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However, systematic evaluation of such models is still limited. We therefore performed a meta-

analysis of 32 such studies, derived 139 model records, and evaluated the impact of various 

features on model accuracy throughout the modeling flow. 

However, it is unclear how various model features affect prediction accuracy. To fill this gap, 

we evaluated this issue based on records of 139 developed models collected from 32 such 

studies. (line 20) 

 

Publication bias and weighting: Due to the relatively limited number of articles that could be 

included in the meta-analysis, this study did not focus much on publication bias. Meta-analytic 

studies in other fields typically measure the quality of journals and the public availability of 

research data (Borenstein et al., 2011; Field and Gillett, 2010) to determine the weighting of the 

literature in a comprehensive assessment. However, most of the articles did not publicly provide 

flux observations or share developed models. Meta-analysis studies in other fields typically 

measure the impact of included studies based on sample size and variance of experimental 

results (Adams et al., 1997; Don et al., 2011; Liu et al., 2018a). In this study, due to the lack of 

a convincing manner to determine weights among articles, we assigned the same weight to the 

results for all the literature. 

Publication bias and weighting: In a meta-analysis in other fields, weights for different 

studies can be assigned based on the quality of the journal and the extent to which the 

research data are publicly available (Borenstein et al., 2011; Field and Gillett, 2010). 

However, most of the articles included in this study did not fully publish the flux data they 

used, the models they developed, and the predicted ET data. Given this limitation, we were 

unable to assign them small weights due to the relatively limited available sample size of 

this study. Besides, in meta-analyses in other fields, the sample size and the variance of 

the results of the experiments can also be used to adjust the weights of the effects among 

studies (Adams et al., 1997; Don et al., 2011; Liu et al., 2018a). However, for this study, 

due to the lack of a convincing way to determine the weights, we briefly assigned equal 

weight values to all the included studies. (line 417) 
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Abstract. Net ecosystem exchange (NEE) is an important indicator of carbon cycling in terrestrial 

ecosystems. Many previous studies have combined  

With the rapid accumulation of water flux observations, meteorological, biophysical, and ancillary 

predictors using  from global eddy-covariance flux sites, many studies have used data-driven 

approaches to model water fluxes with various predictors and machine learning to simulate the 

site-scale NEE.algorithms used. However, systematic evaluation of the performance of such 

models is still limited. Therefore, weWe therefore performed a meta-analysis of these NEE 

simulations. A total of 4032 such studies and 178, derived 139 model records were included. The 

impacts, and evaluated the impact of various features on model accuracy throughout the 

modeling process on the accuracy of the model were evaluated. Random Forests and Support 

Vector Machines performed better than other algorithms. Models with larger time scales have 

lower average R-squared, especially when the time scale exceeds the monthly scale. Half-hourly 

modelsflow. SVM (average R-squared = 0.73) were significantly more accurate than daily 

models82) and RF (average R-squared = 0.5). There are significant differences in the predictors 

used and their impacts on model accuracy for different plant functional types (PFTs). Studies at 

continental and global scales81) outperformed over evaluated algorithms with sufficient sample 

size in both cross-study and intra-study (with the same data) comparisons. The average accuracy 

of the model applied to arid regions is higher than in other climate types. The average accuracy 

of the model was slightly lower for forest sites (average R-squared = 0.37) with multiple PFTs, 

more sites, and a large span of years correspond to lower R-squared than studies at local76) than 

for croplands and grasslands (average R-squared = 0.69)8 and 0.79), but higher than for shrubland 

sites (average R-squared = 0.67). Using Rn/Rs, precipitation, Ta, and regional scales (average R-

squared = 0.7). Also, the site-scale NEE predictions need more focus on the internal heterogeneity 

of the NEE datasetFAPAR improved the model accuracy. The combined use of Ta and the matching 

of the training setRn/Rs is very effective especially in forests, while in grasslands the combination 

of Ws and Rn/Rs is also effective. Random cross-validation setshowed higher model accuracy than 

spatial cross-validation and temporal cross-validation, but spatial cross-validation is more 

important in spatial extrapolation. The findings of this study are promising to guide future research 

on such machine learning-based modeling. 
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1 Introduction 

Net ecosystem exchange (NEE) of CO2 is an important indicator of carbon cycling in terrestrial 

ecosystems (Fu et al., 2019), and accurate estimation of NEE is important for the development of global 

carbon neutral policies. Although process-based models have been used for NEE simulations (Mitchell 

et al., 2009), their accuracy and spatial resolutions of the model outputs are limited probably due to the 

lack of understanding and quantification of complex processes. Many researchers have tried to use a 

data-driven approach as an alternative (Fu et al., 2014; Tian et al., 2017; Tramontana et al., 2016; Jung 

et al., 2011). On the one hand, it was made possible by the increase in the growth of global carbon flux 

observations and the large amount of flux observation data being accumulated. Since the 1990s, the use 

of the eddy covariance technique to monitor NEE has been rapidly promoted (Baldocchi, 2003). Several 

regional and global flux measurement networks have been established for the big data management of 

the flux sites, including CarboEuro-flux (Europe), AmeriFlux (North America), OzFlux (Australia), 

ChinaFlux (China), FLUXNET (global), etc. On the other hand, machine learning approaches are 

increasingly used to extract patterns and insights from the ever-increasing stream of geospatial data 

(Reichstein et al., 2019). The rapid development of various algorithms and high public availability of 

model tools in the field of machine learning have made these techniques easily available to more 

researchers in the field of geography and ecology (Reichstein et al., 2019). Since the above two major 

advances (i.e., increasing availability of flux data and machine learning techniques) in the last two 

decades, various machine learning algorithms have been used to simulate NEE at the flux station scale 

with various predictor variables (e.g., meteorological variables, biophysical variables) incorporated for 

spatial and temporal mapping of NEE or understanding the driving mechanisms of NEE. 

 

To date, studies on using machine learning to predict NEE have a high diversity in terms of modeling 

approaches. To obtain a comprehensive understanding of machine learning-based NEE prediction, a 

synthesis evaluation of these machine learning models is necessary. Since the beginning of this century, 

when machine learning approaches were still rarely used in geography and ecology research, neural 

networks were already used to perform simulations and mapping of NEE in European forests (Papale 

and Valentini, 2003). Subsequently, considerable efforts have been made by researchers to improve such 

predictive models. Many studies have demonstrated the effectiveness of their proposed improvements 
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(i.e., using predictors with a higher spatial resolution (Reitz et al., 2021) and using data from the local 

flux site network (Cho et al., 2021)) by comparing with previous studies. However, the improvements 

achieved in these studies may be limited to smaller areas and specific conditions and may not be 

generalizable (Cleverly et al., 2020; Reed et al., 2021; Cho et al., 2021). We are more interested in 

guidelines with universal applicability that improve the model accuracy, such as the selection of 

appropriate predictors and algorithms under different conditions. Therefore, we should synthesize the 

results of models applied to different conditions and regions to obtain general insights. 

 

Many factors may affect the performance of these NEE prediction models, such as the 

predictor variables, the spatial and temporal span of the observed flux dataEvapotranspiration 

(ET) is one of the most important components of the water cycle in terrestrial ecosystems. It also 

represents the key variable in linking ecosystem functioning, carbon and climate feedbacks, 

agricultural management, and water resources (Fisher et al., 2017). The quantification of ET for 

regional, continents, or the globe can improve our understanding of the water, heat, and carbon 

interactions, which is important for global change research (Xu et al., 2018). Information on ET has 

been used in many fields, including, but not limited to, droughts and heatwaves (Miralles et al., 

2014), regional water balance closures (Chen et al., 2014; Sahoo et al., 2011), agricultural 

management (Allen et al., 2011), water resources management (Anderson et al., 2012), biodiversity 

patterns (Gaston, 2000). In addition, accurate large-scale and long-time series ET prediction at 

high spatial and temporal resolution has been of great interest  (Fisher et al., 2017). 

 

Currently, there are three main approaches for simulation and spatial and temporal prediction of 

ET: (i) physical models based on remote sensing such as surface energy balance models 

(Minacapilli et al., 2009; Wagle et al., 2017), Penman-Monteith equation (Mu et al., 2011; Zhang 

et al., 2010), Priestley-Taylor equation (Miralles et al., 2011); (ii) process-based land surface models, 

biogeochemical models and hydrological models (Barman et al., 2014; Pan et al., 2015; Sándor et 

al., 2016; Chen et al., 2019); and (iii) the observation-based machine learning modeling approach 

with in situ eddy covariance (EC) observations of water flux (Jung et al., 2011; Li et al., 2018; Van 

Wijk and Bouten, 1999; Xie et al., 2021; Xu et al., 2018; Yang et al., 2006; Zhang et al., 2021). For 

remote sensing-based physical models and process-based land surface models, some physical 



processes have not been well characterized due to the lack of understanding of the detailed 

mechanisms influencing ET under different environmental conditions. For example, the inaccurate 

representation and estimation of stomatal conductance (Li et al., 2019) and the linearization 

(McColl, 2020) of the Clausius-Clapeyron relation in the Penman-Monteith equation may 

introduce both empirical and conceptual errors into estimates of ET. Limited by complicated 

assumptions and model parametrizations, these process-based models face challenges in the 

accuracy of their ET estimations over heterogeneous landscapes (Pan et al., 2020; Zhang et al., 

2021). Therefore, many researchers have used data-driven approaches for the simulation and 

prediction of ET with the accumulation of a large volume of measured observational data of water 

fluxes in the past decades. Various machine learning models have been developed to simulate 

water fluxes at the flux site scale. Besides, various predictor variables (e.g., meteorological factors, 

vegetation conditions, and moisture supply conditions) have been incorporated into such models 

for upscaling (Fang et al., 2020; Jung et al., 2009) of water flux to a larger scale or understanding 

the driving mechanisms with the variable importance analysis performed in such models. 

 

However, to date, the systematic assessment of the uncertainty in the processes of water flux 

prediction models constructed using the machine learning approach is limited. Although 

considerable effort has been invested in improving the accuracy of such prediction models, our 

understanding of the expected accuracy of such models under different conditions is still limited. 

It is still not easy for us to give the general guidelines for selecting appropriate predictor variables 

and models. Questions such as ‘Which predictor variables are the best in water flux simulations?’ 

and ‘How to improve the prediction accuracy of water flux effectively?’ etc. still confuse the 

researchers in the field. Therefore, we should synthesize the findings from published studies to 

determine which predictor variables, machine learning models, and other features can significantly 

improve the prediction accuracy of water flux. Also, we are interested in understanding under 

which specific conditions they are more effective. 

 

A variety of features control the accuracy of such models, including the predictor variables used, 

the inherent heterogeneity within the dataset, the plant functional type (PFT) of the flux sites, the 

method of model construction and validation method,, and the machine learning algorithm used, 
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as described below: chosen: 

a) Predictors: Various biophysical variables (Zeng et al., 2020; Cui et al., 2021; Huemmrich et al., 

2019) and other meteorological and environmental factors have been used in the simulation of NEE. 

The most commonly used predictor variables include precipitation (Prec), air temperature (Ta), 

wind speed (Ws), net/sun radiation (Rn/Rs), soil temperature (Ts), soil texture, soil moisture (SM) 

(Zhou et al., 2020), vapor-pressure deficit (VPD) (Moffat et al., 2010; Park et al., 2018), the fraction 

of absorbed photosynthetically active radiation (FAPAR) (Park et al., 2018; Tian et al., 2017), 

vegetation index (e.g., NDVI, EVI), LAI, and evapotranspiration (ET) (Berryman et al., 2018). The 

predictor variables used vary with the natural conditions and vegetation functional types of the study 

area. In contrast, in models that include multiple PFTs, some variables that play a significant role 

in the prediction of each of the multiple PFTs may have higher importance. For example, growing 

degree days (GDD) may be a more effective variable for NEE of tundra in the northern hemisphere 

high latitudes (Virkkala et al., 2021), while measured groundwater levels may be important for 

wetlands (Zhang et al., 2021). Some of these predictor variables are measured at flux stations (e.g., 

meteorological factors such as precipitation and temperature), while others are extracted from 

reanalyzed meteorological datasets and satellite remote sensing image data (e.g., vegetation indices). 

The spatial and temporal resolution of predictors can lead to differences in their relevance to NEE 

observations. Most measured in situ meteorological factors have a good spatio-temporal match to 

the observed NEE (site scale, half-hourly scale). However, the proportion of NEE explained by 

remotely sensed biophysical covariates may depend on their spatial and time scales. For example, 

the MODIS-based 8-daily NDVI data may better capture temporal variation in the relationship 

between NEE and vegetation growth than the Landsat-based 16-daily NDVI data. In contrast, the 

interpretation of NEE by variables such as soil texture and soil organic content (SOC), which do 

not have temporal dynamic information, may be limited to the interpretation of spatial variability, 

although they are considered to be important drivers of NEE. Therefore, the importance of variables 

obtained from NEE simulations based on a data-driven approach may differ from that in process-

based models as well as in the actual driving mechanisms. This may be related to the spatial and 

temporal resolution of the predictors used and the quality of the data. It is necessary to consider the 

spatio-temporal resolution of the data for the actual biophysical variables used in the different 

studies in the systematic evaluation of data-driven NEE simulations.  



b) The spatio-temporal heterogeneity of data sets, and validation method: The spatio-temporal 

heterogeneity of the dataset may affect model accuracy. Typically, training data with larger regions, 

multiple sites, multiple PFTs, and longer spans of years may have a higher degree of imbalance 

(Kaur et al., 2019; Van Hulse et al., 2007; Virkkala et al., 2021; Zeng et al., 2020). Modeling with 

unbalanced data (where the difference between the distribution of the training and validation sets is 

significant even if selected at random) may result in lower model accuracy. To date, the most 

commonly used methods for validating such models include spatial (Virkkala et al., 2021), temporal 

(Reed et al., 2021), and random (Cui et al., 2021) cross-validation. The imbalance of data between 

the training and validation sets may affect the accuracy of the models when using these validation 

methods. Spatial validation is used to assess the ability of the model to adapt to different regions or 

flux sites of different PFTs, and a common method is 'leave one site out' cross-validation (Virkkala 

et al., 2021; Zeng et al., 2020). If the data from the site left out is not covered (or partially covered) 

by the distribution of the training dataset, the model's prediction performance at that site may be 

poor due to the absence of a similar type in the training set. Temporal validation typically uses some 

years of data as training and the remaining years as validation to assess the model's fitness for 

interannual variability. For a year that is left out (e.g. a special extreme drought year which does 

not occur in the training set), the accuracy of the model may be limited if there are no similar years 

(extreme drought years) in the training dataset. K-fold cross-validation is commonly used in random 

cross-validation to assess the fitness of the model to the spatio-temporal variability. In this case, 

different values of K may also have a significant impact on the model accuracy. For example, for 

an unbalanced dataset, the average model accuracy obtained from a 10-fold (K = 10) validation 

approach is likely to be higher than that of a 3-fold  (K = 3) validation approach (Marcot and Hanea, 

2021).  

c) Machine learning algorithms used: Simulating NEE using different machine learning algorithms 

may influence the model accuracy, which may be induced by the characteristics of these algorithms 

themselves and the specific data distribution of the NEE training set. For example, Neural Networks 

can be used effectively to deal with nonlinearities, while as an ensemble learning method, Random 

Forests can avoid overfitting due to the introduction of randomness. Therefore, a comprehensive 

evaluation of this is necessary.  

 



In this study, to evaluate the impacts of predictors use, algorithms, spatial/time scale, and validation 

methods on model accuracy, we performed a meta-analysis of papers with prediction models that 

combine NEE observations from flux towers, various predictors, and machine learning for the data-

driven NEE simulations. In addition, we also analyzed the causality of multiple features in NEE 

simulations and the joint effects of multiple features on model accuracy using the Bayesian Network 

(BN) (a multivariate statistical analysis approach (Pearl, 1985)). The findings of this study can provide 

some general guidance for future NEE simulations. 

a) Predictor variables used: Compared to process-based models, the data used may have a more 

significant impact on the final model performance in data-driven models. Various biophysical 

covariates and other environmental factors have been used for the simulation and prediction of 

water fluxes. The most commonly used factors include mainly precipitation (Prec), air temperature 

(Ta), wind speed (Ws), net/sun radiation (Rn/Rs), soil temperature (Ts), soil texture, vapor-

pressure deficit (VPD), the fraction of absorbed photosynthetically active radiation (FAPAR), 

vegetation index (e.g., Normalized Difference Vegetation Index (NDVI), Enhanced Vegetation 

Index (EVI)), Leaf area index (LAI), and carbon fluxes (e.g., Gross Primary Productivity (GPP)). 

These used predictor variables and their complex interactions drive the fluctuations and variability 

of water fluxes. They affect the accuracy of water flux simulations in two ways: their actual impact 

on water fluxes at the process-based level and their spatio-temporal resolution and inherent 

accuracy. The relationship between water fluxes and these variables at the process-based driving 

mechanism level is very different under different PFTs, different climate types, and different 

hydrometeorological conditions. For example, in irrigated croplands in arid regions, water fluxes 

may be highly correlated with irrigation practices, and thus soil moisture may be a very important 

predictor variable, and its importance may be significantly higher than in other PFTs. And in 

models that incorporate data from multiple PFTs, some variables that play important roles in 

multiple PFTs may have higher importance. In terms of data spatial and temporal resolution, the 

data for these predictor variables may have different scales. In terms of spatial resolution, 

meteorological observations such as precipitation and air temperature are at the flux site scale, 

while factors extracted from satellite remote sensing and reanalysis climate datasets cover a much 

larger spatial scale (i.e. the grid-scale). This leads to considerable differences in the degree of 

spatial match between different variables and the site scale EC observations (approximately 100 m 



x 100 m). It is therefore difficult for some variables to be fairly compared in the subsequent 

importance analysis of driving factors. In terms of temporal resolution, the importance of predictor 

variables with different temporal resolutions may be variable for models with different time scales 

(e.g., half-hourly, daily, and monthly models). For example, the daily or 8-day NDVI data based 

on MODIS satellite imagery may better capture the temporal dynamics of water fluxes concerning 

vegetation growth than the 16-daily NDVI data derived from Landsat images. Besides, data on 

non-temporal dynamic variables such as soil texture cannot explain temporal variability in water 

fluxes in the data-driven simulations, although soil texture may be important in the interpretation 

of the actual driving mechanisms of ET (which may need to be quantified in detail in ET 

simulations by process-based models). In addition, some inherent accuracy issues (e.g., remote 

sensing-based NDVI may not be effective at high values) of the predictors may propagate into the 

consequent machine learning models, thus affecting the modeling and our understanding of its 

importance. Therefore, it is necessary to consider the spatial and temporal resolution of the data 

and their inherent accuracy for the predictors used in different studies in the systematic evaluation 

of data-driven water flux simulations. 

b) The heterogeneity of the dataset and model validation: the volume and inherent spatiotemporal 

heterogeneity of the training dataset (with more variability and extremes incorporated) may affect 

model accuracy. Typically, training data with larger regions, multiple sites, multiple PFTs, and 

longer year spans may have a higher degree of imbalance (Kaur et al., 2019; Van Hulse et al., 

2007; Virkkala et al., 2021; Zeng et al., 2020). And in machine learning, in general, modeling with 

unbalanced data (with significant differences in the distribution between the training and validation 

sets) may result in lower model accuracy. Currently, the most common ways of model validation 

include spatial, temporal, and random cross-validation. Spatial validation is mainly to evaluate the 

ability of the model to be applied in different regions or flux sites with different PFT types, and 

one of the common methods is 'leave one site out' (Fang et al., 2020; Papale et al., 2015; Zhang et 

al., 2021). If the data of the site left out for validation differs significantly from the distribution of 

the training data set, the expected accuracy of the model applied at that site may be low because 

the trained model may not capture the specific and local relationships between the water flux and 

the various predictor variables at that site. For temporal validation, to assess the ability of the 

models to adapt to the interannual variability, typically some years of data are used for training and 



the remaining years for model validation (Lu and Zhuang, 2010). If a year with extreme climate is 

used for validation, the accuracy may be low because the training dataset may not contain such 

extreme climate conditions. In the case of PFTs that are significantly affected by human activities, 

such as cropland, the possible different crops grown and different land use practices (e.g., 

irrigation) across years can also lead to low accuracy in temporal validation. 

c) Various machine learning algorithms: Some machine learning algorithms may have specific 

advantages when applied to model the relationships between water fluxes and covariates. For 

example, neural networks may have an advantage in nonlinear fitting, while random forests can 

avoid serious overfitting problems. However, which algorithm is better overall in different 

situations (i.e. applied to different data sets)? Which algorithm is generally more accurate than the 

others when using the same data set? A comprehensive evaluation is important. 

 

Therefore, to systematically and comprehensively assess the impact of various features in such 

modeling, we perform a meta-analysis of published water flux simulation studies that combine 

the flux site water flux observations, various predictors, and machine learning. The accuracy of 

model records collected from the literature was linked with various model features to assess the 

impacts of predictor data types, algorithms, and other features on model accuracy. The findings 

of this study may be promising to improve our understanding of the impact of various features of 

the models to guide future research on such machine learning-based modeling.  

2 Methodology 

2.1 CriteriaProtocol for includingselecting the sample of articles 

In the Scopus database, a literature query wasWe applied to titles, abstractsa general query (on 

December 1st, 2021) on title, abstract, and keywords to include articles with the “OR” operator 

applied among expressions (Table 1) according toin the Scopus database. Preferred Reporting 

Items for Systematic Reviews and Meta-Analyses (PRISMA) (Moher et al., 2009) (Fig. 1):are 

followed when filtering the papers. We first excluded articles that obviously did not fit the topic of 

this study based on the abstract, and then performed the article screening with the full-text 
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reading. 

 

The inclusion of articles follows the following criteria: 

a) Articles were filtered for those that modeled NEE. Articles that modeled other carbon with 

water fluxes such as methane(or latent heat) simulated. 

a) The water flux were not included. 

b) Articles thator latent heat observations used in the prediction models should be from the eddy-

covariance flux measurements. 

c) Articles focusing only univariateon gap-filling (Hui et al., 2004) techniques (i.e., the objective 

was not simulation and extrapolation of water fluxes using machine learning) were excluded. 

b)d) Only articles that used multivariate regression rather(with the number of covariates greater than 

multiple regressionor equal to 3) were screened out. included. 

c) Articles reported the determination coefficient (R-squared) of the validation step (Shi et al., 2021; 

Tramontana et al., 2016; Zeng et al., 2020) as the measure of model performance. Although RMSE 

is also often used for model accuracy assessment, its dependence on the magnitude of water flux 

values makes it difficult to use for fair comparisons between studies. 

d) Articles were published in journals with language limited to English. 

e) Articles were filtered for those that were published in the specific journals (Table S1) for research 

quality control because the data, model implements, and peer review in these journals are often 

more reliable. 

 

e) The determination coefficient (R-squared) of the validation step should be reported as the metric 

of model performance (Shi et al., 2021; Tramontana et al., 2016; Zeng et al., 2020) in the articles. 

f) The articles should be published in English-language journals. 

 

Although RMSE is also often used for model accuracy assessment, its dependence on the 

magnitude of water flux values makes it difficult to use for fair comparisons between studies. For 

example, due to the difference in the range of ET values, models developed from flux stations in 

dry grasslands will typically have lower RMSE than models developed by flux stations based on 

forests in humid regions. Therefore, RMSE may not be a good metric for cross-study comparisons 
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in this meta-analysis.  

 

 

2.2 Features of the prediction modelsprocesses evaluated 

Typically, the flow of the NEE prediction modeling framework (Fig. 2) based on flux observations and 

machine learning is as follows: first, half-hourly scale NEE flux observations are aggregated into various 

time scale NEE data, and gap-filling techniques (Moffat et al., 2007) are often used in this step to obtain 

complete NEE series when data are missing. Various predictors including meteorological variables, 

remote sensing-based biophysical variables, etc. are extracted to match site-scale NEE series to generate 

a training dataset containing the target variable NEE and various covariates. Subsequently, various 

algorithms are used for the NEE prediction model construction and validated in different ways (e.g., 

leave-one-site-out validation (Zeng et al., 2020)). Finally, in some studies, prediction models were 

applied to gridded covariate data to map the regional or global-scale NEE spatial and temporal variations 

(Zeng et al., 2020; Papale and Valentini, 2003; Jung et al., 2020). The information of R-squared (at the 

validation phase) and the associated model features reported in the article are considered as one data 

record for the formal meta-analysis (i.e., each R-squared record corresponding to a prediction model). 

From the included papers, R-squared records and various features (Table 2) involved in the NEE 

modeling framework (Fig. 2) were extracted (including the used algorithms, modeling/validation 

methods, remote sensing data, meteorological data, biophysical data, and ancillary data). In some studies, 

multiple algorithms were applied to the same dataset, or models with different features were developed 

(Virkkala et al., 2021; Zhang et al., 2021; Cleverly et al., 2020; Tramontana et al., 2016). In these cases, 

multiple data records will be documented. 

 

In the practical information extracting step, we categorized such features in a comparable 

manner. First, we categorized the various algorithms used in these papers, although the same 

algorithm may also have a variant form or an optimized parameter scheme. They are 

categorized into the following families of algorithms: The various features (Table 2) involved in 

the water flux modeling framework (Fig. 1) include the PFTs of the sites, the predictors used, the 
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machine learning algorithms, the validation methods, and other features. Each model for which 

R-squared is reported is treated as a data record. If multiple algorithms were applied to the same 

dataset, then multiple records were extracted. Models using different data or features are also 

recorded as multiple records.  

 

Random Forests (RF), Multiple Linear Regressions (MLR), Artificial Neural Networks (ANN), Support 

Vector Machines (SVM), Partial Least Squares Regression (PLSR), Generalized additive model (GAM), 

Boosted Regression Tree (BRT), Bayesian Additive Regression Trees (BART), Cubist, model tree 

ensembles (MTE). Second, we classified the spatial scales of these studies. Models with study areas 

(spatial extent covered by flux stations) smaller than 100x100 km were classified as ‘local’ scale models, 

those with study area sizes exceeding continental scale were classified as ‘global’ scale, and those with 

study area sizes in between were classified as ‘regional’ scale. Third, for various predictors, we only 

recorded whether the predictors were used or not without distinguishing the detailed data sources and 

categories (e.g., grid meteorological data from various reanalysis datasets and in-situ meteorological 

observations from flux stations), measurement methods (e.g., soil moisture measured/estimated by 

remote sensing or in situ sensors), etc. Fourth, we documented PFTs for the prediction models from the 

description of study areas or sites in these papers. They are classified into the following types: forest, 

grassland, cropland, wetland, savannah, tundra, and multi-PFTs (models containing a mixture of multiple 

PFTs). Models not belonging to the above PFTs were not given a PFT field and were not included in the 

subsequent analysis of the PFT differences. Other features (Table 2) are extracted directly from the 

corresponding descriptions in the papers in an explicit manner. 

 

Subsequently, the model accuracies corresponding to different levels of various features are compared 

in a cross-study fashion. In the evaluation of algorithms and time scales, we also implement comparisons 

within individual studies. For example, in the evaluation of the effects of the algorithms, we compare the 

accuracy of models using the same training data and keeping other features as constants in individual 

studies. In this intra-study comparison step, only algorithms with relatively large sample sizes in the 

cross-study comparisons were selected. In this study, algorithms with less than 10 available model 

records are not considered to have a sufficient sample size and we do not give further conclusive opinions 

on the accuracy of these algorithms due to their small samples (e.g., PLSR and BART with high R-



squared but very few records as evidence). MLR, RF, SVM, and ANN were found to have large sample 

sizes (Fig. 5a), and thus their accuracies can be comparable. Based on this, in the intra-study comparison 

step, we only compare the accuracy differences between MLR, RF, SVM, and ANN in the context of 

using the same data and the same other model features (Fig. 5b). 

 

Figure 2. Features of the machine learning-based NEE prediction process. The flux tower photo is from 

https://www.licor.com/env/support/Eddy-Covariance/videos/ec-method-02.html (last accessed: 23rd 

March 2022). The map in the lower part is from Harris et al., 2021. Prec, Ta, Rn, Ws, RH, and VPD 

represent precipitation, air temperature, net surface radiation, wind speed, relative humidity, and vapour-

pressure deficit respectively. FAPAR is the fraction of absorbed photosynthetically active radiation. LST 

is the land surface temperature. LAI is the leaf area index.  

2.3 Bayesian Network for analyzing joint effects 

Based on the Bayesian network (BN), the joint impacts of multiple model features on the R-squared are 

analyzed. A BN can be represented by nodes (X1,., Xn) and the joint distribution (Pearl, 1985): 

P(X) = P(X1, X2 , … , Xn) = ∏ P(Xi|pa(Xi))n
i=1 (1)  

where pa(Xi) is the probability of the parent node Xi. Expectation-maximization (EM) approach (Moon, 

1996) is used to incorporate the collected model records and compile the BN.  

 

Sensitivity analysis is used for the evaluation of node influence based on mutual information (MI) which 

is calculated as the entropy reduction of the child node resulting from changes at the parent node (Shi et 

al., 2020): 

MI = H(Q)-H(Q|F)= ∑ ∑ P(q, f) log
2 (

P(q,f)

P(q)P(f)
) fq (2)  

where H represents the entropy, Q represents the target node, F represents the set of other 

nodes and q and f represent the status of Q and F.  
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3 Results 

3.1 Articles included in the meta-analysis 

We included 40 articles (Table S2) and extracted 178 model records for the formal meta-analysis (Fig. 

1). Most studies were implemented in Europe, North America, Oceania, and China (Fig. 3). The number 

of such papers is increasing recently (Fig. 4) and it shows the machine learning approach for NEE 

prediction has been of interest to more researchers. The main journals in which these articles have been 

published (Fig. 4) include Remote Sensing of Environment, Global Change Biology, Agricultural and 

Forest Meteorology, Biogeosciences, and Journal of Geophysical Research: Biogeosciences, etc.  

 

 

Figure 3. Location of studies (a) included with the number of flux sites included and (b) their PFTs in 

the meta-analysis (total of 40 studies and 178 model records). Global (mainly based on FluxNet 

(Tramontana et al., 2016)) and continental-scale studies are not shown on the map due to the difficulty 

of identifying specific locations.  

 

 

Figure 4. The number of studies published across journals and the total number of publications 

per year.  

A total of 32 articles (Table S1) containing a total of 139 model records were included. The 

geographical scope of these articles was mainly Europe, North America, and China (Fig. 2).  

3.2 The formal Meta-analysis 

We assessed the impact of the features (e.g., algorithms, study area, PFTs, amount of data, validation 

methods, predictor variables, etc.) used in the different models based on differences in R-squared. 

3.2.1 Algorithms 

Among the more frequently used algorithms, ANN SVM and SVM performed betterRF 

outperformed (Fig. 5a) on average3a) across studies (lightly better than RF). On the other hand, 

since cross-study comparisons of algorithm accuracy include differences in data used in 

设置了格式: 字体: 10 磅, 加粗

带格式的: 标题 2

设置了格式: 字体: 10 磅, 加粗

带格式的: 标题 2

带格式的: 正文, 行距: 1.5 倍行距

设置了格式: 字体: 10 磅

设置了格式: 字体: 10 磅

设置了格式: 字体: 10 磅

设置了格式: 字体: 10 磅

设置了格式: 字体: 10 磅



model construction, we performed a pairwise comparison (Fig. 5b) of these fouralgorithms 

with sufficient sample size in Fig. 3a such as ANN). These three machine learning algorithms (i.e., 

ANN, SVM, RF, and MLR). In these) were significantly more accurate than the traditional MLR. 

Other algorithms such as MTE, ELM, Cubist, etc. also correspond to high accuracy, but with limited 

evidence sample size (Fig. 3a). In the internal comparison (different algorithms applied to the same 

data set) in single studies, multiple models are developed for consistent training data with the 

interference of training data differences removed. It showswe also find that RF and SVM 

perform best in the inter-study comparison (Fig. 5b). Whereas ANN performedand RF were 

slightly worsemore accurate than RFANN (Fig. 3b), and all these three (i.e., ANN, SVM, all three 

of them were strongerRF) are considerably more accurate than MLR. Overall, the performance 

of RF and SVM may be good and similarRF have shown higher accuracy in the NEEwater flux 

simulations in both inter and intra-study comparisons with sufficient sample size as evidence. 

3.2.2 Time scalesClimate types and PFTs 

We found higher average model accuracy in arid climate zones (Fig. 4a), such as the Cold semi-

arid (steppe) climate (BSk) and Cold desert climate (BWk). Most of these studies were located in 

northwest China and the western USA. It may be caused by the simpler relationship between water 

fluxes and biophysical covariates in arid regions. In arid zones, due to the high potential ET, the 

variability in the actual ET may be largely explained by water availability (moisture supply) and 

vegetation change with the effect of variability in thermal conditions reduced. As for the various 

PFTs, the average model accuracy was slightly lower for forest types than for cropland and 

grassland types (Fig. 4b). The lowest average accuracy was found for shrub sites, which may be 

related to the difficulty of the remote sensing-based vegetation index (e.g., NDVI) to quantify the 

physiological and ecological conditions of shrubs (Zeng et al., 2022), and the heterogeneity of the 

spatial distribution of shrubs within the EC observation area may also cause difficulties in capturing 

their relationships with biophysical variables. We also found high model accuracy for the wetland 

type, although records as evidence to support this finding may be limited. Compared to other 

PFTs, the more steady and adequate water availability in the wetland type may make the variations 

of water fluxes less explained by other biophysical covariates. 
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3.3.3 Predictors and their combinations 

On one hand, for the effects of individual predictors, the use of Rn/Rs, Prec, Ta, and FAPAR 

improved the accuracy of the model (Fig. S1). This pattern partially changed in the different PFTs. 

In the forest sites, the accuracy of the models with Rn/Rs and Ta used was higher than that of the 

models with Rn/Rs and Ta not used. For the grassland sites, the use of Ws, FAPAR, Prec, and Rn/Rs 

improved the model accuracy. For the cropland sites, Ta and FAPAR were more important for 

improving the model accuracy. 

 

On the other hand, the evaluation of the effect of individual predictors on model accuracy is not 

necessarily reliable because some predictor variables are used together (e.g., the high model accuracy 

corresponding to a particular variable may be because it is often used together with another variable that 

plays the dominant role in improving accuracy). Therefore, we tested for independence between the use 

of variables and assessed the effect of the combination of variables on model accuracy. We calculated 

the correlation matrix (Fig. S2) between the use of various predictors (not used is set as 0 and used is set 

as 1). We found there was a dependence between the use of some predictors, the use of NDVI/EVI, LAI, 

and SM was significantly negatively correlated with the use of Rn/Rs and Ta (Fig. S2). The impact of 

time scale on R-squared is considerable (Fig. 6), with models with larger time scales having lower 

average R-squared, especially when the time scale exceeds the monthly scale. The most frequently used 

scales were the daily, 8-day, and monthly scales. In studies where multiple time scales were used with 

other characteristics being the same, we found that models with half-hourly scales were significantly 

more accurate than models with daily scales (Fig. 6). However, the difference in accuracy between the 

day-scale and week-scale models is small. The accuracy of models with a monthly scale is the lowest. 

 

Figure 6. Differences in model accuracy (R-squared) at different time scales across studies 

with the linear regression between R-squared and time scales (a), and comparison of the 

model accuracy (R-squared) of selected pairs of time scales within individual studies (b). All 

model records were included in panel (a), while studies that used multiple time scales (with 

other model characteristics unchanged) were included in panel (b). Time scales: 0.02 days 

(half-hourly), 0.04 days (hourly), 30 days (monthly), and 90 days (quarterly). 

3.2.3 Various predictorsIt indicated that many of the models that used Rn/Rs and Ta did not use 



NDVI/EVI, LAI, and SM, and the models that used NDVI/EVI, LAI, and SM also happened to not 

use Rn/Rs and Ta. Given this dependence, we evaluated the effect of the combination of variables 

on the model accuracy (Fig. 5). In Fig. 5, the three variable combinations on the left side are mainly 

meteorological variables while the three variable combinations on the right side are mainly 

vegetation-related variables based on remote sensing (e.g., NDVI, EVI, LAI, LSWI). We found that, 

overall, the accuracy of the models using only meteorological variable combinations was higher 

than that of the models using only remote sensing-based vegetation-related variables. It 

demonstrated the importance of using meteorological variables in machine learning-based ET 

prediction (probably especially for models with small time scales such as hourly scale, and daily 

scale). For example, in the forest type, the combination of Ta and Rn/Rs is very effective compared 

to using only remote sensing-based vegetation index variable combinations. The combination of 

Ta and Rn/Rs is also effective in the grassland and cropland types. The combination of Ws and 

Rn/Rs played an important role in the grassland type for improving model accuracy. Despite this, 

it does not negate the positive role of remote sensing-based vegetation-related variables in ET 

prediction. This effectiveness can be dependent on the time scale of the model as well as the PFTs. 

In models with large time scales (monthly scale, seasonal scale) and PFTs in which ET is sensitive 

to vegetation dynamics, remote sensing-based vegetation-related variables may also be of high 

importance. 

3.3.4 Other model features 

We also evaluated the impact of some other features on accuracy. The differences in accuracy of 

models with different spatial scales, year spans, number of sites, and volume of data (Fig. 6) appear 

to be insignificant. This seems to be related to the fact that in large-scale water flux simulations, 

the sites of similar PFTs are selected such as for modeling multiple forest sites across Europe (Van 

Wijk and Bouten, 1999) which focus on ‘forest’ and multiple grassland sites across arid northern 

China (Xie et al., 2021; Zhang et al., 2021) which focus on ‘grassland’, rather than mixing different 

PFT types to train models as the way in machine learning modeling of carbon fluxes (Zeng et al., 

2020). In terms of the time scales of the models, the 4-day, 8-day, and monthly scales appear to 

correspond to higher accuracy compared to the half-hourly and daily scales. The higher the ratio 

of the volume of data in the training and validation sets, the higher the model accuracy. Compared 



to the models using Landsat data, the models using MODIS data showed slightly higher accuracy 

probably due to the advantage of MODIS data in capturing the temporal dynamics of biophysical 

covariates. There were significant differences in the accuracy of the models using different cross-

validation methods, with the models using random cross-validation showing higher accuracy than 

those using temporal cross-validation. This suggests that interannual variability may have a high 

impact on the models in water flux simulations. The driving mechanism of ET may vary significantly 

across years, and the inclusion of some extreme climatic conditions in the training set may be 

important for model accuracy and robustness. 

3.3.5 Linear correlation of quantitative features and R-squared 

We also analyzed the linear correlation (Fig. 7) between multiple quantitative features and the R-

squared. We found that the magnitude of the linear correlation coefficients between the use of 

predictor combinations and the R-squared was higher than other features. The use of the 

predictor combination ‘Ta and Rn/Rs’ significantly improved the model accuracy. ‘Temporal scale’, 

‘time span’, ‘training/validation ratio’, and ‘number of sites’ showed weak positive correlations with 

R-squared (not significant, p-value > 0.1). The positive correlation between ‘temporal scale’ and 

R-squared is higher among these features, although not significant. It should also be paid more 

attention to in future studies. The feature 'training/validation ratio' and 'time span' are also 

positively correlated (although not significantly) with the R-squared, suggesting the importance 

of the volume of data in the training set in a data-driven machine learning model. Larger 

'training/validation ratio' and 'time span' may correspond to greater proportional coverage of the 

scenarios/conditions in the training set over the validation set, and thus correspond to higher 

accuracy. 

 

Among the commonly used predictors for NEE, there are significant differences in the predictors used 

and their impacts on model accuracy for different PFTs (Fig. 7). Ancillary data (e.g. soil texture, soil 

organic content, topography) that do not have temporal variability are used less frequently because they 

can only explain spatial heterogeneity. In contrast, the biophysical variables LAI, FAPAR, and ET were 

used significantly less frequently than NDVI/EVI, especially in the cropland and wetland types. The 

meteorological variables Ta, Rn/Rs, and VPD were used most frequently. For forest sites, Rn/Rs and Ws 
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appear to be the variables that improve model accuracy. For grassland sites, we found that NDVI/EVI 

appears to be the most effective, despite the small sample size. For sites in croplands and wetlands, we 

did not find predictor variables that had a significant impact on model accuracy. 

 

For different PFTs, the top three variables in the ranking of model importance differed (Fig. S1). SM, 

Rn/Rs, Ta, Ts, and VPD all showed high importance across PFTs. This suggests that the variability of 

measured site-scale moisture and temperature conditions is important for the simulation of NEE for all 

PFTs. In contrast, in the importance ranking, other variables such as precipitation and NDVI/EVI may 

not lead because of the lag in their effect on NEE (Hao et al., 2010; Cranko Page et al., 2022). And some 

other variables may improve model accuracy for specific PFTs such as groundwater table depth (GWT) 

for wetland sites and growing degree days (GDD) for tundra sites.  

 

 

Figure 7. The impact of the various predictors incorporated in models of different PFTs (1-forest, 2-

grassland, 3-cropland, 4-wetland, 6-tundra) on R-squared. Dark blue boxes indicate that the predictor 

was used in the model, while dark red boxes indicate that the predictor was not used. Predictors: soil 

organic content (Soil_OC), precipitation (Prec), soil moisture/land surface water index (SM_LSWI), net 

radiation/solar radiation (Rn_Rs), enhanced vegetation index (EVI), air temperature (Ta), vapor-pressure 

deficit (VPD), the fraction of absorbed photosynthetically active radiation/photosynthetically active 

radiation (FAPAR_PAR), relative humidity (RH), evapotranspiration (ET), leaf area index (LAI).  

3.2.4 Other features 

In addition, we evaluated other features of the model construction that may contribute to differences in 

model accuracy (Fig. 8). Studies at continental and global scales with a large number of sites and a large 

span of years correspond to lower R-squared than studies at local and regional scales, suggesting that 

studies with a large number of sites across large regions are likely to have high variability in the 

relationship between NEE and covariates and that studies at small scales are more likely to have higher 

model accuracy. Spatial validation (usually 'leave one site out') corresponds to lower model accuracy 

compared to random and temporal validation. This again confirms the dominant role of heterogeneity in 

the relationship between NEE and covariates across sites in explaining model accuracy. This seems to 



be indirectly supported by the fact that a high ratio of training to validation sets corresponds to a low R-

squared, as this high ratio tends to be accompanied by the use of the 'leave one site out' validation 

approach. The accuracy of the models with a growing season period was slightly higher than that of the 

models with an annual period. For the satellite remote sensing data used, the models based on MODIS 

data with biophysical variables extracted were slightly less accurate than those based on Landsat data. 

For the daily scale models, Landsat data performed a little better than MODIS (Fig. S2). This suggests 

that the higher temporal resolution of MODIS compared to Landsat may not play a dominant role in 

improving model accuracy. This may also be partially attributed to studies using MODIS-based 

explanatory data that tend to include too large surrounding areas around the site (e.g., 2x2 km), which 

can lead to a scale mismatch between the flux footprint and the explanatory variables.  

 

Figure 8. The impacts of other features (i.e. spatial scale, study period, number of sites, year span, site 

year, cross-validation method, training/validation, and satellite imagery) on the model performance. 

3.3. The joint causal impacts of multi-features based on the BN  

We selected the features that had a more significant impact on model accuracy in the above assessment 

and further incorporated them into the BN-based multivariate assessment to understand the joint impact 

of multiple features on R-squared. The features incorporated included the spatial scale, the number of 

sites, the time scale, the span of years, the cross-validation method, and whether some specific predictors 

were used. We discretized the distribution of individual nodes and compiled the BN (Fig. 9a) using 

records from different PFTs as input. Sensitivity analysis of the R-squared node (Fig. 10) showed that 

R-squared was most sensitive to 'year span', cross-validation method, Rn/Rs, and time scale under multi-

feature control. In the forest and cropland types, R-squared is more sensitive to Rn/Rs, while in the 

wetland type it is more sensitive to SM/LSWI and Ta. The sensitivity of R-squared to 'year span' was 

much higher in the cropland type compared to the other PFTs, which may suggest that the interannual 

variability in the NEE simulations of the cropland type is higher due to potential interannual variability 

of the planting structure and irrigation practices. For the cropland type, differences in the phenology, 

harvesting, and irrigation (water volume and frequency) in different years can lead to significant inter-

annual differences in NEE simulations. Subsequently, using the constructed BN (with the empirical 

information in previous studies incorporated), for new studies we can instructively infer the probability 



distribution of the possible R-squared (Fig. 9b) with some model features predetermined. In previous 

studies, spatio-temporal mapping of NEE based on statistical models has often lacked accuracy 

assessment since there are no grid-scale NEE observations, and this BN may have the potential to be 

used to validate the accuracy (R-squared) of the NEE time series output of the grid-scale (i.e. inferring 

possible R-squared from model features, where the output of the grid-scale is considered to be of the 

form 'leave one site out').  

 

Figure 9. The joint effects of multiple features on the R-squared based on the BN with all records input 

(a) and the inference on the probability distribution of R-squared based on the BN with the status of some 

nodes determined (b). The values before and after the “±” indicate the mean and standard deviation of 

the distribution, respectively. The gray boxes indicate that the status of the nodes has been determined. 

In panel (b), specific values of parent nodes such as ‘spatial scale’ are determined (shown in the red box), 

leading to an increase in the expected R-squared compared to the average scenario of panel (a) (as 

inferred from the posterior conditional probabilities with the status of the node ‘spatial scale’ are 

determined as ‘local’).  

 

 

Figure 10. The sensitivity analysis of the R-squared node to other nodes based on the mutual information 

(MI) across PFTs. ‘Cross-validation’ is the cross-validation method including spatial, temporal, and 

random cross-validation. 

4 Discussions 

With the accumulation of in situ EC observations around the world, the study of ET simulations 

based on data-driven approaches has received more attention from researchers in the last decade. 

Many studies have combined EC observations, various predictors, and machine learning 

algorithms to improve the prediction accuracy of water fluxes. To date, the results of these studies 

have not been comprehensively evaluated to provide clear guidance for feature selection in water 

flux prediction models. To better understand the approach and guide future research, we 

performed a meta-analysis of such studies. Machine learning-based water flux simulations and 
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predictions still suffer from high uncertainty. By investigating the expected improvements that can 

be achieved by incorporating different features, we can avoid practices that may reduce model 

accuracy in future research. 

4.1 Opportunities and challenges in the water flux simulation 

In the above meta-analysis of the models, we found that water flux simulations based on EC 

observations can achieve high accuracy but also have high uncertainty through the modeling 

workflow. The R-squared of many water flux simulation models exceeds 0.8, possibly higher than 

some remote sensing-based and process-based models, and possibly higher than carbon flux 

simulations such as the net ecosystem exchange (NEE) in a similar modeling framework (Shi et al., 

2022). This may be because many data on important variables affecting carbon flux such as soil 

and biomass pools, disturbances, ecosystem age, management activities, and land use history are 

not yet effectively and continuously measured (Jung et al., 2011) with the global spatially and 

temporally explicit information. While ET simulations rely on observations of moisture and energy 

conditions and vegetation conditions, much of the current available meteorological and remote 

sensing data have been effective to represent and capture the spatial and temporal dynamics of 

these predictors well. 

4.1.1 Comprehensive insights on model features 

Biophysical and meteorological variables are considered both important in ET simulations. This 

study found that models using a combination of meteorological variables had higher accuracy 

than models using only remotely sensed vegetation dynamic information. However, due to the 

high proportion of models with small temporal scales (e.g., half-hourly scale, hourly scale, and 

daily scale) in this study, this advantage of the combination of meteorological variables may be 

more suitable for small temporal scales. A possible explanation is that vegetation-related variables 

such as NDVI and LAI at the daily scale, 8-day scale, and 16-day scale have limited explanatory 

ability for hourly or daily-scale variability in ET, especially under cloudy conditions (e.g., tropical 

rainforest regions), the temporal continuity of the vegetation index data may be greatly limited 

(Zeng et al., 2022). This should be given more attention and some vegetation indices derived from 

hourly temporal resolution satellite remote sensing data such as GOES (Zeng et al., 2022) can be 



used for ET simulations to investigate the possible adding-values of vegetation indices at smaller 

time scales. In contrast, at a small temporal scale, the use of combinations of meteorological 

variables can capture moisture and energy conditions that control the rapid fluctuations of ET and 

thus has a dominant role in hourly or daily-scale ET prediction. This also corroborates the high 

accuracy of some physic-based ET estimation models (Rigden and Salvucci, 2015) that use only 

meteorological variables and not vegetation-related variables such NDVI (only an estimate of 

vegetation height derived from land cover maps is used to represent vegetation conditions 

(Rigden and Salvucci, 2015)). 

 

There are differences in model accuracy among different PFTs. For example, in forest sites, 

limitations in data accuracy of factors were possible because some remote sensing-based 

predictors such as NDVI, FAPAR, and LAI have limited accuracy when applied to forest types (Liu 

et al., 2018b; Zeng et al., 2022). In addition, factors such as crown density, which may significantly 

affect the proportion of soil evaporation, transpiration, and evaporation of canopy interception, 

were not considered in these models, which may also lead to low model accuracy. This suggests 

that in water flux simulation, the driving mechanisms of water fluxes in different PFTs do affect the 

accuracy of machine learning models, and we need to consider more the actual and specific 

influencing factors in specific PFTs. More variables that can quantify the ratio of evaporation and 

transpiration should be considered for inclusion, which also appears to improve the mechanistic 

interpretability of such machine learning models. A previous study (Zhao et al., 2019) combined 

the physics-based approach (e.g., Penman-Monteith equation) and machine learning to build 

hybrid models to improve interpretability. We should make full use of empirical knowledge and 

experiences from process-based models to improve the accuracy and interpretability of the 

machine learning approach. 

 

Among the Many studies have evaluated the incorporation of various predictors and model features using 

machine learning for improving the site-scale NEE predictions (Tramontana et al., 2016; Zeng et al., 

2020; Jung et al., 2011). A comprehensive evaluation of these studies to provide definitive guidance on 

the selection of features in NEE prediction modeling is limited. This study fills the research gap with a 

meta-analysis of the literature through statistics on the accuracy and performance of models. Machine 
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learning-based NEE simulations and predictions still suffer from high uncertainty. By better 

understanding the expected improvements that can be achieved through the inclusion of different features, 

we can identify priorities for the consideration of different features in modeling efforts and avoid 

operations decreasing model accuracy. 

 

Compared to previous comparisons of machine learning-based NEE prediction models, this study is more 

comprehensive. Previous studies (Abbasian et al., 2022) have also found advantages of RF over other 

algorithms in NEE prediction. This study consolidated this finding using a larger amount of evidence. 

Previous studies (Tramontana et al., 2016) have also compared the impact of different practices in NEE 

prediction models based on the R-squared, such as comparing the difference in accuracy between the 

two predictor combinations (i.e., using only remotely sensed data and using remotely sensed data and 

meteorological data together). In contrast, since this study incorporated more detailed factors influencing 

model accuracy, the understanding of such issues was deepened. However, there are still many 

uncertainties and challenges in NEE prediction not clarified in this study. 

4.1 Challenges in the site-scale NEE simulation and implications for other carbon flux simulations 

4.1.1 Variations in time scales 

In the above analysis, we found that the effect of the time scale of the model is considerable. This suggests 

that we should be careful in determining the time scale of the model to consider whether the predictor 

variables used will work at this time scale. Previous studies have reported the dependence of the NEE 

variability and mechanism on the time scales. On the one hand, the importance of variables affecting 

NEE varies at different time scales. For example, in tropical and subtropical forests in southern China 

(Yan et al., 2013), seasonal NEE variability is predominantly controlled by soil temperature and moisture, 

while interannual NEE variability is controlled by the annual precipitation variation. A study (Jung et al., 

2017) showed that for annual-scale NEE variability, water availability and temperature were the 

dominant drivers at the local and global scales, respectively. This indicates the need to recognize the 

temporal and spatial driving mechanisms of NEE in advance in the development of NEE prediction 

models. On the other hand, dependence may exist between NEE anomalies at various time scales. For 

example, previous studies (Luyssaert et al., 2007) showed that short-term temperature anomalies may 

interpret both the daily and seasonal NEE anomalies. This implies that the models at different time scales 



may not be independent. In the previous studies, the relationship between prediction models at different 

scales has not been well investigated, and it may be valuable to compare the relations between data and 

models at different scales in depth. Larger time scales correspond to lower model accuracy, possibly 

related to the fact that some small-time-scale relations between NEE and covariates (especially 

meteorological variables) are smoothed. In particular, for models with time scales smaller than one day 

(e.g. half-hourly models), the 8-daily and 16-daily biophysical variable data obtained from satellite 

remote sensing are difficult to explain the temporal variation in the sub-daily NEE. Therefore, for models 

at small time scales (i.e. half-hourly, hourly, daily scale models), in situ meteorological variables may be 

more important. The inclusion of some ancillary variables (e.g. soil texture, topographic variables) with 

no temporal dynamic information may be ineffective unless many sites are included in the model and the 

spatial variability of the ancillary variables for these sites is sufficiently large (Virkkala et al., 2021). 

 

In terms of completeness and purity of training data, hourly and daily models can be better compared to 

monthly and yearly models. Hourly and daily models can usually preclude those low-quality data and 

gaps in the flux observations. However, for monthly and yearly scale models, gap-filling (Ruppert et al., 

2006; Moffat et al., 2007; Zhu et al., 2022) is necessary because there are few complete and continuous 

fluxes observations without data gaps on the monthly to yearly scales. Since various gap-filling 

techniques rely on environmental factors (Moffat et al., 2007) such as meteorological observations, this 

may introduce uncertainty in the predictive models (i.e., a small fraction of the observed information of 

NEE is estimated from a combination of independent variables). How it would affect the accuracy of 

prediction models at various time scales remains uncertain, although various gap-filling techniques have 

been widely used in the pre-processing of training data. 

 

In addition, the impacts of lagged effects (Hao et al., 2010; Cranko Page et al., 2022) of covariates are 

not considered in most models, which may underestimate the degree of explanation of NEE for some 

predictor variables (e.g. precipitation). Most of the machine learning-based models use only the average 

Ta and do not take into account the maximum temperature, minimum temperature, daily difference in 

temperature, etc., as in the process-based ecological models (Mitchell et al., 2009). This suggests that the 

inclusion of different temporal characteristics of individual variables in machine learning-based NEE 

prediction models may be insufficient. 



4.1.2 Scale mismatch of explanatory predictors and flux footprints 

An excessively large extraction area of remote sensing data (e.g., 2x2 km) may be inappropriate. In the 

non-homogeneous underlying conditions, the agreement of the area of flux footprints with the scale of 

the predictors should be considered in the extraction of the predictor variables in various PFTs (Chu et 

al., 2021). 

 

The effects of this mismatch between explanatory variables and flux footprints may be diverse for 

different PFTs. For example, for cropland types, the NEE is monitored at a range of several hundred 

meters around the flux towers, but remote sensing variables such as FAPAR, NDVI, LAI, etc. can be 

extracted at coarse scales (e.g., 2x2 km), some effects outside the extent of the flux footprint (Chu et al., 

2021; Walther et al., 2021) are incorporated (e.g., planting structures with high spatial heterogeneity, 

agricultural practices such as irrigation). And for more homogeneous types such as grasslands, coarse-

scale meteorological data may still cause spatial mismatches, even though the differences in land cover 

types within the 2x2 km and 200x200 m extent around the flux stations in grasslands may not be 

considerable. For example, precipitation with high spatial heterogeneity can dominate the spatial 

variability of soil moisture and thus affect the spatial variability of grassland NEE (Wu et al., 2011; 

Jongen et al., 2011). However, using 0.25°x0.25° reanalysis precipitation data (Zeng et al., 2020) may 

make it difficult for predictive models to capture this spatial heterogeneity around the flux station. 

 

Since few of the studies included in this meta-analysis considered the effect of variation in flux footprint, 

this feature was difficult to consider in this study. However, its influence should still be further 

investigated in future studies. With flux footprints calculated (Kljun et al., 2015) and the factors around 

the flux site (Walther et al., 2021) that affect the flux footprint incorporated, .it is promising to clarify 

this issue. 

4.1.3 Possible unbalance of training and validation sets 

In addition to the time scale of the models, the most significant differences in model accuracy and 

performance were found in the heterogeneity within the NEE dataset and the match of the training set 

and validation set. Often NEE simulations can achieve high accuracy in local studies, where the main 

factor negatively affecting model accuracy may be the interannual variability in the relationship between 



NEE and covariates. However, the complexity may increase when the dataset contains a large study area, 

many sites, PFTs, and year spans. Under this condition, the accuracy of the model in the 'leave one site 

out' validation may be more dependent on the correlation and match between the training and validation 

sets (Jung et al., 2020). When the model is applied to an outlier site (of which the NEE, covariates, and 

their relationship are very different compared with the remaining sites), it appears to be difficult to 

achieve a high prediction accuracy (Jung et al., 2020). If we further upscale the prediction model to large 

spatial and time scales, the uncertainties involved may be difficult to assess (Zeng et al., 2020). We can 

only infer the possible model accuracy based on the similarity of the distribution of predictors in the 

predicted grid to that of the existing sites in the model. In the upscaling process, reanalysis data with 

coarse spatial resolution are often used as an alternative for site-scale meteorological predictors. However, 

most studies did not assess in detail the possible errors associated with spatial mismatches in this 

operation. 

 

In summary, the site-scale NEE predictions may require more focus on the internal heterogeneity of the 

NEE dataset and the matching of the training set and validation set, and also require a better 

understanding of the influence of different scales of the same variable (e.g. site-scale precipitation and 

grid-scale precipitation in the reanalysis meteorological data) across modeling and upscaling steps. For 

the prediction of other carbon fluxes such as methane fluxes (in the same framework as the NEE 

predictions), the results of this study may also be partially applicable, although there may be significant 

differences in the use of specific predictors (Peltola et al., 2019). 

4.2 Uncertainties 

The uncertainties in this analysis may include: 

validation methods, random cross-validation has higher accuracy than spatial cross-validation and 

temporal cross-validation. However, spatial cross-validation and temporal cross-validation may 

be able to better help us recognize the robustness of the model when extrapolated (i.e., applied 

to new stations and new years). The lower accuracy in the temporal cross-validation approach 

implies that we need to focus on interannual hydrological and meteorological variability in the 

water flux simulations. In cropland sites, we may also need to pay more attention to the effects of 

interannual variability in anthropogenic cropping patterns. If some extreme weather years are not 



included, the robustness of the model when extrapolated to other years may be challenged, 

especially in the context of the various extreme weather events of recent years. This can also inform 

the siting of future flux stations. Regions where climate extremes may occur and biogeographic 

types not covered by existing flux observation networks should be given more attention to achieve 

global-scale, accurate and robust machine learning-based spatio-temporal prediction of water 

fluxes. Furthermore, although the R-squared and the training/validation ratio show a positive 

correlation (Fig. 7) (i.e., a higher training/validation ratio may correspond to a higher R-squared), 

we should still be cautious in reducing this ratio in our modeling. For a really small validation set, 

it would be very challenging to determine which model is better given the potential uncertainty 

caused by the considerable randomness.  

4.1.2 Differences from NEE predictions in the similar model framework 

In general, predictors related to meteorological, vegetation, and soil conditions were common to 

both ET and NEE simulations in a similar framework (Shi et al., 2022). However, in NEE predictions, 

explanatory variables such as soil organic content, photosynthetic photon flux density, and 

growing degree days (Shi et al., 2022) are not necessary for ET predictions. The selection of these 

variables requires our prior knowledge of the dominant drivers of ET and NEE anomalies of 

particular ecosystems and their differences.  

 

The accuracy of NEE predictions (Shi et al., 2022) can be more limited by global variability across 

biomes and locations (Nemani et al., 2003) given the lack of locally measured data on soil and 

biomass pools, disturbances, ecosystem age, management activities and land use history (Jung et 

al., 2011). It can result in a higher heterogeneity of the training data in large-scale modeling with 

multiple flux sites (Shi et al., 2022) and the weak ability to capture the NEE anomalies. In contrast, 

in ET predictions, meteorological variables and vegetation conditions appear to be already 

sufficient to capture a considerably large fraction of the ET variations in most conditions.  

 

In future ET prediction studies, given that few current ET products have time scales smaller than 

daily scale (Jung et al., 2019; Pan et al., 2020), improvements in the accuracy of daily and hourly 

models may be necessary to fill this gap. Besides, the partitioning of ET components (i.e., 



transpiration, interception evaporation, and soil evaporation) can be more focused to better 

decouple the contributions of vegetation and soil to ET with machine learning (Eichelmann et al., 

2022). It can be further matched with the partitioning of NEE (i.e., to GPP and ecosystem respiration) 

to increase our knowledge of the global water cycle and ecosystem functioning and obtain further 

refined global carbon-water fluxes coupling relations (Eichelmann et al., 2022). Also, the above 

two promising improvements can be beneficial for research on topics related to the global 

terrestrial water cycle (Fisher et al., 2017). 

4.2 Uncertainties and limitations of this meta-analysis 

4.2.1 The limited number of available literature and model records 

Despite many articles and model records collected through our efforts to perform this meta-

analysis, there still appears to be a long way to go to finally and completely understand the various 

mechanisms involved in water flux simulation with machine learning. Some of the insights provided 

by this study can be not robust (due to the limited sample size available when the goal is to assess 

the effects of multiple features), but this does not negate the fact that this study does obtain some 

meaningful findings. Therefore, researchers should treat the results of this study with caution, as 

they were obtained only statistically. Overall, it is still positive to conduct a meta-analysis of such 

studies, considering their rapid growth in number and lack of guiding directions. 

4.2.2 Publication bias and weighting:  

a) Publication bias is not refined dueand weighting: Due to the limitations of the relatively 

limited number of articles that cancould be included in the meta-analysis, this study did not focus 

much on publication bias. Meta-analyses oftenanalytic studies in other fields typically measure 

the quality of journals and the datapublic availability of research data (Borenstein et al., 2011; Field 

and Gillett, 2010) to determine the weighting of the literature in a comprehensive assessment. 

However, a high proportionmost of the articles in this study did not makepublicly provide flux 

observations publicly available or share the NEE prediction models developed. Furthermore, 

meta models. Meta-analysis studies in other fields typically measure the impact of papers by 

evidence/data volume,included studies based on sample size and the variance of the evaluated 
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effectsexperimental results (Adams et al., 1997; Don et al., 2011; Liu et al., 2018). However, in 

this study, because no convincing method is found to quantify the weights of results from 

included articles, some features (e.g. the number of flux sites, the span of years) were directly 

assessed rather than used to determine the weights of the articles(Adams et al., 1997; Don et 

al., 2011; Liu et al., 2018a). In this study, due to the lack of a convincing manner to determine 

weights among articles, we assigned the same weight to the results for all the literature. 

b) Limitations of the criteria for inclusion in the literature: in the model accuracy-based evaluation, 

we selected only literature that developed multiple regression models. Potentially valuable 

information from univariate regression models was not included. In addition, only papers in high-

quality English journals were included in this study to control for possible errors due to publication 

bias. However, many studies that fit this theme may have been published in other languages or other 

journals. 

c) Independence between features: There is dependence between the evaluated features (e.g. the 

dependency between the spatial extent and the number of sites). It may negatively affect the 

assessment of the impact of individual features on the accuracy of the model, although the BN-

based analysis of joint effects can reduce the impact of this dependence between variables by 

specifying causal relationships between features. The interference of unknown dependencies 

between features may still not be eliminated when we focus on the effects of an individual feature 

on the model performance. We should pay more attention to the effect of features on model accuracy 

individually in future studies, and it may be valuable to keep other features as constants while 

changing the level of only one feature and assessing the difference. It may help us to understand the 

real sensitivity of model accuracy to different features in specific conditions. The sample size 

collected in this study (178 records in total) is not very large. This also suggests that more future 

efforts should be devoted to the comprehensive evaluation and summarization of NEE simulations.  

 

Additionally, there are still other potential factors not considered by this study such as the uncertainty of 

climate data (site vs reanalysis), footprint matching between site and satellite images, etc. Overall, 

although the quantitative results of this study should be used with caution, they still have positive 

implications for guiding future such studies. 
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4.2.3 Uncertainties in the information of the extracted features 

At the information extraction level, the following issues may also introduce uncertainties:  

a) Uncertainties caused by data quality control (e.g. gap-filling (Hui et al., 2004)) are difficult to 

assess effectively. Gap-filling is a commonly used technique to fill in low-quality data in flux 

observations. However, the impact of this practice on machine learning-based ET prediction 

models is unclear, due to the difficulty of directly assessing how this technique is performed in 

various studies by this meta-analysis. Typically, models with small time scales (e.g., hourly scale, 

daily scale) can exclude low-quality observations and use only high-quality data. However, for 

models with large time scales (e.g., monthly scales), gap-filling (e.g., based on meteorological 

data) may be unavoidable. This may lead to a decrease in training data purity and introduce 

uncertainty in the subsequent prediction model development. 

b) Systematic uncertainties caused by the energy balance closure (EBC) issue in eddy-covariance 

flux measurements are also difficult to assess by this meta-analysis. EBC is a common problem 

(Eshonkulov et al., 2019) in eddy-covariance flux observations. For that reason, the latent heat 

flux measured potentially underestimates ET. Some prediction models corrected EBC (e.g., using 

Bowen ratio preserving (Mauder et al., 2013, 2018) and energy balance residuals (Charuchittipan 

et al., 2014; Mauder et al., 2018)) in the processing of training data, but some did not. How this 

will affect the accuracy of the prediction model is not clear due to multiple factors that need to be 

evaluated that influence EBC (Foken, 2008), including measurement errors of the energy balance 

components, incorrect sensor configurations, influences of heterogeneous canopy height, 

unconsidered energy storage terms in the soil-plant-atmosphere system, inadequate time 

averaging intervals, and long-wave eddies (Jacobs et al., 2008; Foken, 2008; Eshonkulov et al., 

2019). To reduce this uncertainty, more attention to flux site characteristics (Eshonkulov et al., 

2019) related to PFT, topography, flux footprint area, etc., to select the appropriate correction 

method is necessary for future studies. 

c) As most studies used far more water flux observation records than the number of covariates in 

their regression models, we did not adjust the R-squared in this study to an adjusted R-squared. 

d) The various specific ways in which the parameters of the model are optimized are not 

differentiated. They are broadly categorized into different families or kinds of algorithms, which 

may also introduce uncertainty into the assessment. 



e) The assessment of some features is not detailed due to the limitations of the available model 

records. For example, the classification of PFT could be more detailed. ‘Forest’ could be further 

classified as broadleaf forest, coniferous forest, etc. while ‘cropland’ could be further classified as 

rainfed and irrigated cropland based on differences in their response mechanisms of water fluxes 

to environmental factors. 

5 Conclusion 

We performed a meta-analysis of the site-scale NEE water flux simulations combining in situ flux 

observations from flux stations/networks, meteorological, biophysical, and ancillary predictors, 

and machine learning. The impacts of various features throughout the modeling process on 

the accuracy of the model were evaluated. The main findings of this study include:conclusions 

are as follows:  

1. RF SVM (average R-squared = 0.82) and SVM performed better than other evaluated algorithms.  

2. The impact of time scale on model performance is significant. Models with larger time scales have 

lower average R-squared, especially when the time scale exceeds the monthly scale. Models with 

half-hourly scales RF (average R-squared = 0.73) were significantly more accurate than models 

with daily scales (average R-squared = 0.5).  

3.1. Among the commonly used predictors for NEE, there are significant differences81) 

outperformed over evaluated algorithms with sufficient sample size in the predictors usedboth 

cross-study and their impacts on model accuracy for different PFTs. intra-study (with the 

same training dataset) comparisons. 

2. ItThe average accuracy of the model applied to arid regions is necessary to focus on the 

potential imbalance between the training and validation sets in NEE simulations. Studies 

at continental and global scaleshigher than in other climate types. 

3. The average accuracy of the model was slightly lower for forest sites (average R-squared = 0.37) 

with multiple PFTs, more76) than for cropland and grassland sites, and a large span of years 

correspond to lower (average R-squared than studies at local= 0.8 and 0.79), but higher than 

for shrub sites (average R-squared = 0.69)67). 
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4. Among various predictor variables, the use of Rn/Rs, Prec, Ta, and FAPAR improved the model 

accuracy. The combination of Ta and regional scales (average R-squared = 0.7). Rn/Rs is very 

effective especially in the forest type, while in the grassland type the combination of Ws and 

Rn/Rs is also effective. 
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