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However, systematic evaluation of such models is still limited. We therefore performed a meta-
analysis of 32 such studies, derived 139 model records, and evaluated the impact of various
features on model accuracy throughout the modeling flow.

However, it is unclear how various model features affect prediction accuracy. To fill this gap,
we evaluated this issue based on records of 139 developed models collected from 32 such
studies. (line 20)

Publication bias and weighting: Due to the relatively limited number of articles that could be
included in the meta-analysis, this study did not focus much on publication bias. Meta-analytic
studies in other fields typically measure the quality of journals and the public availability of
research data (Borenstein et al., 2011; Field and Gillett, 2010) to determine the weighting of the
literature in a comprehensive assessment. However, most of the articles did not publicly provide
flux observations or share developed models. Meta-analysis studies in other fields typically
measure the impact of included studies based on sample size and variance of experimental
results (Adams et al., 1997; Don et al., 2011; Liu et al., 2018a). In this study, due to the lack of
a convincing manner to determine weights among articles, we assigned the same weight to the
results for all the literature.

Publication bias and weighting: In a meta-analysis in other fields, weights for different
studies can be assigned based on the quality of the journal and the extent to which the
research data are publicly available (Borenstein et al., 2011; Field and Gillett, 2010).
However, most of the articles included in this study did not fully publish the flux data they
used, the models they developed, and the predicted ET data. Given this limitation, we were
unable to assign them small weights due to the relatively limited available sample size of
this study. Besides, in meta-analyses in other fields, the sample size and the variance of
the results of the experiments can also be used to adjust the weights of the effects among
studies (Adams et al., 1997; Don et al., 2011; Liu et al., 2018a). However, for this study,
due to the lack of a convincing way to determine the weights, we briefly assigned equal
weight values to all the included studies. (line 417)
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With the rapid accumulation of water flux observations+rreteerotogical-biophysicatand-ancitary

predietors—using— from global eddy-covariance flux sites, many studies have used data-driven

approaches to model water fluxes with various predictors and machine learning te-simiate-the

site—seale—NEEalgorithms used. However, systematic evaluation of the—perfermanee—ef—such
models is still limited. Fherefere—weWe therefore performed a meta-analysis of these—NEE
stutations—A-tetal-ef4032 such studies-ane-1+8, derived 139 model records-were-treluded—Fhe

tmapaets, and evaluated the impact of various features on model accuracy throughout the

modeling

continental-and-global-seales81) outperformed over evaluated algorithms with sufficient sample

size in both cross-study and intra-study (with the same data) comparisons. The average accuracy

of the model applied to arid regions is higher than in other climate types. The average accuracy

of the model was slightly lower for forest sites (average R-squared = 0.37A-with—rruttiplePFs;

76) than

for croplands and grasslands (average R-squared = 0.69)8 and 0.79), but higher than for shrubland

sites (average R-squared = 0.67). Using Rn/Rs, precipitation, Ta, and regionat-scales{averageR—

ofthe-NEEdatasetFAPAR improved the model accuracy. The combined use of Ta and the-matehing

(BBTHR: FBEE)

of-the-tratning-setRn/Rs is very effective especially in forests, while in grasslands the combination

of Ws and Rn/Rs is also effective. Random cross-validation setshowed higher model accuracy than

(BB T7HR: FEER)

spatial cross-validation and temporal cross-validation, but spatial cross-validation is more

important in spatial extrapolation. The findings of this study are promising to guide future research

on such machine learning-based modeling.
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Evapotranspiration

(ET) is one of the most important components of the water cycle in terrestrial ecosystems. It also

represents the key variable in linking ecosystem functioning, carbon and climate feedbacks,

agricultural management, and water resources (Fisher et al., 2017). The quantification of ET for

regional, continents, or the globe can improve our understanding of the water, heat, and carbon

interactions, which is important for global change research (Xu et al., 2018). Information on ET has

been used in many fields, including, but not limited to, droughts and heatwaves (Miralles et al.,

2014), regional water balance closures (Chen et al., 2014; Sahoo et al., 2011), agricultural

management (Allen et al., 2011), water resources management (Anderson et al., 2012), biodiversity

patterns (Gaston, 2000). In addition, accurate large-scale and long-time series ET prediction at

high spatial and temporal resolution has been of great interest  (Fisher et al., 2017).

Currently, there are three main approaches for simulation and spatial and temporal prediction of

ET: (i) physical models based on remote sensing such as surface energy balance models

(Minacapilli et al., 2009; Wagle et al., 2017), Penman-Monteith equation (Mu et al., 2011; Zhang

etal.,, 2010), Priestley-Taylor equation (Miralles et al., 2011); (ii) process-based land surface models,

biogeochemical models and hydrological models (Barman et al., 2014; Pan et al., 2015; Sdndor et

al., 2016; Chen et al., 2019); and (iii) the observation-based machine learning modeling approach

with in situ eddy covariance (EC) observations of water flux (Jung et al., 2011; Li et al,, 2018; Van

Wijk and Bouten, 1999; Xie et al., 2021; Xu et al., 2018; Yang et al., 2006; Zhang et al., 2021). For

remote sensing-based physical models and process-based land surface models, some physical




processes have not been well characterized due to the lack of understanding of the detailed

mechanisms influencing ET under different environmental conditions. For example, the inaccurate

representation and estimation of stomatal conductance (Li et al., 2019) and the linearization

(McColl, 2020) of the Clausius-Clapeyron relation in the Penman-Monteith equation may

introduce both empirical and conceptual errors into estimates of ET. Limited by complicated

assumptions and model parametrizations, these process-based models face challenges in the

accuracy of their ET estimations over heterogeneous landscapes (Pan et al., 2020; Zhang et al.,

2021). Therefore, many researchers have used data-driven approaches for the simulation and

prediction of ET with the accumulation of a large volume of measured observational data of water

fluxes in the past decades. Various machine learning models have been developed to simulate

water fluxes at the flux site scale. Besides, various predictor variables (e.g., meteorological factors,

vegetation conditions, and moisture supply conditions) have been incorporated into such models

for upscaling (Fang et al., 2020; Jung et al., 2009) of water flux to a larger scale or understanding

the driving mechanisms with the variable importance analysis performed in such models.

However, to date, the systematic assessment of the uncertainty in the processes of water flux

prediction models constructed using the machine learning approach is limited. Although

considerable effort has been invested in improving the accuracy of such prediction models, our

understanding of the expected accuracy of such models under different conditions is still limited.

It is still not easy for us to give the general guidelines for selecting appropriate predictor variables

and models. Questions such as ‘Which predictor variables are the best in water flux simulations?’

and ‘How to improve the prediction accuracy of water flux effectively?' etc. still confuse the

researchers in the field. Therefore, we should synthesize the findings from published studies to

determine which predictor variables, machine learning models, and other features can significantly

improve the prediction accuracy of water flux. Also, we are interested in understanding under

which specific conditions they are more effective.

| ##ERes: EX 1788 15 f2f78R

C[(RETHER T 108

A variety of features control the accuracy of such models, including the predictor variables used,f"/ [i&ETﬁiﬁ' S=E: 10 B

the inherent heterogeneity within the dataset, the plant functional type (PFT) of the flux sites, the { BE TR P 105

[ BBTHR: T 108

method of model construction and validation-etheds, and the machinetearning-algorithm usee; : [i&ET#ﬁiﬁ: ek 10 B

O U 0 )










a)

Predictor variables used: Compared to process-based models, the data used may have a more

significant impact on the final model performance in data-driven models. Various biophysical

covariates and other environmental factors have been used for the simulation and prediction of

water fluxes. The most commonly used factors include mainly precipitation (Prec), air temperature

(Ta), wind speed (WSs), net/sun radiation (Rn/Rs), soil temperature (Ts), soil texture, vapor-

pressure deficit (VPD), the fraction of absorbed photosynthetically active radiation (FAPAR),

vegetation index (e.g., Normalized Difference Vegetation Index (NDVI), Enhanced Vegetation

Index (EVI)), Leaf area index (LAI), and carbon fluxes (e.g., Gross Primary Productivity (GPP)).

These used predictor variables and their complex interactions drive the fluctuations and variability

of water fluxes. They affect the accuracy of water flux simulations in two ways: their actual impact

on water fluxes at the process-based level and their spatio-temporal resolution and inherent

accuracy. The relationship between water fluxes and these variables at the process-based driving

mechanism level is very different under different PETs, different climate types, and different

hydrometeorological conditions. For example, in irrigated croplands in arid regions, water fluxes

may be highly correlated with irrigation practices, and thus soil moisture may be a very important

predictor variable, and its importance may be significantly higher than in other PFTs. And in

models that incorporate data from multiple PFTs, some variables that play important roles in

multiple PFTs may have higher importance. In terms of data spatial and temporal resolution, the

data for these predictor variables may have different scales. In terms of spatial resolution,

meteorological observations such as precipitation and air temperature are at the flux site scale

while factors extracted from satellite remote sensing and reanalysis climate datasets cover a much

larger spatial scale (i.e. the grid-scale). This leads to considerable differences in the degree of

spatial match between different variables and the site scale EC observations (approximately 100 m




b)

x 100 m). It is therefore difficult for some variables to be fairly compared in the subsequent

importance analysis of driving factors. In terms of temporal resolution, the importance of predictor

variables with different temporal resolutions may be variable for models with different time scales

(e.qg., half-hourly, daily, and monthly models). For example, the daily or 8-day NDVI data based

on MODIS satellite imagery may better capture the temporal dynamics of water fluxes concerning

vegetation growth than the 16-daily NDVI data derived from Landsat images. Besides, data on

non-temporal dynamic variables such as soil texture cannot explain temporal variability in water

fluxes in the data-driven simulations, although soil texture may be important in the interpretation

of the actual driving mechanisms of ET (which may need to be quantified in detail in ET

simulations by process-based models). In addition, some inherent accuracy issues (e.g., remote

sensing-based NDVI may not be effective at high values) of the predictors may propagate into the

consequent machine learning models, thus affecting the modeling and our understanding of its

importance. Therefore, it is necessary to consider the spatial and temporal resolution of the data

and their inherent accuracy for the predictors used in different studies in the systematic evaluation

of data-driven water flux simulations.

The heterogeneity of the dataset and model validation: the volume and inherent spatiotemporal

heterogeneity of the training dataset (with more variability and extremes incorporated) may affect

model accuracy. Typically, training data with larger regions, multiple sites, multiple PETs, and

longer year spans may have a higher degree of imbalance (Kaur et al., 2019; Van Hulse et al.,

2007; Virkkala et al., 2021; Zeng et al., 2020). And in machine learning, in general, modeling with

unbalanced data (with significant differences in the distribution between the training and validation

sets) may result in lower model accuracy. Currently, the most common ways of model validation

include spatial, temporal, and random cross-validation. Spatial validation is mainly to evaluate the

ability of the model to be applied in different regions or flux sites with different PFT types, and

one of the common methods is 'leave one site out' (Fang et al., 2020; Papale et al., 2015; Zhang et

al., 2021). If the data of the site left out for validation differs significantly from the distribution of

the training data set, the expected accuracy of the model applied at that site may be low because

the trained model may not capture the specific and local relationships between the water flux and

the various predictor variables at that site. For temporal validation, to assess the ability of the

models to adapt to the interannual variability, typically some years of data are used for training and




the remaining years for model validation (Lu and Zhuang, 2010). If a year with extreme climate is

used for validation, the accuracy may be low because the training dataset may not contain such

extreme climate conditions. In the case of PFTs that are significantly affected by human activities,

such as cropland, the possible different crops grown and different land use practices (e.qg.,

irrigation) across years can also lead to low accuracy in temporal validation.

¢) Various machine learning algorithms: Some machine learning algorithms may have specific

advantages when applied to model the relationships between water fluxes and covariates. For

example, neural networks may have an advantage in nonlinear fitting, while random forests can

avoid serious overfitting problems. However, which algorithm is better overall in different

situations (i.e. applied to different data sets)? Which algorithm is generally more accurate than the

others when using the same data set? A comprehensive evaluation is important.

Therefore, to systematically and comprehensively assess the impact of various features in such

modeling, we perform a meta-analysis of published water flux simulation studies that combine

the flux site water flux observations, various predictors, and machine learning. The accuracy of

model records collected from the literature was linked with various model features to assess the

impacts of predictor data types, algorithms, and other features on model accuracy. The findings

of this study may be promising to improve our understanding of the impact of various features of

the models to guide future research on such machine learning-based modeling.

2 Methodology 3 [ TS 478E: 1.5 f5178E

RE TR 6 10 8, 4

2.1 GFiteriaprotocol for HrEHHEHAGselecting the sample of articles “\

) ey

(REBTHER: T 10 B, A

tr-the-Scopus-database-aiterature-gquery-was\We applied te-titles-abstractsa general query (on« -
HRETAY: AR 2

(
(
[(BBTHER: 105 A
(
(

December 1st, 2021) on title, abstract, and keywords to include articles with the “OR” operator WETHER: FE 108

 (w#R®: IX 68 15 BAE

applied among expressions (Table 1) aceerding—toin the Scopus database. Preferred Reporting N BETHR 76 105

Items for Systematic Reviews and Meta-Analyses (PRISMA) (Moher et al., 2009) {Fig—H:are [ﬁﬁ?’l‘”ﬁ:‘&: T 10 5%
(BETHR: Tk 108

U O A

followed when filtering the papers. We first excluded articles that obviously did not fit the topic of

this study based on the abstract, and then performed the article screening with the full-text




reading.

The inclusion of articles follows the following criteria:

a)  Articles were filtered for those that-modeled NEEArticlesthat modeled-otherearben-with
water fluxes steh-as-methane(or latent heat) simulated.

a)—The water flux were-not-included:

b) Adsticlesthator latent heat observations, used in the prediction models should be from the eddy- [i&ETFﬁiﬁ: R 10 5

covariance flux measurements.

c) _ Articles focusing only on gap-filling (Hui et al., 2004) techniques (i.e., the objective (BBTHR P 108
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e) The determination coefficient (R-squared) of the validation step should be reported as the metric

of model performance (Shi et al., 2021; Tramontana et al., 2016; Zeng et al., 2020) in the articles.

f)  The articles should be published in English-language journals.

Although RMSE is also often used for model accuracy assessment, its dependence on the

magnitude of water flux values makes it difficult to use for fair comparisons between studies. For

example, due to the difference in the range of ET values, models developed from flux stations in

dry grasslands will typically have lower RMSE than models developed by flux stations based on

forests in humid regions. Therefore, RMSE may not be a good metric for cross-study comparisons




in this meta-analysis.
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2.2 Features of the prediction modelSprocesses evaluated -~

categorized-nto-thefollowing-families-of-algorithms=The various features (Table 2) involved in

the water flux modeling framework (Fig. 1) include the PFTs of the sites, the predictors used, the
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machine learning algorithms, the validation methods, and other features. Each model for which

R-squared is reported is treated as a data record. If multiple algorithms were applied to the same

dataset, then multiple records were extracted. Models using different data or features are also

recorded as multiple records.
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3 Results

3.1 Articles included in the meta-analysis ~_

A total of 32 articles (Table S1) containing a total of 139 model records were included. The

geographical scope of these articles was mainly Europe, North America, and China (Fig. 2).

3.2 The formal Meta-analysis ~_

3.2.1 Algorithms

Armerg—the—frore—freguently—used—algerthms—ANN-SVM and SV¥M—perfermed—betterRF«

outperformed, (Fig. Say-en-average3a) across studies (Hghtly-better than RF-On-the-other hanes
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algorithms

with sufficient sample size in Fig. 3a such as ANN). These three machine learning algorithms (i.e.,

(BETHR: 7156 105

ANN, SVM, RF—ane-MER)—tr-these) were significantly more accurate than the traditional MLR.

Other algorithms such as MTE, ELM, Cubist, etc. also correspond to high accuracy, but with limited

evidence sample size (Fig. 3a). In the internal comparison (different algorithms applied to the same
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slightly wersemore accurate than RFANN (Fig. 3b), and all these three (i.e., ANN, SVM, at-three
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efthem-were-stronrgerRF) are considerably more accurate than MLR. Overall, the-perfermanee

of-RF-and-SVM may-be-good-and simitarRF_have shown higher accuracy, in the-NEEwater flux
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simulations in both inter and intra-study comparisons with sufficient sample size as evidence.

3.2.2 Fime-sealesClimate types and PFTs

We found higher average model accuracy in arid climate zones (Fig. 4a), such as the Cold semi-

arid (steppe) climate (BSk) and Cold desert climate (BWK). Most of these studies were located in

northwest China and the western USA. It may be caused by the simpler relationship between water

fluxes and biophysical covariates in arid regions. In arid zones, due to the high potential ET, the

variability in the actual ET may be largely explained by water availability (moisture supply) and

vegetation change with the effect of variability in thermal conditions reduced. As for the various

PFTs, the average model accuracy was slightly lower for forest types than for cropland and

grassland types (Fig. 4b). The lowest average accuracy was found for shrub sites, which may be

related to the difficulty of the remote sensing-based vegetation index (e.g., NDVI) to quantify the

physiological and ecological conditions of shrubs (Zeng et al., 2022), and the heterogeneity of the

spatial distribution of shrubs within the EC observation area may also cause difficulties in capturing

their relationships with biophysical variables. We also found high model accuracy for the wetland

type, although records as evidence to support this finding may be limited. Compared to other

PFTs, the more steady and adequate water availability in the wetland type may make the variations

of water fluxes less explained by other biophysical covariates.
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3.3.3 Predictors and their combinations

On one hand, for the effects of individual predictors, the use of Rn/Rs, Prec, Ta, and FAPAR

improved the accuracy of the model (Fig. S1). This pattern partially changed in the different PFTs.

In the forest sites, the accuracy of the models with Rn/Rs and Ta used was higher than that of the

models with Rn/Rs and Ta not used. For the grassland sites, the use of Ws, FAPAR, Prec, and Rn/Rs

improved the model accuracy. For the cropland sites, Ta and FAPAR were more important for

improving the model accuracy.

On the other hand, the evaluation of the effect of individual predictors on model accuracy is not

necessarily reliable because some predictor variables are used together (e.g., the high model accuracy

corresponding to a particular variable may be because it is often used together with another variable that

plays the dominant role in improving accuracy). Therefore, we tested for independence between the use

of variables and assessed the effect of the combination of variables on model accuracy. We calculated

the correlation matrix (Fig. S2) between the use of various predictors (not used is set as 0 and used is set

as 1). We found there was a dependence between the use of some predictors, the use of NDVI/EVI, LAI,

and SM was significantly negatively correlated with the use of Rn/Rs and Ta (Fig. S2). Fhe-impact-of

3-2.3-Variouspredictorsit indicated that many of the models that used Rn/Rs and Ta did not use




NDVI/EVI, LAI, and SM, and the models that used NDVI/EVI, LAI, and SM also happened to not

use Rn/Rs and Ta. Given this dependence, we evaluated the effect of the combination of variables

on the model accuracy (Fig. 5). In Fig. 5, the three variable combinations on the left side are mainly

meteorological variables while the three variable combinations on the right side are mainly

vegetation-related variables based on remote sensing (e.g., NDVI, EVI, LAI, LSWI). We found that,

overall, the accuracy of the models using only meteorological variable combinations was higher

than that of the models using only remote sensing-based vegetation-related variables. It

demonstrated the importance of using meteorological variables in machine learning-based ET

prediction (probably especially for models with small time scales such as hourly scale, and daily

scale). For example, in the forest type, the combination of Ta and Rn/Rs is very effective compared

to using only remote sensing-based vegetation index variable combinations. The combination of

Ta and Rn/Rs is also effective in the grassland and cropland types. The combination of Ws and

Rn/Rs played an important role in the grassland type for improving model accuracy. Despite this,

it does not negate the positive role of remote sensing -based vegetation-related variables in ET

prediction. This effectiveness can be dependent on the time scale of the model as well as the PFTs.

In_ models with large time scales (monthly scale, seasonal scale) and PFTs in which ET is sensitive

to vegetation dynamics, remote sensing-based vegetation-related variables may also be of high

importance.

3.3.4 Other model features

We also evaluated the impact of some other features on accuracy. The differences in accuracy of

models with different spatial scales, year spans, number of sites, and volume of data (Fig. 6) appear

to be insignificant. This seems to be related to the fact that in large-scale water flux simulations,

the sites of similar PFTs are selected such as for modeling multiple forest sites across Europe (Van

Wijk and Bouten, 1999) which focus on ‘forest’ and multiple grassland sites across arid northern

China (Xie et al., 2021; Zhang et al., 2021) which focus on ‘grassland’, rather than mixing different

PFT types to train models as the way in machine learning modeling of carbon fluxes (Zeng et al.,

2020). In terms of the time scales of the models, the 4-day, 8-day, and monthly scales appear to

correspond to higher accuracy compared to the half-hourly and daily scales. The higher the ratio

of the volume of data in the training and validation sets, the higher the model accuracy. Compared




to the models using Landsat data, the models using MODIS data showed slightly higher accuracy

probably due to the advantage of MODIS data in capturing the temporal dynamics of biophysical

covariates. There were significant differences in the accuracy of the models using different cross-

validation methods, with the models using random cross-validation showing higher accuracy than

those using temporal cross-validation. This suggests that interannual variability may have a high

impact on the models in water flux simulations. The driving mechanism of ET may vary significantly

across years, and the inclusion of some extreme climatic conditions in the training set may be

important for model accuracy and robustness.

3.3.5 Linear correlation of quantitative features and R-squared

We also analyzed the linear correlation (Fig. 7) between multiple quantitative features and the R-

squared. We found that the magnitude of the linear correlation coefficients between the use of

predictor combinations and the R-squared was higher than other features. The use of the

predictor combination ‘Ta and Rn/Rs’ significantly improved the model accuracy. ‘Temporal scale’,

‘time span’, ‘training/validation ratio’, and ‘number of sites’ showed weak positive correlations with

R-squared (not significant, p-value > 0.1). The positive correlation between ‘temporal scale’ and

R-squared is higher among these features, although not significant. It should also be paid more

attention to in future studies. The feature 'training/validation ratio' and 'time span' are also

positively correlated (although not significantly) with the R-squared, suggesting the importance

of the volume of data in the training set in a data-driven machine learning model. Larger

'training/validation ratio' and 'time span' may correspond to greater proportional coverage of the

scenarios/conditions in the training set over the validation set, and thus correspond to higher

accuracy.
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4 Discussions

With the accumulation of in situ EC observations around the world, the study of ET simulations

based on data-driven approaches has received more attention from researchers in the last decade.

Many studies have combined EC observations, various predictors, and machine learning

algorithms to improve the prediction accuracy of water fluxes. To date, the results of these studies

have not been comprehensively evaluated to provide clear guidance for feature selection in water

flux prediction models. To better understand the approach and guide future research, we

performed a meta-analysis of such studies. Machine learning-based water flux simulations and
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predictions still suffer from high uncertainty. By investigating the expected improvements that can

be achieved by incorporating different features, we can avoid practices that may reduce model

accuracy in future research.

4.1 Opportunities and challenges in the water flux simulation

In the above meta-analysis of the models, we found that water flux simulations based on EC

observations can achieve high accuracy but also have high uncertainty through the modeling

workflow. The R-squared of many water flux simulation models exceeds 0.8, possibly higher than

some remote sensing-based and process-based models, and possibly higher than carbon flux

simulations such as the net ecosystem exchange (NEE) in a similar modeling framework (Shi et al.,

2022). This may be because many data on important variables affecting carbon flux such as soil

and biomass pools, disturbances, ecosystem age, management activities, and land use history are

not yet effectively and continuously measured (Jung et al., 2011) with the global spatially and

temporally explicit information. While ET simulations rely on observations of moisture and energy

conditions and vegetation conditions, much of the current available meteorological and remote

sensing data have been effective to represent and capture the spatial and temporal dynamics of

these predictors well.

4.1.1 Comprehensive insights on model features

Biophysical and meteorological variables are considered both important in ET simulations. This

study found that models using a combination of meteorological variables had higher accuracy

than models using only remotely sensed vegetation dynamic information. However, due to the

high proportion of models with small temporal scales (e.g., half-hourly scale, hourly scale, and

daily scale) in this study, this advantage of the combination of meteorological variables may be

more suitable for small temporal scales. A possible explanation is that vegetation -related variables

such as NDVI and LAl at the daily scale, 8-day scale, and 16-day scale have limited explanatory

ability for hourly or daily-scale variability in ET, especially under cloudy conditions (e.g., tropical

rainforest regions), the temporal continuity of the vegetation index data may be greatly limited

(Zeng et al., 2022). This should be given more attention and some vegetation indices derived from

hourly temporal resolution satellite remote sensing data such as GOES (Zeng et al., 2022) can be




used for ET simulations to investigate the possible adding-values of vegetation indices at smaller

time scales. In contrast, at a small temporal scale, the use of combinations of meteorological

variables can capture moisture and energy conditions that control the rapid fluctuations of ET and

thus has a dominant role in hourly or daily-scale ET prediction. This also corroborates the high

accuracy of some physic-based ET estimation models (Rigden and Salvucci, 2015) that use only

meteorological variables and not vegetation-related variables such NDVI (only an estimate of

vegetation height derived from land cover maps is used to represent vegetation conditions

(Rigden and Salvucci, 2015)).

There are differences in model accuracy among different PFTs. For example, in forest sites,

limitations in data accuracy of factors were possible because some remote sensing-based

predictors such as NDVI, FAPAR, and LAl have limited accuracy when applied to forest types (Liu

et al,, 2018b; Zeng et al., 2022). In addition, factors such as crown density, which may significantly

affect the proportion of soil evaporation, transpiration, and evaporation of canopy interception,

were not considered in these models, which may also lead to low model accuracy. This suggests

that in water flux simulation, the driving mechanisms of water fluxes in different PFTs do affect the

accuracy of machine learning models, and we need to consider more the actual and specific

influencing factors in specific PFTs. More variables that can quantify the ratio of evaporation and

transpiration should be considered for inclusion, which also appears to improve the mechanistic

interpretability of such machine learning models. A previous study (Zhao et al., 2019) combined

the physics-based approach (e.g., Penman-Monteith equation) and machine learning to build

hybrid models to improve interpretability. We should make full use of empirical knowledge and

experiences from process-based models to improve the accuracy and interpretability of the

machine learning approach.
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validation methods, random cross-validation has higher accuracy than spatial cross-validation and

temporal cross-validation. However, spatial cross-validation and temporal cross-validation may

be able to better help us recognize the robustness of the model when extrapolated (i.e., applied

to new stations and new years). The lower accuracy in the temporal cross-validation approach

implies that we need to focus on interannual hydrological and meteorological variability in the

water flux simulations. In cropland sites, we may also need to pay more attention to the effects of

interannual variability in anthropogenic cropping patterns. If some extreme weather years are not




included, the robustness of the model when extrapolated to other years may be challenged,

especially in the context of the various extreme weather events of recent years. This can also inform

the siting of future flux stations. Regions where climate extremes may occur and biogeographic

types not covered by existing flux observation networks should be given more attention to achieve

global-scale, accurate and robust machine learning-based spatio-temporal prediction of water

fluxes. Furthermore, although the R-squared and the training/validation ratio show a positive

correlation (Fig. 7) (i.e., a higher training/validation ratio may correspond to a higher R-squared),

we should still be cautious in reducing this ratio in our modeling. For a really small validation set,

it would be very challenging to determine which model is better given the potential uncertainty

caused by the considerable randomness.

4.1.2 Differences from NEE predictions in the similar model framework

In general, predictors related to meteorological, vegetation, and soil conditions were common to

both ET and NEE simulations in a similar framework (Shi et al., 2022). However, in NEE predictions,

explanatory variables such as soil organic _content, photosynthetic photon flux density, and

growing degree days (Shi et al., 2022) are not necessary for ET predictions. The selection of these

variables requires our prior knowledge of the dominant drivers of ET and NEE anomalies of

particular ecosystems and their differences.

The accuracy of NEE predictions (Shi et al., 2022) can be more limited by global variability across

biomes and locations (Nemani et al.,, 2003) given the lack of locally measured data on soil and

biomass pools, disturbances, ecosystem age, management activities and land use history (Jung et

al., 2011). It can result in a higher heterogeneity of the training data in large-scale modeling with

multiple flux sites (Shi et al., 2022) and the weak ability to capture the NEE anomalies. In contrast,

in ET predictions, meteorological variables and vegetation conditions appear to be already

sufficient to capture a considerably large fraction of the ET variations in most conditions.

In future ET prediction studies, given that few current ET products have time scales smaller than

daily scale (Jung et al., 2019; Pan et al., 2020), improvements in the accuracy of daily and hourly

models may be necessary to fill this gap. Besides, the partitioning of ET components (i.e.,




transpiration, interception evaporation, and soil evaporation) can be more focused to better

decouple the contributions of vegetation and soil to ET with machine learning (Eichelmann et al.,

2022). It can be further matched with the partitioning of NEE (i.e., to GPP and ecosystem respiration)

to increase our knowledge of the global water cycle and ecosystem functioning and obtain further

refined global carbon-water fluxes coupling relations (Eichelmann et al,, 2022). Also, the above

two promising improvements can be beneficial for research on topics related to the global

terrestrial water cycle (Fisher et al., 2017).

4.2 Uncertainties and limitations of this meta-analysis

4.2.1 The limited number of available literature and model records

Despite many articles and model records collected through our efforts to perform this meta-

analysis, there still appears to be a long way to go to finally and completely understand the various

mechanisms involved in water flux simulation with machine learning. Some of the insights provided

by this study can be not robust (due to the limited sample size available when the goal is to assess

the effects of multiple features), but this does not negate the fact that this study does obtain some

meaningful findings. Therefore, researchers should treat the results of this study with caution, as

they were obtained only statistically. Overall, it is still positive to conduct a meta-analysis of such

studies, considering their rapid growth in number and lack of guiding directions.

4.2.2 Publication bias and weighting—
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limited number of articles that earcould be included in the meta-analysis, this study did not focus

much on publication bias. Meta-analyses-eftenanalytic studies in other fields typically measure

the quality of journals and the datapublic availability of research data (Borenstein et al., 2011; Field

and Gillett, 2010) to determine the weighting of the literature in a comprehensive assessment.

However, a-high-prepertiormost of the articles -thisstuehy-did not makepublicly provide, flux
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effeetsexperimental results

(BETH#R: 71 108

assessed rather than used to determine the weights of the articles(Adams et al., 1997: Don et

al., 2011; Liu et al, 2018a). In this study, due to the lack of a convincing manner to determine

weights among articles, we assigned the same weight to the results for all the literature,
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4.2.3 Uncertainties in the information of the extracted features

At the information extraction level, the following issues may also introduce uncertainties:

a)

Uncertainties caused by data quality control (e.g. gap-filling (Hui et al., 2004)) are difficult to

b)

assess effectively. Gap-filling is a commonly used technique to fill in low-quality data in flux

observations. However, the impact of this practice on machine learning-based ET prediction

models is unclear, due to the difficulty of directly assessing how this technique is performed in

various studies by this meta-analysis. Typically, models with small time scales (e.g., hourly scale,

daily scale) can exclude low-quality observations and use only high-quality data. However, for

models with large time scales (e.g., monthly scales), gap-filling (e.q., based on meteorological

data) may be unavoidable. This may lead to a decrease in training data purity and introduce

uncertainty in the subsequent prediction model development.

Systematic uncertainties caused by the energy balance closure (EBC) issue in eddy-covariance

C)

flux measurements are also difficult to assess by this meta-analysis. EBC is a common problem

(Eshonkulov et al., 2019) in eddy-covariance flux observations. For that reason, the latent heat

flux measured potentially underestimates ET. Some prediction models corrected EBC (e.qg., using

Bowen ratio preserving (Mauder et al., 2013, 2018) and energy balance residuals (Charuchittipan

et al., 2014; Mauder et al., 2018)) in the processing of training data, but some did not. How this

will affect the accuracy of the prediction model is not clear due to multiple factors that need to be

evaluated that influence EBC (Foken, 2008), including measurement errors of the energy balance

components, incorrect sensor configurations, influences of heterogeneous canopy height,

unconsidered energy storage terms in the soil-plant-atmosphere system, inadequate time

averaging intervals, and long-wave eddies (Jacobs et al., 2008; Foken, 2008; Eshonkulov et al.,

2019). To reduce this uncertainty, more attention to flux site characteristics (Eshonkulov et al.,

2019) related to PFT, topography, flux footprint area, etc., to select the appropriate correction

method is necessary for future studies.

As most studies used far more water flux observation records than the number of covariates in

d)

their regression models, we did not adjust the R-squared in this study to an adjusted R-squared.

The various specific ways in which the parameters of the model are optimized are not

differentiated. They are broadly categorized into different families or kinds of algorithms, which

may also introduce uncertainty into the assessment.




e) The assessment of some features is not detailed due to the limitations of the available model

records. For example, the classification of PFT could be more detailed. ‘Forest” could be further

classified as broadleaf forest, coniferous forest, etc. while ‘cropland’ could be further classified as

rainfed and irrigated cropland based on differences in their response mechanisms of water fluxes

to environmental factors.

5 Conclusion <«

We performed a meta-analysis of the site—seate-NEE-water flux simulations combining in situ flux
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observations from flux stations/networks, meteorological, biophysical, and ancillary predictors,

and machine learning.
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are as follows:

1—RF-SVM (average R-squared = 0.82) and SV\M-performed-better-than-other-evaluated-algorithms—

outperformed over evaluated algorithms with sufficient sample size, in the-predictors-usedboth

cross-study, and their-impacts-on-model-aceuracy-fordifferept PFTs—intra-study (with the

same training dataset) comparisons.

2. HThe average accuracy of the model applied to arid regions, is Aecessary-to-focus-on-the—

at-continental-and-global-sealeshigher than in other climate types.

3. The average accuracy of the model was slightly lower for forest sites, (average R-squared = 0.374)—
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with-muttiple-PFFs-mere76) than for cropland and grassland, sites;-and-atarge-span-of-years—
correspond-to-lower (average, R-squared than-studiesat-tecal= 0.8 and 0.79), but higher than

for shrub sites, (average R-squared = 0.69)67).
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Among various predictor variables, the use of Rn/Rs, Prec, Ta, and FAPAR improved the model <« FIERE: FIRETE, 4780 1.5 21788, SRS + RA) 1
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effective especially in the forest type, while in the grassland type the combination of Ws and

Rn/Rs is also effective.
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