m pixel size 104 

using Sentinel-2 MSI. However, this product is available only for Europe and some 105 

parts of Africa.  106 

Instead of individual parameters, several studies (e.g., Morel and Prieur, 1977; 107 

Gurlin et al., 2011; Huang et al., 2014; Sass et al., 2007; Thiemann & Kaufmann, 2000; 108 

Yin et al. 2018) have also provided empirical relationships expressed as band 109 

combinations or baseline methods to acquire Chl-a, Secchi or nutrients related to 110 

potential TSI calculations in regional lakes. However, the accuracy of these empirical 111 

relationships for transferring knowledge from some representative lakes to large-scale 112 

lake groups is limited by large uncertainties (i.e., in areas with different water quality 113 

concentrations and atmospheric component influences, fewer lakes can be used with 114 

more heterogeneous influences and uniform algorithms) (Oliver et al., 2017). 115 

Considering the requirement of a uniform and universal relationship to quantify the 116 

trophic status of lakes, an alternative method using high-frequency and spatial 117 

resolution of the sensor is a significant challenge. Recently, technological developments, 118 

such as machine learning algorithms, have allowed the usage of remotely sensed 119 

imagery to successfully investigate water quality parameters using artificial intelligence 120 

(Reichstein et al., 2019; Pahlevan et al., 2020; Cao et al., 2020). The potential 121 

application and development of machine learning for remote quantification of water 122 

quality is attributed to the following advantages: requirement of little prior knowledge, 123 

rich features can be captured, and robust relationships can be obtained. These processes 124 

avoid bias and uncertainty from the regional environmental background as well as 125 

complications due to atmospheric components of traditional remote sensing-derived 126 
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relationships over large-scale, i.e. for multiple lakes. Given the novel application of 127 

remote sensing and machine learning, this is a gap to fill for large-scale research of 128 

monitoring trophic states. 129 

Environmental issues fueled by rapid economic growth in China have significantly 130 

increased in the last three decades. Lake eutrophication is a serious issue, with large 131 

variability in terms of trophic status and optical properties. However, most studies (Jin, 132 

2003, 2005; Fragoso et al., 2011; Huang et al., 2014) have addressed eutrophication 133 

concerns in only a single lake or two lakes since the 1990s. It is acknowledged that a 134 

rapidly growing economy and anthropogenic activities (e.g., elevated nutrient loading 135 

and increasing air pollution) accelerate the aging process of lakes (Wu et al., 2011; Shi 136 

et al., 2020). Therefore, it is critical to objectively assess the trophic status and pay 137 

attention to protect the aquatic environment. We aim to provide a robust machine 138 

learning algorithm and remote sensing flowchart from simultaneously retrieved TSI 139 

over a wide range of bio-optical compositions in different lakes. The objectives of our 140 

study were to: (1) examine biogeochemical parameters and assess trophic status, (2) 141 

calibrate and validate the TSI model using different machining learning algorithms from 142 

MSI-imagery derived remote sensing reflectance spectra (Rrs), with different lake 143 

classifications; and (3) quantify and map the trophic status of typical 555 lakes in five 144 

Chinese limnetic regions.  145 

2 Materials and methods 146 

2.1 Study area and sampling process 147 

China is located in the east of Asia with a land area of 9,600,000 square kilometers 148 

and a population of over 1.4 billion. The terrain of China descends from west to east in 149 

three steps. Due to a vast territory span, this country has diverse climatic, geographical, 150 

and geological conditions. There are 2,693 natural lakes (with area >1.0 km
2
) that are 151 
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distributed in China (Ma et al., 2011). Protection and sustainable management of these 152 

lakes have been priorities, considering the degradation of water quality over several 153 

decades. In this study, a total of 45 lakes were visited and 431 samples were collected in 154 

early April 2016 to late October 2019 (Table S1 and Fig. 1), which was the highest 155 

productive season, as identified by Carlson’s TSI model. These datasets were analyzed 156 

and published in (Li et al., 2021; Song &Li et al., 2019; Song et al., 2020). Our lake 157 

dataset was collected from various types of lakes across China, and efforts were made to 158 

examine lake trophic status from a wide range of water quality parameters, lake sizes 159 

(0.5 to 4, 256 km
2
), lake elevation (10 to 4, 525 m), and climatic zones (Song &Li et al., 160 

2019). In the field, some small-size lakes were sampled in the middle, and signal sample 161 

was used to represent the water qualities, while others were sampled at multiple 162 

locations evenly distributed over the lake. The water samples were collected 163 

approximately 0.5 m below the surface, and then stored in 1 L amber HDPE bottles and 164 

kept in a portable refrigerator (4°C) before being transported to the laboratory. During 165 

the sampling process, the Secchi disk depth (SDD, m) was measured using a 166 

black-and-white Secchi disk. The pH and electrical conductivity (EC, μs cm
-1

) were 167 

recorded using a portable multi-parameter water quality analyzer (YSI 6600, 170 U.S). 168 
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 169 
Figure 1：Location of lake sites. 170 

2.2 Laboratory analysis 171 

A transferred portion of each bulk water sample was immediately filtered with 172 

0.45-μm pore size Whatman cellulose acetate membrane filters in the laboratory. It is to 173 

be noted that some remote Tibet and Qinghai lake samples had to be filtered during 174 

fieldwork. Chlorophyll-a (Chl-a) was extracted from the filters using a 90 % buffered 175 

acetone solution at 4°C under 24 h dark conditions. According to the SCOR-UNESCO 176 

equations (Jeffrey and Humphrey, 1975), the concentration of Chl-a (μg L
-1

) was 177 

determined using a UV-2600PC spectrophotometer at 750 nm, 663 nm, 645 nm, and 178 

630 nm. Dissolved organic carbon (mg L
-1

) concentrations were determined using a 179 

total organic carbon analyzer. Total nitrogen (TN) and total phosphorus (TP) 180 

concentrations (mg L
-1

) were measured using a continuous flow analyzer (SKALAR, 181 

San Plus System, the Netherlands) using a standard procedure (APHA/AWWA/WEF, 182 

1998). In addition, total suspended matter (TSM, mg L
-1

) concentrations were obtained 183 

gravimetrically using pre-combusted 0.7-μm pore size Whatman GF/F filters. All 184 
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preprocesses (e.g., filtration and concentration quantification) of all water samples were 185 

undertaken within two days in the laboratory. The procedures are provided in detail in 186 

Li et al. (2021). 187 

The bulk samples were again filtered through a 0.7-μm pore size glass fiber 188 

membrane (Whatman, GF/F 1825-047) to retain particulate matter. The water from 189 

particulate matter measurements was then filtered through a 0.22-μm pore size 190 

polycarbonate membrane (Whatman, 110606) in order to measure chromophoric 191 

dissolved organic matter (CDOM) absorption of each sample. According to the 192 

quantitative membrane filter technique (Cleveland and Weidemann, 1993), the light 193 

absorption of total particulate matter ap(λ) can be separated into phytoplankton pigment 194 

absorption aph(λ), non-algal particles ad(λ), and CDOM absorption aCDOM(λ). The 195 

optical density (OD) of the particulate matter retained in the filters was measured using 196 

a UV-2600PC spectrophotometer at 380–800 nm, with a blank membrane as a reference 197 

at 380–800 nm. The filters were then bleached using a sodium hypochlorite solution to 198 

remove phytoplankton pigment and measured again using a spectrophotometer. Finally, 199 

the phytoplankton pigment absorption aph(λ) was calculated by subtracting ad(λ) from 200 

the total particulate matter ap(λ). The absorption coefficients of the optical active 201 

substance (OACs) were calculated according to Song et al. (2013). 202 

2.3 Trophic status assessment of lakes 203 

Several studies have proposed different indices of the lake trophic state (Aizaki et al., 204 

1981; Carlson, 1977). Carlson's trophic state index used five variables, such as Chl-a, 205 

TP, TN, SDD, and chemical oxygen demand (COD), to characterize the trophic state. 206 

However, there are no optical characteristics for TN, TP and COD to manifest in 207 

changes of remote sensing reflectance, which may bring more uncertainties or errors. 208 

Thus, Chl-a, TP, and SDD were selected to assess the trophic status according to the 209 
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modified Carlson’s trophic state index (TSI). The TSI can be calculated using individual 210 

TSIM(Chl-a), TSIM(SDD), and TSIM(TP) using the following equations:  211 
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Where, the TSI below 30 correspond to oligotrophic waters, above 50 are eutrophic and 216 

TSI between 30 and 50 in mesotrophic (Carlson, 1977). 217 

2.4 Muti-Spectral Instrument imagery and atmospheric correction 218 

Sentinel-2A/B MSI imagery was acquired from the Copernicus Open Access Hub 219 

of the European Space Agency. Altogether, 210 scenes of cloud-free Level-1C images 220 

covering the lakes were downloaded with a time window of ±7 days from in situ 221 

measurements. The Case 2 Regional Coast Color processor (C2RCC) was used to 222 

remove atmospheric effects. An average of 3×3-pixels centered at each in situ sampling 223 

station was used in the further analysis. All the processes were performed using the 224 

Sentinel Application Platform (SNAP) version 7.0.0. A flowchart of the process is 225 

shown in Fig. 2. 226 
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 227 
Figure 2 ：Workflow of the Sentinel-2 MSI data and machine learning algorithms 228 

for estimating TSI 229 

 230 

2.5 Machine learning algorithms  231 

As a branch of artificial intelligence, the application of machine learning is 232 

growing in the field. Machine learning can automatically analyze huge chunks of data, 233 

develop optimal models, generalize algorithms, and make predictions. These approaches 234 

have been applied in a variety of eco-environmental and remote sensing fields 235 

(Mountrakis et al., 2011; Pahlevan et al., 2019). Hence, we employed four 236 

representative machine learning algorithms, namely linear regression (LR), support 237 

vector machine (SVM), XGBoost (XGB), and random forest (RF) (Supplementary data, 238 

methods), to establish a TSI model. To strengthen the robustness, band combinations 239 

sensitive to TSI were determined by LR (Fig. 2), and were added to the procedure of 240 

machine learning algorithms as input variables. Subsequently, the output variable was 241 

the predicted TSI. The in situ measured samples were then randomly divided into a 242 

calibration dataset (70%, 287 lake samples) and validation dataset (30%, 144 lake 243 
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samples) using MATLAB software. The TSI modeling procedure considering machine 244 

learning and Multiple Linear Regression (MLR) was processed using the R software. 245 

2.6 Classifications of lakes 246 

In order to provide further feasibility for the application and availability of the TSI 247 

model, the in situ measured samples were classified in three ways (Fig. 3): 248 

a) based on water quality: Salinity classification referred to the threshold value of 249 

electrical conductivity (named EC, EC=1000 μS cm
-1

) (Duarte et al., 2008), following 250 

which the lakes were divided into brackish lakes (N=100 samples) and fresh water lakes 251 

(N=331 samples). Dissolved organic carbon (DOC) in global lake water classification 252 

referred to the volume weighted averaged DOC level of global lakes (3.88 mg L
-1

) 253 

according to Toming et al., (2020), following which lakes were divided into high DOC 254 

lake (N=224 samples) and low DOC lake (N=207 samples).  255 

b) based on optical absorption contribution: Optical absorption classification 256 

referred to Prieur and Sathyendranath (1981), where the total light absorption of water 257 

can be separated from phytoplankton pigment absorption, non-algal particles, and 258 

CDOM absorption, respectively. The relative percentage of absorption contribution of 259 

OACs can be divided into phytoplankton-type (Phy-type) lakes (N=54 samples), 260 

non-algal particles-type (NAP-type) lakes (N=109 samples), CDOM-type lakes (N=177 261 

samples), and mix-type lakes (N=91 samples).  262 

c) based on reflectance spectra: In order to discern the different optical 263 

characteristics of lakes, the derived MSI reflectance was clustered using the k-means 264 

clustering approach with a gap statistic (Neil et al., 2018). We identified 431 MSI 265 

reflectance Rrs(λ) spectra for three branches (Table S3), and the Rrs(λ) spectra are 266 

shown in Fig.3. 267 
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 268 
Figure 3：Lake classifications considering three ways, i.e., water quality, optical 269 
absorption contribution and reflectance spectra. ANOVA analysis was conducted 270 
in different classifications (p<0.001) (Table S3). 271 
 272 
2.7 Statistical analyses and accuracy assessment  273 

Statistical analysis, including descriptive statistics, correlation (r), regression (R
2
), 274 

and ANOVA analyses, were implemented with Statistical Program for Social Science 275 

software (version 16.0; SPSS, Chicago, IL, USA). Correlation and regression analyses 276 

were used to examine the relationships between the water quality parameters and 277 

absorption coefficients of OACs as well as the TSI model calibration and validation. 278 

The differences in trophic status, EC classification, DOC classification, absorption 279 

coefficients of OAC classification, and MSI reflectance spectra classification for TSI 280 

model validation were assessed using one-way ANOVA. The significance level was set 281 

at p<0.05
*
. The mean normalized error (MAE) and root mean square error (RMSE) 282 

were used to assess the performance of the TSI model (Supplementary data, accuracy 283 

assessment).  284 

3 Results 285 

3.1 Aquatic environmental scenery 286 
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The water qualities and bio-optical properties of our samples covered a wide range, 287 

revealing different geographical environmental scenery (Tables S1 and S2-4). The EC 288 

and DOC concentration showed high variability, ranging for example, from 3345.31 µs 289 

cm
-1

 (TuoSu, TS20) in Tibet-Qinghai region to 0.17 µs cm
-1

 (Qingnian, QN2) in 290 

Northeast region. For the water quality parameters to characterize TSI, the Chl-a 291 

concentration ranged from 0.12 to 100.22 µg L
-1

, with the highest value recorded in 292 

TaiPingChi (TPC5) and the lowest value in NamoCo (NMC36). The range of TP was 293 

from 0.003 mg L
-1

 (Erlong, EL8) to 2.17 mg L
-1 

(Dali, DL7), and SDD ranged from 294 

0.17 m (Chalhu, CH32) to 9.47 m (NMC36) for surveyed lakes, respectively. Overall, 295 

the maximum values of EC, DOC, turbidity, Chl-a, TSM, and SDD were 196782.35, 296 

948.4, 723.3, 770.92, 614.58, and 55.71 fold greater than the minimum values, 297 

respectively, indicating that our dataset was representative of diverse water qualities. 298 

Lake samples were grouped into different classifications based on water quality 299 

(e.g., EC and DOC), optical absorption contribution, and reflectance spectra (Table 1 300 

and Fig. 3). The results indicated that all water qualities showed significant differences 301 

(p<0.05) under different lake classifications. For example, brackish lakes showed higher 302 

average values of SDD, TP, DOC, and optical attributions of OAC values than those of 303 

fresh water lakes, but the turbidity, Chl-a, and TSM concentrations were lower. Lakes 304 

equipped with low DOC levels had a low average value of SDD than that of lakes with 305 

high DOC levels. NAP-type lakes exhibited the highest average Chl-a and DOC values, 306 

whereas Phy-type lakes had the highest average turbidity and TSM values, and the 307 

highest average SDD and TP values were recorded in CDOM-type and Mix-type lakes, 308 

respectively. For reflectance spectra classifications (Fig. 3), the highest average EC, 309 

SDD, and DOC were recorded in cluster-1 lakes, the highest average turbidity and TP 310 

was shown in cluster-3 lakes and the highest average TSM was found in cluster-2 lakes.  311 
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  312 Table1 (a) Averaged values (Avg.) of water quality and bio-optical properties considering lake 

classifications and (b) ANOVA analysis (F value) among them 

 Lake classifications N EC Turbidity SDD Chl-a TP DOC TSM aph(440) ad(440) aCDOM(440) 

(a) 

Water quality 

Brackish  100 12986.28 8.83 2.21 4.18 0.45 33.31 8.42 0.23 0.27 0.42 

 Fresh 331 302.39 21.75 1.43 8.58 0.07 4.28 19.52 0.56 1.13 0.57 

 High DOC 224 5988.93 23.90 1.39 10.42 0.25 19.07 21.50 0.68 1.14 0.65 

 Low DOC 207 276.19 12.45 1.85 4.46 0.06 2.29 11.98 0.27 0.71 0.41 

 

Optical absorption 

contribution 

NAP-type 54 5156.02 11.28 1.58 14.26 0.09 18.75 15.99 1.29 0.41 0.55 

 Phy-type 109 825.48 43.28 0.65 6.85 0.10 4.75 37.18 0.46 2.74 0.49 

 CDOM-type 177 4081.96 4.44 2.43 3.64 0.13 9.70 4.99 0.13 0.15 0.51 

 Mix-type  91 3424.07 19.40 1.17 12.05 0.34 16.48 16.22 0.70 0.60 0.62 

 
Reflectance 

spectra 

Cluster-1 87 6948.28 4.46 2.38 2.64 0.08 17.92 5.76 0.26 0.17 0.28 

 Cluster-2 215 2728.71 6.18 2.05 8.57 0.07 7.18 5.81 0.35 0.36 0.52 

 Cluster-3 129 1626.05 46.68 0.36 9.19 0.37 12.73 42.59 0.84 2.39 0.73 

(b) 

Water quality 

Brackish  100 
- 18.7

** 21.8
**

 12.0
**

 68.9
**

 486.5
**

 20.4
**

 16.6
**

 29.8
**

 9.6
*
 

 Fresh 331 

 High DOC 224 
93.8

** 19.8
**

 10.0
**

 32.2
**

 23.3
**

 - 21.0
**

 38.0
**

 10.0
*
 39.3

**
 

 Low DOC 207 

 

Optical absorption 

contribution 

NAP-type 54 

7.4
** 71.6

**
 46.0

**
 21.0

**
 7.1

**
 13.5

**
 73.0

**
 - - - 

 Phy-type 109 

 CDOM-type 177 

 Mix-type 91 

 
Reflectance 

spectra 

Cluster-1 87 

220.9
**

 17.9
**

 25.2
**

 312.7
**

 11.0
**

 18.5
**

 18.9
**

 26.1
**

 171.4
**

 33.5
**

  Cluster-2 215 

 Cluster-3 129 

The unit of TN, TP, DOC and TSM is mg L-1; EC is μs cm -1; Chl-a is μg L-1; turbidity is NTU (nephelometric 

turbidity unit). Significance levels are reported as significant (noted with *, 0.05>p>0.01) or highly significant (noted 

with **, p<0.01). 
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3.2 Trophic status assessment  313 

The trophic status of 45 lakes across China, from where in situ samples were 314 

collected, was evaluated (Fig. 4a). Our results showed that there were 13 oligotrophic 315 

(3.02 %), 199 mesotrophic (46.17 %), and 219 eutrophic (50.81 %) samples. Because 316 

our samples were collected in different seasons and eutrophication is time-dependent, 317 

the TSI values of samples within a lake were averaged. It can be shown that only five 318 

lakes accounting for 11.1% of investigated lakes were characterized with an 319 

oligotrophic status, 17 lakes accounting for 37.8 % were mesotrophic, and 23 lakes 320 

accounting for 51.1 % were characterized with eutrophic status. These eutrophic lakes 321 

were distributed in the eastern region of China (Fig. 4b), and were associated with a 322 

highly concentrated human population and economic development. Moreover, the 323 

ANOVA results showed that the TSI of lake samples were significantly different 324 

considering lake classifications (Fig. 4c, and d). 325 
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 326 
Figure 4： (a) is the averaged TSI in collected samples from lakes across China and 327 
their spatial distribution. The number of lakes can be found in TableS1. The box 328 
plots of TSI at different classifications of water quality (b), optical absorption 329 
contribution types (c) and reflectance spectra (d). The balls beside the boxes are 330 
the lake samples, and the black balls in the boxes represent the mean values. The 331 
horizontal edges of the boxes denote the 25th and 75th percentiles; the whiskers 332 
denote the 10th and 90th percentiles.  333 
 334 
3.3 Calibration and validation of TSI model 335 

In this section, multiple linear regression was used to identify significantly 336 

sensitive spectral variables related to TSI (Table 2 and Fig. 2). Of the band combinations 337 

validated in the study (N=144), the blue/red [Rrs(443)/Rrs(740), Rrs(492)/Rrs(740)], 338 

and green/red [Rrs(560)/Rrs(704), Rrs(665)/Rrs(704)] band ratios showed a good 339 

regression coefficient (R
2
>0.59) with TSI (Table S5). These band combinations 340 

provided certain sensitive spectral variables that responded to the lake eutrophic status. 341 

Hence, to strengthen the robustness of the three machine learning models, the blue/red 342 
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and green/red combinations above were considered as the input variables as well as six 343 

spectral variables (Rrs(λ) at 443, 492, 560, 665, 709, and 740 nm). Likewise, the output 344 

variables were estimated using TSI to examine the performances (Fig. 5). The results 345 

showed that when XGBoost was applied to the validation data (N=144), the 346 

performance of the model was excellent (R
2
=0.87, slope=0.85) with low errors (MAE= 347 

3.15, RMSE=4.11). The support vector machine (R
2
=0.71, slope=0.77, MAE=4.67, 348 

RMSE=6.11) and random forest (R
2
=0.85, slope=0.84, MAE=3.31, RMSE=4.34) 349 

models also showed significant performance. These results demonstrate the potential of 350 

using XGBoost by considering band combinations to derive TSI from Sentinel products.  351 

 352 
Figure 5： Relationships between in situ and derived TSI for both model training 353 
and testing samples by support vector machine (a), XGBoost (b) and random 354 
forest (c), as well as their errors (d). 355 
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 356 
 357 

 358 
Table 2 Multiple linear regression between measured- and estimated- TSI from the MSI spectral bands after using C2RCC processor 

Band combinations Datasets N Fitting equation R
2
 Errors Plots figures 

Band 1/ Band 6 

（Blue/Red） 

Calibration 287 TSI = -8.51ln [Rrs(B1)/Rrs(B6)] + 63.47 0.76 
MAE = 6.45 

RMSE = 5.85 

 

Validation 144 TSIderived= 0.73×TSIin situ+ 11.868 0.61 
MAE = 6.26 

RMSE =7.48 

Band 2/ Band 6 

（Blue/Red） 

Calibration 287 TSI = -8.87ln [Rrs(B2)/Rrs(B6)] + 67.91 0.77 
MAE = 4.57 

RMSE = 5.74 

 

Validation 144 TSIderived = 0.74×TSIin situ + 11.751 0.60 
MAE = 6.32 

RMSE =7.57 

Band 3/ Band 5 

（Green/Red） 

Calibration 287 TSI = -13.63ln [Rrs(B3)/Rrs(B5)] + 67.26 0.77 
MAE = 4.55 

RMSE = 5.70 

 

Validation 144 TSIderived = 0.72×TSIin situ + 12.44 0.59 
MAE = 6.39 

RMSE = 7.66 

Band 4, Band 5 

（Red/Red） 

Calibration 287 TSI = -44.15×[Rrs(B4)/Rrs(B5)] + 108 0.80 
MAE = 4.39 

RMSE = 5.43 

 

Validation 144 TSIderived = 0.72×TSIin situ + 12.32 0.59 
MAE = 6.85 

RMSE = 7.94 
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3.4 TSI model application to lake classifications 359 
The TSI model calculated by XGBoost was assessed by comparing derived and in 360 

situ TSI considering different lake classifications (Fig. 6). We aimed to provide a 361 

universal TSI model and evaluate its feasibility in different aquatic environments. 362 

Significant agreement (slope>0.91, R
2
>0.91) between derived and in situ TSI was 363 

observed in lakes with high DOC levels (DOC>3.88 mg L
-1

) and EC values (EC>1000 364 

μS cm
-1

), with low errors. For lakes classified by different absorption contributions, the 365 

NAP-type (slope=0.98, R
2
=0.88) and Phy-type (slope=0.82, R

2
=0.92) samples generally 366 

showed a positive derived performance than those of Phy-type, CDOM-type, and 367 

Mix-type, respectively. In addition, a significant relationship between derived and in 368 

situ TSI can be described for lakes with cluster-1 reflectance spectra, with slope=0.91, 369 

R
2
=0.87, RMSE=2.87, and MAE=2.29. 370 

 371 
Figure 6： Scatter plots of derived- and in situ- TSI by XGBoost for validation 372 
samples (N=144) according to lake classifications, such as water quality (DOC and 373 
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EC) (a-b), absorption contribution (c), reflectance spectra(d) with the 1:1 line (red 374 
solid) and errors (e). 375 
 376 
3.5 Spatial and Seasonal patterns of trophic states: Five lake limnetic regions 377 

Previous studies have demonstrated that some lakes disappeared or increased 378 

numbers recently according to statistics from Ma et al. (2011). Thus, we selected some 379 

representative and stable lakes (N=555) to qualify spatial trophic states using the 380 

XGBoost algorithm. The preprocessing of MSI data were referred to the Fig.2, and a 381 

total of 139 cloud-free images in spring (Apr. and May.), summer (Jul. and Aug.) and 382 

autumn (Sep. and Oct.) covered investigated lakes were acquired. According to the 383 

different geographic and limnological types in China, lakes were divided into five 384 

limnetic regions (Wang and Dou 1998, Early National Investigation): Eastern Plain 385 

Limnetic Region (EPLR, N=123), Northeast Plain Limnetic Region (NPLR, N=37), 386 

Inner Mongolia-Xinjiang Plateau Limnetic Region (IMXPLR, N=56), Yungui Plateau 387 

Limnetic Region (YGPLR, N=15), and Tibet-Qinghai Plateau Limnetic Region 388 

(TQPLR, N=324) (Fig. 1 and Supplementary data).  389 

In general, there were significant seasonal variations in eutrophic state for lakes 390 

from the EPLR (F=39.56, p<0.001) and TQPLR (F=5.0, p<0.05) (Fig. 7). The averaged 391 

TSI in EPLR were 56.37 (Spring), 57.73(summer) and 54.26 (autumn) indicating 392 

serious eutrophication of investigated lakes, consistent with the results from Li et al., 393 

(2022). Recognizing that over 94% of the Chinese population lives in eastern 394 

watersheds with great demands of water use, this may be due to different water qualities 395 

management in provincial scales. Likewise, we found there was spatial heterogeneity of 396 

TSI results in TQPLR and some of which were the widespread saline lakes in 397 

Qinghai-Tibet Plateau with high reflectance in satellite images. On the contrary, there 398 

were no seasonal differences of TSI for lakes from IMXPLR, NPLR and YPLR, 399 

respectively. The eutrophic lakes dominated the proportions of the investigated lakes in 400 
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the EPLR (93.5 %), followed by the NPLR (89.2 %), YGPLR (86.7 %), IMXPLR 401 

(69.6%) and TQPLR (3.7%) (Fig.8). It can be also found that mesotrophic lakes were 402 

found in the decreased order of TQPLR (45.7 %), IMXPLR (30.4%), YGPLR (13.3 %), 403 

NPLR (10.8 %) and EPLR (6.5 %), respectively. In comparison, most oligotrophic lakes 404 

(50.6%) were distributed in the TQPLR. 405 

 406 

 407 
Figure 7 ：Box plots of TSI derived from XGBoost model in investigated lakes 408 
from the five limnetic regions (Wang & Dou 1998), i.e., (a) EPLR, (b) IMXPLR, (c) 409 
YPLR, (d) TQPLR and (e) NPLR. The black line and balls in the boxes represent 410 
the median and mean values, respectively. The horizontal edges of the boxes denote 411 
the 25

th
 and 75

th
 percentiles; the whiskers denote the 10

th
 and 90

th
 percentiles.  412 

 413 
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 414 
Figure 8：The proportions of lake numbers (%) for different trophic state in the 415 
five limnetic regions (Wang & Dou 1998), i.e., (a) EPLR, (b) IMXPLR, (c) YPLR, 416 
(d) TQPLR and (e) NPLR. N represents the lake numbers. 417 
 418 
4 Discussion 419 

4.1 Remote-sensed and machine-learning-based TSI model 420 

Traditional approaches to quantitatively characterize the trophic status rely on field 421 

measurements of trophic parameters, for example, Chl-a, nutrients, and SDD, to 422 

calculate the TSI (Carlson, 1977). It is difficult and costly to make field measurements 423 

in lakes in remote locations. The TSI calculation does not need all of these trophic 424 

parameters but just one, for example, Chl-a (Thiemann and Kaufmann, 2000), SDD 425 

(Olmanson et al., 2008; Song et al., 2020), TP (Kutser et al., 1995) and total absorption 426 

coefficients (Lee et al., 1999; Shi et al., 2019), etc. There have been many lake studies 427 

(Chl-a and SDD, Sheela et al., 2011; Chl-a, SDD and TP, Song et al., 2012) where two 428 

or three water quality parameters were mapped, which would allow to subsequently 429 
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gather them to calculate comprehensive TSI. Although these studies provided the 430 

potential to evaluate the trophic status of lakes, TSI is a synthetic indicator that is 431 

affected by biological, physical, and chemical factors that co-vary in most instances. 432 

Huang et al. (2014) also tried to derive TSI using remote sensing spectrum reflectance, 433 

but the accuracy was not completely usable. It shows that variability in remote sensing 434 

estimates of the TSI are not bad. 435 

With advances in artificial intelligence technology and the increasing use of 436 

computer applications in recent years, machine learning has become a useful tool for 437 

monitoring aquatic environments by remote sensing (Mountrakis et al., 2011). It allows 438 

us to develop and evaluate a machine-learning-based TSI model that addresses quality 439 

and accuracy problems more effectively (Li et al., 2021). Hence, we propose a new 440 

approach to directly characterize the trophic status and accurately reflect spatial 441 

variations in this study, but should also be conveniently available for the different lake 442 

classifications (Figs. 5, 6). Using machine learning algorithms, in order to improve the 443 

robustness and applicability of the TSI model, a sufficient database of trophic state 444 

parameters (N=431) was collected from lakes with different biogeochemical 445 

characteristics, such as water quality, absorption contributions of different optically 446 

active substances, and reflectance spectra (Table1). We first used B1-B6 reflectance as 447 

input variables of machine learning algorithms, and XGBoost showed a significant 448 

performance with R
2
 and a slope of 0.85 (Fig. S1). The SVM performed worse than 449 

XGBoost and random forest, and did not produce the sufficient performance. This is 450 

because the latter model are integrated algorithms with trees are unpruned and diverse, 451 

signifying the high resolution in the feature space and smoother decision boundary. 452 

There was no optical response bands or appropriate band ratios for TSI. We thus used a 453 

multiple linear regression to find some suitable sensitive band combinations responding 454 
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to the TSI, which made it possible to develop a robust machine-learning-based TSI 455 

model. It is important to note that the blue/red [Rrs(443)/Rrs(740), Rrs(492)/Rrs(740)], 456 

and green/red [Rrs(560)/Rrs(704), Rrs(665)/Rrs(704)] band ratios were significantly 457 

correlated with TSI (Table 2). This result indicated that the blue/red and green/red band 458 

ratios were more sensitive to the TSI, although the nutrients and SDD had no optical 459 

response. It was known for decades that the blue part of spectrum is useless when water 460 

itself is not blue (i.e. outside of ocean or very oligotrophic mountain lakes), owing to 461 

the noneffective atmospheric correction and complex reflectance signals. However, our 462 

dataset to train TSI models contain the samples from blue and oligotrophic Tibetan lakes, 463 

which are like the oceanic environments (Liu et al., 2021). The blue bands responding 464 

to TSI were thus used in this study. Most empirical Chl-a estimation studies adopted 465 

red/near infrared (NIR) band ratios to calibrate models using reflectance signatures 466 

(Gitelson et al., 1992). Similarly, empirical SDD retrieval models provided by previous 467 

studies used empirical algorithms or models to figure out what bands should work the 468 

best considered the following ratios: blue/green, red/blue plus red/green, and red/blue 469 

plus blue (Bindling et al., 2007), and Red/Blue ratio plus Blue (Kloiber et al., 2002). 470 

Kutser et al. (1995) also built a TP retrieval model using the red and NIR ratios, which 471 

is consistent with Chl-a empirical models. Overall, it is not surprising for our TSI model 472 

to have strong correlations with the blue/red and green/red band ratios because the TSI 473 

incorporates the optical properties. 474 

For this reason, we used MSI bands in the visible band ratios at six bands, 475 

considering the comprehensive spectrum information about the trophic status of lakes as 476 

input variables (Fig. 2). The three representative machine learning TSI models improved 477 

the accuracy of the traditional linear regression (Table 2 and Fig. 5), and the results 478 

were better than those obtained with B1-B6 reflectances as input variables (Fig. S1). As 479 
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a type of supervised machine learning algorithm, linear regression can be used to obtain 480 

certain learning criteria as expressions (y=w0+w1×x1+…+wp×xp) about the optimal wi 481 

solution. However, for complex targeted tasks, the fitting ability of linear regression is 482 

limited, and it cannot represent the real situation well. For example, a support vector 483 

machine can map data to another space, which can use a linear regression to distinguish 484 

the categories well. In complex environments (real world in machine learning), such as 485 

our large-scale database collected from different lakes (Fig. 1), there are various 486 

environmental factors as well as different seasons within a lake, that have an impact on 487 

the trophic parameters and optical characteristics of lakes (Wen et al., 2016). Likewise, 488 

we found that the enhanced input variables, like the band ratios, if appropriately 489 

corrected for the TSI, resulted in a better performance (Fig. S1). This is consistent with 490 

some applications of machine learning algorithms (Cao et al., 2020), in which the 491 

performance of machine learning was reduced when covariances of input features were 492 

incorporated. This allows us to find more interesting TSI-correlated band ratios for MSI 493 

imagery in machine learning.  494 

Several machine learning algorithms generally have different advantages and 495 

applicability owing to their different main principles (Cao et al., 2020; Li et al., 2021). 496 

This can be found in our results of the validation exercise, which showed that XGBoost 497 

provided stable TSI estimates, with a slope close to 1 and a good fitting coefficient of 498 

the measured and derived values (R
2
=0.87, slope=0.85, MAE= 3.15, RMSE=4.11) (Fig. 499 

4). Similarly, we can also find an excellent performance (R
2
=0.85, slope=0.84, 500 

MAE=3.31, RMSE=4.34) for estimating TSI values by the random forest algorithm.  501 

This was likely because it is a summation of all weak learners, weighted by the native 502 

log odds of error. In the case of boosting, we make decision trees into weak learners by 503 

allowing every tree to make only one decision before prediction (Chen et al., 2016). In 504 
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some cases, XGBoost outperformed random forest. In addition, the support vector 505 

machine performed worse than XGBoost and random forest (Fig. 4). Li et al. (2021) 506 

used a support vector machine to estimate Chl-a concentrations with a relatively small 507 

dataset of 32 samples and 273 samples, respectively. This is consistent with the recent 508 

process in the development of support vector machines and has many advantages for 509 

remote sensing applications with a small number of training datasets. Overall, the 510 

remote sensing and machine learning-based TSI model aims to reduce the dependence 511 

of traditional field measurements, while also providing a cost-effective approach to 512 

rapidly quantify the trophic state. 513 

4.2 TSI model for lake classifications 514 

We validated the XGBoost TSI model considering different scenarios of lake 515 

classification, for example, water quality, optical absorption contributions, and 516 

reflectance spectra (Figs. 2 and 6). The results indicate three application scenarios for 517 

our model with low errors. The first one is of the XGBoost TSI model, which in 518 

particular, performed well (slope>0.91, R
2
>0.91) in high DOC (>3.88 mg L

-1
) and EC 519 

(>1000 μS cm
-1

) lakes (Fig. 6). We found that lakes with high EC level correspondingly 520 

showed a high DOC level (Table 1), for example, high average EC value of 5156.02 μS 521 

cm
-1

 and high average DOC value of 18.75 mg L
-1

 for NAP-type lakes. These brackish 522 

or saline lakes were distributed in the Tibet-Qinghai Plateau Region (e.g., KLK20, TS21, 523 

QHH22, SLC32, BMC34, ZRNMC36, NMC37) and Inner Mongolia-Xinjiang Plateau 524 

Limnetic Region (e.g., DL8, HSH10, DH17, HL18, WLSH16) (Table S1). Our results 525 

are in agreement with those of previous studies that DOC and EC of inland waters 526 

located in semi-arid region can be attributed to the evapo-concentration and 527 

accumulation processes (Curtis and Adams, 1995) as well as anthropogenic activities. 528 

Further, it can be observed that oligotrophic lakes accounting for 11.1% were also 529 
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distributed in the Tibet-Qinghai (Fig. 4). 530 

Secondly, we found that our XGBoost TSI model performed well if the trophic 531 

parameters that correlated to the TSIM(Chl-a) or TSIM(SDD) dominated the lake 532 

classifications. Specifically, the high Chl-a (averaged 14.26 µg L
-1

) and aph(440) 533 

(averaged 0.26 m
-1

) levels in NAP-type lakes showed the best performance (slope=0.98, 534 

R
2
=0.88) than those of other optical absorption contribution classifications (Fig. 6). In 535 

fact, there was a negligible difference in the performance for application in Phy-type 536 

and NAP-type lakes. For the third scenario, for the reflectance spectra classification, 537 

cluster-1 lakes with low TSM (averaged 5.76 mg L
-1

), turbidity (averaged 4.46 NTU), 538 

and ad(440) (averaged 0.26 m
-1

) level, and high SDD level (average 2.38 m) also 539 

showed good performance (slope=0.91, R
2
=0.87) (Fig. 6). In general, TSI, as a 540 

comprehensive index incorporating the optical properties of itself, was calculated using 541 

trophic state parameters [(TSIM(Chl-a), (TSIM(SDD), and TSIM(TP) in Eq. 7]. Our 542 

XGBoost TSI model performed best in the present study, which confirmed that the 543 

performance was mostly determined by biogeochemical environments in larger-scale 544 

regions. We cannot explain the dependence of the TSI model on the physico-optical 545 

properties. From another point of view, it can be inferred that the XGBoost TSI model 546 

applications mostly correlated to the Chl-a and SDD because of their high weight 547 

allocation in TSI equation.  548 

Although we conducted a large-scale TSI observation across Chinese lakes, and if 549 

the XGBoost could also perform well for signal lake is required to evaluate. Hence, the 550 

in situ measured samples were classified in three scenarios, with XGBoost TSI model 551 

was analyzed. Overall, in future work, for lakes mainly located in high elevation and 552 

arid region with high DOC/EC levels, the input band combinations responding to color 553 

dissolved organic matter (CDOM, Green/Red) could be added in XGBoost TSI model. 554 



29 

 

This is because that CDOM and DOC generally showed positive correlations for 555 

investigated lakes (Song et al., 2013), and CDOM is one of optical active substance. It 556 

also confirmed that non-algal particles could cover the reflectance signals and impact on 557 

the model performance in second and third scenarios. More classifications based on 558 

reflectance spectra (Spyrakos et al., 2018) and water color index (Wang et al., 2018) 559 

should be first used and then developed corresponding models for high turbid lakes. 560 

 561 

4.3 Trophic status in five limnetic regions  562 

According to this study more than 50% of lakes were eutrophic, indicating a 563 

long-standing status of eutrophication (Fig. 4), as seen by the mapping of 555 lakes by 564 

our XGBoost TSI model (Fig. 7). Some lake investigations undertaken earlier in China 565 

during 1978–1980 concluded that 41.2% lakes of eutrophication in China (Jin, 2003), 566 

during 1988-1992 demonstrated that 51.2% lakes (Wang & Dou, 1998), during 567 

2001-2005 indicated that 84.5% lakes, during 2011-2019 showed that 50% lakes (Wen 568 

et al., 2019) were eutrophic or undergoing eutrophication. In our study, some historical 569 

records of Chl-a, SDD and TP from in comparison to earlier national investigation by 570 

Wang and Dou (1998) were collected in typical lakes, e.g., Dongting Lake, Poyang 571 

Lake, Chaohu Lake, Taihu Lake and Jingpo Lake, respectively (Table S6). Evidently, 572 

Chinese lakes have deteriorated considerably in terms of water quality at an alarming 573 

rate for typical lakes, e.g., Jingpo Lake, Dongting Lake and Poyang Lake, during past 574 

~22 years (Table S6). Lake eutrophication is influenced by both natural (hydrological 575 

processes, topography, lake depth, and buffer capacity) factors as well as anthropogenic 576 

factors (land-use changes, urbanization construction, and domestic and industrial 577 

pollution) (Müller et al., 1998). A large-scale overview of lake eutrophication indicated 578 

there was a significant difference (ANOVA, F=255.2, p<0.001) in the five limnetic 579 
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regions (Wang & Dou 1998). Owing to the imbalanced development of economic 580 

(Fig.S2, GDP and population), geological topography (Fig.S3, solar radiation intensity 581 

and sunshine hours) and climate (Fig.S4, annual temperature and precipitation), it was 582 

not surprising that the eutrophic lakes were generally distributed in the Eastern Plain 583 

Limnetic Region and Northeast Plain Limnetic Region, as well as that the oligotrophic 584 

lakes were found in the Tibet-Qinghai Plateau Limnetic Region (Fig.4 and Fig.7). 585 

Considering the natural factors for the distributions of Chinese lake eutrophication, 586 

we could suppose some possibility that lake depth and lake hydrological processes 587 

cause the eutrophication of lakes in China. Previous studies (Wang & Dou 1998; Huang 588 

et al., 2014) have demonstrated that lakes with mean depths > 5 m in China are mainly 589 

located in the Yungui Plateau Limnetic Region, Inner Mongolia-Xinjiang Plateau 590 

Limnetic Region, and Tibet-Qinghai Plateau Limnetic Region, whereas almost all lakes 591 

located in the Eastern Plain Limnetic Region are shallow. Both these lakes in the 592 

Eastern Plain Limnetic Region are hydraulically connected with the Yangtze River with 593 

a temporary residence time of approximately 30 days (Fig. S7). In shallow lakes, due to 594 

wind waves or disturbance by fishes, the phosphorus/nitrogen nutrients stored in the 595 

sediment can be easily resuspended and released into the overlying water (Niemistö et 596 

al., 2008). Consequently, an increased frequency of algal blooms can be found in 597 

Eastern Plain Limnetic Region, in lakes, such as Taihu, Chaohu, and Hongze (Qin et al., 598 

2019; Yao et al., 2016). Instead, deeper lakes, such as the ones in YGPLR and TQPLR, 599 

possess relatively good buffer capacity for waste-water runoff (Huang et al., 2014). 600 

Carvalho et al. (2009) found that Chl-a levels decreased with lake water depth and 601 

geographic location. Qin et al., (2020) and Tong et al., (2006) demonstrated that 602 

phosphorus reduction can mitigate eutrophication in deep lakes, and more efforts to 603 

reduce both N and P need to be undertaken in shallow lakes. This can be demonstrated 604 
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in our case of Fuxian Lake with changeable eutrophication levels, with an average depth 605 

of 87 m, which was the deepest lake in southwest China (Fig. S7). In addition, the 606 

annual precipitation and air temperatures were relatively high in the EPLR (Fig. S4). 607 

Hydrological and meteorological processes can scour land surfaces and bring nutrients 608 

into lakes via rivers. Therefore, lake ecosystems were strongly related to the lake basin 609 

morphology and its hydrologic characteristics, which were higher in shallow lakes than 610 

in deep ones (Köiv et al., 2011).  611 

On the other hand, human-induced eutrophication, for example, agricultural 612 

fertilization (Carpenter, 2008; Huang et al., 2017), aquaculture (Guo & Li, 2003) and 613 

sewage discharge (Paerl et al., 2011), are increasing terrestrial nutrient phosphorus but 614 

not nitrogen concentration inputs (Schindler et al., 2008). We suspected that two 615 

interactive factors, such as land-use and nutrient variations cause lake eutrophication, 616 

because this can be found in our investigation of distributed lakes in the EPLR in 617 

comparison to earlier national investigation by Wang and Dou (1998). Many lakes in the 618 

EPLR that were naturally connected with rivers have been modified to paddy fields, and 619 

some small lakes have become isolated for lake aquaculture. For instance, Lake 620 

Dongting was artificially shifted from being river-fed to dammed/isolated. Logically it 621 

should a dam can settle down the suspended matter and nutrients via river inputs. But 622 

the shallow characteristic and wind mixing influence process significantly increased the 623 

probability of eutrophication (Liu et al., 2019). In EPLR and NPLR, 94% of China’s 624 

population lives in 43% of its eastern region, which visually demonstrates the 625 

distribution of GDP with a densely populated east (Fig. S2). Owing to the requirements 626 

of water source utilization, the EPLR has lost one-third of its original lake areas to 627 

cropland since 1949 (Yin and Li, 2001). Lake aquaculture is highly active in these areas. 628 

These processes could lead to terrestrial nutrient loading into lakes, from either 629 
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agriculture or aquaculture, and thereby alter the trophic state levels of a lake ecosystem. 630 

In 2019, the total fish catch in Hubei was 4,695 tons; in Jiangxi was 432, 25 tons; in 631 

Anhui was 588,135 tons; 2,314,603 and 4,841,159 tons in Anhui and Jiangsu in the east, 632 

respectively (China rural statistical yearbook).  633 

Although we have not systematically analyzed the effects of environmental factors 634 

on trophic status, some of the sparse existing comparative literature supported certain 635 

spatiotemporal patterns. It should be emphasized that China has been facing serious lake 636 

eutrophication and unbalanced distributions. Almost invariably, lake ecosystem health 637 

would still be impacted by stresses integrating anthropogenic and overexploitation of 638 

catchment resources. Consequently, addressing the issue of worsening eutrophication 639 

requires a better understanding of the environmental interactive mechanisms in the 640 

future. 641 

 642 

4.4 Limitations, uncertainties and future 643 

Toward the United Nation's Sustainable Development Goal (SDG) 6.3.2, satellite 644 

imagery and machine learning still provides great potential for evaluating water qualities 645 

state from global observations, particularly in developing countries. Machine learning 646 

algorithms could serve as good alternatives for empirical and semi-analytical algorithms 647 

to quantify on large-scale spatial applications, which could avoid or minimize the 648 

errors.Our results further demonstrated machine learning algorithms could improve the 649 

accuracy of water quality models (e.g., TSI) when the linear regression was used to find 650 

sensitive band combinations with red/red edge bands. Previous studies (Li et al., 2021, 651 

2022) found red and red edge band could help us to quantify the spatial and temporal 652 

changes of Chl-a concentration or a synthetic parameter-such as TSI with high Chl-a 653 

weight ratio-from regional lakes. It is enable us to use sentinel-2 or similar sensors 654 
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equipped with these bands to capture records of TSI dynamics.  655 

As a medium-resolution (10~60 m) satellite, Sentinel-2 MSI offers the potential to 656 

monitor small-size lakes and produce reliable TSI estimates. However, there are 657 

significant obstacles in generating a Sentinel-2 (~10m) lake TSI distribution, including 658 

the acquisition of high quality atmospheric corrected Rrs(λ) and massive computational 659 

overhead by C2RCC processor (Li et al., 2023). C2RCC processor designed for waters 660 

based on neural networks is data-driven approach and uses huge datasets collected from 661 

in situ and simulation measurements. In situ reflectance measurements were not 662 

conducted in these investigated Chinese lakes when sampling. Our recently study 663 

reported that C2RCC (SNAP 8.0) and Polymer (v4.13) processors both performed best 664 

with in situ field radiometry in typical lakes across China (Li et al., 2023), but the latter 665 

could work better when all bands are pooled together in derived algorithms. 666 

Considering the growing requirements of TSI products, more in situ measurements 667 

would be required to be added the already-implemented processors in following work. 668 

In addition, there is a need for a robust model developed from different locations 669 

and optical water types that accounts for the interplay of different water quality 670 

parameters. Machine learning TSI model required a highly calibrated dataset, including 671 

high nutrients (e.g., TP >2.50 mg L
−1

 in this study) and Chl-a concentrations (>100 µg 672 

L
−1

 in this study). Likewise, for our developed universal TSI model, the feasibility 673 

application performances were different considering lake classifications. Hence, the 674 

extensive field–lab materials with complex source variations would be required first and 675 

water optical typologies further is a good compromise to develop groups of optimized 676 

algorithms in future. Nevertheless, we aim to provide technical operation approach, 677 

which could prompt more analysis responding to warming climate and anthropogenic 678 

activities. The strong linkages between reflectance and several trophic state defining 679 
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indexes further underscore the potential of remote sensing for resources-limited 680 

countries meet their SDG goals. 681 

 682 

5 Conclusions  683 

Our study presents a novel remote sensing- and machine-learning-based algorithm 684 

applied in that allow to retrieve the lake TSI from Sentinel-2 MSI imagery. We used a 685 

match-up database (N=431) over a diverse range of bio-optical regimes to train machine 686 

learning algorithms and validated it against the in situ data. The trophic states of 555 687 

lakes were then evaluated. These results provide a better understanding how remote 688 

sensing and machine learning-based models allow to estimate eutrophication over a 689 

large scale of different lakes. Our main findings can be summarized as follows: 690 

1) Linear regression enabled us to find certain band combinations sensitive to TSI 691 

(R
2
>0.59), for example, the blue/red [Rrs(443)/Rrs(740), Rrs(492)/Rrs(740)] and 692 

green/red [Rrs(560)/Rrs(704), Rrs(665)/Rrs(704)] band ratios. 693 

2) XGBoost algorithm resulted in optimum performance with R
2
=0.87 and 694 

slope=0.85, considering the low errors (MAE=3.15, RMSE=4.11), compared to the 695 

support vector machine and random forest algorithms. 696 

3) If there is some preliminary data available from the study area one can improve 697 

the performance of the machine learning by dividing the lakes based on high DOC/EC, 698 

NAP-type and Phy-type, and cluster-1 reflectance spectra. 699 

4) The trophic states of 555 lakes were evaluated in five limnetic regions; 700 

eutrophic lakes dominated in Eastern Plain Limnetic Region and Northeast Plain 701 

Limnetic Region, and most lakes in Tibet-Qinghai Plateau Limnetic Region were 702 

mesotrophic or oligotrophic.  703 

In our subsequent research and management, qualification and mapping of TSI will 704 
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be implemented as a remote sensing and machine learning model in a large-scale study, 705 

allowing for an improved performance. In the future, Sentinel-2 MSI data could be used 706 

to reveal spatiotemporal variations in lake trophic states in long-term time-series 707 

responding to climate and anthropogenic activities. 708 
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