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Abstract. Hydrological forecasts are important for operational water management and near future planning, even more so in

light of increased occurrences of extreme events such as floods and droughts. Having a flexible forecasting framework that

can deliver this information in fast and computational efficient manner is critical. In this study, the suitability of a hybrid

forecasting framework, combining data-driven approaches and seasonal (re)forecasting information to predict hydrological

variables was explored. Target variables include discharge and surface water levels for various stations at national scale with the5

Netherlands as focus. Five different ML models, ranging from simple to more complex and trained on historical observations of

discharge, precipitation, evaporation and sea water levels, were run with seasonal (re)forecast data (EFAS and SEAS5) of these

driver variables in a hindcast setting. The results were evaluated using the evaluation metrics Anomaly Correlation Coefficient

(ACC), Continuous Ranked Probability (Skill) Score (CRPS and CRPSS), and Brier Skill Score (BSS) in comparison to a

climatological reference hindcast. Aggregating results of all stations and ML models revealed that the hindcasting framework10

outperformed the climatological reference forecasts by roughly 60% for discharge predictions (80% for surface water level

predictions). Skilful prediction for the first lead month, independently of initialization month, can be made for discharge.

The skill extends up to 2-3 months for spring months due to snow melt dynamics captured in the training phase of the model.

Surface water levels hindcasts showed similar skill and skilful lead times. While the different ML models showed differences in

performance during a testing and training phase using historical observations, running the ML framework in a hindcast setting15

showed only minor differences between the models, which is attributed to the uncertainty in seasonal forecasts. However,

despite being trained on historical observations, the hybrid framework used in this study shows similar skilful predictions as

previous large scale forecasting systems. With our study we show that a hybrid framework is able to bring location specific

skilful seasonal forecast information with global seasonal forecast inputs. At the same time our hybrid approach is flexible and

fast, and as such a hybrid framework could be adapted to make it even more interesting to water managers and their needs, for20

instance a part of a fast model-predictive control framework.

1 Introduction

Forecasting in combination with local system knowledge plays an important role in increasing the readiness for imminent

extreme events such as floods and droughts. Especially over the last few years, where the effects and impacts of climate change
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have become more and more distinct with an increasing recurrence of extreme events require adaptive planning based on skilful25

forecasts. For instance, knowledge of upcoming water surplus or shortage is important to limit damages to infrastructure and

impacts on society during floods as well as to increase and sustain the water availability prior but also during droughts.

Over the past years, platforms of open source forecasting services and data sets that deliver meteorological and hydrological

predictions have increased. These data sets can differ in leadtime (e.g. short- to medium range, sub-seasonal, and seasonal time

scales) and include uncertainty by consisting of various numbers of ensemble members. Examples of open source seasonal30

forecasting system are the operational European Flood Awareness System (EFAS, Thielen et al. (2009); Arnal et al. (2018))

and the Global Flood Awareness System (GloFAS, Alfieri et al. (2013)), as well as ECMWF latest seasonal forecasting system

SEAS5 Johnson et al. (2019). Forecasting systems like these are run by large scale, physically based models (e.g. Lisflood

Van Der Knijff et al. (2010); De Roo et al. (2000) in case of EFAS), which require a lot of information regarding parametriza-

tion, can be slow and computational intensive as well as require large data storage facilities. Another example of forecasting35

systems facing similar challenges are multimodel ensemble systems, which combine several general circulation models and

hydrological models (Wanders et al., 2019; Samaniego et al., 2019). One of the earliest approaches for streamflow forecasting

includes ensemble streamflow prediction (ESP, originally named extended streamflow prediction Day (1985)), where a physi-

cally based model is run with observed historical meteorological time series from multiple years but initialized with the current

hydrological conditions.40

Even though continuously improved in terms of ease of use and interoperability, the main challenges of handling such large,

computational and data intensive systems remain. Furthermore, Samaniego et al. (2019) highlighted that in case forecasting

systems are used for decision making, prediction horizons, spatial scales, model choices, storage and computational require-

ments and reported variables can limit the applicability of forecasting systems to local water management. We hypothesize that

incorporating data-driven approaches to support seasonal forecasting systems can be beneficial not only in terms of reducing45

computational requirements but also their flexibility and data use. Especially, if the forecasting system can be kept simple,

for example regarding input variables or algorithms incorporated, the threshold of applying it on various spatial and temporal

scales would be even further lowered and more readily applicable. In this study we explore these opportunities by incorporating

data driven approaches in a seasonal forecasting framework, combining both local and global information.

Data driven approaches, including machine learning (ML) models, have been explored and tested out increasingly in hydro-50

logical assessments over the last few years (Shen, 2018; Shen et al., 2021), either as standalone models or also in hybrid-settings

(coupled with physically based models) (Kratzert et al., 2018; Koch et al., 2019). ML can be used for any spatial and temporal

scale study, as long as there is sufficient data available for training and validation. Besides using local observations and remote

sensing information an upcoming trend is also to incorporate knowledge based learning (Koch et al., 2021), where ML models

are also trained with information provided by physically based model or in hybrid model setups. ML has shown to be promis-55

ing in simulating hydrological variables such as discharge and groundwater levels but also in contributing to operational water

management.

However, most of the previous research focused on successfully simulating past observations or current hydrological states

but incorporating ML in a seasonal forecasting framework has only scarcely been explored in the hydrological field. Work by
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Hunt et al. (2022) being one of the most recent examples, where LSTMs were explored in a hybrid forecasting setup to predict60

discharge for short term scale. A substantial issue as to using ML for seasonal forecasting is often the limited amount of samples

for training. This is often resolved by including long climate model simulations for training as an example, however depending

on the scale and resolution these might not always be ideal for more local studies. Nevertheless, if sufficient local data are

available, it is worthwhile investigating how one can exploit the assets of ML for seasonal forecasting (limited complexity of

forecasting setup, computational demand and handling of large data amounts) in order to create efficient and flexible operational65

settings and increase the support for water management. This can be especially useful for floods but also drought occurrences,

where local information has to be available and updated within a short time frame (floods) and changes in water management

planning have to be reassessed both ahead and in time of an event to optimise water availability (droughts).

To be able to have such a data-driven forecasting system that can support water managers as an example, a first step is to build

a framework that can be explored in a so called hindcasting experiment, where the forecasting framework is tested based on70

historical observations. Once this is successful, the forecasting framework could be switched to seasonal forecasting. The aim

of this study is to explore the first step: test the suitability of a data-driven forecasting framework in a hindcast experiment. The

framework will build on an existing ML model framework based on a previous study by Hauswirth et al. (2021) in combination

with (re)forecast information as input variables. Hauswirth et al. (2021) tested out different ML algorithms, ranging from simple

to more complex methods, for simulating hydrological variables at national scale based on a simple input dataset including75

water management aspects. In this study we want to test the suitability of these models based on their previous performance

regarding discharge and surface water levels.

The ML models (trained on historical observations), will be run with seasonal (re)forecasting data replacing the previous

input dataset consisting of discharge, precipitation, evaporation and sea water level observations. Running the models with

seasonal (re)forecasting information creates an ensemble of the target variables for each station of interest. These ensembles80

will be analysed and compared with historical observations to assess the skill of the ML framework for seasonal forecasting

for general hydrological predictions but also extreme events such as droughts by computing different skill scores common

to evaluate seasonal forecasting frameworks. Furthermore, the benefits but also challenges of such a simple setup will be

explored and listed to assess whether the framework is suitable for current practices and whether it opens up possibilities for

future assessments.85

In the following sections the study’s approach will be laid out, followed by an evaluation of the performance of the hindcast

experiment by assessing skill scores both for general and droughts. Thereafter, the findings will be summarized, discussed and

put into a bigger context of the field, followed by the main conclusions.

2 Material and Methods

This section is divided into subsections covering the general concept of the hindcast framework used in this study, the seasonal90

(re)forecast data and its preparation as well as the skill scores used to assess the forecasting skills of the data-driven framework.
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Figure 1. Schematization of hindcast framework highlighted in red frame, grey box indicating model framework previously developed by

Hauswirth et al. (2021) and used as base for the model block.

2.1 Hindcast framework

The hindcasting framework used in this study can be described as a simple three block system including: pre-processing of the

input data, a main model block including a selection of ML models, as well as post-processing of the target variable and skill

score calculation (Fig. 1). The main model block, which is based on the ML model study of Hauswirth et al. (2021), was run on95

seasonal (re)forecasting information, which has first undergone the pre-processing block. The hindcast results were evaluated

based on different skill scores included in the post-processing block to assess how skilful the data-driven framework is in

hindcasting historical observations. The spatial and temporal setting of the hindcast experiment is focusing on the Netherlands

and the time period 1993-2018. Target variables include discharge and surface water level of selected stations throughout the

observation network of the National Water Authority.100

2.2 Data and pre-processing

The input dataset based on seasonal (re)forcasting information covers the period 1993 - 2018, including a lead time of 7 months

(215 days) and consisting of 25 ensemble members (50 from 2017 on). The input dataset replaces the previously used historic

data of the ML framework, which consists of a simple set of variables including discharge, precipitation, evaporation, and

sea level observations at specific locations of the case study area. The seasonal (re)forecasting data was obtained from the105

open source platform Copernicus Climate Data Store. Meteorological information was taken from the SEAS5 and includes

precipitation, u and v wind components, temperature, surface net solar radiation, and mean sea level pressure (Johnson et al.,

2019). The latter three variables were used to calculate the Makkink reference potential evaporation (de Bruin and Lablans,

1998). Seasonal reforecasting information on discharge was obtained from the European Flood Awareness System (EFAS)
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(Thielen et al., 2009; Wanders et al., 2014; Arnal et al., 2018). For the sea level data, the water level for the historic period was110

simulated by using the pytide python module. The difference between the observed and pytide predicted sea level fluctuations

(including only tidal components) was computed to get the anomalies. A simple multi-linear regression model was then used

to compute the final sea level ensemble set based on the u and v wind speed and the previously computed sea level anomalies.

The input dataset was processed in a similar manner as done by Hauswirth et al. (2021), for example by including the

lagged time series of every input variable. In this case the seasonal (re)forecasting data in a first step was bias corrected using115

cumulative density function (CDF) matching approach before extending the input variable by incorporating the lagged times

series approach (Wanders et al., 2014).

For every ML model (representing a station of interest) the input data set after data pre-processing finally consists of a set

of ensembles, including ensemble members of all input variables. The models were run with every set of ensemble members

(e.g. input dataset based on first ensemble members of discharge, precipitation, evaporation and sea level information).120

2.2.1 Data-driven model setup

We applied here a recently developed ML model framework by Hauswirth et al. (2021). This framework has a focus on a simple

setup using only readily available input data to simulate target variables such as discharge, surface water level, surface water

temperature, and groundwater levels for several stations at a national scale in the Netherlands. Furthermore, the framework

is able to incorporate the influence of water management aspects. For every station of interest a ML model was trained on125

historic observations of the target variable and the input dataset, consisting of the five variables: precipitation, evaporation,

Rhine discharge, Meuse discharge, sea-level observations. Different ML methods were tested, ranging from simple to more

complex methods including: Multi-linear Regression (MReg), Lasso Regression (Lasso), Decision Tree (DT) and Random

Forest (RF), as well as LSTM. For more information we refer to Hauswirth et al. (2021).

For this study the pretrained models were rerun based on a prepared seasonal (re)forecast input dataset. The input dataset130

is made up of the same variables as in the previous study but taken from seasonal (re)forcasting datasets such as EFAS and

SEAS5. The models were not retrained, so the input data was used for an extensive validation of the simulation of seasonal

forecasting skill. Using the pretrained models has the benefit of saving computational time, which would have otherwise been

needed for testing and training the models. Secondly, this study aims to test the suitability of this ML framework for seasonal

forecasting in an operational setting. In such an operational setting one would like to keep a consistent modelling framework135

that has been validated on an extensive hindcast archive. On the other hand, not retraining the models on ensemble datasets

limits the potential improvement the model could experience by seeing forecasting data in the training phase. As we want to test

the suitability of the developed ML framework for hindcasting, we are putting a focus on the pretrained model in combination

with the seasonal (re)forecast input dataset. This allows us to test the performance of the models based on information that

the models have definitely not seen before. Running the model based on a seasonal (re)forecast input dataset, consisting of140

several ensemble members, creates an ensemble of time series for the target variables discharge and surface water levels. These

ensemble simulations were then analysed by computing frequently used skill scores.
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2.3 Skill scores

To evaluate the performance of the data-driven hindcast framework, the target variables were compared to observations as bi-

weekly and monthly averages, time scales which would also be of interest to water managers for mid- to longterm planning. In145

this study, the hindcasts (including 7 months of lead time) will be addressed by their lead time, where lead one equals the first

months of the forecast in which it was initiated, lead two equals the second month after initialization, etc. The performance was

evaluated by different skill scores, shedding a light on various aspect of hindcast skills, for example overall performance, accu-

racy and reliability. These skill scores are common in the forecasting community and include: Continuous Ranked Probability

(Skill) Score (CRPS and CRPSS), Brier (Skill) Score (BS and BSS), as well as Anomaly Correlation Coefficient (ACC).150

2.3.1 CRPS and CRPSS

The CRPS, which is one of the most common used evaluation benchmarks used in ensemble forecasting studies (Pappenberger

et al., 2015), was used to assess the overall performance of the hindcasting framework. It compares the differences in the

hindcast and observed Cumulative Distribution Functions (CDF) and ranges from 0 to infinity. The lower the computed score,

the better the performance of the hindcasting framework (Arnal et al., 2018; Pappenberger et al., 2015). Equation 1 taken from155

Hersbach (2000) (where P(x) is the cumulative density function of the hindcast and Pa observation probability) is computed)

was used and the CRPS computed over all ensemble members for each lead day of every hindcast before aggregating it to

other temporal scales. As a skilful benchmark (baseline) we also compare the hindcast framework with a forecasts based on

the historical distribution of observations. In other words, for each forecast day we look at the historical observations for that

day and select values for all the years of this historical observations to generate an observation based climatological hindcast160

ensemble. Both the hindcast CRPS and the baseline CRPS were used to compute the CRPSS (Eq. 2).

CRPS = CRPS(P,xa) =

∞∫

−∞

[P (x)−Pa(x)]2dx (1)

CRPSS = 1− CRPShindcast

CRPSref
(2)

2.3.2 BS and BSS

To determine the accuracy and the performance of the hindcasts for simulating high and low flow periods the BS and BSS165

can be used. To assess these specific categories, thresholds can be defined e.g. the lowest 20th percentile data to account for

droughts. This allows one to analyse events which are either higher or lower than the usual observations for a given month

(Candogan Yossef et al., 2017). The BS is calculated by Eq. 3, where N equals the number of hindcasting instances, f and o

are the hindcast and observed probability of exceeding a threshold, respectively (Candogan Yossef et al., 2017). Score values

range between 0 and 1, whereas 0 is indicating the best performance.170
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BS =
1
N

N∑

t=1

(ft− ot)2 (3)

BSS = 1− BShindcast

BSref
(4)

Furthermore the BSS (Eq. 4) can be used to compare the accuracy and performance of the hindcasting framework compared

to a reference system. We used a set of random created hindcasts, corrected for seasonality based on the climatology, as

reference forecasting system.175

2.3.3 ACC

To measure the quality of the hindcasting framework, the Anomaly Correlation Coefficient (ACC) between the hindcasts and

the observations is computed. This was done using the ensemble mean of each forecast for ever lead day of the hindcasts,

before gathering all years for every month to calculate the ACC per lead day and finally aggregating it to different temporal

scales. The ACC helps to verify the hindcast and observed anomalies, compared to the normal correlation where seasonality180

can influence the calculation results. Therefore, the ACC can also be seen as skill score in comparison with the climate. The

ACC score ranges from -1 to 1, with 1 representing a perfect correlation between observations and forecast. For representation

purposes the significance level was computed based on the number of observational years (in general) and only stations with

less than 10 missing observation months were considered (same criteria of station selection was used for the other scores).

3 Results185

The results will be presented such that first an overview of the general performance of the hindcast framework for one target

variable will be given. Subsequently the focus will be directed towards one model (Random Forest, RF) and an example station

to provide a more in-depth insight into the different evaluation scores and differences in temporal resolution. The scores were

calculated for all the initialization months of the hindcast and for different temporal resolutions (daily, weekly, monthly). For

demonstration we highlight the performance of the hindcast framework for selected months providing weekly to monthly190

scores, which are temporal scales of interest for long term water management decisions. Further background information on

evaluation score results based on different initialization months, temporal scales, target variables and ML models can be found

in the Appendix.

3.1 General performance

To obtain understanding of the overall performance of the hindcast framework, the CRPSS aggregated over all hindcasts195

for all stations and all ML models was computed. This was done by computing all the individual daily CRPSS results of

all the hindcasts of every station and methods, before aggregating the individual CRPSS scores to different temporal scales
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Figure 2. CDFs of weekly CRPSS shown for different lead weeks with CRPSS being aggregated over all models and station for discharge

hindcasts. CRPSS is decreasing with increasing lead weeks but even up to 12 weeks roughly 60% of all stations and models show a better

performance than the reference hindcasts.

(weekly in Fig. 2). The CDFs for the first 12 lead weeks can be seen in Fig. 2, with CRPSS ranging from -1 to 1, with values

above 0 indicating the hindcast framework outperforming the climatological reference. As expected, the CRPSS decreases

with increasing lead time (with CDF lines moving up and the zero line being crossed earlier) and naturally converges after 7200

weeks. However, up to lead week 12 roughly 60% of all stations and models show a better performance than the climatological

reference. Even better results can be seen for surface water levels (Fig. A1), where up to 80% show a better performance. Even

though the separate evaluation scores can vary slightly between target variable and station (locations) (shown later on), the

overall hindcasting framework shows a positive tendency compared to hindcasts solely based on climatology.

During the analysis of the evaluation scores for all the different ML model hindcasts only a minor differences between the205

models are noticeable, which is seen throughout most stations along the main river network, especially for discharge hindcasts

(Fig. 3). Minor differences between methods are observed for surface waterlevel depending on the station location (Fig. A2),

where for the example stations shown the more simpler methods show a slightly better skill. The minor differences are likely

due to the limited impact of the model selection compared to the inherent uncertainty (represented by the ensemble spread) in

the dynamical meteorological and hydrological forecast data. In addition, the high temporal aggregation (monthly) and post-210

processing of the results before calculating the different evaluation scores, smoothing out the original differences in hindcasts

results reduce the differences in performance between models.

Shifting the focus from the whole hindcast framework to a more detailed exploration of the evaluation metrics, the following

paragraphs focus on results of one ML model and later on one example station. As hindcast results indicate that the differences

between the models are minor, we will focus on the RF model, which previously already showed a promising performance215

Hauswirth et al. (2021). Figure 4 shows the weekly Anomaly Correlation Coefficient (ACC) for the discharge hindcasts at

various stations (each represented by a pie chart) throughout the Netherlands for initialization months a) January, b) April, c)

8
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Figure 3. Overview of weekly CRPS values for month January, May and September. Different ML model scores, average of ML models

score (dashed line) as well as climatological reference (grey) are shown for three discharge stations. For most months shown and first few

lead weeks, the CRPS of the hindcast framework shows a lower score than the climatological reference. However, only minor differences

between the ML models were observed. Maps were created using QGIS (QGIS Development Team, 2022), HCMGIS plugin and basemap

data from ESRI Ocean (Sources: Esri, GEBCO, NOAA, National Geographic, DeLorme, HERE, Geonames.org, and other contributors) and

GADM database.

July and d) October. The ACC values per week are indicated by the pie slices arranged clockwise and their colour, dark blue

indicating a high correlation coefficient while light yellow slices show weeks with a lower coefficient (note only significant

values are shown). Looking at the results for the different months in Fig. 4 indicate that for all months shown, the ACC decreases220

with increasing lead weeks. However, for all months the first few weeks (min. 3-4 weeks) show a high and significant score.

This can be observed for all stations along the main river networks, both Rhine and Meuse, while stations which are located at

smaller streams or channels, which are strongly influenced by water management, can be more challenging (e.g. station close

to the sea which is located at a shipping channel).

The observations from countrywide ACC analysis are supported by a more detailed analysis for station Hagenstein Boven225

located on the Rhine river network, roughly in center of the Netherlands and influenced by water management. We clearly see

that there are differences in ACC per lead and initialization month related to the initialization month of the hindcast and the

length of the forecast (Fig. 5). In addition, it shows that the differences on the ACC in temporal aggregation from daily, weekly

to monthly temporal scale have a minor impact and that the skill assessment is robust. Significant ACC values can be observed

throughout the first lead month for all initialization months. For early spring and summer months (March-July), significant230

ACC values for discharge predictions can be seen until two months in advance, in all temporal aggregation levels. The increase

in significant lead time for the early spring months (March and April) is due to the snow melt dynamics in upstream catchment

that were captured in the model training period (done prior to this study) and the physical model inputs from the EFAS system

at the Lobith and Eijsden stations. The observation of more significant ACC values during the spring months due to the snow

melt dynamic can be found throughout the stations along the Rhine, and less pronounced for the stations along the Meuse.235

Discharge predictions from late summer on show lower ACC values, likely due to the lower predictability in atmospheric
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Figure 4. Anomaly Correlation Coefficient (ACC, weekly) for a) January, b) April, c) July and d) October for discharge hindcasts computed

by the RF model showing the results for different stations (limited selection for visual purpose) in the national monitoring network. Maps were

created using the python package Cartopy (Elson et al., 2022), which uses basemap data from Made with Natural Earth and © OpenStreetMap

contributors 2022. Distributed under the Open Data Commons Open Database License (ODbL) v1.0.

weather patterns and reduced water storage in highly predictable stores like snow and groundwater. Unrealistic long lead times

with significant values are likely due to lower observation records that can occur throughout the years, despite the selection

of stations with limited missing records. Overall, ACC values for the discharge hindcasts show that hindcast anomalies are
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Figure 5. ACC results for station Hagenstein Boven over different temporal scales (a) daily, b) weekly , c) monthly) using the RF model.

Only significant values are shown.

Figure 6. Heatmaps of weekly ACC (same as in Fig. 5), CRPSS and BSS for example station Hagenstein Boven. a) ACC only significant

values are shown, b) CRPSS and c) BSS indicating a good performance (in dark blue and values above 0) compared to climatological

reference.

captured well for lead times up to one or two months for all initialization months compared to the observed anomalies for a240

complex station like Hagenstein Boven, which is affected by water management and upstream water reallocation. Furthermore,

the hindcast framework was able to capture the general snow melt dynamic in early spring, resulting in significant values up to

a lead time of two months at the onset of summer.
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To check the robustness of the results we also analyzed the forecast performance with the CRPSS and BSS. The CRPSS was

computed to assess the general performance of the hindcast framework. Figure 6 represents the weekly CRPSS values for the245

same example station Hagenstein Boven in the center panel. The heatmap giving an overview of the skill score throughout the

year with values ranging from 0 to 1, with values above 0 representing lead weeks where the hindcast framework outperforms

the climatological reference. Similar to the ACC, the first few lead weeks show consistently good performance, indicating that

the hindcast spread is close to the one of observations, while with increasing lead time the CRPSS decreases. This pattern can

be observed by stations along the main river networks.250

3.2 Hydrological extremes - low flows

To assess the hindcast frameworks capability of simulating low flow events, the BSS was computed using a threshold for the

lowest 20th percentile of discharge observations and hindcasts. Figure 6 represents the weekly BSS on the right panel again for

the example station Hagenstein Boven. Blue tiles on the heatmap indicate lead times where the hindcast framework outperforms

the climatological reference strongly. The BSS confirms the earlier findings and shows the same trend of increased performance255

in the first lead weeks, additional skill of several weeks is found for early spring and early summer months. However, tiles with

lower performance throughout long lead periods, late summer and winter months can be spotted for this station. Some of these

weeks appear to be more difficult to predict compared to early months in the year. This is likely due to unequal distribution of

low flow occurrences throughout the year: where during summer months low flows can be more common and therefore chances

to not fully capturing every event are higher, the low flows during winter are less common and captured relatively well with260

the snow melt dynamic as seen in previous scores. The described observations for the example station are in line with findings

at other stations along the Rhine river network and less pronounced along the Meuse.

3.3 Difference between target variables and models

The result section so far has been focusing on the discharge hindcasts to be able to focus on the different evaluation scores in

more detail. However, the hindcast framework was also used to hindcast surface water levels. Surface water level prediction265

skill shows a similar pattern and trend, regarding ACC and CRPSS results for stations along the main river network (Fig. A3

and Fig. A4 for an example station). Yet, surface water levels seem to be more challenging to hindcast with the evaluation scores

being slightly lower especially for stations in smaller channels and further away from the main river network. Similar findings

are found for BSS, where the performance of the hindcast for low flow periods was tested. As can be expected, stations which

are not along the main river network and located downstream the main input variables (Rhine at Lobith, Meuse at Eijsden)270

show lower skills in capturing low flow periods compared to stations closer to input variables and the Rhine river. While ACC

and BSS show a slightly lower performance, the CRPSS ranges are in the same range as for discharge hindcasts.
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4 Discussion

In this study we tested the suitability of ML models for seasonal predictions of several hydrological target variables at local

scales throughout the Netherlands. This framework incorporated ML models over varying complexity, ranging from Multilin-275

ear Regression, Lasso Regression, Decision Tree to Random Forests and LSTM. While the methods have shown differences

in their performance during training and testing phase on historical observations (especially their ability to reproduce extreme

events Hauswirth et al. (2021)), interestingly applying the same subset of models on seasonal (re)forecasting information did

not lead to large differences in model performance. We hypothesize that this is caused by the large uncertainty in the mete-

orological and hydrological input data, that outweighs the relative difference in performance by the different ML algorithms.280

In addition, the minor differences seen between the ML algorithms in the original hindcasts were further smoothed out while

calculating the evaluation scores on different temporal scales. While the ML models were previously trained on direct observa-

tions, the seasonal (re)forecasting information from SEAS5 and EFAS introduces additional uncertainty from their forecasting

system. We deliberately decided not the retrain the ML models on the forecasting information, as this more closely mimics the

normal operational setting where an already trained model is used to produce forecasts. However, this provides an additional285

challenge, as we add another source of potential uncertainty as the ML models might not be well tuned to the forecast infor-

mation. Retraining the models would also open up the opportunity for overfitting the ML models on the forecast data, which is

something that should be avoided. Therefore, we preferred to use the more realistic operational scenario and use ML models

trained on historic observations only, over a setup that uses ML models specifically trained on forecast data. Assessing the

approach of additionally retraining the models for different cases, e.g. focus on extreme events or climate change trends are290

opportunities for future projects.

We extended our runs including water management, in line with the approach previously explored by Hauswirth et al. (2021).

However, incorporating variables that represent water management settings in the ML models lead to negligible improvement

and the improved performance as seen in the previous study could not be detected. We think that the uncertainty included in the

seasonal (re)forecast input data is having a larger influence than the one of added water management information and therefore295

the strength of incorporating the additional information as seen in the previous study could not be observed.

The evaluation metrics show that for the majority of the discharge and surface water level stations, skilful predictions for the

first lead month one can be made. For early spring and summer month the skill increases up to 2-3 months, due to the snow

melt dynamic being captured by the models in their training phase and the presence of this signal in the seasonal reforecasts

of the discharge at Lobith used as input to the ML models. The skilful prediction for the first few lead months are comparable300

with other studies which have evaluated physically based systems (Wanders et al., 2019; Arnal et al., 2018; Girons Lopez

et al., 2021; Pechlivanidis et al., 2020). However, contrary to the large scale physically based forecasting systems, hybrid

frameworks such as the one presented in this study show to skilfully forecast target variables at specific locations which would

not be feasible and at a fraction of the computation demand. This can be interesting for water management needs at smaller

scale or scenario analysis. Besides the fast running times of the models an additional benefit for the current framework is the305

input data set, which can be easily replaced by other input sources regarding precipitation, evaporation, discharge and surface
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water level as it was done in this study with EFAS and SEAS5 data. This framework however only focuses on time series

at existing stations and therefore does not address the challenge of predicting at ungauged basins. However, recent advances

in deep learning methods show that forecasting at ungauged sites may be a possibility if auxiliary geographically distributed

variables (elevation, soil, river network topology) are incorporated (Kratzert et al., 2019).310

Similar to Hunt et al. (2022) we show that a hybride forecasting system can provide added benefits compared to physical

forecasting system. In addition to Hunt et al. (2022) this work confirms that the benefits of hybride forecasting can also

be obtained for long-term forecasting. In this study we also show that these hybrid forecasting systems have the ability to

provide more local information compared to large-scale physically based systems. As with other models, using ML models in

hydrology comes with benefits and drawbacks. While the data availability can be a limiting factor for effectively train a model,315

the flexibility and low computational demand compared to large scale physically based models is an advantage. We think that

with the right data available, ML models like the ones used here can easily be (re)trained for more specific studies and cases

as well. Additional training on low flow periods for example could enhance drought predictions while incorporating climate

change aspects and land use could help to assess future trends regarding water availability under increased human influence.

5 Conclusions320

In this study we explored the suitability of a hybrid hindcasting framework, combining data-driven approaches and seasonal

(re)forecasting information to predict hydrological variables locally for multiple stations at national scale for the Netherlands.

Different ML models, previously trained on historical observations, were run with a simple input data set based on forecast

data from EFAS and SEAS5 and evaluated using the evaluation metrics Anomaly Correlation Coefficient (ACC), Continuous

Ranked Probability (Skill) Score (CRPS and CRPSS), and Brier Skill Score (BSS). The hindcast framework’s skill was com-325

pared to the skill of a climatological reference hindcast. Aggregating the hindcasts of all stations and ML models revealed that

the hindcasting framework was outperforming the climatological reference forecast by roughly 60% and 80% for discharge and

surface water level hindcasts. ACC results further show that independently of the discharge prediction’s initialization month, a

skilful prediction for the first lead month can be made. For spring months the skill extends up to 2-3 months due to stronger link

to snow melt dynamic and temperature related impacts on the hydrological cycle that were captured in the training phase of the330

model. CRPSS and BSS show a similar pattern of skilful predictions for the first few lead weeks compared to the climatological

reference forecasts. Skilful discharge predictions are particularly observed along the main river networks, Rhine and Meuse,

which can be linked to the close proximity of the discharge input variables. This distribution of performance is also observed

for surface water level hindcasts. We also observed that the difference between different ML models in the hindcast results

are only minor, contrary to the differences observed when reproducing historical timeseries. This reduction in differences in335

performance between ML models is attributed to the relatively large uncertainties in seasonal (re)forecast data, reducing the

relative impact of the model uncertainty in the total hindcast uncertainty. Even though the current hindcast framework is trained

on historical observations, the hybrid framework used in this study shows similar skilful predictions as previous large scale

forecasting systems. With the focus on creating a hindcast framework that is simple in its setup, fast and also locally applicable,
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challenges that can come with large scale operational forecasting systems for local users can be lowered. In addition, the ML340

hindcast framework also significantly reduces the computation demand and allows decision makers to explore more options

and better quantify forecast uncertainty using a variety of ML models and inputs. Adapting the framework to special inter-

ests, e.g. droughts or climate change trends, by retraining the original ML models for specifically this purpose could further

increase its performance. We conclude that the ML framework as developed in this study provide a valuable way forward, to

making seasonal (re)forecast information more accessible to local and regional decision makers in the field of operational wa-345

ter management. In this study we purposely used publicly available seasonal forecast information which is globally available.

This allows us to deploy this framework around the world and potentially provide relevant forecasting information for water

managers and decision makers outside of the study area.
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Appendix A: Results355

A1 General performance
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Figure A1. CDFs of weekly CRPSS shown for different lead weeks with CRPSS being aggregated over all models and stations for surface

water level hindcasts.

Figure A2. Overview of weekly CRPS scores for month January, May and September. Different ML model scores, average of ML models

score (dashed line) as well as climatological reference (grey) are shown for three surface water level stations. Maps were created using

QGIS (QGIS Development Team, 2022), HCMGIS plugin and basemap data from ESRI Ocean (Sources: Esri, GEBCO, NOAA, National

Geographic, DeLorme, HERE, Geonames.org, and other contributors) and GADM database.
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Figure A3. Anomaly Correlation Coefficient (ACC, weekly) for a) January, b) April, c) July and d) October for surface water level hindcasts

computed by the RF model showing the results for different stations (limited selection for visual purpose) in the national monitoring network.

Maps were created using the python package Cartopy (Elson et al., 2022), which uses basemap data from Made with Natural Earth and ©

OpenStreetMap contributors 2022. Distributed under the Open Data Commons Open Database License (ODbL) v1.0.
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Figure A4. Overview of weekly evaluation scores for surface water level hindcasts. a) ACC overview throughout the year for example station

Nijmegen, b) CRPSS and c) BSS heatmaps.
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