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2

Abstract.17

With the rapid accumulation of water flux observations from global eddy-covariance flux sites, many studies18

have used data-driven approaches to model site-scale water fluxes with various predictors and machine learning19
algorithms used. However, systematic evaluation of such models is still limited. We therefore performed a meta-20

analysis of 32 such studies, derived 139 model records, and evaluated the impact of various features on model21

accuracy throughout the modeling flow. SVM (average R-squared = 0.82) and RF (average R-squared = 0.81)22

outperformed over evaluated algorithms in both cross-study and intra-study (with the same training dataset)23
comparisons. The average accuracy of the model applied to arid regions is higher than other climate classes. The24

average accuracy of the model was slightly lower for forest sites (average R-squared = 0.76) than for cropland25

and grassland sites (average R-squared = 0.8 and 0.79), but higher than for shrub sites (average R-squared =26

0.67). Among various predictor variables, the use of net/sun radiation, precipitation, air temperature, and27
the fraction of absorbed photosynthetically active radiation improved the model accuracy. Among the different28

validation methods, random cross-validation shows higher model accuracy than spatial cross-validation and29

temporal cross-validation, but spatial cross-validation is more important for the application for water flux30

predictive models when used for spatial extrapolation. The findings of this study are promising to guide future31
research on such machine learning-based modeling.32

1 Introduction33

Evapotranspiration (ET) is the most important indicator of the water cycle in terrestrial ecosystems. It also34

represents the key variable in linking ecosystem functioning, carbon and climate feedbacks, agricultural35
management, and water resources (Fisher et al., 2017). The quantification of ET for regional, continents, or the36

globe can improve our understanding of the water, heat, and carbon interactions, which is important for global37

change research (Xu et al., 2018). Information on ET has been used in many fields, including, but not limited to,38

droughts and heatwaves (Miralles et al., 2014), regional water balance closures (Chen et al., 2014; Sahoo et al.,39
2011), agricultural management (Allen et al., 2011), water resources management (Anderson et al., 2012),40

biodiversity patterns (Gaston, 2000). In addition, accurate large-scale and long-time series ET prediction at high41

spatial and temporal resolution has been of great interest (Fisher et al., 2017).42

43
Currently, there are three main approaches for simulation and spatial and temporal prediction of ET: (i) physical44

models based on remote sensing such as surface energy balance models (Minacapilli et al., 2009; Wagle et al.,45

2017), Penman-Monteith equation (Mu et al., 2011; Zhang et al., 2010), Priestley-Taylor equation (Miralles et46

al., 2011); (ii) process-based land surface models, biogeochemical models and hydrological models (Barman et47
al., 2014; Pan et al., 2015; Sándor et al., 2016; Chen et al., 2019); and (iii) the observation-based machine48

learning modeling approach with in situ eddy covariance (EC) observations of water flux (Jung et al., 2011; Li49

et al., 2018; Van Wijk and Bouten, 1999; Xie et al., 2021; Xu et al., 2018; Yang et al., 2006; Zhang et al., 2021).50

For remote sensing-based physical models and process-based land surface models, some physical processes51
have not been well characterized due to the lack of understanding of the detailed mechanisms influencing ET52

under different environmental conditions. Limited by complicated assumptions and model parametrizations,53
these process-based models face challenges in the accuracy of their ET estimations over heterogeneous54
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landscapes (Pan et al., 2020; Zhang et al., 2021). Therefore, many researchers have used data-driven approaches55

for the simulation and prediction of ET with the accumulation of a large volume of measured site-scale56

observational data of water fluxes in the past decades. Various machine learning models have been developed to57
simulate water fluxes at the flux site scale. Besides, various predictor variables (e.g., meteorological factors,58

vegetation conditions, and moisture supply conditions) have been incorporated into such models for upscaling59

(Fang et al., 2020; Jung et al., 2009) of water flux to a larger scale or understanding the driving mechanisms60

with the variable importance analysis performed in such models.61
62

However, to date, the systematic assessment of the uncertainty in the processes of water flux prediction models63

constructed using the machine learning approach is limited. Although considerable effort has been invested in64

improving the accuracy of such prediction models, our understanding of the expected accuracy of such models65
under different conditions is still limited. It is still not easy for us to give the general guidelines for selecting66

appropriate predictor variables and models. Questions such as ‘Which predictor variables are the best in water67

flux simulations?’ and ‘How to improve the prediction accuracy of water flux effectively?’ etc. still confuse the68

researchers in the field. Therefore, we should synthesize the findings from published such studies to determine69
which predictor variables, machine learning models, and other features can significantly improve the prediction70

accuracy of water flux. Also, we are interested in understanding under which specific conditions they are more71

effective.72

73
A variety of features may affect the accuracy of such models, including the predictor variables used, the inherent74

heterogeneity within the dataset, the plant functional type (PFT) of the flux sites, the method of model75

construction and validation, and the machine learning algorithm chosen:76

a) Predictor variables used: Compared to process-based models, data used may have a more significant impact77
on the final model performance in data-driven models. Various biophysical covariates and other78

environmental factors have been used for the simulation and prediction of water fluxes. The most79

commonly used factors include mainly precipitation (Prec), air temperature (Ta), wind speed (Ws), net/sun80

radiation (Rn/Rs), soil temperature (Ts), soil texture, vapor-pressure deficit (VPD), the fraction of absorbed81
photosynthetically active radiation (FAPAR), vegetation index (e.g., NDVI, EVI), LAI, and carbon fluxes82

(e.g., GPP). These used predictor variables and their complex interactions drive the fluctuations and83

variability of water fluxes. They affect the accuracy of water flux simulations in two ways: their actual84

impact on water fluxes at the process-based level and their spatio-temporal resolution and inherent accuracy.85
The relationship between water fluxes and these variables at the process-based driving mechanism level is86

very different under different PFTs, different climate types, and different hydrometeorological conditions.87

For example, in irrigated croplands in arid regions, water fluxes may be highly correlated with irrigation88

practices, and thus soil moisture may be a very important predictor variable, and its importance may be89
significantly higher than in other PFTs. And in models that incorporate data from multiple PFTs, some90

variables that play important roles in multiple PFTs may have higher importance. In terms of data spatial91
and temporal resolution, the data for these predictor variables may have different scales. In terms of spatial92

resolution, meteorological observations such as precipitation and air temperature are at the flux site scale,93

while factors extracted from satellite remote sensing and reanalysis climate datasets cover a much larger94
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spatial scale (i.e. the grid-scale). This leads to considerable differences in the degree of spatial match95

between different variables and the site scale EC observations (approximately 100 m x 100 m). It is96

therefore difficult for some variables to be fairly compared in the subsequent importance analysis of driving97
factors. In terms of temporal resolution, the importance of predictor variables with different temporal98

resolutions may be variable for models with different time scales (e.g., half-hourly, daily, monthly models).99

For example, the daily or 8-day NDVI data based on MODIS satellite imagery may better capture the100

temporal dynamics of water fluxes concerning vegetation growth than the 16-daily NDVI data derived from101
Landsat images. Besides, data on non-temporal dynamic variables such as soil texture cannot explain102

temporal variability in water fluxes in the data-driven simulations, although soil texture may be important in103

the interpretation of the actual driving mechanisms of ET (which may need to be quantified in detail in ET104

simulations by process-based models). In addition, some inherent accuracy issues (e.g., remote sensing-105
based NDVI may not be effective at high values) of the predictors may propagate into the consequent106

machine learning models, thus affecting the modeling and our understanding of its importance. Therefore, it107

is necessary to consider the spatial and temporal resolution of the data and their inherent accuracy for the108

predictors used in different studies in the systematic evaluation of data-driven water flux simulations.109
b) The volume of the dataset, inherent heterogeneity of the dataset, and how the model is validated: the110

volume and inherent spatiotemporal heterogeneity of the training dataset (with more variability and111

extremes incorporated) may affect model accuracy. Typically, training data with larger regions, multiple112

sites, multiple PFTs, and longer year spans may have a higher degree of imbalance (Kaur et al., 2019; Van113
Hulse et al., 2007; Virkkala et al., 2021; Zeng et al., 2020). And in machine learning, in general, modeling114

with unbalanced data (with significant differences in the distribution between the training and validation115

sets) may result in lower model accuracy. Currently, the most common ways of model validation include116

spatial, temporal, and random cross-validation. Spatial validation is mainly to evaluate the ability of the117
model to be applied in different regions or flux sites with different PFT types, and one of the common118

methods is 'leave one site out' (Fang et al., 2020; Papale et al., 2015; Zhang et al., 2021). If the data of the119

site left out for validation differs significantly from the distribution of the training data set, the expected120

accuracy of the model applied at that site may be low because the trained model may not capture the121
specific and local relationships between the water flux and the various predictor variables at that site. For122

temporal validation, to assess the ability of the models to adapt to the interannual variability, typically some123

years of data are used for training and the remaining years for model validation (Lu and Zhuang, 2010). If a124

year with extreme climate is used for validation, the accuracy may be low because the training dataset may125
not contain such extreme climate conditions. In the case of PFTs that are significantly affected by human126

activities, such as cropland, the possible different crops grown and different land use practices (e.g.,127

irrigation) across years can also lead to low accuracy in temporal validation. K-fold cross-validation is128

commonly used in random cross-validation to assess the fitness of the model to the spatio-temporal129
variability. In this case, different values of K may also affect the model accuracy. For example, for an130

unbalanced dataset, the average model accuracy obtained from a 10-fold (K = 10) validation approach is131
likely to be higher than that of a 3-fold (K = 3) validation approach.132

c) Various machine learning algorithms: Some machine learning algorithms may have specific advantages133

when applied to model the relationships between water fluxes and covariates. For example, neural networks134
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may have an advantage in nonlinear fitting, while random forests may avoid overfitting due to the135

introduction of randomness. However, which algorithm is better overall in different situations (i.e. applied136

to different data sets)? Which algorithm is generally more accurate than the others when using the same137
data set? A comprehensive evaluation of this is necessary.138

139

Therefore, to systematically and comprehensively assess the impact of various features in such modeling, we140

perform a meta-analysis of published water flux simulation studies that combine the flux site water flux141
observations, various predictors, and machine learning. The accuracy of model records collected from the142

literature was linked with various model features to assess the impacts of predictor data types, algorithms, and143

other features on model accuracy. The findings of this study may be promising to improve our understanding of144

the impact of various features of the models to guide future research on such machine learning-based modeling.145

2 Methodology146

2.1 Protocol for selecting the sample of articles147

We applied a general query on title, abstract, and keywords to include articles with the “OR” operator applied148

among expressions (Table 1) in the Scopus database. Preferred Reporting Items for Systematic Reviews and149
Meta-Analyses (PRISMA) (Moher et al., 2009) is followed when filtering the papers. Articles were filtered for150

those with water fluxes (or latent heat) simulated, with multi-variable regression used, with the determination151

coefficient (R-squared) of the validation step reported as the metric of model performance (Shi et al., 2021;152

Tramontana et al., 2016; Zeng et al., 2020), and published in English journals. Although RMSE is also often153
used for model accuracy assessment, its dependence on the magnitude of water flux values makes it difficult to154

use for fair comparisons between studies.155

Table 1. Article search: ‘[A1 OR A2 OR A3...] AND [B1 OR B2...] AND [C1 OR C2...]’156

ID A B C

1 Water flux Eddy covariance Machine learning

2 Evapotranspiration Flux tower Support Vector

3 Latent heat Flux site Neural Network

4 Random Forest

157

2.2 Features of the prediction processes evaluated158

The various features (Table 2) involved in the water flux modeling framework (Fig. 1) include the PFTs of the159

sites, the predictors used, the machine learning algorithms, the validation methods, and other features. Each160
model for which R-squared is reported is treated as a data record. If multiple algorithms were applied to the161
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same dataset, then multiple records were extracted. Models using different data or features are also recorded as162

multiple records.163

164
Figure 1. Features of the machine learning-based water flux prediction process. (a) the eddy-covariance-based165

water flux observations of various plant function types (PFTs), modified from Paul-Limoges et al., 2020. ET,166

evapotranspiration. E, evaporation. T, transpiration. (b) Predictors and their spatial and temporal resolution. (c)167
The machine learning algorithms used for the modeling, such as neural networks, random forests, etc. (d) The168

model validation methods used including the spatial, temporal, and random cross-validations.169

170

Table 2. Description of information extracted from the included papers.171

Field/Feature Definition Categories adopted

Climate Climate zone of the study

location derived from the
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Köppen climate classification

(Peel et al., 2007)

Plant functional

type (PFT)

PFT of the flux sites 1-forest, 2-grassland, 3-cropland, 4-wetland,

5-shrubland, 6-savannah, and multi-PFTs

Location More precise location (with the

latitude and longitude of the

center of the studied sites).

latitude, longitude

Algorithms Algorithm families used Random Forests (RF), Multiple Linear

Regressions (MLR), Artificial Neural

Networks (ANN), Support Vector Machines

(SVM), Cubist, model tree ensembles

(MTE), K-nearest neighbors (KNN), long

short-term memory (LSTM), gradient

boosting regression tree (GBRT), extra tree

regressor (ETR), Gaussian process

regression (GPR), Bayesian model

averaging (BMA), extreme learning machine

(ELM), and deep belief network (DBN)

Sites number Number of the flux sites used

Spatial scale Area representatively covered

by the flux sites

local (less than 100 x 100 km), regional,

global (continent-scale and global scale)

Temporal scale The temporal scale of the

model

half-hourly, hourly, daily, 4-daily, 8-daily,

monthly, seasonally (i.e., 0.02, 0.04, 1, 4, 8,

30, 90 days)

Year span The span of years of the flux

data used

Site year Describe the volume of total

flux data with the number of

sites and years aggregated.

Cross-validation Describe the chosen method of

cross-validation.

Spatial (e.g., ‘leave one site out’), temporal

(e.g., ‘leave one year out’), random (e.g., ‘k-

fold’)

Training/validation Describe the ratio of the data

volume in the training and

validation sets.

Satellite images Describe the source of satellite

images used to derive NDVI,

EVI, LAI, LST, etc.

Landsat, MODIS, AVHRR
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Biophysical

predictors

LAI, NDVI/EVI, enhanced

vegetation index (EVI),

the fraction of absorbed

photosynthetically active

radiation/photosynthetically

active radiation (FAPAR/PAR),

leaf area index (LAI), Carbon

fluxes (CF) including

NEE/GPP, etc.

Used (recorded as ‘1’) or not used (recorded

as ‘0’)

Meteorological

variables

precipitation (Prec), net

radiation/solar radiation

(Rn/Rs), air temperature (Ta),

vapour-pressure deficit (VPD),

relative humidity (RH) , etc.

Used (recorded as ‘1’) or not used (recorded

as ‘0’)

Ancillary data Describe the ancillary

variables used: soil texture,

terrain (DEM), soil

moisture/land surface water

index (SM/LSWI), etc.

Used (recorded as ‘1’) or not used (recorded

as ‘0’)

Top three variables

in the ranking of

importance of

predictors

Describe the interpretation of

the importance of variables

reported in the machine

learning models.

Accuracy measure Accuracy measure used to

assess the model performance

R-squared (in the validation phase)

172

3 Results173

3.1 Articles included in the meta-analysis174

A total of 32 articles (see Supplement Information) containing a total of 139 model records were included. The175

geographical scope of these articles was mainly Europe, North America, and China (Fig. 2).176
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177
Figure 2. Location of the included studies in the meta-analysis. (a) PFTs and the climate zones (from Köppen178

climate classification) of these studies and (b) the number of flux sites included in each study. Global and179

continental-scale studies (e.g., models developed based on FLUXNET of the global scale) are not shown on the180
map due to the difficulty of identifying specific locations.181

3.2 The formal Meta-analysis182

We formally assessed the impact of the features (e.g., algorithms, study area, PFTs, the volume of data used,183

validation methods, predictor variables, etc.) used in the different models based on differences of R-squared.184
185

SVM and RF outperformed (Fig. 3a) across studies (lightly better than ANN). These three machine learning186

algorithms (i.e., ANN, SVM, RF) were significantly more accurate than the traditional MLR. Other algorithms187

such as MTE, ELM, Cubist, etc. also correspond to high accuracy, but with limited evidence sample size. In the188
internal comparison (different algorithms applied to the same data set) in single studies, we also find that SVM189
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and RF were significantly more accurate than ANN (Fig. 3b), and all these three (i.e., ANN, SVM, RF) are190

significantly more accurate than MLR. Overall, SVM and RF have shown higher accuracy in water flux191

simulations.192

193
Figure 3. Differences in model accuracy (R-squared) using different algorithms across studies (a) and internal194
comparisons of the model accuracy (R-squared) of selected pairs of algorithms within individual studies (b).195

Regression algorithms: Random Forests (RF), Multiple Linear Regressions (MLR), Artificial Neural Networks196

(ANN), Support Vector Machines (SVM), Cubist, model tree ensembles (MTE), K-nearest neighbors (KNN),197

long short-term memory (LSTM), gradient boosting regression tree (GBRT), extra tree regressor (ETR),198
Gaussian process regression (GPR), Bayesian model averaging (BMA), extreme learning machine (ELM), and199

deep belief network (DBN).200

201

We found higher average model accuracy in arid climate zones (Fig. 4a), such as BSk and BWk. Most of these202
studies were located in northwest China and the western USA. It may be caused by the simpler relationship203

between water fluxes and biophysical covariates in arid regions. In arid zones, due to the high potential ET, the204

variability in the actual ET may be largely explained by water availability (moisture supply) and vegetation205

change with the effect of variability in thermal conditions reduced. As for the various PFTs, the average model206
accuracy was slightly lower for forest types than for cropland and grassland types (Fig. 4b) possibly because207

some remote sensing-based predictors such as FAPAR and LAI have limited accuracy when applied to forest208

types (Fig. 5). The lowest average accuracy was found for shrub sites, which may be related to the difficulty of209

remote sensing-based NDVI, etc., to quantify the physiological and ecological conditions of shrubs, and the210
heterogeneity of the spatial distribution of shrubs within the EC observation area may also cause difficulties in211

capturing their relationships with biophysical variables. We also found high model accuracy for the wetland212

type, although records as evidence to support this finding may be limited. Compared to other PFTs, the more213

steady and adequate water availability in the wetland type may make the variations of water fluxes less214
explained by other biophysical covariates.215
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216
Figure 4. Differences in model accuracy (R-squared) of (a) various climate zones (classified by Köppen climate217
classification) across studies and (b) PFTs. BSh, Hot semi-arid (steppe) climate. BSk, Cold semi-arid (steppe)218

climate. BWk, Cold desert climate. Cfa, Humid subtropical climate. Cfb, Temperate oceanic climate. Csa, Hot-219

summer Mediterranean climate. Csb, Warm-summer Mediterranean climate. Dfa, Hot-summer humid220

continental climate. Dfb, Warm-summer humid continental climate. Dfc, Subarctic climate. Dwa, Monsoon-221
influenced hot-summer humid continental climate. Dwb, Monsoon-influenced warm-summer humid continental222

climate. Dwc, Monsoon-influenced subarctic climate.223

224

Among the various predictors, the use of Rn/Rs, Prec, Ta, and FAPAR significantly improved the accuracy of225
the model (Fig. 5). This pattern partially changed in the different PFTs. In the forest sites, the accuracy of the226

models with Rn/Rs and Ta used was significantly higher than that of the models with Rn/Rs and Ta not used.227

For the grassland sites, the use of Ws, FAPAR, Prec, and Rn/Rs significantly improved the model accuracy. For228

the cropland sites, Ta and FAPAR were more important for improving the model accuracy.229
230
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231
Figure 5. The impact of the various predictors used in models of different PFTs (all data, forest, grassland, and232

cropland) on R-squared. Dark blue boxes indicate that the predictor was used in the model, while dark red boxes233

indicate that the predictor was not used. Predictors: precipitation (Prec), soil moisture/land surface water index234

(SM_LSWI), net radiation/solar radiation (Rn_Rs), enhanced vegetation index (EVI), air temperature (Ta),235
vapor-pressure deficit (VPD), the fraction of absorbed photosynthetically active radiation/photosynthetically236

active radiation (FAPAR_PAR), relative humidity (RH), carbon flux (CF), leaf area index (LAI).237

238

We also evaluated the impact of some other features on accuracy. The differences in accuracy of models with239
different spatial scales, year spans, number of sites, and volume of data (Fig. 6) appear to be insignificant. This240

seems to be related to the fact that in large scale water flux simulations, the sites of similar PFTs are selected241

such as for modeling multiple forest sites across Europe (Van Wijk and Bouten, 1999) which focus on ‘forest’242

and multiple grassland sites across arid northern China (Xie et al., 2021; Zhang et al., 2021) which focus on243
‘grassland’, rather than mixing different PFT types to train models as the way in machine learning modeling of244

carbon fluxes (Zeng et al., 2020). In terms of the time scales of the models, the 4-day, 8-day, and monthly scales245
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appear to correspond to higher accuracy compared to the half-hourly and daily scales. Also, the variability of the246

accuracy of the half-hourly and daily scale models is higher. The higher the ratio of the volume of data in the247

training and validation sets, the higher the model accuracy. Compared to the models using Landsat data, the248
models using MODIS data showed slightly higher accuracy probably due to the advantage of MODIS data in249

capturing the temporal dynamics of biophysical covariates. There were significant differences in the accuracy of250

the models using different cross-validation methods, with the models using random cross-validation showing251

higher accuracy than those using temporal cross-validation. This suggests that interannual variability may have a252
high impact on the models in water flux simulations. The driving mechanism of ET may vary significantly253

across years, and the inclusion of some extreme climatic conditions in the training set may be important for254

model accuracy and robustness.255

256

257
Figure 6. The impacts of other features (i.e. spatial scale, temporal scale, number of sites, year span, site year,258
cross-validation method, training/validation, and satellite imagery) on the model performance.259

4 Discussions260

With the accumulation of in situ EC observations around the world, compared to remote sensing or process261

model-based approaches, the study of ET simulations based on data-driven approaches has received more262
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attention from researchers in the last decade. Many studies have combined EC observations, various predictors,263

and machine learning algorithms to improve the prediction accuracy of site-scale water fluxes. To date, the264

results of these studies have not been comprehensively evaluated to provide clear guidance for feature selection265
in water flux prediction models. To better understand the approach and guide future research, we performed a266

meta-analysis of such studies. Machine learning-based water flux simulations and predictions still suffer from267

high uncertainty. By investigating the expected improvements that can be achieved by incorporating different268

features, we can avoid practices that may reduce model accuracy in future research.269

4.1 Opportunities and challenges in the site-scale water flux simulation270

In the above meta-analysis of the models, we found that water flux simulations based on EC observations can271

achieve high accuracy but also have high uncertainty through the modeling workflow. The R-squared of many272

water flux simulation models exceeds 0.8, possibly higher than some remote sensing-based and process-based273
models, and possibly higher than carbon flux simulations in the same modeling framework. This suggests that in274

general, these currently used biophysical and meteorological variables are closely related to water fluxes.275

276

There are differences in model accuracy among different PFTs. For example, in forest sites, limitations in data277
accuracy of factors were possible because some remote sensing-based predictors such as FAPAR and LAI have278

limited accuracy when applied to forest types(Liu et al., 2018b). In addition, factors such as crown density,279

which may significantly affect the proportion of soil evaporation, transpiration, and evaporation of canopy280

interception, were not considered in these models, which may also lead to low model accuracy. This suggests281
that in water flux simulation, the driving mechanisms of water fluxes in different PFTs do affect the accuracy of282

machine learning models, and we need to consider more the actual and specific influencing factors in specific283

PFTs. More variables that can quantify the ratio of evaporation and transpiration should be considered for284

inclusion, which also appears to improve the mechanistic interpretability of such machine learning models.285
Several studies (Zhao et al., 2019) have combined the physics-based approach (e.g., Penman-Monteith equation)286

and machine learning to build hybrid models to improve interpretability. We should make full use of empirical287

knowledge and experiences from process-based models to improve the accuracy and interpretability of the288

machine learning approach.289
290

The impact of differences in different satellite images on model accuracy and performance may be limited since291

most studies used windows of 2 km x 2 km or 3 km x 3km when extracting covariates based on satellite remote292

sensing(Walther et al., 2021) and the effects of differences in image resolution were smoothed out (i.e., the293
differences in values averaged over a 2 km window may not be significant at 30m and 500m resolutions).294

However, the coarse resolution of MODIS images may not be effective when the extraction window is smaller295

(e.g., 200 m) to reduce the inconsistency of the flux footprint extent and the extracted covariates from remote296

sensing images due to the non-homogeneity of the underlying conditions (Chu et al., 2021). Compared to the297
16-daily temporal scale of Landsat data, the daily or 8-daily temporal scale of MODIS data may improve the298

accuracy slightly possibly because more temporal dynamic information is explained. The inclusion of some299
ancillary variables that do not have the temporal dimension (e.g., soil texture, topographic variables) may be of300
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more limited use unless the model includes many flux sites for which the spatial variability of the ancillary301

variables is large enough and does affect water fluxes.302

303
Among the different validation methods, random cross-validation has higher accuracy than spatial cross-304

validation and temporal cross-validation. However, spatial cross-validation and temporal cross-validation may305

be able to better help us recognize the robustness of the model when extrapolated (i.e., applied to new stations306

and new years). The lower accuracy in the temporal cross-validation approach implies that we need to focus on307
interannual hydrological and meteorological variability in the water flux simulations. In cropland sites, we may308

also need to pay more attention to the effects of interannual variability in anthropogenic cropping patterns. If309

some extreme weather years are not included, the robustness of the model when extrapolated to other years may310

be challenged, especially in the context of the various extreme weather events of recent years. This can also311
inform the siting of future flux stations. Regions where climate extremes may occur and biogeographic types not312

covered by existing flux observation networks should be given more attention to achieve global-scale, accurate313

and robust machine learning-based spatio-temporal prediction of water fluxes.314

4.2 Uncertainties and limitations of this meta-analysis315

The potential uncertainties and limitations of the results of this meta-analysis are as follows:316

a) The number of available literature and model records that can be collected: Despite many articles and317

model records collected through our efforts to perform this meta-analysis, there still appears to be a long318

way to go to finally and completely understand the various mechanisms involved in water flux simulation319
with machine learning. Some of the insights provided by this study can be not robust (due to the limited320

sample size available when the goal is to assess the effects of multiple features), but this does not negate the321

fact that this study does obtain some meaningful findings. Therefore, researchers should treat the results of322

this study with caution, as they were obtained only statistically. Overall, it is still positive to conduct a323
meta-analysis of such studies, considering their rapid growth in the number and lack of guiding directions.324

b) Publication bias and weighting: Due to the relatively limited number of articles that could be included in the325

meta-analysis, this study did not focus much on publication bias. Meta-analytic studies in other fields326

typically measure the quality of journals and the public availability of research data (Borenstein et al., 2011;327
Field and Gillett, 2010) to determine the weighting in the literature in a comprehensive assessment.328

However, most of the articles did not publicly provide flux observations or share developed models. Meta-329

analysis studies in other fields typically measure the impact of included studies based on sample size and330

variance of experimental results (Adams et al., 1997; Don et al., 2011; Liu et al., 2018a). In this study, due331
to the lack of a convincing manner to determine weights among articles, we assigned the same weight to the332

results for all the literature.333

c) Uncertainties in the information of the extracted features: First, as most studies used far more water flux334

observation records than the number of covariates in their regression models, we did not adjust the R-335
squared in this study to an adjusted R-squared. Secondly, uncertainties caused by data quality control (e.g.336

gap-filling (Hui et al., 2004)) and differences in the eddy covariance observation instruments used to337
observe water fluxes, etc., are difficult to assess effectively. Thirdly, the various specific ways in which the338
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parameters of the model are optimized are not differentiated. They are broadly categorized into different339

families or kinds of algorithms, which may also introduce uncertainty into the assessment. Fourth, the340

assessment of some features is not detailed due to the limitations of the available model records. For341
example, the classification of PFT could be more detailed. ‘Forest’ could be further classified as broadleaf342

forest, coniferous forest, etc. while ‘cropland’ could be further classified as rainfed and irrigated cropland343

based on differences in their response mechanisms of water fluxes to environmental factors.344

d) Independence between features: There is dependence between some of the features being evaluated, which345
may affect the assessment of the impact of single features on the accuracy of the model. We found that the346

use of NDVI/EVI, LAI, VPD, and SM was significantly negatively correlated with the use of Rn/Rs and Ta347

(Fig. 7) when unused was set to 0 and used was set to 1. It means that many of the models that used Rn/Rs348

and Ta did not use NDVI/EVI, LAI, VPD, and SM, and the models that used NDVI/EVI, LAI, VPD, and349
SM also happened to not use Rn/Rs and Ta. It can indirectly explain the fact that the accuracy of the models350

with NDVI/EVI, LAI, VPD, and SM is even lower than that of the models without NDVI/EVI, LAI, VPD,351

and SM in the above analysis (Fig. 5) because of the disturbance from the use of Rn/Rs and Ta.352

353
Fig. 7. Correlation matrix between the use of various predictors (not used is set as 0 and used is set as 1) which354

may introduce uncertainty in the assessment of the impact of an individual predictor on model performance.355

Significance: the p-value < 0.01 (***), 0.05 (**), and 0.1 (*).356
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5 Conclusion357

We performed a meta-analysis of the site-scale water flux simulations combining in situ flux observations,358

meteorological, biophysical, and ancillary predictors, and machine learning. The main conclusions are as359
follows:360

a) SVM (average R-squared = 0.82) and RF (average R-squared = 0.81) outperformed over evaluated361

algorithms in both cross-study and intra-study (with the same training dataset) comparisons.362

b) The average accuracy of the model applied to arid regions is higher than other climate classes.363
c) The average accuracy of the model was slightly lower for forest sites (average R-squared = 0.76) than for364

cropland and grassland sites (average R-squared = 0.8 and 0.79), but higher than for shrub sites (average R-365

squared = 0.67).366

d) Among various predictor variables, the use of Rn/Rs, Prec, Ta, and FAPAR improved the model accuracy.367
e) Among the different validation methods, random cross-validation shows higher model accuracy than spatial368

cross-validation and temporal cross-validation.369
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