
Response to Referee #1 

The authors conducted a meta-analysis to evaluate the performance of machine learning 

(ML) algorithms in the estimation of evapotranspiration. I believe this topic is timely and of 

interest to the HESS community. The motivation of the study, method, and results are 

clearly outlined, and they reach clear conclusions. Overall, this manuscript is informative 

and well structured. However, I believe there are several minor aspects which can be 

improved. Therefore, I support its publication in HESS with minor revisions. 

Response: We would like to thank the reviewer for the positive comments and the time 

invested to review our manuscript. The revised manuscript will follow the reviewer’s 

recommendations. 

 

1) L34 “ET is the most important indicator of the water cycle”: ET is not an indicator. It is a 

water balance component. Also, it may be not the most important component. I suggest 

writing “ET is one of the most important components of the water cycle ~” 

Response: Thank you for the insightful comments. It will be revised as ‘ET is one of the 

most important components of the water cycle’. 

Action: revised as ‘Evapotranspiration (ET) is one of the most important components of the 

water cycle in terrestrial ecosystems.’ 

 

2) L51-53: add examples and references to support the argument. 

Response: Two references will be added: ‘For remote sensing-based physical models and 

process-based land surface models, some physical processes have not been well 

characterized due to the lack of understanding of the detailed mechanisms influencing ET 

under different environmental conditions. For example, the inaccurate representation and 

estimation of stomatal conductance (Li et al., 2019) and the linearization (McColl, 2020) of 

the Clausius-Clapeyron relation in the Penman-Monteith equation may introduce both 

empirical and conceptual errors into estimates of ET.’ 

Action: elaborated as ‘For example, the inaccurate representation and estimation of 

stomatal conductance (Li et al., 2019) and the linearization (McColl, 2020) of the Clausius-

Clapeyron relation in the Penman-Monteith equation may introduce both empirical and 

conceptual errors into estimates of ET.’ 

 

3) L82: define NDVI, EVI and LAI. 

Response: It will be defined as Normalized Difference Vegetation Index (NDVI), Enhanced 

Vegetation Index (EVI), and Leaf area index (LAI). 

Action: Defined.  

 

4) L83: define GPP 

Response: It will be defined as ‘Gross Primary Productivity. 

Action: Defined. 

 

5) L153-155: I agree with the authors' point, but RMSE is still an important measure of the 

model performance. I think there is a way to normalize the RMSE when the magnitude or 



standard deviation of water flux are available. If possible, I recommend analyzing RMSE 

as well. 

Response: Thank you for the insightful comments. The RMSE depends on the magnitude 

of the ET value of the training data. For example, due to the difference in the range of ET 

values, models developed from flux stations in dry grasslands will typically have lower 

RMSE than models developed by flux stations based on forests in humid regions. 

Therefore, RMSE may not be a good metric for cross-study comparisons. We will clarify 

this issue in the revised manuscript. Since we do not have the raw data of these studies, it 

is difficult to unify the differences in RMSE across data sets in a normalized way.  

 

Mean Absolute Percentage Error (MAPE) can be useful but not commonly used or reported 

as R-squared in such studies. 

 

Action: clarified as ‘Although RMSE is also often used for model accuracy assessment, its 

dependence on the magnitude of water flux values makes it difficult to use for fair 

comparisons between studies. For example, due to the difference in the range of ET values, 

models developed from flux stations in dry grasslands will typically have lower RMSE than 

models developed by flux stations based on forests in humid regions. Therefore, RMSE 

may not be a good metric for cross-study comparisons.’ 

 

6) L225-229 and Figure 5 and Figure7: I think the authors should discuss variables which 

decrease the performance of the ML models (NDVI etc.). To do this, the authors may need 

to refer to Figure 7. Therefore, I suggest reordering Figures (i.e., 7 ->6 and 6->7). Figure 7 

implies performance decreases due to NDVI (and other variables) may be spurious. In 

order to overcome such limitations, I suggest performing additional analysis by grouping 

ML models which use Rn/Rs and Ta and then generating Figure 5. 

Response: Thank you for the insightful comments. This is a good suggestion. We will 

consider adjusting the order of the figures based on your comments and will perform 

additional analysis by grouping ML models which use Rn/Rs and Ta as you suggested.  

Action: We placed Figure 7 in the supplementary material as Figure S2 and replaced Figure 

5 with an figure of evaluation of the combination of predictor variables. Figure 5 was placed 

in the additional material as Figure S1. In the revised manuscript, we assessed the impact 

of predictor variables on model accuracy at two levels: (1) the correspondence between 

the use or non-use of individual predictor variables and model accuracy, and (2) after 

analyzing the dependence of the use of predictor variables, we analyze the impact of 

combinations of predictor variables (distinguishing mainly between meteorological 

predictor combinations and remote sensing-based vegetation-related predictor 

combinations). 

 

This paragraph was elaborated as:  

‘On one hand, from the perspective of the effect of individual predictors, the use of Rn/Rs, 

Prec, Ta, and FAPAR improved the accuracy of the model (Fig. S1). This pattern partially 

changed in the different PFTs. In the forest sites, the accuracy of the models with Rn/Rs 

and Ta used was higher than that of the models with Rn/Rs and Ta not used. For the 



grassland sites, the use of Ws, FAPAR, Prec, and Rn/Rs improved the model accuracy. 

For the cropland sites, Ta and FAPAR were more important for improving the model 

accuracy.  

 

On the other hand, the evaluation of the effect of individual predictors on model accuracy 

is not necessarily reliable because some predictor variables are used together (e.g., the 

high model accuracy corresponding to a particular variable may be due to the fact that it is 

often used together with another variable that really plays the dominant role in improving 

accuracy). Therefore, we tested for independence between the use of variables and 

assessed the effect of the combination of variables on model accuracy. We calculated the 

correlation matrix (Fig. S2) between the use of various predictors (not used is set as 0 and 

used is set as 1). We found there was dependence between the use of some predictors, 

the use of NDVI/EVI, LAI, and SM was significantly negatively correlated with the use of 

Rn/Rs and Ta (Fig. S2). It indicated that many of the models that used Rn/Rs and Ta did 

not use NDVI/EVI, LAI, and SM, and the models that used NDVI/EVI, LAI, and SM also 

happened to not use Rn/Rs and Ta. Given this dependence between the use of predictors, 

we evaluated the effect of the combination of variables on the model accuracy (Fig. 5). In 

Fig. 5, the three variable combinations on the left side are mainly meteorological variables 

while the three variable combinations on the right side are mainly vegetation-related 

variables based on remote sensing (e.g., NDVI, EVI, LAI, LSWI). We found that, overall, 

the accuracy of the models using only meteorological variable combinations was higher 

than that of the models using only remote sensing-based vegetation-related variables. It 

demonstrated the importance of using meteorological variables in machine learning-based 

ET prediction (probably especially for models with small time scales such as hourly scale, 

daily scale). For example, in the forest type, the combination of Ta and Rn/Rs is very 

effective compared to using only remote sensing-based vegetation index variable 

combinations. The combination of Ta and Rn/Rs is also effective in the grassland and 

cropland types. The combination of Ws and Rn/Rs played an important role in the 

grassland type for improving model accuracy. Despite this, it does not negate the positive 

role of remote sensing-based vegetation-related variables in ET prediction. This 

effectiveness can be dependent on the time scale of the model as well as the PFTs. In 

models with large time scales (monthly scale, seasonal scale) and PFTs in which ET is 

sensitive to vegetation dynamics, remote sensing-based vegetation-related variables may 

also be of high importance.’ 

 

 



 

Figure 5. Effects of combinations of predictor variables on model accuracy in various PFTs (all data, 

forest, grassland, and cropland). Dark blue boxes indicate that the predictors were together used 

in the model (e.g., for ‘Ta & Rn/Rs’, the dark blue box represents Ta and Rn/Rs were together used 

in the model), while dark red boxes indicate the other conditions (i.e., the combination was not 

used). Predictors: precipitation (Prec), soil moisture/remote sensing-based land surface water 

index (SM), net radiation/solar radiation (Rn/Rs), enhanced vegetation index (EVI), air temperature 

(Ta), leaf area index (LAI), Normalized Difference Vegetation Index/Enhanced Vegetation Index 

(NDVI/EVI). 

 

We also added a paragraph in the discussion section on the use of predictor combinations: 

‘Biophysical and meteorological variables are considered both important in ET simulations. This 

study found that models using a combination of meteorological variables had higher accuracy 

than models using only remotely sensed vegetation dynamic information. However, due to the 

high proportion of models with small temporal scales (e.g., half-hourly scale, hourly scale, and 

daily scale) in this study, this advantage of the combination of meteorological variables may be 

more suitable to small temporal scales. A possible explanation is that vegetation-related variables 

such as NDVI and LAI at the daily scale, 8-day scale, and 16-day scale have limited explanatory 

ability for hourly or daily-scale variability in ET. At small temporal scales, the use of combinations 

of meteorological variables can capture moisture and energy conditions that control the rapid 

fluctuations of ET and thus has a dominant role in hourly or daily-scale ET prediction. This also 

corroborates with the high accuracy of some physic-based ET estimation models (Rigden and 



Salvucci, 2015) that use only meteorological variables and not vagetation-related variables such 

NDVI (only an estimate of vegetation height derived from land cover maps is used to represent 

vegetation conditions (Rigden and Salvucci, 2015)).’ 

 

 

7) Figure5: difficult to compare variables. I think visualization can be improved by grouping 

variables which improve performance or not. 

Response: We will consider adjusting the order of the figures based on your comments, 

and will perform additional analysis by grouping variables as you suggested (also based 

on findings in Fig. 7). 

Action: In the revised manuscript, we evaluated the effect of the combination of predictor 

variables (please refer to the above response/action in the last comment).  

 

8) L261-263: I cannot agree. Data-driven approach and process-based approach are 

complementary. This should be revised. 

Response: We will modify the description here. Indeed data-driven and process-based 

approaches are complementary and both are rapidly developing and therefore of equal 

importance in the future direction of ET estimation.  

Action: revised as ‘With the accumulation of in situ EC observations around the world, the 

study of ET simulations based on data-driven approaches has received more attention 

from researchers in the last decade. Many studies have combined EC observations, 

various predictors, and machine learning algorithms to improve the prediction accuracy of 

site-scale water fluxes.’ 

 

9) L336-338: As the authors briefly mentioned here, eddy covariance observations are 

subject to random, gap-filling, and systematic (energy balance closure) uncertainty. There 

are several ways to address this uncertainty. For example, some studies may use a gap-

filled dataset but some studies may choose observation only. Also, the energy balance 

closure problem can be addressed differently (uncorrected, Bowen-ratio corrected, and 

use of energy balance residual). Depending on this choice, the performance of ML 

algorithms may vary significantly (particularly energy closure problem is important). 

Although the authors mentioned observational uncertainty as a limitation of this research 

in L336-338, I believe this brief mention is not enough. If you can extract this information 

from the literature, I suggest performing an additional analysis (e.g., performance 

comparison for energy balance corrected vs uncorrected). If it is indeed difficult to extract 

the information from the literature, this topic should be discussed more thoroughly at least. 

Response: We will elaborate on the discussion section on this issue. Indeed uncertainties 

in the observations (including those in Gap-filling) may affect model accuracy. The energy 

closure problem does also confuse researchers in this field which may lead to the 

underestimation of ET values, although some datasets (e.g., FLUXNET) have provided 

observations of latent heat after bias correction in energy closure.  

 

When the problem of energy closure is not negligible, the use of energy balance 

uncorrected data may affect the model accuracy. We will discuss this issue further based 



on previous studies (combined with the potential severity of the bias in ET observations 

caused by the energy closure problem in various environmental conditions).  

 

Action: the discussion section 4.2.3 was elaborated: 

(a) Uncertainties caused by data quality control (e.g. gap-filling (Hui et al., 2004)) are 

difficult to assess effectively. Gap-filling is a commonly used technique to fill in 

low-quality data in flux observations (Chen et al., 2012; Hui et al., 2004). 

However, the impact of this practice on machine learning-based ET prediction 

models is unclear, due to the difficulty of directly assessing how this technique is 

performed in various studies by this meta-analysis. Typically, models with small 

temporal scales (e.g., hourly scale, daily scale) can exclude low-quality 

observations and use only high-quality data. However, for models with large time 

scales (e.g., monthly scales), gap-filling (e.g., based on meteorological data) may 

be unavoidable. This may lead to decrease in training data purity and introduce 

uncertainty in the subsequent prediction model development. 

 

(b) Systematic uncertainties caused by the energy balance closure (EBC) issue in 

eddy-covariance flux measurements are also difficult to assess by this meta-

analysis. EBC is a common problem (Eshonkulov et al., 2019) in eddy-covariance 

flux observations. For that reason, the latent heat flux measured potentially 

underestimates ET. Some prediction models corrected EBC (e.g., using Bowen 

ratio preserving (Mauder et al., 2013, 2018) and energy balance residuals 

(Charuchittipan et al., 2014; Mauder et al., 2018)) in the processing of training 

data, but some did not. How this will affect the accuracy of the prediction model is 

not clear due to multiple factors that need to be evaluated that influence EBC 

(Foken, 2008), including measurement errors of the energy balance components, 

incorrect sensor configurations, influences of heterogeneous canopy height, 

unconsidered energy storage terms in the soil-plant-atmosphere system, 

inadequate time averaging intervals, and long-wave eddies (Jacobs et al., 2008; 

Foken, 2008). To reduce this uncertainty, more attention to flux site 

characteristics (Eshonkulov et al., 2019) related to PFT, topography, flux footprint 

area, etc., to select the appropriate correction method is necessary for future 

studies. 

 

  



Response to Referee #2 

In this study, Shi et al., presented a meta-analysis of the performance of machine learning 

(ML) algorithms in the estimation of evapotranspiration. While this manuscript is interesting 

and within the scope of HESS, I have a few major concerns. 

Response: We would like to thank the reviewer for the positive comments and the time 

invested to review our manuscript. The revised manuscript will follow the reviewer’s 

recommendations. 

 

Most importantly, while this is a meta-analysis, the authors were comparing results from 

different publications, in which different data sets and sites may have been used. That 

being said, some of the results are not directly comparable. For example, Zeng et al. 2020, 

may have selected a few sites that are much more difficult to predict; and can not be 

compared with the results presented in another publication. Also, some sites may use in-

situ estimates of LAI and VIs, while others use LANDSAT or even MODIS LAI and VIs. In 

order to make their results publishable, they need to find a way to harmonize the data sets 

used in all studies. Or, they need to justify that they have an inclusion criteria when 

selecting all publications (instead of just stating we searched on Scopus). In addition, I am 

not sure whether the number of models they chose can well support their comparison of 

so many features. 

Response: Thank you for the insightful comments. Some studies have indeed used sites 

that are difficult to predict. Usually, with meta-analysis, we only get comprehensive findings, 

and it is difficult to improve the understanding of extreme and exceptional cases (because 

the mean or median of statistical results is what we used in the formal assessment). The 

inclusion of extreme cases (such as the very unpredictable sites you mentioned) may 

negatively affect the evaluation results, but this negative effect may be limited if they only 

share a low proportion of the samples.  

 

In addition, there are comparisons of studies using the same data (but different algorithms) 

(Fig. 3b) in this study. The difference in the data between studies is constrained (keeping 

other features the same but only the algorithms different): Fig 3a included various 

conditions across studies, i.e., what the reviewers raised; Fig 3b is the result of a 

comparison of model cases based on the same data and different machine learning 

algorithms, and is a correction and a more objective characterization of the issue with Fig 

3a. 

 

Few studies have used in-situ measured LAIs and VIs for modeling, as this is not helpful 

for the large-scale, long-time series predictions compared to remote sensing-based LAIs 

and VIs. Regarding these worries, we will clarify the details of these inclusion criteria which 

were used for the screening of the article in the revised manuscript.  

 

Although multiple features were evaluated in this study, there are only a few features that 

predominantly affect the accuracy of the model. Some features may be insignificant (only 

weakly influencing) and we will consider deleting these features to highlight the analysis of 



the major influencing features. In addition, we have included as large a sample as possible 

to support our findings, and our findings for the meta-analysis of ET predictions are likely 

to be more robust as further such studies are added in the future. 

 

Actions:  

 

Action 1:  

Further response:  

The purpose of meta-analysis is to combine the heterogeneity of studies to obtain 

comprehensive findings. If we filter all articles to use the criteria ‘using the same data and 

sites’, then few articles can be included in the meta-analysis and this analysis will be 

difficult to implement.  

 

The paper by Zeng et al. uses global-scale data from FLUXNET (which simulates carbon 

fluxes rather than water flux) with high variations in site conditions, some sites of which 

may indeed be much more difficult to predict. Such a global scale using FLUXNET data is 

the largest in such studies and belongs to the outlier/extreme cases. This meta-analysis 

gave a general/average reference for such studies, and for very large scale, or otherwise 

specific studies, researchers should still focus on the specificity of their models.  

 

On the feasibility of the methodology to assess the impacts of various model features on 

model accuracy by meta-analysis, there are several published articles (listed below) using 

a similar methodology in the cross-study comparisons (comparison of models developed 

in various studies despite the different data and features used).  

 

⚫ Khatami, R., Mountrakis, G., and Stehman, S. V.: A meta-analysis of remote sensing research on 

supervised pixel-based land-cover image classification processes: General guidelines for 

practitioners and future research, Remote Sensing of Environment, 177, 89–100, 

https://doi.org/10.1016/j.rse.2016.02.028, 2016. 

⚫ Zolkos, S. G., Goetz, S. J., and Dubayah, R.: A meta-analysis of terrestrial aboveground biomass 

estimation using lidar remote sensing, Remote Sensing of Environment, 128, 289–298, 

https://doi.org/10.1016/j.rse.2012.10.017, 2013. 

 

Therefore, if the objective is to obtain a comprehensive understanding and general 

guidelines, we think the meta-analysis methodology of this study can be feasible (although 

some special cases should also be attended to).  

 

We hope you can agree on the value of this meta-analysis, although some of such studies 

can vary widely and thus were not very comparable.  

 

Action 2:  

We clarified the detailed inclusion criteria when selecting all publications and the way to 

harmonize the data sets used in all studies: 

 



Revised as:  

‘We applied a general query (on December 1st, 2021) on title, abstract, and keywords to 

include articles with the “OR” operator applied among expressions (Table 1) in the Scopus 

database. Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) 

(Moher et al., 2009) are followed when filtering the papers. We first excluded articles that 

obviously did not fit the topic of this study based on the abstract, and then performed the 

article screening with the full-text reading. 

 

The inclusion of articles follows the following criteria: 

a) Articles were filtered for those with water fluxes (or latent heat) simulated. 

b) The water flux or latent heat observations used in the prediction models should be 

from the eddy-covariance flux measurements. 

c) Articles focusing only on gap-filling techniques (i.e., the objective was not simulation 

and extrapolation of water fluxes using machine learning) were excluded. 

d) Only articles that used multivariate regression (with the number of covariates greater 

than or equal to 3) were included. 

e) The determination coefficient (R-squared) of the validation step should be reported 

as the metric of model performance (Shi et al., 2021; Tramontana et al., 2016; Zeng 

et al., 2020) in the articles. 

f) The articles should be published in English-language journals.' 

 

Besides, a column 'Harmonization' is added to Table 2 to describe how to harmonize the 

features used in all studies into specific categories. 

Table 2. Description of information extracted from the included papers. 

Field Definition & Categories adopted Harmonization 

Climate Climate zones of the study location 

derived from the Köppen climate 

classification (Peel et al., 2007) 

 

Plant functional 

type (PFT) 

PFT of the flux sites: 1-forest, 2-

grassland, 3-cropland, 4-wetland, 5-

shrubland, 6-savannah, and multi-PFTs 

The categorization is based on the 

descriptions in the article. For 

example, cropland for various crops 

is classified as ‘cropland’, and both 

woody savannah and savannah are 

classified as ‘savannah’. 

Location More precise location (with the latitude 

and longitude of the center of the studied 

sites): latitude, longitude 

 

Algorithms Random Forests (RF), Multiple Linear 

Regressions (MLR), Artificial Neural 

Networks (ANN), Support Vector 

Machines 

Various model algorithms with 

parameter optimization or other 

improvements are categorized as 

their algorithm family. For 



(SVM), Cubist, model tree ensembles 

(MTE), K-nearest neighbors (KNN), 

long 

short-term memory (LSTM), gradient 

boosting regression tree (GBRT), extra 

tree 

regressor (ETR), Gaussian process 

regression (GPR), Bayesian model 

averaging (BMA), extreme learning 

machine (ELM), and deep belief 

network (DBN) 

example, various improved models 

of RF algorithms are classified as 

RF, rather than as another algorithm 

family. 

Sites number  Number of the flux sites used  

Spatial scale Area representatively covered by the 

flux sites: local (less than 100 x 100 km), 

regional, global (continent-scale and 

global scale) 

The spatial scale is roughly 

categorized based on the area 

covered by the site. The model is 

classified as ‘global’ only when the 

spatial extent reaches the 

continental scale. 

Temporal scale  The temporal scale of the model: half-

hourly, hourly, daily, 4-daily, 8-daily, 

monthly, seasonally (i.e., 0.02, 0.04, 1, 

4, 8, 30, 90 days) 

Models with a temporal scale 

greater than one month and less 

than one year are classified as 

seasonal scale models. 

Year span The span of years of the flux data used Year span is calculated as the span 

from the earliest to the latest year of 

available flux data.  

Site year Describe the volume of total flux data 

with the number of sites and years 

aggregated. 

 

Cross-validation Describe the chosen method of cross-

validation: Spatial (e.g., ‘leave one site 

out’), temporal (e.g., ‘leave one year 

out’), random (e.g., ‘k-fold’) 

 

Training/validation Describe the ratio of the data volume in 

the training and validation sets.  

In spatial validation, this ratio is 

represented by the ratio of the 

number of sites used for training to 

the number of sites used for 

validation. In temporal validation, 

this is represented by the ratio of the 

span of time periods used for 

training to the span of time periods 

used for validation. 

Satellite images Describe the source of satellite images 

used to derive NDVI, EVI, LAI, LST, 

etc: Landsat, MODIS, AVHRR 

 



Biophysical 

predictors  

LAI, NDVI/EVI, the fraction of 

absorbed photosynthetically active 

radiation/photosynthetically active 

radiation (FAPAR/PAR), leaf area index 

(LAI), Carbon fluxes (CF) including 

NEE/GPP, etc.  

The predictor variables of different 

measurement methods are 

categorized according to their 

definitions. For example, both 

using the NDVI calculated based on 

satellite remote sensing bands and 

in situ measurements were 

classified as the use of ‘NDVI’.  

Meteorological 

variables 

precipitation (Prec), net radiation/solar 

radiation (Rn/Rs), air temperature (Ta), 

vapour-pressure deficit (VPD), relative 

humidity (RH) , etc.  

The way meteorological data are 

measured is not differentiated. For 

example, both using Ta from 

reanalysis data and Ta measured at 

flux sites were classified as the use 

of Ta. 

Ancillary data Describe the ancillary variables used: 

soil texture, terrain (DEM), soil 

moisture/land surface water index 

(SM/LSWI), etc.  

Both the use of in situ measured soil 

moisture and the use of remote 

sensing-based LSWI was classified 

as using surface moisture-related 

indicators SM/LSWI. 

Accuracy measure Accuracy measure used to assess the 

model performance: R-squared (in the 

validation phase) 

 

 

 

Action 3:  

For the question of whether the sample size of the model supports our findings (evaluation 

of multiple features), a further analysis was performed: the linear correlations of the model 

features and their significance were calculated for the R-squared and quantitative. In the 

context of a limited sample size, tests of statistical significance may provide the readers 

with some information about the reliability and significance of our findings. The results 

showed that some features showed positive but not significant correlation with the R-

squared. At the same time, some characteristics have a significant positive correlation with 

the R-squared (e.g., the use of variable combinations). We analyzed these issues 

specifically in Section 3.3.5. 

 

It is elaborated as: 

 

3.3.5 Linear correlation of quantitative features and R-squared 

We also analyzed the linear correlation (Fig. 7) between multiple quantitative features and 

the R-squared. We found that the magnitude of the linear correlation coefficients between the 

use of predictor combinations and the R-squared was higher than other features. The use of the 

predictor combination ‘Ta and Rn/Rs’ significantly improved the model accuracy. ‘Temporal scale’, 

‘time span’, ‘training/validation ratio’, and ‘number of sites’ showed weak positive correlations with 

R-squared (not significant, p-value > 0.1). The positive correlation between ‘temporal scale’ and 



R-squared is higher among these features, although not significant. It should also be paid more 

attention to in future studies. The feature 'training/validation ratio' and 'time span' are also 

positively correlated (although not significantly) with the R-squared, suggesting the importance 

of the volume of data in the training set in a data-driven machine learning model. Larger 

'training/validation ratio' and 'time span' may correspond to greater proportional coverage of the 

scenarios/conditions in the training set over the validation set, and thus correspond to higher 

accuracy.  

 

 

Figure 7. Evaluation of linear correlations between multiple features and the R-squared records 

with the statistical significance test. For the feature ‘spatial scale’, the ‘local’ scale was set to 1, the 

‘regional’ scale was set to 2, and the ‘global’ scale was set to 3 in the analysis of linear correlation. 

For the use of various predictor combinations with ‘&’, the value for ‘together used’ is set as 1 and 

other conditions are set as 0 (e.g., for the feature ‘Ta & Rn/Rs & Ws & Prec’, if Ta, Rn/Rs, Ws, and 

Prec were used together in the model, the value is set as 1). Significance: the p-value < 0.01 (***), 

0.05 (**), and 0.1 (*). 

 

Also, the authors have another paper looking at similar topics (even with some similar 



pictures and texts) in discussion on Biogeoscience. As an example, in this paper: 

Line 114-117: And in machine learning, in general, modeling with unbalanced data (with 

significant differences in the distribution between the training validation sets) may result in 

lower model accuracy. 

And in the BG paper: 

Line 91-94: Modeling with unbalanced data (where the difference between the distribution 

of the training and validation sets is significant even if selected at random) may result in 

lower model accuracy. 

The only differences between the two papers is that the BG paper focused on NEE, while 

this paper looked into ET. I am not sure whether it is acceptable to publish two somewhat 

similar papers in two different EGU journals. 

Response: Thank you for the insightful comments. Although the framework/methods of 

these two manuscripts are similar, the topics are different. One is NEE (which is a carbon 

cycle-related topic) and the other is ET (which is a water cycle-related topic). NEE and ET 

are not directly correlated and therefore need to be studied separately. The NEE and ET 

prediction use different explanatory variables and analysis/discussions of their 

mechanisms are also different. The potential readers of these two manuscripts are also 

different. We will carefully check for possible duplicate text.  

 

Action: We have checked for possible duplicate text in these two manuscripts. 

 

At the same time, overall, the writing of the manuscript is good. But I do find it difficult to 

follow from time to time. For example, the authors used many abbreviations without 

defining them (EVI, GPP and NDVI), and some of them may not be very familiar with all 

the readers. 

Response: Abbreviations will be defined such as Normalized Difference Vegetation Index 

(NDVI), Enhanced Vegetation Index (EVI), and Leaf area index (LAI). 

Action: These abbreviations were defined. 

 

Minor comments: 

 

Line 34: I suggest that the authors refrain from statements like this, precipitation and runoff 

are at least equally important; 

Response: Thank you for the insightful comments. It will be corrected as ‘ET is one of the 

most important components of the water cycle in terrestrial ecosystems.’ 

Action: Corrected as ‘Evapotranspiration (ET) is one of the most important components of 

the water cycle in terrestrial ecosystems.’ 

 

Line 52: detailed? 

Response: Two references will be added (for the detailed limitations in physics-based 

methods): ‘For remote sensing-based physical models and process-based land surface 

models, some physical processes have not been well characterized due to the lack of 

understanding of the detailed mechanisms influencing ET under different environmental 

conditions. For example, the inaccurate representation and estimation of stomatal 



conductance (Li et al., 2019) and the linearization (McColl, 2020) of the Clausius-

Clapeyron relation in the Penman-Monteith equation may introduce both empirical and 

conceptual errors into estimates of ET.’ 

 

Action: elaborated as ‘For example, the inaccurate representation and estimation of 

stomatal conductance (Li et al., 2019) and the linearization (McColl, 2020) of the Clausius-

Clapeyron relation in the Penman-Monteith equation may introduce both empirical and 

conceptual errors into estimates of ET.’ 

 

Line 155: I still do not understand why RMSEs are not used. 

Response: The RMSE depends on the magnitude of the ET value of the training data. For 

example, due to the difference in the range of ET values, models developed from flux 

stations in dry grasslands will typically have lower RMSE than models developed by flux 

stations based on forests in wet areas. Therefore, RMSE may not be a good metric for 

cross-study comparisons. We will clarify this issue in the revised manuscript. 

Action: clarified as ‘Although RMSE is also often used for model accuracy assessment, its 

dependence on the magnitude of water flux values makes it difficult to use for fair 

comparisons between studies. For example, due to the difference in the range of ET values, 

models developed from flux stations in dry grasslands will typically have lower RMSE than 

models developed by flux stations based on forests in humid regions. Therefore, RMSE 

may not be a good metric for cross-study comparisons.’ 

 

L186: outperformed whom? I believe that similar issues can be found in other places of the 

manuscript. 

Response: The 'outperform' here refers to the higher accuracy of SVM and RF compared 

to other algorithms in Fig. 3a. We will further check other such descriptions in this 

manuscript. 

Action: revised as ‘SVM and RF outperformed (Fig. 3a) across studies (better than other 

algorithms with sufficient sample size in Fig. 3a such as ANN).’  

 

'With sufficient sample size' were also added to other such descriptions.   
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