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Abstract. Hydrological forecasts are important for operational water management and near future planning, even more so in

light of increased occurrences of extreme events such as floods and droughts. Having a flexible forecasting framework
::::::::
forecasting

:::::::::
framework,

::::::
which

::
is

::::::
flexible

::
in

:::::
terms

::
of

:::::
input

:::::::
forcings

::::
and

:::::::::
forecasting

::::::::
locations

:::::
(local,

:::::::
regional

:::
or

::::::::
national), that can deliver

this information in fast and computational efficient manner is critical. In this study, the suitability of a hybrid forecasting

framework, combining data-driven approaches and seasonal (re)forecasting information
::::
from

:::::::::
dynamical

:::::::
models,

:
to predict5

hydrological variables was explored. Target variables include discharge and surface water levels for various stations at national

scale with the Netherlands as focus. Five different ML
:::::::
machine

:::::::
learning

:::::
(ML) models, ranging from simple to more complex

and trained on historical observations of discharge, precipitation, evaporation and sea water levels, were run with seasonal

(re)forecast data (EFAS and
:::::::
including

:::::::::
European

:::::
Flood

::::::::::
Awareness

::::::
System

:::::::
(EFAS)

::::
and

::::::::
ECMWF

:::::::
seasonal

:::::::
forecast

:::::::
system

:
(SEAS5) of these driver variables in a hindcast setting. The results were evaluated using the evaluation metrics Anomaly Cor-10

relation Coefficient (ACC), Continuous Ranked Probability (Skill) Score (CRPS and CRPSS), and Brier Skill Score (BSS) in

comparison to a climatological reference hindcast. Aggregating results of all stations and ML models revealed that the hind-

casting framework outperformed the climatological reference forecasts by roughly 60% for discharge predictions (80% for

surface water level predictions). Skilful prediction for the first lead month, independently of initialization month, can be made

for discharge. The skill extends up to 2-3 months for spring months due to snow melt dynamics captured in the training phase15

of the model. Surface water levels hindcasts showed similar skill and skilful lead times. While the different ML models showed

differences in performance during a testing and training phase using historical observations, running the ML framework in a

hindcast setting showed only minor differences between the models, which is attributed to the uncertainty in seasonal forecasts.

However, despite being trained on historical observations, the hybrid framework used in this study shows similar skilful pre-

dictions as previous large scale forecasting systems. With our study we show that a hybrid framework is able to bring location20

specific skilful seasonal forecast information with global seasonal forecast inputs. At the same time our hybrid approach is

flexible and fast, and as such a hybrid framework could be adapted to make it even more interesting to water managers and

their needs, for instance a part of a fast model-predictive control framework.
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1 Introduction

Forecasting in combination with local system knowledge plays an important role in increasing the readiness for imminent25

extreme events such as floods and droughts. Especially over the last few years, where the effects and impacts of climate change

have become more and more distinct with an increasing recurrence of extreme events require adaptive planning based on skilful

forecasts. For instance, knowledge of upcoming water surplus or shortage is important to limit damages to infrastructure and

impacts on society during floods as well as to increase and sustain the water availability prior but also during droughts.

Over the past years, platforms of open source
:::::
openly

::::::::
available forecasting services and data sets that deliver meteorological30

and hydrological predictions have increased. These data sets can differ in leadtime (e.g. short- to medium range, sub-seasonal,

and seasonal time scales) and include uncertainty by consisting of various numbers of ensemble members. Examples of open

source
:::::
openly

::::::::
available

:
seasonal forecasting system are the operational European Flood Awareness System (EFAS, Thielen

et al. (2009); Arnal et al. (2018)) and the Global Flood Awareness System (GloFAS, Alfieri et al. (2013)), as well as ECMWF

latest seasonal forecasting system SEAS5 Johnson et al. (2019). Forecasting systems like these are run by large scale, physically35

based models (e.g. Lisflood Van Der Knijff et al. (2010); De Roo et al. (2000) in case of EFAS), which require a lot of informa-

tion regarding parametrization, can be slow and computational intensive as well as require large data storage facilities. Another

example of forecasting systems facing similar challenges are multimodel ensemble systems, which combine several general

circulation models and hydrological models (Wanders et al., 2019; Samaniego et al., 2019). One of the earliest approaches

for streamflow forecasting includes ensemble streamflow prediction (ESP, originally named extended streamflow prediction40

Day (1985)), where a physically based model is run with observed historical meteorological time series from multiple years

but initialized with the current hydrological conditions.

Even though continuously improved in terms of ease of use and interoperability, the main challenges of handling such large,

computational and data intensive systems remain. Furthermore, Samaniego et al. (2019) highlighted that in case forecasting

systems are used for decision making, prediction horizons, spatial scales, model choices, storage and computational require-45

ments and reported variables can limit the applicability of forecasting systems to local water management. We hypothesize that

incorporating data-driven approaches to support seasonal forecasting systems can be beneficial not only in terms of reducing

computational requirements but also their flexibility and data use. Especially, if the forecasting system can be kept simple, for

example regarding input variables or algorithms incorporated
:::::::
forcings

::
or

:::
the

::::::::::
complexity

::
of

:::::::::
forecasting

:::::
setup, the threshold of

applying it on various spatial and temporal scales would be even further loweredand
:
.
::::
This

:::::
would

:::
for

::::::::
example

:::::
bridge

:::
the

::::
gap50

::::
from

::::
large

:::::
scale

::
to

:::::
local

:::::::::
forecasting

:::::::
systems

::::
and

:::::
make

:
it
:

more readily applicable
:
to

::::::
create

:::::::
efficient

:::::::::
operational

:::::::
settings

::::
and

::::::
support

:::::
local

:::::
water

:::::::::::
management. In this study we explore these opportunities by incorporating data driven approaches in a

seasonal forecasting framework, combining both local and global information.

Data driven approaches, including machine learning (ML) models, have been explored and tested out increasingly in hydro-

logical assessments over the last few years (Shen, 2018; Shen et al., 2021), either as standalone models or also in hybrid-settings55

(coupled with physically based models) (Kratzert et al., 2018; Koch et al., 2019). ML can be used for any spatial and temporal

scale study, as long as there is sufficient data available for training and validation. Besides using local observations and remote
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sensing information an upcoming trend is also to incorporate knowledge based learning (Koch et al., 2021), where ML models

are also trained with information provided by physically based model or in hybrid model setups. ML has shown to be promis-

ing in simulating hydrological variables such as discharge and groundwater levels but also in contributing to operational water60

management.

However, most of the previous research focused on successfully simulating past observations or current hydrological states

but incorporating ML in a seasonal forecasting framework has only scarcely been explored in the hydrological field. Work by

Hunt et al. (2022) being one of the most recent examples, where LSTMs were explored in a hybrid forecasting setup to predict

discharge for short term scale.65

A substantial issue as to using ML for seasonal forecasting is often the limited amount of samples for training. This is

often resolved by including long climate model simulations for training as an example, however depending on the scale and

resolution these might not always be ideal for more local studies. Nevertheless, if sufficient local data are available, it is

worthwhile investigating how one can exploit the assets of ML for seasonal forecasting (limited complexity of forecasting

setup, computational demand and handling of large data amounts) in order to create efficient and flexible operational settings70

and
::
to increase the support for water management. This can be especially useful for floods but also drought occurrences, where

local information has to be available and updated within a short time frame (floods) and changes in water management planning

have to be reassessed both ahead and in time of an event to optimise water availability (droughts).

To be able to have such a data-driven forecasting system that can support water managers as an example, a first step is to

build a framework that can be explored in a so called hindcasting experiment, where the forecasting framework is tested based75

on historical observations
::
in

::::
near

::::::::
real-time. Once this is successful, the forecasting framework could be switched to seasonal

forecasting. The aim of this study is to explore the first step: test the suitability of a data-driven
:::::
hybrid

:
forecasting framework in

a hindcast experiment. The framework will build on an existing ML model framework based on a previous study by Hauswirth

et al. (2021) in combination with (re)forecast information as input variables. Hauswirth et al. (2021) tested out different ML

algorithms, ranging from simple to more complex methods, for simulating hydrological variables at national scale based on a80

simple input dataset including water management aspects. In this study we want to test the suitability of these models based on

their previous performance but
::::::::
historical

::::::::::
performance

::
to

:::::::
forecast

::::::::
discharge

::::
and

::::::
surface

:::::
water

:::::
levels in a hindcast setting.

The ML models (trained on historical observations), will be run with seasonal (re)forecasting data replacing the previous

input dataset consisting of discharge, precipitation, evaporation and sea water level observations. Running the models with

seasonal (re)forecasting information creates an ensemble of the target variables for each station of interest. The focus of the85

target variables is laid on discharge and surface water levels, the latter including rivers, streams and lakes. These ensembles

will be analysed and compared with historical observations to assess the skill of the ML framework for seasonal forecasting

for general hydrological predictions
::::::::
conditions

:
but also extreme events such as droughts by computing different skill scores

common to evaluate seasonal forecasting frameworks. Furthermore, the benefits but also challenges of such a simple setup will

be explored and listed to assess whether the framework is suitable for current practices and whether it opens up possibilities90

for future assessments.
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Figure 1. Schematization of
::::

hybrid
:
hindcast framework highlighted in red frame, grey box indicating model framework previously developed

by Hauswirth et al. (2021) and used as base for the model block.

In the following sections the study’s approach will be laid out, followed by an evaluation of the performance of the hindcast

experiment by assessing skill scores both for general and droughts. Thereafter, the findings will be summarized, discussed and

put into a bigger context of the field, followed by the main conclusions.

2 Material and Methods95

This section is divided into subsections covering the general concept of the
:::::
hybrid

:
hindcast framework used in this study,

the seasonal (re)forecast data and its preparation, the data-driven model setup as well as the skill scores used to evaluate the

forecasting skills of the data-driven
:::::
hybrid framework.

2.1 Hindcast
::::::
Hybrid

::::::::
hindcast framework

The hindcasting
:::::
hybrid

:::::::
hindcast

:
framework used in this study can be described as a simple three block system including:100

pre-processing of the input data, a main model block including a selection of ML models, as well as post-processing of

the target variable and skill score calculation (Fig. 1). The main model block, which is based on the ML model study of

Hauswirth et al. (2021), was run on seasonal (re)forecasting information, which has first undergone the pre-processing block.

The hindcast results were evaluated based on different skill scores included in the post-processing block to assess how skilful

the data-driven
:::::
hybrid

:
framework is in hindcasting historical observations. The spatial and temporal setting of the hindcast105

experiment is focusing on the Netherlands and the time period 1993-2018. Target variables include discharge and surface water

level in freshwater bodies for selected stations
:::
(69

::
for

:::::::::
discharge,

::
97

:::
for

::::::
surface

:::::
water

:::::
level) throughout the observation network

of the National Water Authority.
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2.1.1 Data and pre-processing

The input dataset based on seasonal (re)forecasting information covers the period 1993 - 2018, including a lead time of 7110

months (215 days) and consisting of 25 ensemble members (50 from 2017 on). The input dataset replaces the previously used

historic data of the ML framework, which consists of a simple set of variables including discharge, precipitation, evaporation,

and sea level observations at specific locations of the case study area
:::
for

:::
the

::::
time

:::::
period

:::::::::
1980-2018

:
(Fig. A1).

:::::
These

::::::::
variables

::::
were

::::::
chosen

::
as

::::
they

:::
are

::::
part

::
of

:::
the

:::::::::::
observational

:::::::
network

::
of

:::
the

::::::::
National

:::::
Water

::::::::
Authority

::::
and

::::::
readily

::::::::
available.

:::::::::::
Furthermore,

::
the

:::::
main

:::::
model

:::::
block

:::
as

::::::
defined

::
in

::::::::::::::::::::
Hauswirth et al. (2021)

:::
was

:::::::
designed

::::
with

:::
the

::::
idea

::
of

:::::
being

:::::::
flexible

::
in

:::
the

:::::
sense

:::
that

:::::
input115

::::::
datasets

:::::
could

::
be

::::::
easily

::::::::
exchanged

:::
by

:::::::
datasets

::::::::::
representing

:::
the

::::
same

::::::::
variables

::::
(e.g.

:::::::
seasonal

::::::::::::
(re)forecasting

:::::
data). The seasonal

(re)forecasting data was obtained from the forecasting systems SEAS5 and EFAS, accessed via the open source
:::::
openly

::::::::
available

:::
data

:
platform Copernicus Climate Data Store. SEAS5 is ECMWF’s fifth generation seasonal forecasting system, providing

predictions on atmosphere, ocean and land surface conditions (Johnson et al., 2019). Meteorological information including

precipitation, u and v wind components, 2m temperature, surface net solar radiation, and mean sea level pressure were gathered120

from SEAS5
:::
and

::::
were

:::::
taken

::::
from

:::
the

::::
grid

::::
cell

:::
that

::::::::
included

:::
the

::::::
original

::::::::::
observation

:::::::
location. The latter three variables were

used to calculate the Makkink reference potential evaporation (de Bruin and Lablans, 1998). Seasonal reforecasting information

on discharge was obtained from the European Flood Awareness System (EFAS, (Thielen et al., 2009; Wanders et al., 2014;

Arnal et al., 2018)), a pan-European seasonal hydrological forecasting system which is based on the Lisflood model (5x5km

resolution), with SEAS5 as meteorological forcing.
:::
The

:::::
same

:::::::
approach

::
of

::::::::
selecting

:::
the

:::
grid

:::::
cells

:::::::
including

:::
the

:::::::
stations

:::::::
location125

::
of

:::
the

::::::
original

:::::
input

::::
data

:::
was

:::::
done.

:
Having SEAS5 has a forcing for both the EFAS reforecasts of discharge and as source for

the meteorological input data for the ML framework enables a consistency in terms of model forcings.

For the sea level data, the water level for the historic period was simulated by using the pytide python module. The difference

between the observed and pytide predicted sea level fluctuations (including only tidal components) was computed to get the

anomalies. A simple multi-linear regression model was then used to compute the final sea level ensemble set based on the u130

and v wind speed and the previously computed sea level anomalies.

The input dataset was processed in a similar manner as done by Hauswirth et al. (2021), for example by including the

lagged time series of every input variable. This was done in the previous study by using the partial autocorrelation function

(PACF) to identify and incorporate significant information content that could explain the historic patterns and be additionally

fed to the machine learning in its training phase (Hauswirth et al., 2021). In this case the seasonal (re)forecasting data in a first135

step was bias corrected using cumulative density function (CDF) matching approach before extending the input variable by

incorporating the lagged times series approach (Wanders et al., 2014).

We additionally prepared an input data set including water management influence using the same approach as in Hauswirth

et al. (2021).
:::::::::::::::::::
Hauswirth et al. (2021).

:
This simulation includes operational rules of main infrastructures which are related to

the Rhine discharge at Lobith (one of our main input variables) for two specific input locations and two additional observation140

records of locations based at smaller infrastructures .
::::
(Fig.

::::
A1).

:
We were therefore able to use the same approach regarding the

5
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operational rules for the main infrastructures, as these are based on the Rhine discharge we obtain from the EFAS dataset. For

the two other additional timeseries climatology was used as operational plans were not available.

For every ML model (representing a station of interest) the input data set after data pre-processing finally consists of a set

of ensembles, including ensemble members of all input variables. The models were run with every set of ensemble members145

(e.g. input dataset based on first ensemble members of discharge, precipitation, evaporation and sea level information).

2.1.2 Data-driven model setup

We applied here a recently developed ML model framework by Hauswirth et al. (2021). This framework has a focus on a simple

setup using only readily available input data to simulate target variables such as discharge, surface water level (including rivers,

streams and lakes), surface water temperature, and groundwater levels for several stations at a national scale in the Netherlands.150

The station information and observational records were taken from the national monitoring network and covered 69 discharge,

97 surface water level, 105 surface water temperature, and 4000 groundwater stations (Fig. A1 for discharge and surface water

level stations). For every station of interest a ML model was trained on historic observations of the target variable and the

input dataset, consisting of the five variables: precipitation , evaporation
:::
and

::::::::::
evaporation

::::
from

:::
the

::::::
deBilt, Rhine discharge

::
at

:::::
Lobith, Meuse discharge

::
at

::::::
Eijsden, sea-level observations

::::
close

::
to
::::::::::
Haringvliet

::::
Dam

:
(Fig. A1). Furthermore, the framework is155

able to incorporate the influence of water management aspects. This was done by expanding the input dataset with discharge

timeseries of the most important infrastructure, based their operational rules which is linked to one of the main input variables.

Different ML methods were trained and tested based on a 60/40% train-test split including timeseries segments which were

chosen randomly. The ML methods incorporated in the study range from simple to more complex methods including: Multi-

linear Regression (MReg), Lasso Regression (Lasso), Decision Tree (DT) and Random Forest (RF), as well as Long Short160

Term Memory (LSTM) models. For more information regarding the specific models, model setup steps and evaluation, as well

as data pre-processing we refer to Hauswirth et al. (2021).

For this study the pretrained models were rerun based on a prepared seasonal (re)forecast input dataset.
:::
We

::::::
decided

::
to
::::
test

:::
out

::
all

:::
the

:::::::
original

:::
ML

::::::
models

::
to

::::
see,

:::::::
whether

:::::
similar

:::::::::::
observations

::::::::
regarding

::::
their

:::::::::::
performance

:::
and

:::::::::
differences

:::::
could

::
be

::::::
made.

The input dataset is made up of the same variables as in the previous study but taken from seasonal (re)forcasting
:::::::::
forecasting165

datasets such as EFAS and SEAS5. The models were not retrained, so the input data was used for an extensive validation of

the simulation of seasonal forecasting skill. Using the pretrained models has the benefit of saving computational time, which

would have otherwise been needed for testing and training the models. Secondly, this study aims to test the suitability of

this ML framework for seasonal forecasting in an operational setting. In such an operational setting one would like to keep

a consistent modelling framework that has been validated on an extensive hindcast archive. On the other hand, not retraining170

the models on ensemble datasets limits the potential improvement the model could experience by seeing forecasting data in

the training phase. As we want to test the suitability of the developed ML framework for hindcasting, we are putting a focus

on the pretrained model in combination with the seasonal (re)forecast input dataset. This allows us to test the performance

of the models based on information that the models have definitely not seen before. Running the model based on a seasonal

(re)forecast input dataset, consisting of several ensemble members, creates an ensemble of time series for the target variables175

6



discharge and surface water levels.
::::
Same

:::::::
amount

::
of

::::::::
ensemble

::::::::
members

:::
(25

:::::::::
members,

::
50

::::::::
members

:::::
from

::::
2017

::::
on)

:::
and

:::::
same

:::
lead

::::
time

::::
(215

:::::
days)

::
as

:::
the

:::::::
seasonal

::::::::::
(re)forecast

:::::
input

:::
data

:::::
were

::::::::
generated

:::
for

:::
the

:::::
target

::::::::
variables. These ensemble simulations

::
of

:::
the

:::::
target

:::::::
variables

:
were then analysed by computing frequently used skill scores.

2.2 Evaluation - Skill scores

To evaluate the performance of the data-driven
:::::
hybrid hindcast framework, the target variables were compared to observations180

as biweekly and monthly averages, time scales which would also be of interest to water managers for mid- to longterm planning.

In this study, the hindcasts (including 7 months of lead time) will be addressed by their lead time, where lead one equals the

first months of the forecast in which it was initiated, lead two equals the second month after initialization, etc. The performance

was evaluated by
::
at

:::::
daily,

::::::
weekly

::::
and

:::::::
monthly

:::::::
temporal

:::::
scale

:::::
using

:
different skill scores,

:
.
:::::
These

::::
skill

:::::
scores

:::
are

:
shedding a

light on various aspect of hindcast skills, for example overall performance, accuracy and reliability. These skill scores
::::
Skill185

:::::
scores

:::
that

:
are common in the forecasting community and

::
are

::::
used

::::
here

:
include: Continuous Ranked Probability (Skill) Score

(CRPS and CRPSS), Brier (Skill) Score (BS and BSS), as well as Anomaly Correlation Coefficient (ACC).
::
In

:::
this

::::::
study,

:::
the

:::::::
hindcasts

:::::::::
(including

::
7

::::::
months

::
of

::::
lead

:::::
time)

:::
will

:::
be

::::::::
addressed

:::
by

::::
their

::::
lead

::::
time,

::::::
where

::::
lead

:::
one

::::::
equals

:::
the

:::
first

:::::::
months

::
of

:::
the

::::::
forecast

::
in
::::::
which

:
it
::::
was

:::::::
initiated,

::::
lead

::::
two

:::::
equals

:::
the

::::::
second

::::::
month

::::
after

:::::::::::
initialization,

:::
etc.

:::
For

:::
the

:::::::
results,

:::
the

::::
focus

::::
will

::
be

:::
on

::::::
weekly

:::
and

:::::::
monthly

::::::::
averages,

::::
time

::::::
scales

:::::
which

:::::
would

::::
also

:::
be

::
of

::::::
interest

::
to

:::::
water

::::::::
managers

:::
for

::::
mid-

::
to
:::::::::
long-term

::::::::
planning.190

2.2.1 CRPS and CRPSS

The CRPS, which is one of the most common used evaluation benchmarks used in ensemble forecasting studies (Pappenberger

et al., 2015), was used to assess the overall performance of the hindcasting framework. It compares the differences in the

hindcast and observed Cumulative Distribution Functions (CDF) and ranges from 0 to infinity. The lower the computed score,

the better the performance of the hindcasting framework (Arnal et al., 2018; Pappenberger et al., 2015). Equation 1 taken from195

Hersbach (2000) (where P(x) is the cumulative density function of the hindcast and Pa observation probability) is computed)

was used and the CRPS computed over all ensemble members for each lead day of every hindcast before aggregating it to other

temporal scales.

As a skilful benchmark (baseline) we also compare the hindcast framework with a forecasts based on the historical distribu-

tion of observations. In other words, for each forecast day we look at the historical observations for that day and select values200

for all the years of this historical observations to generate an observation based climatological hindcast ensemble. Both the

hindcast CRPS and the baseline CRPS were used to compute the CRPSS (Eq. 2).
:::
The

:::::::
CRPSS

::::
range

::::
lies

:::::::
between

:
0
::::
and

::
1,

::::
with

:
1
::::::::
indicating

:::
the

:::::::
forecast

::::::
giving

:::
the

:::
best

:::::::::::
performance

::::::::
compared

::
to

::::::::::
climatology

::::
and

:
0
::::::
having

:::
no

:::
skill

:::::::::
compared

::
to

::::::::::
climatology.

:

CRPS = CRPS(P,xa) =

∞∫
−∞

[P (x)−Pa(x)]
2dx (1)

CRPSS = 1− CRPShindcast

CRPSref

CRPShindcast

CRPSbaseline
::::::::::::

(2)205
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2.2.2 BS and BSS

To determine the accuracy and the performance of the hindcasts for simulating high and low flow periods the BS (Brier, 1950)

and BSS can be used. To assess these specific categories, thresholds can be defined e.g. the lowest 20th percentile data to

account for droughts similar to other studies (Van Loon and Laaha, 2015). This allows one to analyse events which are either

higher or lower than the usual observations for a given month (Candogan Yossef et al., 2017; Wanders and Wood, 2016).210

::::
This

::::::::
threshold

:::
was

::::
used

:::
for

::::
both

::::::::
hindcasts

::::
and

:::::::::::
observations,

::::::
before

:::::::::
aggregating

:::
the

::::
data

::
to
:::

the
::::::::
temporal

:::::
scale

::
of

::::::
interest

::::
and

:::::::::
computing

::
the

::::
BS. The BS is calculated by Eq. 3, where N equals the number of hindcasting instances, f and o are the hindcast

and observed probability of exceeding a threshold, respectively (Candogan Yossef et al., 2017). Score values range between 0

and 1, whereas 0 is indicating the best performance.

BS =
1

N

N∑
t=1

(ft − ot)
2 (3)215

BSS = 1− BShindcast

BSref
(4)

Furthermore the BSS (Eq. 4) can be used to compare the accuracy and performance of the hindcasting framework compared

to a reference system. We used a set of random created hindcasts, corrected for seasonality based on the climatology , as

reference forecasting system,
::::::::::
climatology

::
in
::::
this

::::
case.

:::::
Same

:::::
range

::::
and

:::::::::::
interpretation

:::
can

:::
be

::::
used

::
as

:::
for

::::::
CRPSS.

2.2.3 ACC220

To measure the quality of the hindcasting framework, the Anomaly Correlation Coefficient (ACC) between the hindcasts and

the observations is computed . This was done using the ensemble mean of each forecast for ever lead day of the hindcasts,

before gathering all years for every month to calculate the ACC per lead day and finally aggregating it to different temporal

scales
:
is

:::::::::
computed

::
by

:::::
using

:::
Eq.

:::
5,

:::::
where

::::
(ft) ::::::::

represents
:::

the
:::::::::

hindcasts,
::::
(ot) :::

the
:::::::::::
observations,

:::::
while

::
f

:::
and

::
o
:::
are

:::
the

::::::::
longterm

:::::::
averages.

:
225

ACC =

N∑
t=1

(ft − f)(ot − o)√
N∑
t=1

(ft − f)2
N∑
t=1

(ot − o)2

:::::::::::::::::::::::::::::

(5)

:::
The

::::::::
hindcasts

:::
and

:::::::::::
observations

::::
were

::::
first

:::::::::
aggregated

::
to

:::
the

::::::::
temporal

::::
scale

:::
of

::::::
interest

::::::
before

:::::::::
computing

:::
the

::::
ACC. The ACC

helps to verify the hindcast and observed anomalies, compared to the normal correlation where seasonality can influence the

calculation results. Therefore, the ACC can also be seen as skill score in comparison with the climate. The ACC score ranges
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Figure 2. CDFs of weekly CRPSS shown for different lead weeks with CRPSS being aggregated over all models and station for discharge

hindcasts. CRPSS is decreasing with increasing lead weeks but even up to 12 weeks roughly 60% of all stations and models show a better

performance than the reference hindcasts.

from -1 to 1, with 1 representing a perfect correlation between observations and forecast. For representation purposes the230

significance level was computed based on the number of observational years (in general) and only stations with less than 10

missing observation months were considered (same criteria of station selection was used for the other scores).

3 Results

The results will be presented such that first an overview of the general performance of the hindcast framework for one target

variable
:
,
:::
the

::::::::
discharge

:::::::::
hindcasts, will be given. Subsequently the focus will be directed towards one model (Random Forest,235

RF) and an example station to provide a more in-depth insight into the different evaluation scores and differences in temporal

resolution. The scores were calculated for all the initialization months of the hindcast and for different temporal resolutions

(daily, weekly, monthly). For demonstration we highlight the performance of the hindcast framework for selected months

providing weekly to monthly scores, which are temporal scales of interest for long term water management decisions. Further

background information on evaluation score results based on different initialization months, temporal scales, target variables240

and ML models can be found in the Appendix.

3.1 General performance

To obtain understanding of the overall performance of the hindcast framework
:::::
hybrid

::::::::::
framework

:::
for

::::::::
discharge

::::::::
hindcasts,

the CRPSS aggregated over all hindcasts for all stations and all ML models was computed. This was done by computing all

the individual daily CRPSS results of all the hindcasts of every station and methods. The CRPSS results were additionally245

aggregated by lead day for the different temporal scales before averaging. The average CRPSS (weekly temporal scale) was
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used for Fig. 2, where the CDFs for the first 12 lead weeks are highlighted, with CRPSS ranging from -1 to 1, with values

above 0 indicating the hindcast framework outperforming the climatological reference. As expected, the CRPSS decreases

with increasing lead time (with CDF lines moving up and the zero line being crossed earlier) and naturally converges after 7

weeks. However, up to lead week 12 roughly 60% of all stations and models show a better performance than the climatological250

reference. Even better results can be seen for surface water levels (Fig. B1), where up to 80% show a better performance. Even

though the separate evaluation scores can vary slightly between target variable and station (locations) (shown later on), the

overall hindcasting framework shows a positive tendency compared to hindcasts solely based on climatology.

:::
We

::::
also

::::::
observe

::::
that

:::
the

::::::::
hindcast

:::::::::
framework

::::::
shows

::::::
higher

:::::::::::
performance

::::::::
compared

:::
to

:::
the

::::::::::::
bias-corrected

:::::
EFAS

::::::::
seasonal

::::::::::::
(re)forecasting

::::
data

::::
(Fig.

:::
3),

::::::::
indicating

::::
the

:::::
added

::::::
benefit

::
of

::::::
having

::
a
:::::
hybrid

::::::::::
framework

:::
that

::::::::
includes

::::::
locally

::::::
trained

:::::::
models.255

::
In

:::
Fig.

::
3,
::::

the
::::::
CRPSS

::::::
results

:::
for

:::
two

:::::::
stations

:::::::
(Lobith

:::
and

:::::::
Eijsden)

::::::
based

::
on

:::
the

::::::::::::
bias-corrected

:::::
EFAS

::::
(for

:::
the

::::
grid

:::
cell

::::::
where

::
the

::::::
station

::
is
:::::::
located)

::::
and

:::
the

:::::
hybrid

::::::::::
framework

:::
are

::::::::::
highlighted.

::::::::::
Differences

::
in

::::
skill

:::
for

:::::
larger

::::
lead

:::::
times

:::
but

:::
also

::::::::::
throughout

:::::::
different

:::::::::::
initialization

::::::
months

:::
can

:::
be

::::
seen

:::
for

::::
both

:::::::
stations.

:::::::::::
Furthermore,

:::::::
despite

:::
the

:::::
EFAS

::::
data

:::::
being

::::::::::::
bias-corrected

:::
for

:::
the

::::::
specific

::::::::
locations,

::::
the

::::
skill

:::
for

:::::::
example

::::::
station

:::::::
Eijsden

::
is

::::::::
relatively

:::
low

:::
for

:::::
some

:::::::
months

::::::::
indicating

::::
that

::::::::
forecasts

:::::
based

:::
on

::::::::::
climatology

:::::::
showing

::::::
similar

:::::
skill.

::::
The

:::::::::::
improvement

::
in

:::::
local

::::
skill

::
is

:
a
:::::
result

:::
of

:::
the

::::
local

:::::::
training

::::
and

:::
the

::::::
ability

::
of

:::
the

::::
ML260

:::::
model

::
to

::::
also

::::
use

::::
other

::::::::::
information

:::::
(e.g.

:::::::::::
precipitation,

:::::::::::
temperature)

::
to

::::::
further

::::::::
improve

::
its

:::::::
forecast

:::::::::
compared

::
to

:::
the

::::::
EFAS

::::::
system.

:

Figure 3.
::::::
CRPSS

:::::
(daily)

:::::
shown

:::
for

:::::
EFAS

::::
input

:::
data

::::::::::::
(bias-corrected)

:::
and

::::::::
hindcasts

:::::::
computed

:::
by

::
the

:::::
hybrid

:::::::::
framework

::
for

::::::
stations

::::::
Lobith

:::
and

:::::
Eijsden

:::
(a)

:::::
EFAS

:
at
::::::
Lobith,

::
b)

:::::
hybrid

::::::::
framework

::
at

::::::
Lobith,

:
c)
:::::
EFAS

::
at

::::::
Eijsden,

::
d)

:::::
hybrid

::::::::
framework

::
at
:::::::
Eijsden).

:::::::::
Differences

::
in

:::
skill

:::
for

:::
lead

::::
times

:::
and

::::
also

::::::::
throughout

:::::::
different

::::::::::
initialization

:::::
months

:::
can

:::
be

:::::::
observed

:::
with

:::
the

:::::
hybrid

::::::::
framework

::::::::
indicating

:
a
::::::

higher
:::
skill

:::
for

::::
local

::::::::
predictions

::::
than

::
the

::::
large

::::
scale

:::::::::
forecasting

::::::
system.

During the analysis of the evaluation scores for all the different ML model hindcasts only a minor differences between the

models are noticeable, which is seen throughout most stations along the main river network, especially for discharge hindcasts

(Fig. 4). Minor differences between methods are observed for surface waterlevel depending on the station location (Fig. B2),265

where for the example stations shown the more simpler methods show a slightly better skill. The minor differences are likely

due to the limited impact of the model selection compared to the inherent uncertainty (represented by the ensemble spread)
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Figure 4. Overview of weekly CRPS values for month January, May and September. Different ML model scores, average of ML models

score (dashed line) as well as climatological reference (grey) are shown for three discharge stations
:::::::::
(Hagenstein

:::::
Boven

:::::::
(orange),

:::::
Driel

::::::
(yellow)

:::
and

::::::::
Borgharen

::::
Dorp

::::::
(blue)). For most months shown and first few lead weeks, the CRPS of the hindcast framework shows a lower

score than the climatological reference. However, only minor differences between the ML models were observed. Maps were created using

the python package Cartopy (Elson et al., 2022), which uses basemap data from Made with Natural Earth and © OpenStreetMap contributors

2022. Distributed under the Open Data Commons Open Database License (ODbL) v1.0.

in the dynamical meteorological and hydrological forecast data. The forecasting skill is likely more dependent on the skill by

which the input variables are forecasted, which apparently make the differences in skill between the ML models insignificant

in comparison. In addition, the high temporal aggregation (monthly) and post-processing of the results before calculating the270

different evaluation scores, smoothing out the original differences in hindcasts results reduce the differences in performance

between models.

Shifting the focus from the whole hindcast framework to a more detailed exploration of the evaluation metrics, the following

paragraphs focus on results of one ML model and later on one example station. As hindcast results indicate that the differences

between the models are minor, we will focus on the RF model, which previously already showed a promising performance275

Hauswirth et al. (2021). Figure 5 shows the weekly Anomaly Correlation Coefficient (ACC) for the discharge hindcasts at

various stations (each represented by a pie chart) throughout the Netherlands for initialization months a) January, b) April, c)

July and d) October. The ACC values per week are indicated by the pie slices arranged clockwise and their colour, dark blue

indicating a high correlation coefficient while light yellow slices show weeks with a lower coefficient (note only significant

values are shown). Looking at the results for the different months in Fig. 5 indicate that for all months shown, the ACC decreases280

with increasing lead weeks. However, for all months the first few weeks (min. 3-4 weeks) show a high and significant score.

This can be observed for all stations along the main river networks, both Rhine and Meuse, while stations which are located at

smaller streams or channels, which are strongly influenced by water management, can be more challenging (e.g. station close

to the sea which is located at a shipping channel).
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Figure 5. Anomaly Correlation Coefficient (ACC, weekly) for a) January, b) April, c) July and d) October for discharge hindcasts computed

by the RF model showing the results for different stations (limited selection for visual purpose) in the national monitoring network. Only

::::::::
significant

:::::
values

::
are

::::::
shown

:::::::
(indicated

:::
by

::::
range

::
of
:::
0.4

:::
and

::::::
higher).

::::::::::
Furthermore,

::::
only

:
major river network are shown, smaller streams or

infrastructures are not highlighted (station along the coast is placed at a sluice along a stream). Maps were created using the python package

Cartopy (Elson et al., 2022), which uses basemap data from Made with Natural Earth and © OpenStreetMap contributors 2022. Distributed

under the Open Data Commons Open Database License (ODbL) v1.0.
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Figure 6. ACC results for
:::
the

:::::::
discharge

:::::::
hindcasts

::::
using

:::
the

:::
RF

:::::
model

::
of station Hagenstein Boven over different temporal scales (a) daily,

b) weekly , c) monthly) using the RF model
::
and

:::::::
different

::::::::::
initialization

:::::
months. Only significant values are shown

:::::::
(indicated

:::
by

::::
range

::
of

:::
0.4

:::
and

:::::
higher).

The observations from countrywide ACC analysis are supported by a more detailed analysis for station Hagenstein Boven285

located on the Rhine river network, roughly in center of the Netherlands and influenced by water management. We clearly see

that there are differences in ACC per lead and initialization month related to the initialization month of the hindcast and the

length of the forecast (Fig. 6),
::::
also

::::::
already

:::::::::
observable

::
in
::::
Fig

:
5
:::
for

:::
the

:::::::
different

:::::::
stations

:::
and

:::::::::::
initialization

::::::
months. In addition,

it
:::
Fig.

:
6
:
shows that the differences on the ACC in temporal aggregation from daily, weekly to monthly temporal scale have a

minor impact and that the skill assessment is robust. Significant ACC values can be observed throughout the first lead month for290

all initialization months. For early spring and summer months (March-July), significant ACC values for discharge predictions

can be seen until two months in advance, in all temporal aggregation levels. The increase in significant lead time for the early

spring months (March and April) is due to the snow melt dynamics in upstream catchment that were captured in the model

training period (done prior to this study) and the physical model inputs from the EFAS system at the Lobith and Eijsden

stations. The observation of more significant ACC values during the spring months due to the snow melt dynamic can be found295

throughout the stations along the Rhine, and less pronounced for the stations along the Meuse. Discharge predictions from late

summer on show lower ACC values, likely due to the lower predictability in atmospheric weather patterns and reduced water

storage in highly predictable stores like snow and groundwater. Unrealistic long lead times with significant values are likely

due to lower observation records that can occur throughout the years, despite the selection of stations with limited missing

records. Overall, ACC values for the discharge hindcasts show that hindcast anomalies are captured well for lead times up300

to one or two months for all initialization months compared to the observed anomalies for a complex station like Hagenstein

Boven, which is affected by water management and upstream water reallocation. Furthermore, the hindcast framework was
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Figure 7. Heatmaps of weekly ACC (same as in Fig. 6), CRPSS and BSS for
:::::::
discharge

:::::::
hindcasts

:::
(RF

::::::
model)

:
of
:
example station Hagenstein

Boven
::
for

:::::::
different

:::::::::
initialization

::::::
months. a) ACC only significant values are shown

::::::::
(indicated

::
by

::::
range

::
of

:::
0.4

:::
and

::::::
higher), b) CRPSS and c)

BSS indicating a good performance (in dark blue and values above 0) compared to climatological reference.

able to capture the general snow melt dynamic in early spring, resulting in significant values up to a lead time of two months

at the onset of summer.

To check the robustness of the results we also analyzed the forecast performance with the CRPSS and BSS. The CRPSS was305

computed to assess the general performance of
:
in

:::::
terms

::
of

::::::
spread

:::
and

::::::::
accuracy

::
of

:
the hindcast framework. Figure 7 represents

the weekly CRPSS values for the same example station Hagenstein Boven in the center panel. The heatmap giving an overview

of the skill score throughout the year with values ranging from 0 to 1, with values above 0 representing lead weeks where the

hindcast framework outperforms the climatological reference. Similar to the ACC, the first few lead weeks show consistently

good performance, indicating that the hindcast spread is close to the one of observations, while with increasing lead time the310

CRPSS decreases. This pattern can be observed by stations along the main river networks.

3.2 Hydrological extremes - low flows

To assess the hindcast frameworks capability of simulating low flow events, the BSS was computed using a threshold for the

lowest 20th percentile of discharge observations and hindcasts. This approach is similar to other studies using a threshold

approach for drought definition (Van Hateren et al., 2019; Van Loon and Laaha, 2015). Figure 7 represents the weekly BSS315

on the right panel again for the example station Hagenstein Boven. Blue tiles on the heatmap indicate lead times where the

hindcast framework outperforms the climatological reference strongly.

The BSS shows a less consistent skill pattern in the first lead month compared to the other scores. However, most of the

skill that is seen shows a similar range of lead time, skill throughout long lead periods is decreases (e.g. after lead week 5).

Compared to the other scores, tiles with lower BSS performance can be spotted in summer (June, Aug, Sept) and early spring320
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months (Feb, March) for this station, in some cases for the first lead month or the following longer lead months. Some of these

weeks appear to be more difficult to predict compared to early months in the year. This is likely due to unequal distribution of

low flow occurrences throughout the year: where during summer months low flows can be more common and therefore chances

to not fully capturing every event are higher, the low flows during winter are less common and captured relatively well with the

snow melt dynamic as seen in previous scores. However, important months in terms of capturing drought development (April325

and May) show skill for up to 5 weeks. The described observations for the example station are in line with findings at other

stations along the Rhine river network and less pronounced along the Meuse.

3.3 Difference between target variables and scenario runs

The result section so far has been focusing on the discharge hindcasts to be able to focus on the different evaluation scores

in more detail. However, the hindcast framework was also used to hindcast surface water levels .
::::
(Fig.

:::
B1,

::::
B2,

:::
B3,

::::
and

::::
B4).330

Surface water level prediction skill shows a similar pattern and trend, regarding ACC and CRPSS results
::
for

:::
the

:::::::
national

::::
and

:::::
model

:::::::
average

::::
(Fig.

:::
B1)

:::::
show

:
a
:::::::
slightly

:::::
higher

:::::::
CRPSS

::::
skill

::::
than

:::
for

::::::::
discharge

::::
(Fig.

:::
2).

::
In

:::::::
addition,

::::::
similar

:::::::
patterns

:::
and

::::::
trends

::::::::
regarding

::::
ACC

:
for stations along the main river network (Fig. B3 and Fig. B4

:::
B2)

:::
and

::::::
CRPSS

::::::
results

::::
(Fig.

:::
B3

:
for an example

station)
::::
were

:::::::
observed. Yet, surface water levels seem to be more challenging to hindcast with the evaluation scores being

slightly lower especially for stations in smaller channels and further away from the main river network. Similar findings are335

found for BSS, where the performance of the hindcast for low flow periods was tested. As can be expected, stations which are

not along the main river network and located downstream the main input variables (Rhine at Lobith, Meuse at Eijsden) show

lower skills in capturing low flow periods compared to stations closer to input variables and the Rhine river. While ACC and

BSS show a slightly lower performance, the CRPSS ranges are in the same range as for discharge hindcasts.

An additional discharge hindcast run was done including water management information representing some of the major340

infrastructures, based on the same approach previously explored by Hauswirth et al. (2021). Similar to the findings in Sec.

3.1, only minor difference between the different ML methods were observed. Furthermore, incorporating the additional water

management information only lead to insignificant improvements regarding the hindcast skill. The improved performance as

well as the differences in ML model performance as seen in the previous study by Hauswirth et al. (2021) could therefore not

be detected in this forecasting experiment.345

4 Discussion

In this study we tested the suitability of ML models for seasonal predictions of several hydrological target variables at local

scales throughout the Netherlands. This framework incorporated ML models over varying complexity, ranging from Multilinear

Regression, Lasso Regression, Decision Tree to Random Forests and LSTM.

While the methods have shown differences in their performance during training and testing phase on historical observations350

(especially their ability to reproduce extreme events Hauswirth et al. (2021)), interestingly applying the same subset of models

on seasonal (re)forecasting information did not lead to large differences in model performance. We hypothesize that this
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is caused by the large uncertainty in the meteorological and hydrological input data, that outweighs the relative difference

in performance by the different ML algorithms. In other words the forecasting skill is very much dependent on the skill by

which the input variables are forecasted, which apparently make the differences in skill between the ML models insignificant in355

comparison. In addition, the minor differences seen between the ML algorithms in the original hindcasts were further smoothed

out while calculating the evaluation scores on different temporal scales. The results in this hindcast experiment and the minor

differences between the methods that were observed can be interesting in terms of model choices, in case computational

demand is a key factor. With simple methods showing similar performance as more complex ones, which require more time

regarding setup and training, the previous might appear more suitable. However, a more important factor limiting the model360

performance is the uncertainty introduced by incorporating seasonal (re)forecasting information. A subject for future research

could be on how to incorporate and assess the way the different models deal with that additional challenge. Nevertheless, we

observed that the ML modelling framework used here, which is based on locally trained models, allows for the opportunity to

make hydrological forecasting more locally relevant by being able to forecast based on the station specific characteristics.

While the ML models were previously trained on direct observations, the seasonal (re)forecasting information from SEAS5365

and EFAS introduces additional uncertainty from their forecasting system. We deliberately decided not the retrain the ML

models on the forecasting information, as this more closely mimics the normal operational setting where an already trained

model is used to produce forecasts. However, this provides an additional challenge, as we add another source of potential

uncertainty as the ML models might not be well tuned to the forecast information. Retraining the models would also open up

the opportunity for overfitting the ML models on the forecast data, which is something that should be avoided. Therefore, we370

preferred to use the more realistic operational scenario and use ML models trained on historic observations only, over a setup

that uses ML models specifically trained on forecast data. Assessing the approach of additionally retraining the models for

different cases, e.g. focus on extreme events or climate change trends are opportunities for future projects.

We extended our runs including water management, in line with the approach previously explored by Hauswirth et al. (2021).

However, incorporating variables that represent water management settings in the ML models lead to negligible improvement375

and the improved performance as seen in the previous study could not be detected. We think that the uncertainty included in the

seasonal (re)forecast input data is having a larger influence than the one of added water management information and therefore

the strength of incorporating the additional information as seen in the previous study could not be observed. For future research

it might be interesting to explore what additional steps would be beneficial in terms of model framework and data, to be able to

capture and simulate the details of water management setups also in a forecasting setting, as this would create the opportunity380

for scenario simulations.

The evaluation metrics show that for the majority of the
::::::::
hindcasts

::
of discharge and surface water level stations

::::::::
initialized

::
in

:::
the

::::
early

::::::
spring, skilful predictions for the first lead month one can be made. For early spring and summer month the skill

increases up to 2-3 months, due to the snow melt dynamic being captured by the models in their training phase and the presence

of this signal in the seasonal reforecasts of the discharge at Lobith used as input to the ML models. The skilful prediction for385

the first few lead months are comparable with other studies which have evaluated physically based systems (Wanders et al.,

2019; Arnal et al., 2018; Girons Lopez et al., 2021; Pechlivanidis et al., 2020). However, contrary to the large scale physically
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based forecasting systems, hybrid frameworks such as the one presented in this study show to skilfully forecast target variables

at specific locations which would not be feasible and at a fraction of the computation demand.
:::::
While

:::::::
training

:::
ML

::::::
models

::::
can

::::
range

:::::
from

:
a
::::
few

::::::
minutes

::
to

::::::
hours,

:::::::::
depending

::
on

:::
the

::::::
method

::::
and

::::
setup

::::::::::::::::::::
(Hauswirth et al., 2021),

:::::::
running

:::
the

::::::
hybrid

:::::::::
framework390

::
as

::::
used

::
in

:::
this

:::::
study

::::
only

:::::
takes

::
a

:::
few

:::::::
seconds

::
to

:::::::
minutes

:::
per

::::::
station

:::
and

::::::::
ensemble

::::::::
member.

:
This can be interesting for water

management needs at smaller scale or scenario analysis. Besides the fast running times of the models an additional benefit

for the current framework is the input data set, which can be easily replaced by other input sources regarding precipitation,

evaporation, discharge and surface water level as it was done in this study with EFAS and SEAS5 data. This framework

however
::
It

:
is
::::::::
however

::::::::
important

::
to

::::::
realise

:::
that

:::
the

:::::::
original

:::::::::::
computation

::::
time

:::::::
required

:::
for

:::::
large

::::
scale

:::::::
seasonal

:::::::::::::
(re)forecasting395

:::::::::
information

:::::
such

::
as

:::
the

:::::
latter

::::
two

::
is

:::
still

::::::::
required

:::
but

::::::
outside

:::
of

:::
the

::::::
hybrid

:::::::::
framework

::::::::
presented

:::::
here.

::::::::
However,

::
in

::::
case

:::
of

:::::::
scenario

::::::::::
simulations,

::::::
where

::::
local

::::::::::
information

::::::
would

:::
be

:::::::
required

:::
and

::::::
tested

::
in

::
a

::::
more

:::::
quick

::::::
setting

::::
but

:::::
based

:::
on

:::
one

:::::
large

::::
scale

:::::
input

:::
data

::::
set,

:::
the

:::::
hybrid

::::::::::
framework

:
is
::::
still

::
of

::::::
benefit

::
as

::
it

:::
can

:::::::
compute

:::
the

::::::::
different

::::::::
hindcasts

::::
more

:::::::::
efficiently.

:

:
A
::::::
further

:::::
point

::
to

::::::
realise

:
is
::::
that

:::
this

:::::::::
framework

:
only focuses on time series at existing stations and therefore does not address

the challenge of predicting at ungauged basins. However, recent advances in deep learning methods show that forecasting at400

ungauged sites may be a possibility if auxiliary geographically distributed variables (elevation, soil, river network topology)

are incorporated (Kratzert et al., 2019).

Similar to Hunt et al. (2022) we show that a hybride
:::::
hybrid

:
forecasting system can provide added benefits compared to

physical forecasting system. In addition to Hunt et al. (2022) this work confirms that the benefits of hybride forecasting can

also be obtained for long-term forecasting. In this study we also show that these hybrid forecasting systems have the ability to405

provide more local information compared to large-scale physically based systems. As with other models, using ML models in

hydrology comes with benefits and drawbacks. While the data availability can be a limiting factor for effectively train a model,

the flexibility and low computational demand compared to large scale physically based models is an advantage. We think that

with the right data available, ML models like the ones used here can easily be (re)trained for more specific studies and cases

as well. Additional training on low flow periods for example could enhance drought predictions while incorporating climate410

change aspects and land use could help to assess future trends regarding water availability under increased human influence.

5 Conclusions

In this study we explored the suitability of a hybrid hindcasting framework, combining data-driven approaches and seasonal

(re)forecasting information to predict hydrological variables locally for multiple stations at national scale for the Netherlands.

Different ML models, previously trained on historical observations, were run with a simple input data set based on forecast415

data from EFAS and SEAS5 and evaluated using the evaluation metrics Anomaly Correlation Coefficient (ACC), Continuous

Ranked Probability (Skill) Score (CRPS and CRPSS), and Brier Skill Score (BSS). The hindcast framework’s skill was com-

pared to the skill of a climatological reference hindcast. Aggregating the hindcasts of all stations and ML models revealed that

the hindcasting framework was outperforming the climatological reference forecast by roughly 60% and 80% for discharge and

surface water level hindcasts. ACC results further show that independently of the discharge prediction’s initialization month, a420
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skilful prediction for the first lead month can be made. For spring months the skill extends up to 2-3 months due to stronger link

to snow melt dynamic and temperature related impacts on the hydrological cycle that were captured in the training phase of the

model. CRPSS and BSS show a similar pattern of skilful predictions for the first few lead weeks compared to the climatological

reference forecasts. Skilful discharge predictions are particularly observed along the main river networks, Rhine and Meuse,

which can be linked to the close proximity of the discharge input variables. This distribution of performance is also observed425

for surface water level hindcasts. We also observed that the difference between different ML models in the hindcast results

are only minor, contrary to the differences observed when reproducing historical timeseries. This reduction in differences in

performance between ML models is attributed to the relatively large uncertainties in seasonal (re)forecast data, reducing the

relative impact of the model uncertainty in the total hindcast uncertainty. Even though the current hindcast framework is trained

on historical observations, the hybrid framework used in this study shows similar skilful predictions as previous large scale430

forecasting systems. With the focus on creating a hindcast framework that is simple in its setup, fast and also locally applicable,

challenges that can come with large scale operational forecasting systems for local users can be lowered. In addition, the ML

hindcast framework also significantly reduces the computation demand and allows decision makers to explore more options

and better quantify forecast uncertainty using a variety of ML models and inputs. Adapting the framework to special inter-

ests, e.g. droughts or climate change trends, by retraining the original ML models for specifically this purpose could further435

increase its performance. We conclude that the ML framework as developed in this study provide a valuable way forward, to

making seasonal (re)forecast information more accessible to local and regional decision makers in the field of operational wa-

ter management. In this study we purposely used publicly available seasonal forecast information which is globally available.

This allows us to deploy this framework around the world and potentially provide relevant forecasting information for water

managers and decision makers outside of the study area.440
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Appendix A: Material and Methods

Figure A1. Overview input stations (left) for ML model framework, as well as the locations of discharge (center) and surface water level

(right) target stations used during model development, all figures directly taken from Hauswirth et al. (2021). Discharge and surface water

level stations include the RMSE score achieved during evaluation of the modeling framework (more details can be found in Hauswirth et al.

(2021)). Maps were created using QGIS (QGIS Development Team, 2022), HCMGIS plugin and basemap data from ESRI Ocean (Sources:

Esri, GEBCO, NOAA, National Geographic, DeLorme, HERE, Geonames.org, and other contributors) and GADM database.

Appendix B: Results450

B1 General performance
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Figure B1. CDFs of weekly CRPSS shown for different lead weeks with CRPSS being aggregated over all models and stations for fresh

surface water level hindcasts (rivers, streams and lakes).

Figure B2. Overview of weekly CRPS scores for month January, May and September. Different ML model scores, average of ML models

score (dashed line) as well as climatological reference (grey) are shown for three surface water level stations along the main river networks

:::::::::
(Hagenstein

:::::
Boven

:::::::
(orange),

::::::::
Nijmegen

:::::
Haven

::::::::
(yellow),

::::::::
Borgharen

::::::::::
Julianakanaal

::::::
(blue)). Maps were created using the python package

Cartopy (Elson et al., 2022), which uses basemap data from Made with Natural Earth and © OpenStreetMap contributors 2022. Distributed

under the Open Data Commons Open Database License (ODbL) v1.0.
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Figure B3. Anomaly Correlation Coefficient (ACC, weekly) for a) January, b) April, c) July and d) October for surface water level hindcasts

(fresh surface water levels such as rivers, streams and lakes). Simulation results are based on the RF model showing the results for different

stations (limited selection for visual purpose) in the national monitoring network. Only major river network are shown, smaller streams or

infrastructures are not highlighted (station along the coast is placed at a sluice along a stream). Maps were created using the python package

Cartopy (Elson et al., 2022), which uses basemap data from Made with Natural Earth and © OpenStreetMap contributors 2022. Distributed

under the Open Data Commons Open Database License (ODbL) v1.0.
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Figure B4. Overview of weekly evaluation scores for fresh surface water level hindcasts
::

for
::::::
different

::::::::::
initialization

:::::
months. a) ACC overview

throughout the year for example station Nijmegen, b) CRPSS and c) BSS heatmaps
:::
for

::::::
example

:::::
station

::::::::
Nijmegen.
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