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Abstract 14 

The aims of this study were to determine the groundwater quality index (GQI) using an averaged 15 

neural network and evaluate its field applicability with two-dimensional (2D) spatial analysis. The 16 

GQI was computed using 29 water quality parameters obtained at 3,552 portable groundwater 17 

wells used as drinking water sources. The GQI was divided into the following three grades: 18 

‘worrisome’, <0.89 (20.1% of the wells); ‘good’, 0.89–0.94 (62.8%); and ‘very good’, >0.94 19 

(17.1%). Based on the random forest, the most important water quality parameters were general 20 

bacteria, turbidity and nitrate. The 2D spatial analysis confirmed notable differences in the GQI 21 

grades among regions. The 10-year long-term groundwater quality monitoring in the ‘worrisome’ 22 

grade showed the nitrate and chloride concentrations have continuously increased. These results 23 

indicate that the coupling of the GQI with 2D spatial analysis is a promising approach that can be 24 

applied in groundwater management and vulnerability assessment.  25 

 26 

Keywords: Groundwater, Water quality index, Data-Driven modelling, 2D spatial analysis,  27 

vulnerability assessment  28 
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1 Introduction  29 

Groundwater is the preferred source of drinking water worldwide (Guppy et al., 2018) . 30 

Groundwater accounts for almost half of all drinking water, ~40% of irrigation water, and a third 31 

of the water used for industrial purposes (Centre, 2018). To systematically manage groundwater 32 

and prevent contamination, the groundwater quality is monitored by using national groundwater 33 

monitoring wells and the wells managed by the local government (Lapworth et al., 2019). Because 34 

these wells were established in consideration of the land use and hydrogeological characteristics 35 

of each region and monitored for a long-time, it is easy to identify correlations between 36 

groundwater pollution and environmental factors (Li et al., 2019). To analyse the groundwater 37 

quality at a higher spatial resolution, the authorities classify groundwater quality categories into 38 

microbial, chemical, acceptability, and radiological aspects and manage the groundwater quality 39 

by using various parameters for each category. With the increasing accumulation of groundwater 40 

quality data reflecting the land use and hydrogeological characteristics, the number of attempts to 41 

predict the water quality or derive water quality management policies has increased (Bhanja et al., 42 

2017).  43 

 The water quality index (WQI) is an algebraic approach to evaluate the water quality by 44 

converting chemical, physical, and biological parameters with different units into a single value 45 

(Misaghi et al., 2017). Many WQIs have been established to characterise surface water such as the 46 

WQI developed by the National Science Foundation (Brown et al., 1970), the Oregon Water 47 

Quality Index (Cude, 2001), Canadian Council of Ministers of the Environment WQI (Lumb et al., 48 

2006), and Weighted Arithmetic WQI (Brown et al., 1972). Attempts have been made to apply the 49 

WQI to other water resources, such as ground- and seawater, but in most cases, the surface water 50 
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indices were used (Jha et al., 2015). Because groundwater has different properties than surface 51 

water due to chemical and physical processes, including the hydrochemistry, mineralogy of  52 

aquifer, and precipitation–dissolution processes, it is necessary to develop a WQI suitable for 53 

groundwater. Although in a few groundwater quality index (GQI) studies, it has been attempted to 54 

evaluate the groundwater quality with water temperature, nitrate, pH as main parameters, it is 55 

difficult to accurately determine the water quality with a limited number of parameters and data 56 

(Abbasnia et al., 2019; Gao et al., 2020). Therefore, the GQI must be improved by incorporating 57 

the massive amount of groundwater data, which was recently collected by the authorities.  58 

Recently, many attempts have been made to predict the groundwater quality by using data-59 

driven models. Data-driven models predict the output using a mathematical model of input 60 

variables derived by the supervised learning of a given dataset. Algorithms for learning the datasets 61 

include neural network, fuzzy systems, support vector machine (SVM), ensemble trees, and 62 

discriminant analysis (Wei et al., 2018). Previously, researchers predicted water quality indicators 63 

such as the dissolved oxygen, turbidity, pH, and ammonia using data-driven modelling (artificial 64 

neural network, ANN; random forest, RF; SVM) and yielded model prediction errors below 15% 65 

(Antanasijević et al., 2014; Meyers et al., 2017; Najah Ahmed et al., 2019). In most previous 66 

studies using data-driven models, single water quality parameters were predicted by utilising 67 

multiple water quality parameters as input variables. However, a data-driven model that can be 68 

used to evaluate or predict the overall water quality, such as the WQI or vulnerability assessment, 69 

has not been developed. 70 

 The objective of this study was to test the hypothesis that data-driven models can be applied to 71 

potable groundwater in South Korea to accurately predict the groundwater vulnerability and 72 
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determine the groundwater quality. The prediction of the groundwater vulnerability is necessary 73 

to establish policies based on prioritising regions requiring groundwater quality management. We 74 

collected water quality datasets including 47 parameters and 8,326 wells through the ‘Safe 75 

Groundwater Project in Unsupplied Areas (2017–2020)’ (Fig 1). We calculated the single distance 76 

score for each well with potable groundwater by determining the difference between the water 77 

quality parameters and water quality standards. We then created a model by using the water quality 78 

datasets and distance score utilising data-driven techniques including averaged neural networks.. 79 

Regions with a high groundwater pollution vulnerability were selected by linking the binning 80 

technique with two-dimensional (2D) spatial analysis, and the accuracy of the groundwater 81 

pollution vulnerability was evaluated by analysing the long-term monitoring results obtained at 82 

national groundwater monitoring wells in the selected regions. The results show that a simple WQI 83 

with data-driven modelling is sufficient to select priority groundwater quality management areas. 84 

Although the focus of this study was placed on potable groundwater, our results can be used as 85 

guidance for data-driven modelling efforts considering other water resources that are directly 86 

related to human health (e.g., irrigation and drinking water). 87 

 88 

2 Methods 89 

2.1 Study sites  90 

Data were acquired from 2017 to 2020 within the framework of the ‘Safe Groundwater Project 91 

in Unsupplied Areas (2017–2020)’ managed by the National Institute of Environmental Research, 92 

South Korea. The data included 47 drinking water quality parameters for a total of 8,326 Korean 93 

groundwater wells (2017: 2,061 wells; 2018: 2,142 wells; 2019: 2,019 wells; 2020: 2,104 wells). 94 
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The locations of the wells are shown in Fig. 1. All wells used in this study have been used as 95 

drinking water sources by Koreans. Information about the year of the well development and land 96 

use type was obtained by surveys. The groundwater quality parameters used in this study, 97 

including harmful inorganics and organics, microorganisms, and substances affecting the 98 

aesthetics, and standards are summarised in Table S1. 99 

 100 

2.2 Data preprocessing 101 

The R software (version 3.6.1) was used for data preprocessing. Because the aim of this study was 102 

to evaluate the potential use of groundwater as drinking water based on the prediction of 103 

groundwater quality, wells exceeding the groundwater quality standard were excluded from the 104 

analysis. In total, 4,774 wells had an inappropriate groundwater quality, representing 57.3% of the 105 

total groundwater (8,326 wells). Thus, 3,552 wells with potable groundwater were used for data-106 

driven modelling. 107 

Among the 47 water quality parameters, 18 parameters that were not detectable in the potable 108 

groundwater were removed. The 18 parameters included three with the aesthetic effects (detergents, 109 

smell, and taste), two harmful inorganic materials (cadmium and cyanide), 10 harmful organic 110 

materials (phenol, diazinon, parathion, fenitrothion, carbaryl, 1,1,1-trichloroethane, 111 

tetrachloroethylene, 1,2-dibromo-3-chloropropane, carbon tetrachloride, and 1,1-112 

dichloroethylene), and three microorganisms (total coliform, faecal coliform, and Escherichia coli). 113 

The pH was not considered for further study because it insignificantly affects the analysis if the 114 

drinkable level is satisfied. Therefore, the analysis and modelling were carried out with 28 115 

parameters (general bacteria, lead, fluorine, arsenic, caesium, mercury, chromium, boron, copper, 116 
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zinc, chlorine, iron, manganese, aluminium, ammonium, nitrate, sulphate, potassium 117 

permanganate consumption, trichloroethylene, dichloromethane, benzene, toluene, ethylbenzene, 118 

xylene, 1,4-dioxane, total hardness, colour, and turbidity).  119 

 120 

2.3 Calculation of the groundwater quality index (GQI) 121 

To evaluate the water quality indicators used in this study in the form of a single quantitative 122 

index, the difference between each water quality indicator and the water quality criterion was 123 

calculated. First, for potable groundwater, min–max normalization (Patro and Sahu, 2015) was 124 

performed, where the water quality standard was used as max for each parameter (Fig. 2A). The 125 

following equation was used: 126 

𝑃𝑛 =  
𝑃𝑒 − 𝑃𝑒 𝑚𝑖𝑛

𝑃𝑠 − 𝑃𝑒 𝑚𝑖𝑛
,                                                                  (1) 127 

where 𝑃𝑛 denotes the normalised value, 𝑃𝑒 represents the value of each parameter, and 𝑃𝑆 is the 128 

groundwater quality standard for each parameter. 𝑃𝑒 𝑚𝑖𝑛 represents the minimum of 𝑃𝑒. Because all 129 

data used for the modelling represent potable groundwater, 𝑃𝑆 is the maximum value.  130 

Second, the deviation was calculated using the following simple equation: 131 

𝑃𝑑 =  1 − 𝑃𝑛,                                                                     (2) 132 

where 𝑃𝑑 is the parameter's deviation value and 1 is the groundwater quality standard for each 133 

parameter. In min–max normalization, the minimum value becomes 0 and the maximum value 134 

becomes 1 because the maximum value is based on the groundwater quality.  135 

In the third step, the distance score of the well as the single quantitative index was calculated using 136 

the following equation: 137 
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𝑊𝑑 =  
∑ (𝑃𝑑)2𝑥

𝑖=1

𝑥
,                                                                  (3) 138 

where 𝑊𝑑  is the distance score and 𝑥 represents the number of parameters. The calculated 139 

distance score is called groundwater quality index (GQI). 140 

Based on the GQI, the data were divided into three grades, where 𝑊𝑑 = 0.94 corresponds to the 141 

top 20% and 𝑊𝑑 = 0.89 corresponds to the bottom 20%. A value <0.89, >0.94, and ranging 142 

between 0.84–0.94 represents worrisome, very good, and good areas, respectively. 143 

 144 

 2.4 Model setup   145 

Data-driven modelling was carried out using the R package ‘caret’ (version 6.0-86) (Kuhn, 2008). 146 

‘Caret’ is an abbreviation for classification and regression training and the package contains useful 147 

functions for the creation of predictive models (Fig. 2B). It focuses on simplifying training and 148 

tuning processes. It also contains functions for training data preprocessing, parameter importance 149 

calculation, and model visualization. It has the advantage of enabling the parallel processing of 150 

multiple models. A total of ten classification models were chosen and used in this study. The ten 151 

models were used to classify unlearned groundwater vulnerability grades by learning the 152 

previously preprocessed 28 water quality parameters. The models used include averaged neural 153 

network, RF, SVM, ensemble trees, bagged flexible discriminant analysis, gradient boosting, 154 

penalised discriminant analysis, boosted logistic regression, ROC-based classifier, and Naïve 155 

Bayes. The averaged neural network, an ANN model, was created by applying an averaging 156 

technique to the neural network model. It is generated by modifying the functions of ordinary 157 

differential equations applied to the neural network and can be used for both regression and 158 

classification analysis. Decision tree and RF are tree-based models that operate with the goal of 159 

https://doi.org/10.5194/hess-2022-86
Preprint. Discussion started: 1 June 2022
c© Author(s) 2022. CC BY 4.0 License.



9 

 

dividing feature space into multiple areas. The RF is a model in which the performance is improved 160 

based on the use of an ensemble technique called bagging. Discriminant analysis is an analysis 161 

method that is used to identify criteria that can determine which population these samples were 162 

extracted from using sample information from two populations. In this study, bagged flexible 163 

discriminant analysis and penalised discriminant analysis were used. The Naïve Bayes classifier 164 

is a technique prediction based on simple probabilistic and on the application of the Bayes theorem 165 

(or Bayes rule) with a strong independence assumption. The SVM is one of the representative data-166 

driven modelling methods, which is based on an algorithm that identifies boundaries dividing 167 

groups of data by the largest margin. The ROC-based classification is a model based on ROC 168 

analysis and can only be used for classification analysis. The ROC analysis is a method based on 169 

which the below areas are compared by visualising the performance of the classifier with an ROC 170 

curve. With respect to ensemble techniques, we used gradient boosting and boosted linear 171 

regression models, which improve the accuracy of the model by continuously reducing the residual 172 

during the learning process. The ten models described above were trained using caret's default 173 

training and all models involved 5-flod cross-validation by splitting the data into five subsets to 174 

compare the model performance.  175 

The classification performance of the different models was measured using common error metrics, 176 

that is, the accuracy of the confusion matrix and kappa value. Datasets with potable groundwater 177 

were divided into training sets (80%) and test sets (20%; Fig 2B). The training sets were then 178 

further divided into two parts: 80% training set and 20% validation set. The goal of these 179 

procedures was to avoid overfitting issues during the modelling process.  180 

 181 
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2.5 Feature selection 182 

Because the groundwater quality strongly correlates with hydrogeological properties, several 183 

water quality parameter may be biased in certain areas and the water quality predictions based on 184 

the classification model may proceed with low accuracy. To better understand the effect of the 185 

water quality parameters on the data-driven model, the input feature selection was conducted by 186 

RF. The RF can be used to extract the feature importance based on how much each feature 187 

contributes to decreasing the impurity of the trees (‘meandecrease gini’; MDG) (Han et al., 2016). 188 

This parameter can be used to rank the different features.  189 

 190 

2.6 Binning and 2D spatial analysis  191 

Binning is a method that is used to group a number of continuous values into a smaller number of 192 

bins. We used binning to group multiple GQIs into one value of a grid of uniform size in the map. 193 

Based on this method, a representative GQI is obtained for a region and problems caused by 194 

outliers in the closed area can be alleviated. The binning was calculated and visualised using the 195 

‘stat_summary_2d’ function of the R package ‘ggplot2’ (version 3.3.3). When analysing with low 196 

resolution using binning on national maps, the size of the bin was set to 9 km × 11 km (longitude 197 

× latitude). When analysing with high resolution using binning for Chungcheongbuk-do, the size 198 

of the bin was set to 4.5 km × 5.5 km (longitude × latitude), representing one fourth of the 199 

nationwide bin size. Each bin was coloured based on the GQI.  200 

To compare changes in the long-term groundwater quality based on the GQI, an area with a 201 

worrisome (site A: Seangkeuk in Eumseong), good (site B: Gageum in Chungju), and very good 202 

(site C: Heoin in Boeun) GQI was selected. Water quality (nitrate and chloride concentrations) 203 
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datasets were collected from the national monitoring wells in the above-mentioned area. Nitrates 204 

and chlorides were selected because they overlap with the water quality parameters monitored at 205 

the national groundwater monitoring wells and water quality parameters used in this study.  206 

 207 

2.7 Statistical analysis  208 

All statistical analysis were conducted using R software (version 3.6.1). To examine the 209 

differences in the GQIs and water qualities of GQI grades, Kruskal–Wallis analysis was used 210 

according to the normality of data. The significant differences between the GQI grades was further 211 

confirmed using the ‘mctp’ function in the R package ‘nparcomp’ (version 3.0) as a nonparametric 212 

post-hoc method.  213 

 214 

3 Results 215 

3.1 Pollution characteristics of groundwater 216 

Based on Korean drinking water quality standards, the water quality of 65.2% (1,344 wells) of 217 

2,061 wells in 2017; 64.3% (1,377 wells) of 2,142 wells in 2018; 46.0% (928 wells) of 2,019 wells 218 

in 2019; and 53.5% (1,125 wells) of 2,104 wells in 2020 was inappropriate (Fig. S1A). The major 219 

sources of groundwater pollution were microorganisms (42.4%–45.9%), followed by complex 220 

pollution (24.6%–35.0%), harmful inorganics (16.1%–27.1%), substances with an aesthetic effect 221 

(2.4%–6.5%), and harmful organics (one well in 2018; Fig. S1B). The complex pollution 222 

containing  microorganisms or nitrate accounted for 84.5% of the total proportion. Considering 223 

these results, microorganisms and harmful inorganics were major groundwater pollutants in the 224 

study area. However, it was difficult to determine specific external factors (e.g., land use and well 225 
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development year) causing the groundwater pollution (Fig. S2). 226 

 227 

3.2 Characterization of the GQI and grades   228 

The distribution of the GQI calculated in each well has been visualised in a bar graph (Fig. 3A). 229 

From the figure, a right-skewed distribution can be observed for all potable groundwater. The 230 

minimum, maximum, median, and average values of the GQI were 0.7344, 0.9770, 0.9160, and 231 

0.9127, respectively. These results indicate that the water quality of more than half of the wells 232 

was on average within 10% of the water quality standard. Note that the GQI correlates with the 233 

Weighted Arithmetic WQI, one of the well-known single indices for evaluating the surface water 234 

quality (cor = -0.38, Fig. S3). The GQI was divided into three grades: ‘worrisome’, <0.89 (714 235 

wells); ‘good’, 0.89–0.94 (2,229 wells); and ‘very good’, >0.94 (609 wells; solid line in Fig. 3A). 236 

The GQI significantly varied depending on the grade (Kruskal test, p-value < 0.05, Fig. 3B).  237 

To determine the factors that control the GQI of the wells of each grade, the water quality 238 

parameters were analysed using two approaches. First, the number of water quality parameters 239 

higher than half of the water quality standards was calculated for each groundwater well (Fig. 3C). 240 

In the ‘very good’ grade, one or less parameters accounted for more than 95% of the total, whereas 241 

one or two parameters accounted for more than 95% of the total in the ‘good’ grade. In the 242 

‘worrisome’ grade, more than 50% of the water quality standards of one or more parameters was 243 

observed in all wells, and three or more water quality parameters accounted for more than 50% of 244 

the wells. As expected, when the grade changed from ‘very good’ to ‘worrisome’, many water 245 

quality parameters approached the water quality standards. Second, the GQIs of the water quality 246 

parameters contributing to the grade division were statistically compared based on the grade (Fig. 247 
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4). Based on the selection of the ten most important water quality parameters using the RF model, 248 

the most important parameter was ‘general bacteria’, followed by the turbidity, nitrate, total 249 

hardness, sulphate, chloride, zinc, potassium permanganate consumption, fluoride, and iron (Fig. 250 

3D). The deviation value of all selected parameters significantly decreased from ‘very good’ to 251 

‘worrisome’ (Kruskal test, p-value < 0.05, Fig. 4). These results imply that various water quality 252 

parameters were close to the water quality standards in the ‘worrisome’ grade.  253 

 254 

3.3 Data-driven model selection  255 

The performance of ten classification models for the prediction of the GQI was compared based 256 

on the accuracy of the confusion matrix and kappa value (Fig. 5). The ANN model yielded the best 257 

classification performance (96.5%–98.6%), followed by the SVM with an average classification 258 

accuracy of ≥90%. The average classification accuracy of Naïve Bayes and decision tree models 259 

did not exceed 60%. Therefore, the ANN model with a 98.6% classification accuracy was selected 260 

as the optimal classification model. We also applied the ANN model to predict the grades using 261 

individual annual datasets for additional cross-validation. The grades of all annual datasets were 262 

predicted with an accuracy of ~99%.   263 

 264 

3.4 Spatial analysis using GQI binning 265 

Binning is useful for the conversion of large point-based data to a regular grid representing the 266 

aggregation of points in the map and makes it easy to visualise the data at different map scales. 267 

We binned the GQI and grades and plotted them on a nationwide map (each grid: 9 km × 11 km) 268 

for South Korea (Figs S5A and S5B). Among all 1,496 grid cells, 537 (35.9% of total) grid cells 269 
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indicate the GQI and grades, and on average seven wells were included based on the coloured grid 270 

cells. The Chuncheongbuk-do province was selected for the visualization and analysis of the GQI 271 

and grades at a higher resolution by using half of the size of the previous grid (each grid: 4.5 km 272 

× 5.5 km; Figs S5C, S5D, and 6A). Compared with other provinces, the wells are evenly spatially 273 

distributed in the Chuncheongbuk-do Province. Among all 460 grid cells, 80 (17.4% of total) grid 274 

cells indicate the GQI and grades. Among the coloured grid cells, 16 (20.0% of coloured grid), 55 275 

(68.7%), and nine (11.3%) grid cells represent a ‘worrisome’, ‘good’, and ‘very good’ grade, 276 

respectively. In general, the grid cells representing ‘worrisome’ areas are mainly distributed at the 277 

edge of the province. We compared the long-term trends of the water quality of national monitoring 278 

wells by selecting a representative region for each grade to confirm that our results are reliable 279 

(Fig. 6A). Because the main water quality parameters used in this study and those regularly 280 

monitored by the national groundwater monitoring wells are nitrate and chloride, the change of the 281 

two parameters over ten years was analysed (Fig. 6B). Both the nitrate (R2 = 0.289) and chlorine 282 

(R2 = 0.696) concentrations at site A (Saengkeuk in Eumseong), which was determined to be a 283 

‘worrisome’ area, have rapidly increased over the past decade. Both the nitrate (R2 = -0.413) and 284 

chloride (R2 = -0.05) concentrations show a decreasing trend at site C; however, at site B, the 285 

chloride content slightly increased (R2 = 0.149), but the nitrate concentration did not change (R2 = 286 

-0.02). The differences in the long-term water quality trends observed at the national groundwater 287 

monitoring wells were confirmed based on the GQI grades. 288 

  289 

4 Discussion  290 

The ‘Safe Groundwater Project in Unsupplied Areas (2017–2020)’ was conducted including wells 291 
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used by citizens for which regular water quality surveys were not carried out. It is a public service 292 

to provide realistic policies to citizens based on the analysis of the quality of groundwater used by 293 

citizens. In contrast to previous reports of massive water quality monitoring in South Korea, which 294 

mainly included a limited number of water quality parameters monitored in national groundwater 295 

monitoring wells, the data from the ‘Safe Groundwater Project in Unsupplied Areas (2017–2020)’ 296 

are of great value because they include 47 water quality parameters monitored in wells that citizens 297 

use as drinking water sources. More than 50% of the wells used in this study are inappropriate as 298 

drinking water source (at least one water quality parameter exceeded the standard value). 299 

Considering that the ratio of wells with an inappropriate water quality was low (6.5%–8.0%) based 300 

on a previous massive survey of the groundwater quality, the number of wells with an inappropriate 301 

water quality obtained in this study is very high (Lee and Kwon, 2016). The analysed water quality 302 

parameters are significantly higher and various water quality parameters exceed the thresholds; 303 

thus, the proportion of wells with an inappropriate water quality has increased. However, because 304 

both studies showed that the main sources of groundwater pollution are nitrate and total coliform, 305 

it is impossible to simply explain the cause of the increase in the proportion of inappropriate wells 306 

with the increase in the number of analysed water quality parameters (Yun et al., 2014). Because 307 

the characteristics of land use or well development insignificantly affect the proportion of 308 

inappropriate wells, it is necessary to analyse these data with a new approach to link them to 309 

groundwater management policies. In particular, it is necessary to develop an approach by 310 

selection of areas that require groundwater management based on potable water quality data. 311 

We calculated the GQI, a single index of the water quality of each groundwater well, and divided 312 

it into three grades. This approach is similar to the WQI used for surface water (WHO, 2011). In 313 

https://doi.org/10.5194/hess-2022-86
Preprint. Discussion started: 1 June 2022
c© Author(s) 2022. CC BY 4.0 License.



16 

 

particular, the GQI is similar to the WQI suggested by Brown in that it is calculated as a single 314 

index using the difference between the water quality standard and observed value (Seifi et al., 315 

2020). Because the GQI calculated in this study does not include a parameter selection process nor 316 

a weight determination process for the parameter, the process for calculating the GQI is very 317 

simple and an index bias can be avoided. The correlation between the Weighted Arithmetic WQI 318 

and GQI indicates the similarity between the two indices. However, in wells with a good water 319 

quality (low WAWQI value), the GQI can be analysed with higher resolution compared with the 320 

Weighted Arithmetic WQI (high variability of the GQI in the same Weighted Arithmetic WQI). 321 

This indicates that the GQI is more suitable for evaluating the water quality of potable groundwater. 322 

Despite the calculation for potable groundwater, the statistical differences in major water quality 323 

parameters based on the GQI grade confirm the usefulness of the GQI. In addition, it was 324 

confirmed that the difference in the number of parameters with a distance score from the standard 325 

of less than 50% depends on the grade. This means that, because the GQI is calculated in 326 

consideration of the effects of complex parameters rather than one parameter, it is suitable for 327 

Korea, which is facing significant groundwater pollution caused by complex pollutants. Pollution 328 

sources change several groundwater quality parameters at the same time. Therefore, considering 329 

multiple parameters at the same time is more important in tracking pollutants and characterising 330 

groundwater pollution conditions than focusing on one parameter (Menció et al., 2016). Because 331 

the GQI has the same effect as multivariate analysis based on the simultaneous reflection of 332 

changes of multiple water quality parameters, it is of advantage in water quality surveys for both 333 

complex and single pollutants (Menció et al., 2016; Wu et al., 2019).  334 

To develop a data-driven model that can be used to predict the GQI grade, we compared the 335 
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predictive performance of ten classification models. The ANN performed the best, with a 336 

prediction accuracy of ~95%, followed by the SVM and bagged flexible discriminant analysis. 337 

The classification performance of the ANN is high because this ensemble method uses the average 338 

of the predictions from each model by fitting multiple neural network models to the same datasets 339 

(Lone et al., 2021). Based on previous studies, the ANN did not have a good prediction 340 

performance compared with other models (Ehteshami et al., 2016; Naghibi et al., 2018). However, 341 

in most previous studies, ANNs were used for regression analysis to predict specific water quality 342 

indicators rather than grades or classes, and the amount of data was considerably small for ANN 343 

analysis (Ehteshami et al., 2016). In this study, a high performance was obtained because the water 344 

quality parameters were divided into grades and the amount of learning data was suitable for ANN 345 

applications. 346 

Because groundwater pollution will likely quickly contaminate the groundwater in surrounding 347 

areas depending on the flow rate and hydrogeological characteristics, it is important to investigate 348 

the groundwater quality of multiple wells at the regional scale to mitigate groundwater pollution 349 

in a timely manner. However, because it is difficult to proceed for realistic reasons (e.g., well 350 

selection, sampling cycle, and analysis cost), datasets are often converted into data suitable for 351 

grid cell or spatial indices, and geographic areas are partitioned by using an analysis technique 352 

such as binning and displaying in maps (Shrestha et al., 2015). We recalculated the GQI by using 353 

grid cells and binning and determined GQI grades and visualised them on a map. Although it does 354 

not completely match the existing administrative districts, the map indicates the current status of 355 

the groundwater quality for Myun-sized (the second smallest administrative unit in South Korea) 356 

grid cells (4.5 km × 5.5 km). In the case of Chuncheonbuk-do, GQI grades were determined in 357 
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only 17.5% of the province because areas with an abundant water supply and unoccupied 358 

mountainous areas are not subject to water quality monitoring. These simple visualization results 359 

are more intuitive and user-friendly than existing groundwater pollution vulnerability assessments 360 

or data-driven groundwater quality models (Knoll et al., 2019; Ouedraogo et al., 2016). In addition, 361 

the data can be easily linked to groundwater management policies because water quality 362 

management agencies or local governments can utilise existing groundwater quality data without 363 

further monitoring processes. Because the water quality of multiple wells is converged to an 364 

average value during binning, it is necessary to evaluate the reliability of the binned GQI or GQI 365 

grade (Kumar and Krishna, 2018). Reliability assessment should be used to track the groundwater 366 

contamination by investigating the water quality of local wells by grade in the long term. However, 367 

it is difficult to establish a general reliability assessment because a water quality monitoring had 368 

to be conducted only once in one groundwater well in this project. To indirectly evaluate the 369 

reliability, we analysed the trend of the water quality changes over the past ten years based on the 370 

GQI grades using the results of long-term water quality monitoring at the national groundwater 371 

monitoring wells. The water quality results significantly differ depending on the GQI grades. In 372 

particular, in the ‘worrisome’ grade, the contamination of groundwater has rapidly increased over 373 

the past decade, which was not observed for other grades. These results indicate that the reliability 374 

of the water quality evaluation is high, even if the GQI, which is sensitive to the changes in multiple 375 

water quality parameters, is binned and analysed at a regional level. In addition, spatial analysis 376 

including the GQI grade can provide important information for establishing policies with respect 377 

to the selection of groundwater management priority areas. 378 

 379 
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5 Conclusion 380 

A method to evaluate the groundwater quality for drinking purposes based on the GQI was 381 

introduced. The regional characteristics of the GQI were assessed using 2D spatial analysis. 382 

Because the GQI was computed based on mass water quality data (47 water quality parameters 383 

and 8,326 wells) and neural networks, the groundwater quality could be accurately determined. 384 

Overall, the results show that the groundwater in a large number of wells that are currently used 385 

by citizens as drinking water sources, especially in regions with low GQI (e.g., 20.1% for the 386 

‘worrisome’ grade), is polluted. This approach can be used to predict potential groundwater 387 

pollution based on the comprehensive evaluation of the groundwater quality beyond the 388 

dichotomous judgement of the drinking water quality based on the water quality standard. In this 389 

study, a GQI was developed based on several water quality parameters, and it only partially reflects 390 

the water quality characteristics of the groundwater. More parameters, including hydrogeological, 391 

meteorological, and land use parameters, should be added to improve the GQI and effectiveness 392 

of groundwater management and risk assessment. 393 

 394 
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Figure list 504 

Figure 1. Geographical information about the sampling sites in Korea.  505 

Figure 2. (A) Preprocessing for the calculation of the groundwater quality index including 28 water 506 

quality parameters and establishment of grades for data-driven modelling. (B) Workflow of the 507 

data-driven model.   508 

Figure 3. (A) Visualization of the distribution based on the calculated groundwater quality index 509 

and grades (grey vertical line). (B) Comparison of the groundwater quality indices for the grades. 510 

Significant differences between grades are marked by lowercase letters. (C) Proportion of each 511 

grade to the number of water quality parameters with a deviation value of 0.5 or less for each well. 512 

(D) Selection of the top ten features contributing to the model performance using random forest.   513 

Figure 4. Boxplot of the deviation value for the top ten features contributing to the model 514 

performance. (A) General Bacteria, (B) Nitrate, (C) Turbidity, (D) Total hardness, (E) Chloride, 515 

(F) Sulphate, (G) Potassium permanganate consumption, (H) Zinc, (I) Fluorine, and (J) Iron. The 516 

significance of the grades was calculated with the Kruskal–Wallis test. Significant differences (P 517 

< 0.05) between grades are marked by lowercase letters. 518 

Figure 5. Comparison of the data-driven model performance using the accuracy of the confusion 519 

matrix and kappa value. Each classification model includes a five-fold cross validation, with ten 520 

repeated values. 521 

Figure 6. (A) The grades of the binned area for Chungcheongbuk-do are visualised in the map with 522 

three sites representative for the grades. Site A: Saengkeuk in Eumseong, Site B: Gageum in 523 

Chungju, Site C: Heoin in Boeun. (B) Changes in the nitrate and chloride concentrations in the last 524 

ten years measured at national ground monitoring wells in three representative regions. 525 
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Figure 1. Geographical information about the sampling sites in Korea.  529 
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 531 

Figure 2. (A) Preprocessing for the calculation of the groundwater quality index including 28 water 532 

quality parameters and establishment of grades for data-driven modelling. (B) Workflow of the 533 

data-driven model.   534 
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 536 

Figure 3. (A) Visualization of the distribution based on the calculated groundwater quality index 537 

and grades (grey vertical line). (B) Comparison of the groundwater quality indices for the grades. 538 

Significant differences between grades are marked by lowercase letters. (C) Proportion of each 539 

grade to the number of water quality parameters with a deviation value of 0.5 or less for each well. 540 

(D) Selection of the top ten features contributing to the model performance using random forest.   541 

  542 

https://doi.org/10.5194/hess-2022-86
Preprint. Discussion started: 1 June 2022
c© Author(s) 2022. CC BY 4.0 License.



28 

 

 543 

Figure 4. Boxplot of the deviation value for the top ten features contributing to the model 544 

performance. (A) General Bacteria, (B) Nitrate, (C) Turbidity, (D) Total hardness, (E) Chloride, 545 

(F) Sulphate, (G) Potassium permanganate consumption, (H) Zinc, (I) Fluorine, and (J) Iron. The 546 

significance of the grades was calculated with the Kruskal–Wallis test. Significant differences (P 547 

< 0.05) between grades are marked by lowercase letters. 548 
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 550 

Figure 5. Comparison of the data-driven model performance using the accuracy of the confusion 551 

matrix and kappa value. Each classification model includes a five-fold cross validation, with ten 552 

repeated values. 553 
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 555 

Figure 6. (A) The grades of the binned area for Chungcheongbuk-do are visualised in the map with 556 

three sites representative for the grades. Site A: Saengkeuk in Eumseong, Site B: Gageum in 557 

Chungju, Site C: Heoin in Boeun. (B) Changes in the nitrate and chloride concentrations in the last 558 

ten years measured at national ground monitoring wells in three representative regions. 559 
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