

Prediction of groundwater quality index to assess suitability for drinking purpose using averaged neural network and geospatial analysis

Seok Hyun Ahn^{1,¶}, Do Hwan Jeong^{2,¶}, MoonSu Kim², Tae Kwon Lee^{1,*}, Hyun-Koo Kim^{2,*}

¹Department of Environmental Engineering, Yonsei University, Wonju 26493, South Korea

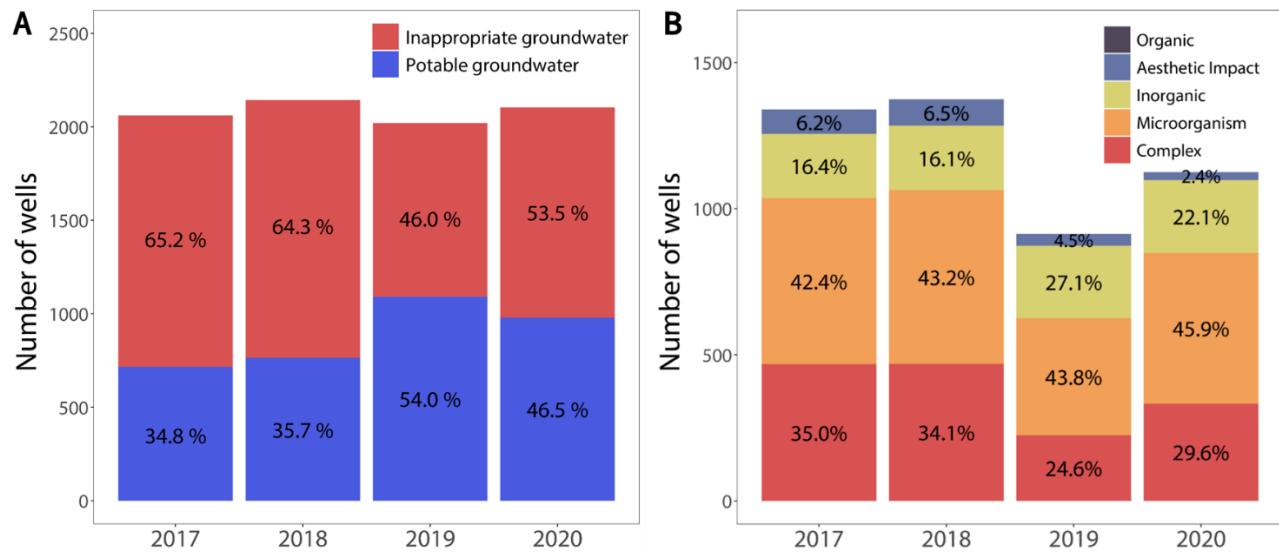
²Soil and Groundwater Division, National Institute of Environmental Research, Incheon 22689, South Korea

*Correspondence:

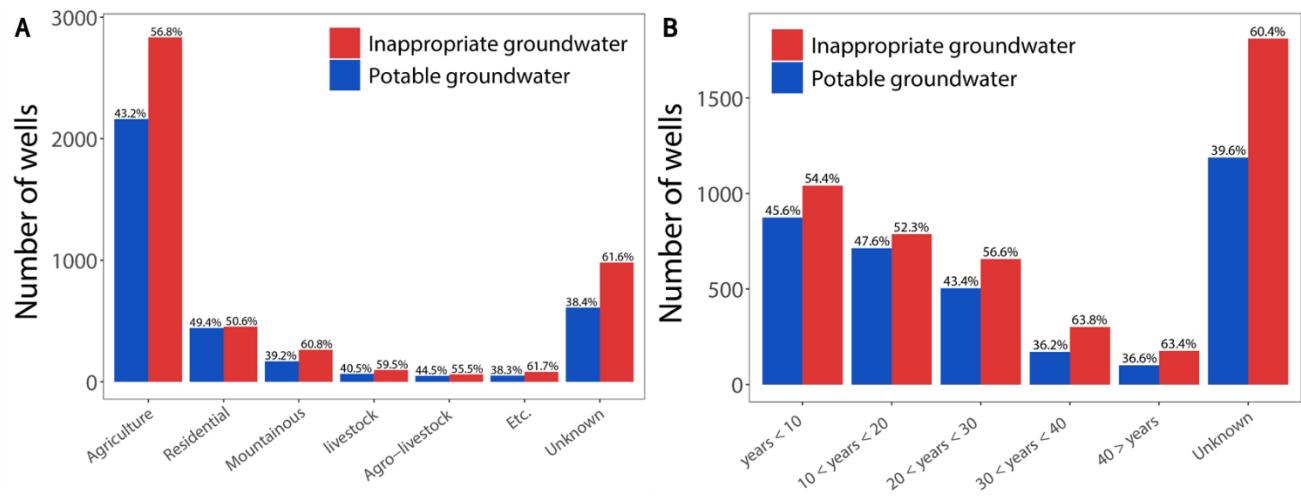
HK Kim, email: khk228@korea.kr

TK Lee, email: tklee@yonsei.ac.kr

¶These authors contributed equally to this work.


Supplementary Material

1 **Supplementary tables**


Supplementary Table S1. Water quality standard for potable groundwater in Korea.

Category	Parameter	Standard	Category	Parameter	Standard
Microorganism (4)	General Bacteria	< 100 CFU / mL	Harmful organic (17)	Benzene	< 0.01 mg / L
	Total Coliform	Undetected / 100 mL		Toluene	< 0.7 mg / L
	Fecal Coliform	Undetected / 100 mL		Ethylbenzene	< 0.3 mg / L
	Escherichia coli	Undetected / 100 mL		Xylene	< 0.5 mg / L
Harmful inorganic (11)	Lead	< 0.01 mg / L		1,1-Dichloroethylene	< 0.03 mg / L
	Fluoride	< 1.5 mg / L		Carbon tetrachloride	< 0.002 mg / L
	Arsenic	< 0.01 mg / L		1,2-Dibromo-3-chloropropane	< 0.003 mg / L
	Selenium	< 0.01 mg / L		1,4-dioxane	< 0.05 mg / L
	Mercury	< 0.001 mg / L		Total hardness	< 300 mg / L
	Cyanide	< 0.01 mg / L		Potassium permanganate consumption	< 10 mg / L
	Chromium	< 0.05 mg / L		Smell	No smell
	Ammonia	< 0.5 mg / L		Taste	No taste
	Nitrate	< 10 mg / L		Color	< 5 degree
	Cadmium	< 0.005 mg / L		Aesthetic	Detergent
	Boron	< 1.0 mg / L		Copper	< 0.5 mg / L
Harmful organic (17)	Phenol	< 0.005 mg / L		pH	5.8 - 8.5
	Diazinon	< 0.02 mg / L		Zinc	< 3.0 mg / L
	Parathion	< 0.06 mg / L		Chloride	< 250 mg / L
	Fenitrothion	< 0.04 mg / L		Iron	< 0.3 mg / L
	Carbaryl	< 0.07 mg / L		Manganese	< 0.05 mg / L
	1,1,1-Trichloroethane	< 0.1 mg / L		Turbidity	< 0.5 NTU
	Tetrachloroethene	< 0.01 mg / L		Sulfate	< 200mg / L
	Trichloroethene	< 0.03 mg / L		Aluminum	< 0.2 mg / L
	Dichloromethane	< 0.02 mg / L			

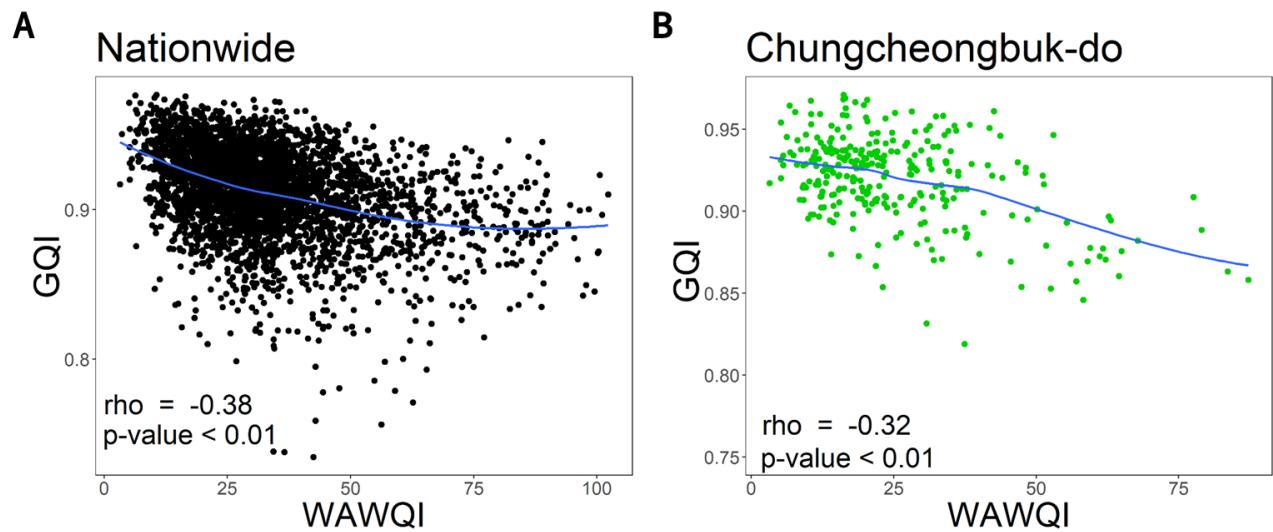

Supplementary figures

Figure S2. (A) Proportion of potable groundwater passed through groundwater quality standards (2017 ~ 2019). (B) The main sources of pollution of groundwater (2017 ~2019)

Figure S2. (A) Proportion of potable groundwater according to land-use (B) Proportion of potable groundwater according to the year of well development.

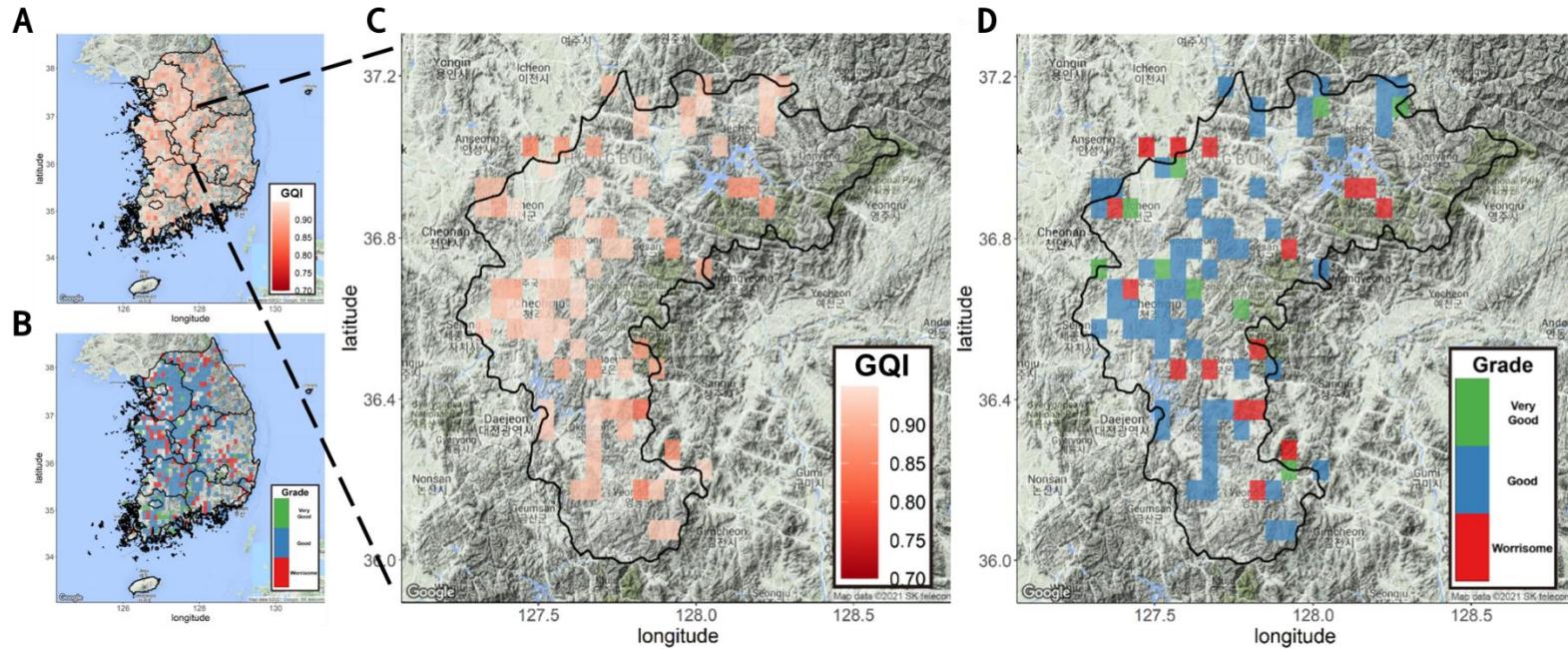
Figure S3. The correlation between WAWQI and GQI was visualized using a scatter plot. (A) nationwide, (B) Chungcheongbuk-do.

A**2017**

Reference			
Prediction	Worrisome	Good	Very good
Worrisome	83	1	0
Good	2	477	0
Very good	0	0	154
		Accuracy	0.996
		Kappa	0.992

B**2018**

Reference			
Prediction	Worrisome	Good	Very good
Worrisome	222	1	0
Good	7	420	0
Very good	0	2	113
		Accuracy	0.987
		Kappa	0.978


C**2019**

Reference			
Prediction	Worrisome	Good	Very good
Worrisome	231	0	0
Good	6	699	0
Very good	0	1	154
		Accuracy	0.994
		Kappa	0.988

D**2020**

Reference			
Prediction	Worrisome	Good	Very good
Worrisome	163	4	0
Good	0	619	1
Very good	0	5	187
		Accuracy	0.990
		Kappa	0.981

Figure S4. Confusion matrix of the best performing Averaged Neural Network model for (A) 2017 year, (B) 2018 year, (C) 2019 year, and (D) 2020 year. The column represents the groundwater vulnerability grade based on the distance score of the existing data, and row is the result of predicting the groundwater vulnerability grade with the averaged neural network model.

Figure S5. The GQI of potable groundwater were binned and displayed on the map (A) nationwide (C) Chungcheongbuk-do. The grades of binned area were visualized in the map (B) nationwide (D) Chungcheongbuk-do.