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Abstract. Deep Learning techniques have been increasingly used in flood management to overcome the limitations of accurate,

yet slow, numerical models, and to improve the results of traditional methods for flood mapping. In this paper, we review 58

recent publications to outline the state-of-the-art of the field, identify knowledge gaps, and propose future research directions.

The review focuses on the type of deep learning models used for various flood mapping applications, the flood types consid-

ered, the spatial scale of the studied events, and the data used for model development. The results show that models based on5

convolutional layers are usually more accurate as they leverage inductive biases to better process the spatial characteristics of

the flooding events. Models based on fully-connected layers, instead, provide accurate results when coupled with other statis-

tical models. Deep learning models showed increased accuracy when compared to traditional approaches and increased speed

when compared to numerical methods. While there exist several applications in flood susceptibility, inundation, and hazard

mapping, more work is needed to understand how deep learning can assist real-time flood warning during an emergency, and10

how it can be employed to estimate flood risk. A major challenge lies in developing deep learning models that can general-

ize to unseen case studies. Furthermore, all reviewed models and their outputs, are deterministic, with limited considerations

for uncertainties in outcomes and probabilistic predictions. The authors argue that these identified gaps can be addressed by

exploiting recent fundamental advancements in deep learning or by taking inspiration from developments in other applied

areas. Models based on graph neural networks and neural operators can work with arbitrarily structured data and thus should15

be capable of generalizing across different case studies and could account for complex interactions with the natural and built

environment. Physics-based deep learning can be used to preserve the underlying physical equations resulting in more reli-

able speed-up alternatives for numerical models. Similarly, probabilistic models can be built by resorting to Deep Gaussian

Processes or Bayesian neural networks.
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1 Introduction20

Flooding is one of the most dangerous and frequent natural hazards, accounting for significant human and economic losses ev-

ery year (Jonkman and Vrijling, 2008). Because of the climate change effects, more frequent and intense extreme precipitations

are expected to further increase the severity of this hazard (Masson-Delmotte et al., 2021). To mitigate the impact of floods

on human lives and properties, both preventive and emergency measures are required (European Union, 2007). Emergency

measures are operations carried out just before, during, or after a flooding event. In those cases, real-time knowledge of the25

extent of the flood and the areas in danger is needed to execute countermeasures (Lendering et al., 2016). Instead, preventive

measures are operations aiming at reducing the possibility of a certain area being flooded. Those can be determined by maps

that indicate the hazard of floods, i.e., the potential flood characteristics for an event.

There are three main flood maps used for dealing with such measures: (i) flood extent or inundation maps determine the

observed inundation extent, during or after the event, and are used for emergency measures; (ii) susceptibility maps provide30

a qualitative categorization of the flood hazard in an area, given its physical characteristics, and are used for preventive mea-

sures; (iii) flood hazard maps indicate the spatial distribution of variables that characterize the flood hazard of a specific event,

such as flood depth and water extent, and are used for both emergency and preventive measures. Traditionally, inundation

maps are obtained via remote sensing analysis (e.g., Lin et al., 2016), susceptibility maps with multi-criteria decision analysis

(MCDA) (e.g., Abdullah et al., 2021), and hazard maps with numerical methods (e.g., Dottori et al., 2021). Despite their wide35

usability, each method has its limitations. Remote sensing analysis for flood inundation requires manual or semi-automated

procedures to improve the results and additional data such as land cover distribution (e.g., Manavalan, 2017). In addition,

traditional models for flood inundation are not scalable to large amounts of data, as the ones currently produced by worldwide

satellite missions. MCDA for flood susceptibility is simple and interpretable but its results are not accurate for complex phe-

nomena (Khosravi et al., 2020). Moreover, the weights assigned to each criterion are subjective and thus biased by the external40

choices. Numerical methods for flood hazard modeling are robust and effective, but fast and accurate flood simulations remain

a challenge (Costabile et al., 2017). There exist several ways to improve the speed of the simulations, for example, through

parallel computing (e.g., Zhang et al., 2014; Ming et al., 2020; Glenis et al., 2013), or simplified models (e.g., Zhao et al.,

2021a; Sridharan et al., 2021). However, parallel computing has high computational costs and simplified models are unable to

correctly reproduce rapidly-evolving flows such as in urban floods (Costabile et al., 2017) and dam breaks (Prestininzi, 2008).45

Moreover, numerical models have intrinsic limitations which depend on the discretization of the governing physical equations

and physical domain.

To overcome these limitations, practitioners and developers have used data-driven models based on machine learning. Ma-

chine learning (ML) is a branch of artificial intelligence in which a model improves its performance, with respect to some class

of tasks, as the available data increases (Mitchell, 1997). Conventional ML techniques require specific feature engineering of50

raw data before its processing. Deep learning (DL) can, instead, automatically discover the representations needed for detec-

tion or classification in raw data (LeCun et al., 2015). Nonetheless, data must be carefully selected according to the task at

hand. DL methods are representation-learning methods with multiple levels of representation, obtained by composing simple
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but non-linear modules that each transform the representation at one level (starting with the raw input) into a representation at

a higher and more abstract level (LeCun et al., 2015). The model can then learn hidden patterns in the data and, consequently,55

improve its performance. Both ML and DL models have been applied in the fields of hydraulics and flood analysis. Mosavi

et al. (2018) examined ML models for the prediction of floods, in the short and long term. Sit et al. (2020) reviewed deep

learning models for hydrology and water resources, focusing also on the hydrological modeling of floods. Zounemat-Kermani

et al. (2020) reviewed neurocomputing for surface water hydrology and hydraulics including some applications concerning

floods.60

The existing reviews mainly focused on the temporal variability of floods, especially concerning rainfall-runoff modeling,

covering only a few instances of flood mapping applications. But the spatial evolution of flood events is extremely important to

determine affected areas, plan mitigation measures and inform response strategies. Yet, there are no comprehensive overviews

and analyses of DL in flood mapping to facilitate flood researchers and practitioners. The aim of this review is thus to advance

the emerging field of DL-based flood mapping by surveying the state-of-the-art, identifying outstanding research gaps, and65

proposing fruitful research directions.

58 papers are analysed considering two main parallel yet intertwined directions. On the one hand, we focused on the flood

management application, spatial scale of study, and type of flood. On the other hand, we examined the deep learning model, type

of training data, and performance with respect to alternative methods. This strategy provides insights from a flood management

perspective and concurrently facilitates reflection on how to successfully apply DL models. For each category, we
:::
The

:::::
main70

::::::
insights

:::::
from

:::
this

:::::
paper

:::
can

:::
be

::::::::::
summarized

::
as

:::::::
follows:

:

1.
:::
We identify common patterns and deduce

::::::
general considerations based on the presented results , while also identifying

papers presenting innovative approaches. Moreover, we
::::
while

:::::::::::
highlighting

::::::::
individual

:::::::::
innovative

::::::::::
approaches;

:

2.
:::
We compare against traditional methods to further validate the benefits of employing DL models. Finally, we highlight ;

:

3.
:::
We

::::::
identify

:
a series of current knowledge gaps and propose possible solutions to them , by drawing parallelisms with75

the recent advances in deep learning.
:::::::
drawing

::::
from

:::::
recent

::::::::::::
advancements

::
in

::::
DL.

The remaining of this review is organized as follows. In Section 2, we present the background theory on both floods and

deep learning. Then, in Section 3, we present the search methodology and discuss the results based on the reviewed papers.

In Sections 4 and 5 we present the knowledge gaps and propose possible future research directions. Finally, conclusions are

provided in Section 6.80

2 Background

This section is divided in two parts: flood management and deep learning. In the first part, we present the categories in which

we classify flood management, while in the latter we describe the main deep learning models used for flood mapping.
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2.1 Flood management

Floods can be defined as an overflow of water in otherwise dry land. Hence, flood management is a very broad field of interest:85

wherever there is water, there is a certain probability of being affected by it. While there exist several categorizations of flood

management, we focus on types of floods, applications, and spatial scales.

2.1.1 Types of floods

We can distinguish flooding depending on how, why, and when it occurs:

– River floods are caused by extensive precipitation over long periods, causing the river to overflow its banks, ultimately90

inundating the neighboring areas. This process is slow and can last for several days (Serinaldi et al., 2018).

– Flash floods are caused by short but intense rainfall or sudden melting of snow (Sikorska et al., 2015). They are rapid

and intense floods, typical of mountain and steep catchments. Flash floods are usually coupled with other hazards such

as debris flows (Destro et al., 2018) and landslides (Ávila et al., 2016).

– Coastal floods are caused by extreme meteorological conditions, which increase the water level in large bodies of water,95

due to a combination of low atmospheric pressure and strong winds. They occur near oceans, seas, or large lakes and we

include in this category also tsunamis, although they are generated by geological phenomena such as earthquakes.

– Urban floods are caused by the failure of drainage from a sewer system, due to extreme precipitation, resulting in the

overflow of those pipes. Depending on the city position and topography, these floods can also be affected by all the other

types of floods.100

– Dam break and dike breach floods are caused by the failure of flood protection structures, due to extreme flood events

or management issues. The uncertainty in if, where, and how a defence will fail further increases the unexpectedness of

these phenomena.

To simplify the categorization, we excluded pluvial flooding, i.e., floods caused by the failure of a drainage system due to

intensive precipitation. The underlying hypothesis is that pluvial floods can be addressed as urban floods in urban environments105

or river floods if they also feature rainfall-driven river overflows.

2.1.2 Flood mapping applications

Since we focus on the spatial variability of floods, we distinguish among three types of mapping: flood susceptibility, flood

inundation, and flood hazard.

– Flood inundation maps determine the extent of a flood, during or after it has occurred (see Fig. 1a). Flood inundation110

maps represent flooded and non-flooded areas. This application is used for post-flood evacuation, protection planning,

and for damage assessment. These maps can then be used also as calibration data for other applications such as flood
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(a) Flood inundation (b) Flood susceptibility (c) Flood hazard

Figure 1. Examples of the types of flood maps analyzed for a representative area: (a) shows a possible flood inundation map; (b) a flood

susceptibility map; and (c) a flood hazard map, as defined in this paper.

susceptibility or flood hazard mapping. Flood images are obtained through remote-sensing techniques and processed by

histogram-based models (e.g., Martinis et al., 2009; Manjusree et al., 2012), threshold models (e.g., Cian et al., 2018),

and machine learning models (e.g., Hess et al., 1995; Ireland et al., 2015).115

– Flood susceptibility maps determine the tendency to flooding of a study area based on its physical characteristics (see

Fig. 1b). This measure is only qualitative and does not evaluate any flood variable. However, it can provide reliable

information when no quantitative data is available and can be used to easily assess areas at risk at large scales. Flood

susceptibility mapping is performed by considering topographical, geographical, and meteorological factors (such as

altitude, slope, lithology, land use, and rainfall) and comparing their spatial distribution with past flood events. This is120

done with multivariate analysis (e.g., Tehrany et al., 2014; Youssef et al., 2016) and multi-criteria decision analysis (e.g.,

Kazakis et al., 2015; Mahmoud and Gan, 2018).

– Flood hazard maps measure the water depth and extent across a flooded area (see Fig. 1c). Hazard maps consider also

different return periods of the floods and, thus, the probability of a certain event. The latter is determined through a

statistical analysis based on the frequency and intensity of floods (Bobée and Rasmussen, 1995). We will refer to flood125

hazard also when the water depths are estimated, independently of the return periods. Flood hazard can also provide

a measure of the flow velocities. Flood hazard maps are carried out by numerical models, which simulate flood events

by discretizing the governing equations and the computational domain. We distinguish between one-dimensional (1D),

two-dimensional (2D), and three-dimensional (3D) models with increasing complexity and, generally, accuracy (e.g.,

Horritt and Bates, 2002; Teng et al., 2017).130

Flood damage and flood risk maps (de Moel et al., 2009) are other examples of mapping applications. However, they are

not described in more details here as no related DL-based paper was found in the literature. Similarly, the review also excludes

applications which do not result in maps, such as water level forecasts.
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2.1.3 Spatial scale

The importance of flood processes and the resolution of the flood maps varies with their spatial scale. Following de Moel et al.135

(2015), we also distinguish between local, regional, national, and supra-national scales. The choice between scales is often

subjective, but here follows a rational categorization:

– Local scale refers to small study areas, such as towns or a specific river stretch. If a measure of the study area is given,

we consider it in this category if the area is smaller than 100km2.

– Regional scale considers a specific province, watershed or large city. Study areas smaller than 100000km2 belong to this140

scale.

– National scale refers to assessments of entire countries, for which consistent (national) data are present. To exclude

small countries, the study area must be greater than 100000km2.

– Supra-national scales concern assessments of an entire continent or the globe.

2.2 Deep learning methods145

Deep learning studies how neural networks learn representations from data, through multiple levels of abstraction (LeCun

et al., 2015). A neural network is a non-linear compositional model formed by a hierarchical layering of parametric functions

that take an input variable x and produce an estimate ŷ of a target representation y as ŷ = f(x;θ), where θ are the function’s

parameters. The purpose of DL is then to calibrate those parameters to have the best fit between predicted output and real

output. The raw data x are input to the neural network and the output of each layer serves as input for the following layer, until150

the final layer, which coincides with the estimate ŷ. A neural network with L layers can be expressed as

ŷ = fL(·;θL) ◦ fL−1(·;θL−1) ◦ . . . ◦ f1(x;θ1),

xℓ = fℓ(xℓ−1;θℓ), for ℓ= 1, . . . ,L,

ŷ ≡ xL, (1)

where fℓ(·;θℓ) is the function at layer ℓ, ◦ represents the composition of functions, θℓ are the trainable parameters, and ŷℓ is

the output layer ℓ. In a network architecture, the layers between the input and the output layer are called hidden layers, since155

their output is not shown. Estimating parameters θℓ is typically referred to as ‘learning’ and it is performed by minimizing a

loss function, through back-propagation (Rumelhart et al., 1986). Depending on the task, neural networks can be trained via

supervised and unsupervised learning. Since in flooding analysis DL has been mainly approached via supervised learning, we

focus on that learning process.

Supervised deep learning models identify a mapping from input to output, given a training set of input-output pairs. For160

example, a training set for flood hazard mapping may comprise a flood’s rainfall hyetograph as input x and the corresponding

maximum flooded area as output y. Thus, the loss function l(y, ŷ) compares the real output y with the predicted one ŷ. The
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loss function is typically the quadratic loss for regression problems, where the data is continuous (e.g., water depth), or the

cross-entropy loss for classification problems, where the data is categorical (e.g., flooded and non-flooded areas). As training

data, we can have observations or simulations. Observational data are derived from remote sensing, flood inventory maps, and165

measuring stations, while simulation data are derived from numerical solvers. Once a model is trained, its goodness of fit is

analyzed with a test set, composed of data that the model has not seen. If the model performs well for the test set, it is said to

generalize or extrapolate well. The ability to generalize is one of the most important properties of DL and becomes even more

important in high-dimensional inputs (Balestriero et al., 2021).

2.2.1 Multi-layer perceptron170

Among the possible neural network layers, fully-connected ones are the most simple. In a fully-connected layer, the layer

propagation rule is given by:

xℓ = fℓ(xℓ−1,θℓ) = σ(Wℓxℓ−1), (2)

where xℓ is the output of the layer ℓ, σ(·) is a point-wise nonlinearity (e.g., ReLU, σ(x) =max{0,x}, or Sigmoid, σ(x) =
1

1+e−x ), xℓ−1 is the input of the layer ℓ, and the training parameter Wℓ is a weight matrix. Multi-layer perceptrons (MLP) are175

composed by sequences of fully-connected layers (Fig. 2a). The expressivity of the network increases with the dimensions of

the hidden layers, as shown in Fig. 2a. When the dimension of the hidden layers decreases and then increases, as shown in Fig.

2b, the architecture is called encoder-decoder (ED). The idea behind this architecture is that only certain latent representations

of the input are useful to represent the output (e.g., Taormina and Galelli, 2018).

In fully-connected layers, the values of the parameters in W are independent between them and there is no reuse of any of180

them. Thus, the number of learnable parameters is of the order of the input size, making fully-connected layers inappropriate

for inputs of large dimensions. This issue is referred to as the ‘curse of dimensionality’ and implies that as the dimension of

the input increases, the amount of training data needed to learn representations increases exponentially (LeCun et al., 2015).

To overcome the curse of dimensionality we need to exploit the structure in data. In flood analysis, data is usually structured:

for example, neighboring pixels in raster data represent spatial proximity of nearby close elements, while discharge values185

in a hydrograph represent temporal proximities. Neural network layers can thus be defined in a way to exploit these data

structures. These assumptions create what is known as an inductive bias, which imposes constraints on relationships and

interactions among inputs in the learning process, thus prioritizing some solutions over others (Battaglia et al., 2018), as

shown in Table 1. Inductive biases derive from the fundamental geometric principle of symmetry (Bronstein et al., 2021).

The symmetry of a system is a transformation that leaves a certain property of said system unchanged. Symmetry results in190

invariance and equivariance properties. Invariance implies that transformations on the input features do not change the output

(i.e., f(g(x)) = f(x), g(·) being a generic transformation), while equivariance entails that transformations on the input features

change the output via an equivalent transformation (i.e., f(g(x)) = g′(f(x)), g′(·) being a transformation equivalent to g(·)).
We explain the concept of invariance and equivariance with an example. Consider a picture with a flooded area in its top-left

corner and one with the same flooded area shifted in the bottom-right corner. An invariant model would predict that there is a195
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Figure 2. Deep learning architectures: (a) a multi-layer perceptron (MLP) composed of a sequence of three fully-connected layers. Every

layer is connected to the following one by weights, represented by directed arrows. The values of the input, hidden, and output layers are

represented, respectively, by vectors x0, x1, and ŷ; (b) an MLP encoder-decoder. The input data x0 is encoded into a lower dimensional

layer x1,and then decoded into the output ŷ. This structure is also applicable to convolutional and recurrent layers; (c) a convolutional

neural network (CNN) composed of a convolutional layer, and a fully-connected layer. The green squares represent an input tensor, the

orange squares represent hidden layers and the red parallelogram on the right represents the output layer. The small box K1 represents the

convolutional kernel described in Eq. 3. The final layer depends on the task; (d) visual explanation of how convolutional kernels work. Each

element of the kernel is multiplied by its matching input value. Then, all values are summed to obtain the convolved output. This process is

repeated across the whole input, as the kernel shifts along it. (e) a recurrent neural network (RNN) in compact form (left) and in the unfolded

form (right). The iterative structure of the RNN (left) can be unfolded in time to show how hidden states influence the solution at each time

step (right). The colouring scheme indicates for each architecture the input (green), the state (orange), and the output (red).
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flooded area in both images, while an equivariant model would also reflect the change in positions of the flood, i.e., identify that

the flood is in the top-left corner in one case and in the bottom-right corner in the other. In this case, invariance and equivariance

are associated to a spatial translation, but the same principle applies to other transformations, such as temporal translation.

Inductive biases thus lead to the reuse of parameters in different parts of the input of each layer. For instance, convolutional

kernels can be used on images of different dimensions and recurrent layers can consider time series of variable length. Fully-200

connected layers, instead, cannot have such inductive bias capabilities. The main characteristics for each considered layer are

synthesized in Table 1. The input data type and the inductive biases are described for each studied layer.

Table 1. Inductive biases and preferred types of data for different neural network layers (adapted from Battaglia et al. (2018)).

Layer Data type Inductive bias

Fully Connected Unstructured data -

Convolutional Grid elements Spatial equivariance

Recurrent Sequences Temporal equivariance

2.2.2 Convolutional neural network

Convolution is an operation for which every entry of an input matrix is replaced by a spatially weighted average of its neigh-

bouring entries, as shown in Fig. 2d. The weights are defined by a matrix, called kernel, and are point-wise multiplied with the205

neighbouring entries. This procedure is then repeated, using the same kernel, for every entry in the input. Convolutional layers

are a neural network layer that apply convolution on a input using trainable kernels, i.e., the kernels’ weights are learned during

optimization (LeCun et al., 1995). The propagation rule of layer ℓ of a convolutional layer is

xℓ+1 = σ(Kℓ ∗xℓ), (3)

where Kℓ is the kernel function for the ℓth layer and ∗ is the convolution operator. Convolutional layers are mostly applied to210

images i.e., two dimensional spatial grids. For such inputs the kernel is a 2D matrix. Convolutional layers have an inductive

bias of translational equivariance, which reflects the idea that spatially close grid elements influence each other. This results

in the reuse of the same kernel across the different input parts and it implies that it matters where a pattern or object are in

an image and that the model should be able to recognize it. Convolutional layers thus perform feature extraction, identifying

relevant characteristics in the input. Moreover, the reuse of parameters allows inductive learning over images of different sizes215

or resolutions. Differently from fully-connected layers, the number of parameters in a convolutional layer depends only on the

kernel size because of this parameter-sharing property (see Fig. 2c). Depending on the input dimensions, we distinguish 1D

convolutional layer for vector inputs, such as a rainfall hyetograph, 2D convolutional layers for matrix inputs, such as a digital

elevation model (DEM), and 3D convolutional layers for tensor inputs, such as stacked satellite images. Since 1D-convolution

considers translation equivariance on vectors, the inductive bias is equivalent to temporal equivariance if the vector is a time220

series.
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Convolutional neural networks (CNN) are composed of layers alternating convolution and pooling. Pooling operation re-

places the output at a certain location with a summary statistic of the nearby features, thus reflecting translational invariance

(Bronstein et al., 2021). They extract a single feature, such as the average or maximum value in a certain neighborhood of a

point. Furthermore, pooling reduces the dimension of the input, speeding up computation. The final layers of a CNN are typi-225

cally fully connected when dealing with classification or regression tasks. This layer allows to map the convolved embeddings

to the number of classes or to the regressed value, respectively. Instead, if the task is to perform image segmentation, i.e., clas-

sify specific parts of an image, the final layers are composed of de-convolutional layers which perform the inverse operation of

convolutional layers, in an encoder-decoder structure. For details on convolutional layers and CNNs refer to Goodfellow et al.

(2016).230

2.2.3 Recurrent neural network

Recurrent layers are used for processing sequential data, such as time series (Rumelhart et al., 1986). A recurrent layer can be

seen as a nonlinear state-space model expressing the output at time t, yt, as a function of a former hidden state ht and input xt.

The basic formulation for a recurrent layer is

ht = σ(Wht−1 +Uxt),235

yt = σ(V ht), (4)

where U , V , and W are trainable weight matrices. As it follows from (4), the hidden state encodes the temporal memory

of previous time instances while the output mapping is instantaneous. These matrices are shared across time allowing the

recurrent layer to exploit temporal proximities of sequential data, irrespectively of their position. This is for instance the case

of discharge hydrographs (e.g., Zhou et al., 2021). Because there is an inductive bias in temporal sequences, they allow us to240

reuse parameters without affecting the performance.

Recurrent neural networks (RNN) are neural networks composed of recurrent layers. The iterative structure of the RNNs can

be unfolded in time to show how hidden states influence the output at each time step (Fig. 2e). However, the basic recurrent

layer in (4) suffers from the problem of vanishing and exploding gradients (Hochreiter and Schmidhuber, 1997). This occurs

due to the iterative use of the same layer which causes the weights to multiply several times when back-propagating the error,245

ultimately leading to “vanishing" gradients if the weights are small and “exploding” gradients if the weights are large. This

constrains then the temporal memory of these networks and limits their capability to extract long-term dependencies between

the past inputs and the current output.

This problem is typically solved via the use of Long Short-Term Memory (LSTM) layers (Hochreiter and Schmidhuber,

1997). This variation of recurrent layers also improves the hidden state mechanism allowing to “remember” well even infor-250

mation which is temporally distant. Another common variation is the Gated Recurrent Unit (GRU) (Cho et al., 2014a), which

achieves comparable results with the LSTM architecture while using a simpler formulation. Same as for fully-connected and

convolutional layers, recurrent layers can be used in encoder-decoder architectures. This structure can be composed of an RNN

which generates a latent representation, followed by another RNN that decodes it (e.g., Cho et al., 2014b).
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The most successful applications of RNNs for flood management regard tasks related to sequences and time-series analysis,255

such as rainfall-runoff modeling (e.g., Kratzert et al., 2019a). While RNNs are preferred over 1D-CNNs, recently the latter

started gaining momentum for some time-series learning tasks (e.g., Oord et al., 2016).

3 Review

3.1 Methodology

Papers were retrieved from the Scopus database by combining the keywords “deep learning” or “neural network" with “flood”260

or “flooding”. The 3,338 publications obtained were then filtered to include only journal papers from January 2010 until

December 2021, in the areas of engineering, environmental science, and earth and planetary sciences. From this reduced list

of 1308 papers, we considered two major refining criteria: i) the papers should be based on the deep learning models presented

in Section 2.2, and ii) the applications must address the spatial variability of floods (i.e., not focusing only on the temporal

aspects of flood analysis). This procedure resulted in 46 reviewable papers. This list was finally extended via a snowball265

search that considered cited and citing works, ultimately leading to 58 eligible documents (Fig. 3). We find that the described

methodology selected a representative subset for producing a thorough review of recent advances and developments in this

field.

The selected papers are listed in Table 2 which reports major details including the flood mapping application, the type of

flood, the DL model, and the spatial scale. General findings related to these three criteria are first presented in Section 3.2.270

Specific findings for each application are then presented in Sections 3.3 (flood inundation), 3.4 (flood susceptibility), and 3.5

(flood hazard). These specific sections provide a more in-depth discussion on the deep learning models employed, with a focus

on the architecture, the input and output data, and the performance assessment.

Table 2: Deep learning applications for flood mapping. References are classified in terms of flood mapping application, type of

flood, deep learning (DL) model, training data, and spatial scale.

Application Flood Type DL Model Training Data Spatial Scale Reference(s)

Inundation River MLP Observations Regional Li et al. (2016a, 2015)

CNN Observations Local Gebrehiwot et al. (2019); Nogueira

et al. (2017); Hou et al. (2021);

Ichim and Popescu (2020);

Hashemi-Beni and Gebrehiwot

(2021); Wieland and Martinis

(2019)
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Regional Sarker et al. (2019); Kang et al.

(2018); Nemni et al. (2020); Isikdo-

gan et al. (2017)

Urban MLP Observations Local Amini (2010)

Regional Li et al. (2016b)

CNN Observations Local Peng et al. (2019)

RNN, CNN Observations Local Dong et al. (2021)

Coastal CNN Observations Regional Liu et al. (2019); Isikdogan et al.

(2017)

Simulations Regional Muñoz et al. (2021)

Dam Break MLP Observations Regional Syifa et al. (2019)

Susceptibility River MLP Observations Regional Jahangir et al. (2019); Khoirunisa

et al. (2021); Ahmadlou et al.

(2021); Popa et al. (2019); Kia

et al. (2012); Ahmed et al. (2021);

Chakrabortty et al. (2021b); Saeed

et al. (2021)

CNN Observations Regional Wang et al. (2020b)

National Khosravi et al. (2020)

RNN Observations Regional Fang et al. (2020a)

Flash MLP Observations Regional Tien et al. (2020); Ngo et al. (2018);

Popa et al. (2019); Costache et al.

(2020); Chakrabortty et al. (2021a)

National Kourgialas and Karatzas (2017)

CNN Observations Regional Panahi et al. (2021); Liu et al.

(2021)

Urban MLP Observations Local Darabi et al. (2021)

Regional Kalantar et al. (2021)

CNN Observations Local Zhao et al. (2021b, 2020b)

Regional Lei et al. (2021)

Hazard River MLP Simulations Local Chu et al. (2020); Huang et al.

(2021a); Xie et al. (2021); Lin et al.

(2020b, a); Jacquier et al. (2021)
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CNN Simulations Local Kabir et al. (2020); Hosseiny

(2021)

RNN Simulations Regional Zhou et al. (2021); Kao et al. (2021)

Flash CNN Simulations Local Yokoya et al. (2020)

Urban MLP Simulations Local Berkhahn et al. (2019); Chang et al.

(2010)

CNN Simulations Regional Guo et al. (2021); Löwe et al.

(2021)

Coastal RNN Simulations Local Hu et al. (2019)

Dam Break MLP Simulations Local Jacquier et al. (2021)

MLP=Multi-layer Perceptron; CNN=Convolutional Neural Network; RNN=Recurrent Neural Network

3.2 General findings

3.2.1 Flood mapping applications275

Fig. 4 shows the distribution of papers for each of the applications considered: flood inundation, flood susceptibility, and flood

hazard. The research community has dedicated efforts to investigate each type of application, although flood inundation and

susceptibility have received the most attention. While papers on flood inundation are more evenly distributed across years,

applications for flood susceptibility and, especially, flood hazard are increasing in the last few years. Similar to what was

observed in related fields such as hydrology (e.g., Sit et al., 2020), a strong surge in DL publications for spatial flood analysis is280

witnessed between 2018 and 2019. These years identify a turning point for AI in earth system sciences driven by the adoption

of CNN (striped patterns in Fig. 4) and RNN (dotted patterns) in lieu of traditional MLP models. The late use of convolutional

and recurrent models is motivated by their recent popularization and development, along with a rise in awareness of the ML

advancements, contrary to fully-connected layers, that have a longer application history.

3.2.2 Flood types285

Fig. 5 shows the types of flood analyzed with respect to each application. River floods are the most common, with many

applications in inundation and hazard mapping. This is probably because, for historical reasons, most cities in the world are

built close to rivers (Kummu et al., 2011). The scientific community has dedicated significant efforts to exploring the potential

of DL for urban flooding. This is difficult to model because of the complex topography and the presence of a drainage system

whose dynamics need to be coupled with the overland flood (Löwe et al., 2021). Almost all papers analyzing flash floods290

described flood susceptibility mapping applications. This is expected due to the short duration and the contingent nature of

these phenomena, which limit remote sensing imaging and numerical simulations used in flood inundation and flood hazard

mapping, respectively. Despite the importance of coastal flooding (Neumann et al., 2015), only a few papers report the use of
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Keywords:

("deep learning" or "neural net-

work") and ("flood" or "flooding")

3338 publications

Subject area:

engineering, environ-

mental science, or earth

and planetary sciences

Document type:

"article"

Year:

≥ 2010 and ≤ 2021

1308 publications

Model based on deep learning Spatial variability of floods

46 publications

Snowball search

58 publications

Figure 3. Flowchart of the methodology applied for the papers selection.

DL for coastal flooding. While other works are available in the literature (Lütjens et al., 2020, 2021; Bowes et al., 2021), they

were not considered since the employed DL models were not trained via supervised learning. Some of these works will be295

discussed in Section 5. Dam break floods are the least analyzed type, possibly because of their relatively rare occurrence and

complexity.

3.2.3 Spatial scale

As shown in Fig. 6a, most applications consider local and regional scales. Local scale refers to towns (e.g., Darabi et al.,

2021; Berkhahn et al., 2019), small catchments (e.g., Lin et al., 2020a; Kabir et al., 2020) or river reaches (e.g., Chu et al.,300

2020; Gebrehiwot et al., 2019). As such, they are mostly referred to urban and river floods. The cases sizes vary from very
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Figure 4. Publications by year, type of application and type of DL model. The increasing trend of the last five years has been mostly driven

by the applications in flood susceptibility and flood hazard.
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Figure 5. Distribution of the types of floods per flood application in the reviewed papers. River and urban floods are the most common, while

flash and coastal floods have fewer occurrences.

small ones, 165m2 (Hou et al., 2021), to small towns up to 100km2 (Lin et al., 2020a). Regional scale models consider a

catchment (e.g., Popa et al., 2019), a province (e.g., Wang et al., 2020b) or large cities (e.g., Löwe et al., 2021; Kalantar et al.,

2021). Most works focus on river floods, while some study flash, urban, and coastal floods. National scale models refer to

the assessments of entire countries, with only two papers concerning such scales, respectively for Iran and Greece (Khosravi305

et al., 2020; Kourgialas and Karatzas, 2017). Nemni et al. (2020) and Sarker et al. (2019) consider several study areas across
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Figure 6. Distribution of the spatial scale per (a) flood application and (b) type of flood in the reviewed papers. Local and regional scales are

the most used.

Africa and Asia, and Australia, respectively, but since the size of each area were smaller than 100000km2 they were marked as

regional scale models. They also do not fit within the national scale classification since they do not encompass whole nations.

Supra-national scale models assessing the entire globe or a continent have not been studied yet with deep learning models. This

seems unexpected since ML techniques have already been employed at global scales, outperforming traditional techniques, for310

example in the estimation of design floods along river networks (e.g., Zhao et al., 2020a). Since DL models have been shown

to outperform ML models, as later outlined in this review, more models should be used at those scales in future studies.

3.2.4 DL architecture

Fig. 4 reports the architecture used for each application, showing that DL models are mainly based on fully connected and

convolutional layers.315

MLP networks are widely used due to their flexibility and ease of implementation. However, they are usually coupled

with other techniques to reach satisfactory performances. Stochastic optimization techniques, such as genetic algorithm, firefly

algorithm, and particle swarm optimization were combined with MLPs to search the optimal model’s parameters (e.g., Li et al.,

2015; Ngo et al., 2018; Kalantar et al., 2021). Multi-criteria decision analysis models, such as frequency ratio and analytical

hierarchy process, were also coupled with MLPs to adjust the weights of each input in flood susceptibility (e.g., Kourgialas and320

Karatzas, 2017; Costache et al., 2020; Popa et al., 2019). Furthermore, k-means clustering was used to categorize the dataset

in classes, to account for different topographical conditions; then, for each class, a MLP was trained (e.g., Chang et al., 2010;

Huang et al., 2021a). Combining MLPs with such methods partly compensates the lack of inductive biases, however, this lack

blocks the model from employing existing structures in the data, ultimately limiting their usability. Since flooding phenomena
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have spatial and temporal structures, we expect MLPs to become progressively less used in this field, as hinted by the trend in325

Fig. 4.

CNNs are best suited for processing raster files and images, thanks to their spatial inductive bias. Since most data for

flood analysis (e.g., elevation data, rainfall distribution fields, remote sensing image) come in this format, CNNs have been

increasingly employed by the research community in the recent years. While most papers consider standard CNNs, there are

a few which employ 1D-CNNs (e.g., Dong et al., 2021; Guo et al., 2021; Liu et al., 2021) and 3D-CNNs (e.g., Wang et al.,330

2020b; Fang et al., 2020a). 1D-CNNs consider as input a hyetograph or a hydrograph of a certain event, while 3D-CNNs

consider raster files stacked upon each other. Regarding the architectures, different papers for flood inundation consider an

encoder-decoder structure for image segmentation and classification (e.g., Nemni et al., 2020; Hashemi-Beni and Gebrehiwot,

2021; Liu et al., 2019). For such papers, the input is a satellite image of a flood and the output is its classification in flooded and

non-flooded areas. This architecture allows the models to increase its performance since it can retain high frequency details in335

the segmented images (Badrinarayanan et al., 2015).

Guo et al. (2021) and Löwe et al. (2021) use a convolutional encoder-decoder structure for flood hazard mapping to embed a

rainfall hyetograph in the latent space. In this way, they can consider both spatial and temporal data within the same framework.

RNNs have been mostly employed to model temporally-varying floods, where they can exploit best their sequential inductive

bias. However, they remain the least common choice of DL architecture for spatial flood analysis. Most papers apply RNNs340

on a time series, such as a hyetograph or a hydrograph (e.g., Kao et al., 2021; Zhou et al., 2021). Some papers, instead,

consider spatial sequentiality by reshaping the original raster data into vectors (e.g., Fang et al., 2020a; Panahi et al., 2021;

Lei et al., 2021). For example, Fang et al. (2020a) extract, for each pixel, its neighboring pixels in a 3× 3 window and then

convert them into a vector based on spatial contiguity. However, this operation introduces arbitrariety in the sequential order

chosen for arranging the input pixels, since it is independent of the underlying topography. In fact, Panahi et al. (2021) and Lei345

et al. (2021) show that these models underperform when compared with CNNs. Among the different RNN layers, most works

consider LSTM units (Kao et al., 2021; Zhou et al., 2021; Fang et al., 2020a) but simple recurrent units (Panahi et al., 2021;

Huang et al., 2021a) and GRUs (Dong et al., 2021) have also been employed. Some papers analyzed the potential of RNNs

in combination with other techniques. Kao et al. (2021) use an encoder-decoder architecture to forecast flood features based

on rainfall patterns. The encoder and the decoder steps are composed of fully-connected layers, while a LSTM is present in350

the latent space to process rainfall data. Zhou et al. (2021) identify representative spatial locations in the study area. Then, an

LSTM is trained to simulate the water levels’ evolution in time at each location. A water surface is ultimately determined by

interpolating the water depth at those points. Dong et al. (2021) combine 1D-CNNs and RNNs on an urban channel network.

The model takes as input the channels’ properties, such as their cross-sections, and rainfall and water level measures, taken

from sensors in the network. This input is then given in parallel to a 1D-CNN and to a GRU whose output is then combined to355

predict the temporal evolution of the flood. Hu et al. (2019) deploy the LSTM model in a lower-dimensional space, obtained

via proper orthogonal decomposition and singular value decomposition. The model then requires fewer data to be trained.
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3.2.5 Performance assessment

This section discusses different approaches for assessing the performance of the DL models, i.e., how well they match the out-

comes of traditional and machine learning models. Flood susceptibility and inundation models are compared with techniques360

such as frequency ratio (Popa et al., 2019), a type of MCDA model; the soil conservation service runoff model (Jahangir et al.,

2019), a hydrologic model; and automatic threshold model (Nemni et al., 2020), a histogram-based model. They are also com-

pared with machine learning techniques, such as support vector machines (e.g., Sarker et al., 2019; Gebrehiwot et al., 2019;

Zhao et al., 2020b), random forest (e.g., Darabi et al., 2021; Zhao et al., 2020b), adaptive neuro-fuzzy inference system (Panahi

et al., 2021), deep boost (e.g., Chakrabortty et al., 2021a; Ahmed et al., 2021), and radial basis function (Nogueira et al., 2017).365

DL models show to outperform both traditional and ML models in terms of the accuracy of the results. Flood hazard models,

instead, are compared against numerical models, since they act as surrogate models. Thus, their main purpose is to increase

computational speed while maintaining low prediction errors.

There are also a few papers that compared different DL models. Huang et al. (2021b) compared MLPs with RNNs, while

Fang et al. (2020a) showed that MLPs were outperformed by the more inductive-biased approaches such as RNNs, 1D-CNNs,370

and 3D-CNNs. Wieland and Martinis (2019) showed that CNNs widely outperform MLPs, as expected, because of their

inductive biases capabilities. Besides accuracy, the number of parameters and the data requirements are important factors

when comparing DL models. A higher number of parameters results in better performances but may also lead to overfitting, a

condition where the model decreases its performance on the testing data. Hence, when deployed in similar settings such model

would perform drastically worse. Moreover, data is not always available leading to possibly unfair comparisons between models375

with different data budgets. As such, the same model may give different outcomes depending on the considered case.

In supervised learning, we distinguish between regression and classification problems, depending on whether the target

values to predict are continuous (e.g., water depth) or discrete (e.g., flooded vs non-flooded area), respectively. Depending on

the task, we employ a different set of metrics to evaluate model performances.

Regression metrics are a function of the differences, or residuals, between target and predicted values. The most common380

metrics include the root mean squared error (RMSE), the coefficient of determination (R2), and the mean average error (MAE).

RMSE and MAE improve as they approach zero, while R2 improves as it approaches one. In general, RMSE is preferred to

MAE since it minimizes the standard deviation of the errors, thus decreasing the
::::
MAE

::::
may

:::
be

::::::::
preferred

::
to

::::::
RMSE

:::::
since

:::
the

::::
latter

::
is

::::::
heavily

:::::::::
influenced

:::
by

:::
the presence of extreme outliers. However, since these

:::
both

:
metrics are averaged on a domain,

their comparison across different works requires careful attention.385

Classification tasks can be either binary (e.g., predict flooded and non-flooded locations) or multi-categorical (e.g., clas-

sifying between permanent water bodies, buildings, and vegetated areas), according to the output number of classes. In the

following discussion, we focus on the former, with concepts extending to the second case. When computing binary classifi-

cation metrics, flooded areas are generally represented as positive class, while non-flooded areas as negative class. The most

common metrics for flood modelling are accuracy, recall, and precision, followed by other indices such as the area under the390

receiver operator characteristic curve. Accuracy represents the number of correct predictions over the total. While popular
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and easy to implement, this metric is inappropriate for imbalanced datasets, where some categories are more represented than

others. For example, if test samples feature an average 90% non-flooded area, a naïve model constantly predicting no flooding

would reach 90% accuracy, despite having wrong assumptions. Furthermore, since it may be better to overestimate a flooded

area than to underestimate it, one could resort to metrics such as recall that account for false negatives and thus penalize models395

that cannot recognize a flooded area correctly. However, when used alone, recall can lead to similar issues to those described

for accuracy, e.g., yielding a perfect score for a model always predicting the entire domain as flooded. Thus, for an exhaustive

understanding of the model’s performance, one should also consider metrics accounting for false positives, i.e., where the

model misclassifies non-flooded areas as flooded. There are several possible metrics, such as the F1 score, the Kappa score, or

the Matthews correlation coefficient, each with their drawbacks and benefits (e.g., Wardhani et al., 2019; Delgado and Tibau,400

2019; Chicco and Jurman, 2020). A reasonable choice is the F1 score, which is the geometric mean of recall and precision,

and it thus equally considers both false negatives and false positives. Another good example is the ROC (Receiver Operating

Characteristic) curve that describes how much a model can differentiate between positive and negative classes for different

discrimination thresholds (Bradley, 1997). The Area under the ROC curve (AUC) is often used to synthesise the ROC as a

single value. However, the AUC loses information on which parts of the dataset the model performs best. For this reason, one405

should always interpret these results carefully, especially when comparing different studies. Our purpose here is to show that,

for the same case study, DL tends to outperform traditional models.

For surrogate models, the comparison is also performed in terms of their speed-up, which is determined as the ratio between

the simulation time of the numerical model and the simulation time of the DL model. For a correct comparison, the training

time of the DL model must be considered as well in this analysis. However, this was done only by a few papers (e.g., Guo410

et al., 2021; Kabir et al., 2020; Jacquier et al., 2021).

Flood inundation Classification

Flood susceptibility Regression

Flood hazard Both

Figure 7. Distribution of the comparison metrics per type of application. The colours represent the different types of applications, while the

patterns represent the considered metrics.
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3.3 Deep Learning for flood inundation

Flood inundation maps determine the extent of a flood, during or after it has occurred. The objective is to determine
:::
We

::::::
remind

::
the

::::::
reader

::::
that,

::
in
::::

this
::::::
paper,

:::
we

::::
refer

::
to

:::::
flood

:::::::::
inundation

:::
as

:::
the

::::::
process

:::
of

:::::::
mapping

:
flooded and non-flooded areas from a

picture of a flood. This classification is usually binary (e.g., Peng et al., 2019; Nemni et al., 2020) but it can also be extended415

to include permanent water bodies (e.g., Sarker et al., 2019) (see the example Fig. 1a), vegetation (e.g., Ichim and Popescu,

2020), buildings (e.g., Hashemi-Beni and Gebrehiwot, 2021), and more (e.g., Muñoz et al., 2021). All the types of floods were

well represented for this application but flash floods (Fig. 5). We attribute this to the limited frequency of observation of most

remote sensing techniques.

Regarding the spatial scale, most papers focused on local and regional scales. Availability of remote sensing at wider scales420

is increasingly higher (e.g., Observatory); however, this seems to be only partially considered. A plausible reason is the limited

frequency of observation of the satellites. High temporal remote sensing imagery has a low spatial resolution. Few papers tackle

this issue by increasing the resolution of the predicted flood maps, via a neural network, with a technique known as super-

resolution (e.g., Li et al., 2015, 2016b). Super-resolution enhances the quality of an input low-resolution image (Yang et al.,

2019a). These papers show that MLPs improve the accuracy of super-resolution mapping, with respect to other techniques such425

as spatial attraction models. We argue that further improvements of super-resolution could be obtained by employing CNNs,

which lend themselves naturally for such tasks, as demonstrated by applications in similar fields (Ma et al., 2019).

3.3.1 DL architecture

As the task of recognizing floods from a picture can be regarded as an image segmentation task, the most used deep learning

models are based on CNNs. There are also a few earlier papers that use MLPs (e.g., Li et al., 2016a; Amini, 2010) because430

CNNs were not yet adopted by researchers of the field. Dong et al. (2021) use a combination of RNNs and 1D-CNNs to

determine the temporal evolution of flooded and non-flooded nodes in an urban channel network, as described previously. In

this case, the choice of recurrent and 1D-convolutional layers is well motivated due to their temporal inductive bias.

3.3.2 Input and output data

Satellite data is the most used input for flood inundation applications (e.g., Sarker et al., 2019; Peng et al., 2019; Nogueira et al.,435

2017). Other input data sources include unmanned aerial vehicles data (UAV) (e.g., Gebrehiwot et al., 2019; Ichim and Popescu,

2020), hydrographs (e.g., Hou et al., 2021) and DEMs (e.g., Hashemi-Beni and Gebrehiwot, 2021; Muñoz et al., 2021). Only

Dong et al. (2021) differ from the other papers by considering sensors in place of flood pictures. Inundation maps produced

by 3D numerical models are also used as target prediction (Muñoz et al., 2021). The results from the numerical model can be

used as a detailed reference for the DL model. Satellite data and UAV imagery are both remote sensing data that represent a440

flood event seen from above. The main differences concern the scale, the resolution, and the availability. UAVs are applicable

only for small areas but their resolution is better
:::::
higher than satellite data. UAVs can be readily used but may be unavailable in

certain areas. On the other hand, satellite data is available worldwide but its frequency of observation can be limiting.
::::::::
Satellites
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:::
can

::::
also

:::::::
struggle

::
to

::::::
extract

::::::::::
information

:::::
below

:::::::
clouded

:::::
areas

::::::::::::::::::::::
(e.g., Meraner et al., 2020)

:
. When combining information from

different sources, the input data have different resolutions, leading to possible problems for some deep learning models, which445

take fixed-size inputs. One way to integrate different data resolutions is by data fusion (e.g., Muñoz et al., 2021). This process

allows the creation of more consistent, accurate, and useful information than that provided by any individual data source.

3.3.3 Performance assessment

Since
::
As

::::::
defined

::
in

::::::
section

::::
3.3, flood inundation mapping determines which cells of the flood picture are represented as flooded

or not.
:::::
Thus, the task is regarded as a classification problem, as confirmed by the metrics used (Fig. 7). The selected papers450

often use several metrics (see Table A1) but for clarity we consider a single metric for each work. The metric selection depends

on the employed ones and follows the considerations presented in Section 3.2.5, with preference for metrics such as F1, AUC,

or recall, if available. Deep learning models have consistently shown improved performances in terms of the selected metrics

(Table 3). Li et al. (2015) and Li et al. (2016b) compare optimization techniques with and without MLPs for super-resolution-

based flooding. They show that a DL model slightly increases the performances. This may be because the models are based455

on MLPs and thus neglect any spatial structure in the data, which could be considered, instead, by CNNs. Most CNN models

show noticeable improvements with respect to traditional threshold methods, such as the Normalized Difference Water Index

(NDWI) and automatic threshold model (ATM) (e.g., Wieland and Martinis, 2019; Isikdogan et al., 2017; Nemni et al., 2020),

and with respect to machine learning models such as random forest (RF) and support vector machine (SVM). This reflects

similar results obtained in image detection tasks (Badrinarayanan et al., 2015).460

3.4 Deep Learning for flood susceptibility

Flood susceptibility determines the tendency to flooding of a study area based on its physical characteristics and given a set

of known past flood events. This is done by assigning to each location a level of susceptibility ranked from low to high (see

Fig. 1b). The susceptibility depends on the distribution of the inputs, often called flood conditioning factors, in function of

recorded past flood events. The deep learning model then computes, for each point in the area, a score from 0 (non-flooded) to465

1 (flooded). These scores are finally divided into several classes, generally using the natural (Jenks) breaks method (e.g., Fang

et al., 2020a; Wang et al., 2020b; Khoirunisa et al., 2021), to obtain a susceptibility map. An exception is given by Jahangir

et al. (2019) and Kia et al. (2012), which train their models to predict discharge values and then use a GIS model for the

mapping. In both cases, the model performs well when the recorded flood events occur in the predicted high susceptibility

areas.470

There exist DL-related applications for all types of flood (see Fig. 5). Furthermore, Fig. 6a shows that most of the works are

concerned with regional or wider scales (e.g., Tien et al., 2020; Panahi et al., 2021; Khosravi et al., 2020). This is expected

since susceptibility mapping gives a qualitative estimate of which locations are prone to flooding. Operating on small scales

may thus be limiting, both in terms of data availability and applicability for prevention strategies. The data requirements for an

accurate estimate would probably be too high for a small area.475
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Table 3. Performance of the deep learning and comparison with reference models for flood inundation.

Case study
Deep learning Comparison

Reference
size [km2] Model Metric Model Metric

2.2 MLP Accuracy = 70% ML Accuracy = 57% Amini (2010)

225 MLP Accuracy = 86.1% SAM Accuracy = 83.9% Li et al. (2016b)

3600 MLP+PSO Accuracy = 81.6% PSO Accuracy = 79.7% Li et al. (2016a)

5625 MLP+GA Accuracy = 81% GA Accuracy = 79.3% Li et al. (2015)

0.00016 CNN Precision = 0.927 - - Hou et al. (2021)

0.01 CNN Accuracy = 95.5% SVM Accuracy = 87.4% Gebrehiwot et al. (2019)

0.9 CNN IoU = 84% SVM+RBF IoU = 83% Nogueira et al. (2017)

5.2 CNN Accuracy = 92.4% RG Accuracy = 91.8% Hashemi-Beni and Gebrehiwot (2021)

10 CNN Accuracy = 96.4% RF Accuracy = 87.3% Ichim and Popescu (2020)

59.3 CNN F1 = 0.955 RF F1 = 0.922 Peng et al. (2019)

59.3 CNN F1 = 0.90 RF F1 = 0.84 Wieland and Martinis (2019)

200 CNN F1 = 0.975 - - Muñoz et al. (2021)

237 CNN F1 = 0.90 NDWI F1 = 0.70 Isikdogan et al. (2017)

10895 CNN F1 = 0.94 M1 F1 = 0.78 Kang et al. (2018)

23300 CNN F1 = 0.88 - - Liu et al. (2019)

25000 CNN F1 = 0.92 ATM F1 = 0.71 Nemni et al. (2020)

31450 CNN Recall = 62.8% SVM Recall = 25% Sarker et al. (2019)

4600 RNN+CNN F1 = 0.77 CNN F1 = 0.734 Dong et al. (2021)

ML = maximum likelihood; SAM = spatial attraction mode; PSO = particle swarm optimization; GA = genetic algorithm;

SVM = support vector machine; RBF = radial basis function; RG = region growing; RF = random forest; NDWI = normalized

difference water index; ATM = automatic threshold model

3.4.1 DL architectures

Most papers use MLP and CNN. Models based on MLPs consider single points or pixels as inputs (Tien et al., 2020; Ahmadlou

et al., 2021; Khoirunisa et al., 2021), while CNNs consider the whole raster files (Zhao et al., 2020b; Khosravi et al., 2020;

Wang et al., 2020b). Since MLPs lack inductive bias they provide less coherent results, meaning that the variation among

neighboring cells can be high. This is partially solved by coupling the MLP architecture with other statistical techniques, such480

as frequency ratio (e.g., Darabi et al., 2021; Popa et al., 2019; Costache et al., 2020). Instead, CNNs have a spatial inductive

bias, thus they inherently consider the structure of the input, providing more coherent flood maps (e.g., Khosravi et al., 2020).

However, Wang et al. (2020b) and Liu et al. (2021) show that 1D-CNNs, which perform convolution on the input features for

each domain’s cell, are not suited for this problem, as they do not properly leverage any inductive bias. Some works showed

22



that deep belief networks (DBN), an unsupervised variation of MLPs, could outperform standard MLPs in flood susceptibility485

mapping (e.g., Shirzadi et al., 2020; Pham et al., 2021).

3.4.2 Input and output data

The inputs for the deep learning models are several. We distinguish between five input typologies:

1. topographical inputs, which are derived from a digital elevation model, such as elevation, slope, and aspect;

2. meteorological inputs, related to the hydrological characteristics and derived from measuring stations and satellites, such490

as rainfall distribution and frequency;

3. geological inputs, related to the properties of the soil, such as lithology and soil type;

4. geographical inputs, related to observable surface characteristics and obtained through remote sensing, such as land use

and normalized difference vegetation index;

5. anthropogenic inputs, related to the presence of human-made environments, such as distance from roads.495

Topographical data were the most frequent type of input. Most papers also performed a statistical
:::::
Many

::::::
papers

::::::
present

::
a

::::::::
sensitivity

:
analysis to determine which factors influenced the most the final results: on averagethe most important factors

:
,

::::
these

:
were slope, land use, aspect, terrain curvature, and distance from the rivers (e.g., Khosravi et al., 2020; Fang et al., 2020a;

Popa et al., 2019; Costache et al., 2020). A complete list of inputs is reported in the Appendix (Fig. B1).
::
As

:::::
there

:::
are

::::::
several

::::::::
typologies

::
of
::::::

inputs,
::
it
::
is

::::::::
important

::
to

::::::
design

::
an

::::::::::
appropriate

:::::
model

::
to
::::::::
integrate

::::::::::::
heterogeneous

::::::::::::
environmental

::::::::::
information.

:
500

As output data, most papers considered a flood inventory map, given by a set of flooded and non-flooded locations. The

flooded locations were derived from measurements and records taken from remote sensing and stations, while non-flooded

locations were taken randomly from locations with no previous flood record.

3.4.3 Performance assessment

In flood susceptibility analysis, both classification and regression metrics are adopted (Fig. 7). While classification metrics are505

used to identify flooded or non-flooded areas, the purpose of regression metrics is often omitted unless the reference target

is a discharge hydrograph (Jahangir et al., 2019; Kia et al., 2012). Both types of metrics are used in few papers (e.g., Panahi

et al., 2021; Khosravi et al., 2020). Because of the problem’s setup, classification metrics are more reliable in the performance

assessment. Following the considerations in Section 3.2.5, we selected as preferable metric AUC, also because of its frequent

availability for flood susceptibility mapping. For all the papers with comparisons, deep learning models consistently showed510

improved performances with respect to the reference models with few exceptions (Table 4). Deep boost (DB) is a machine

learning algorithm based on deep decision trees (Cortes et al., 2014) which could slightly outperform MLP in few works

(Ahmed et al., 2021; Chakrabortty et al., 2021b). Combining optimization algorithms, such as particle swarm optimization,

with MLPs, to improve the training, has a limited effect on the performance improvement (Kalantar et al., 2021; Ngo et al.,
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2018). Moreover, CNNs increase the performance with respect to traditional models more than MLPs. Fang et al. (2020a)515

show that encoding spatial sequentiality with LSTMs work slightly better than 1D-CNNs and 3D-CNNs, however they avoid

the comparison with 2D-CNNs.

Table 4. Performance of the deep learning and comparison with reference models for flood susceptibility.

Case study
Deep learning Comparison

Reference
size [km2] Model Metric Model Metric

27 MLP+ensemble AUC = 0.847 RF AUC = 0.821 Darabi et al. (2021)

132 MLP R2 = 0.802 - - Khoirunisa et al. (2021)

147 MLP+PSO AUC = 0.98 MLP AUC = 0.96 Kalantar et al. (2021)

207 MLP R2 = 0.82 SCS R2 = 0.71 Jahangir et al. (2019)

465 MLP AUC = 0.917 PSO AUC = 0.929 Chakrabortty et al. (2021b)

1128 MLP AUC = 0.901 DB AUC = 0.917 Ahmed et al. (2021)

1465 MLP AUC = 0.960 SVM AUC = 0.936 Tien et al. (2020)

1510 MLP AUC = 0.970 SVM AUC = 0.960 Ngo et al. (2018)

2600 MLP+AHP AUC = 0.953 MLP+FR AUC = 0.942 Costache et al. (2020)

4673 MLP AUC = 0.93 DB AUC = 0.96 Chakrabortty et al. (2021b)

5264 MLP+FR AUC = 0.97 FR AUC = 0.937 Popa et al. (2019)

12050 MLP AUC = 0.974 - - Ahmadlou et al. (2021)

132000 MLP R2 = 0.98 - - Kourgialas and Karatzas (2017)

131 CNN AUC = 0.90 RF AUC = 0.78 Zhao et al. (2020b)

605 CNN AUC = 0.84 RNN AUC = 0.82 Lei et al. (2021)

1543 CNN AUC = 0.937 SVM AUC = 0.883 Wang et al. (2020b)

12000 CNN AUC = 0.832 ANFIS AUC = 0.70 Panahi et al. (2021)

1649195 CNN AUC = 0.75 - - Khosravi et al. (2020)

90016 CNN+FMV AUC = 0.912 SVM-FMV AUC = 0.898 Liu et al. (2021)

1543 LSTM AUC = 0.965 3D-CNN AUC = 0.956 Fang et al. (2020a)

PSO = particle swarm optimization; SCS = soil conservation system model; SVM = support vector machine;

AHP = analytic hierarchy process; RF = random forest; FR = frequency ratio; DB = deep boost; ANFIS = adaptive

neuro-fuzzy inference system; FMV = fuzzy membership value

3.5 Deep Learning for flood hazard

Flood hazard predicts the depth, velocity, and extent of floods. This application produces maps which evaluate for a certain

event its maximum inundation (e.g., Guo et al., 2021; Berkhahn et al., 2019; Löwe et al., 2021) or how it evolves in time (e.g.,520

Lin et al., 2020a; Zhou et al., 2021). While most studies consider the probability of different events, using return periods (e.g.,
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Kabir et al., 2020; Guo et al., 2021), there are few papers which determine the water depth map for a single event (e.g., Hu

et al., 2019; Chang et al., 2010). However, no papers were identified to predict the flow velocities. Since the simulation results

are taken as ground-truth data for training, deep learning models for flood hazard mapping are used as surrogate models in

place of numerical models.525

The most studied types of floods are river and urban floods. As regards the spatial scale, the models are carried out at local

and regional scales. This is probably due to the computational burden of performing several simulations at larger scales to train

the deep learning model.

3.5.1 DL architecture

The deep learning models are mainly based on MLPs and RNNs. In particular, RNNs are applied when a spatial-temporal530

estimation of the water depths is performed. CNNs were initially discarded but are used more in recent years (e.g., Guo et al.,

2021; Löwe et al., 2021; Kabir et al., 2020). Hu et al. (2019) and Jacquier et al. (2021) use a LSTM and a MLP, respectively, in

combination with a reduced order modelling framework. In the first case, the DL model is applied on the reduced space, while

in the latter DL is used as surrogate for the decomposition method.

3.5.2 Input and output data535

The inputs are hyetographs, which represent the rainfall precipitation or intensity in time (e.g., Berkhahn et al., 2019; Kao

et al., 2021; Guo et al., 2021) or hydrographs, which represent the discharge in time (e.g., Chu et al., 2020; Zhou et al., 2021;

Lin et al., 2020a). Other inputs such as the DEM and the roughness coefficient, also used for numerical models, are sometimes

considered as additional inputs (e.g., Guo et al., 2021; Chang et al., 2010; Huang et al., 2021b). Löwe et al. (2021) performed

a forward selection to identify relevant topographic variables, showing that aspect and local depressions improve the model’s540

prediction for urban floods.

The output is a water depth map. For the datasets, it is obtained via numerical models based on the 2D shallow water

equations. 1D, 1D-2D, and 3D models are also used (Kao et al., 2021; Chang et al., 2010; Hu et al., 2019). The main reason

why numerical models are used is to simulate events that have never occurred or have never been observed, such as floods with

high return periods. Even though observed data were not employed, they could be used in future research to corroborate the545

transferability of such methods. When training only on the numerical models’ predictions, the deep learning models’ results

are limited in accuracy by the numerical models’ one, i.e., if the numerical model does not represent reality so will the DL

model. Thus, when the model is deployed on real data, there may also be some generalization issues caused by the difference

between the training and testing data. The inclusion of real measured data may thus also improve the accuracy with respect to

numerical models.550
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3.5.3 Performance assessment

In flood hazard, regression metrics are used to evaluate the water depth, while classification metrics are used to evaluate the

flood extent, as done for flood inundation (Fig. 7). While for flood susceptibility and inundation DL models were used to

improve the performances, in flood hazard their main focus is to improve the speed, while still maintaining reasonably low

errors with respect to the numerical predictions. This is highlighted in Table 5, for all papers which provide information on555

computational times of both numerical and deep learning models. However, the comparison of speed-up across different papers

is often unrealistic since it depends on the number of performed numerical simulations and on the type of numerical model. A

similar consideration persists for the error scores, as they depend on the scale of the case study and on its resolution.
:::::::::
Moreover,

::
the

::::
real

::::
error

:::
of

::::::
models

::::::
trained

:::
on

::::::::
numerical

::::::
results

:::::::
depends

:::
on

:::
that

:::
of

:::
the

:::::::::
underlying

::::::::
numerical

:::::::::
simulator.

::::::
Hence,

:::
the

:::::
latter

::::
must

::
be

:::::::
reliable

::
to

:::::
have

::::::::::
trustworthy

:::::::::
predictions

::
in

::::
real

:::::::::
scenarios. A final remark regards the loss function employed in the560

training of the DL models. The minimization of the squared errors does not guarantee that the solution will have physical

meaning. For flood hazard mapping a possible solution is then to enforce the conservation of the mass or momentum equations

by adding such terms in the loss function. This provides additional biases on the predicted solution and was shown to increase

its performance in representing the numerical models (e.g., Zhang et al., 2021).

4 Knowledge gaps565

We identified knowledge gaps regarding the applications in flood management, usability, generalization, modeling limitations,

and data availability. Some other minor gaps were shown in the previous section. Based on these gaps, future research directions

are proposed in Section 5.

4.1 Flood applications and usability

Deep learning has proven useful for assessing flood-prone areas from the location of past events, identifying flooded areas570

from remote sensing images, and working as a surrogate model for numerical simulations. Nonetheless, each of the presented

maps has its own limitations. Susceptibility maps provide only qualitative results and rely on recorded flood events. Therefore,

limited recorded data may lead to incorrect predictions. Moreover, it is important to design an appropriate model to integrate

heterogeneous environmental information. Inundation maps mostly consider real events, thus they suffer from the acquisition

method’s problems. For example, satellites struggle to extract information below clouded areas (e.g., Meraner et al., 2020).575

Hazard maps, instead, are limited by the accuracy of the underlying numerical simulator. This leads to explore also
::::::::
However,

::::
there

:::
are

:::
still

::::::
several

:
other applications within this field that could benefit from deep learning models. In particular, we address

two flood management applications, flood risk and real-time flood warning. We also define two desired types of maps, flood

arrival time maps and probabilistic hazard maps. Then, we discuss dam and dike breach flood events.

Flood risk combines the probability that a certain event occurs with the associated consequences, such as economic impacts580

or loss of life. The expected annual loss is a common measure obtained from flood risk assessment and depends on (i) flood
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Table 5. Performance of the deep learning and comparison with numerical models for flood hazard.

Case study Deep learning Numerical Comparison Speed-up Reference
size [km2] Model Model measure

0.6 MLP 2D RMSE = 0.0013 m 1000x Berkhahn et al. (2019)

7.7 MLP 2D RMSE = 0.16 m 100x Chu et al. (2020)

21 MLP+clustering 2D RMSE < 0.3 m - Huang et al. (2021a)
for 99.7% of domain

31 MLP 1D-2D MAE = 0.06 m 1000x Chang et al. (2010)

92 MLP 2D RMSE < 0.3 m - Lin et al. (2020a)
for 82% of domain

92 MLP 2D MSE < 0.2 m2 - Lin et al. (2020b)
for 91% of domain

- MLP+ROM 2D RE = 2.8% 33x Jacquier et al. (2021)

10 CNN 2D MAE = 0.0012 m - Hosseiny (2021)

10.5 CNN 2D MAE < 1 m 2000x Guo et al. (2021)
for 93% of domain

14.5 CNN 2D RMSE = 0.11 m 38x Kabir et al. (2020)

72 CNN 2D RMSE = 0.22 m - Yokoya et al. (2020)

400 CNN 2D RMSE = 0.08 m - Löwe et al. (2021)

18.5 LSTM+ROM 3D RMSE = 0.01 m 1500x Hu et al. (2019)

271 LSTM 2D RMSE = 0.08 m - Kao et al. (2021)

1479 RNN 2D RMSE = 0.056 m 21x Zhou et al. (2021)

ROM = reduced order modelling

hazard, given by event-specific flood characteristics, such as water depth and flow velocity, (ii) exposure, related to the ele-

ments at risk, such as buildings and critical infrastructures, and (iii) vulnerability, i.e., the inability of a system to withstand

the effects of the event, given, for example, by intensity-damage curves. Flood risk maps are obtained by combining flood

hazard maps with damage models. Other approaches are based on MCDA, since the exact flood magnitude and damage are585

uncertain (de Brito and Evers, 2016). This is done by incorporating various factors that determine flood risk, such as hazard,

the performance of defenses, topography, and exposure. However, MCDA is based on expert knowledge and is thus subjective.

DL models solve this issue and can also yield a higher accuracy, as shown for flood susceptibility mapping. Thus, DL-based

approaches could provide alternative methods for assessing flood risk. In addition to the inputs used for flood susceptibility,

such as elevation and land use, flood risk mapping may require also other inputs such as population density, spatial estimates of590

economic value, and building types. Up to now, only Chen et al. (2021) combined DL and flood risk assessment. They showed

that ML and DL approaches can estimate flood risk at regional scale, but do not compare their results against other methods,
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such as MCDA. One drawback of their approach is that the resulting maps were qualitative, while quantitative results should

be preferable for risk assessment.

Real-time flood warning is another application that has not been widely addressed. This is needed by local authorities to595

inform when and where a flood may occur. While several papers mention real-time prediction, most can be used only after the

event has occurred, since they require as input the complete hyetograph or hydrograph of the event. There are a few examples

based on RNNs which could forecast floods in near real-time using sensors (Kao et al., 2021) and rainfall distribution (Dong

et al., 2021). However, few situations are covered and, thus, more research should focus on filling this gap. An alternative

method is to predict the rainfall in real-time and then retrieve the corresponding water depth map by using a similarity measure600

on a large dataset of previous simulations (Chang et al., 2020). However, such a solution may be challenging because of the

large storage requirements. Using DL for surrogate modeling instead showed substantial speed improvements, thus allowing

for real-time simulations and forecasts. Similar achievements have already been obtained for rainfall now-casting, where the

deep learning models can accurately forecast the near-future rainfalls (e.g., Shi et al., 2015; Ravuri et al., 2021).

Arrival time maps estimate the time employed by a flood to reach a certain water depth threshold. They can encode both605

spatial and temporal information in the same map. So, for a practitioner, they carry at one place detailed information not only

on where to intervene but also when to execute mitigation measures. Despite these promises, they have been seldom used in

flood management; consequently, they have also not been exploited with DL methods. Using DL for arrival map estimation

may be a promising direction to identify critical infrastructure and set up corresponding evacuation plans in real-time. This is

because DL has shown potential for surrogate modeling (see Table 5) and because arrival maps can be obtained from flood610

hazard maps taken over different time intervals of a flood event. This application may be particularly important for exceptional

flood events, such as dike breaches and dam breaks, where little forecast can be made until a failure initiates (Yakti et al., 2018).

Probabilistic hazard mapping captures the model uncertainty related to its inputs and outputs. As pointed out by Di Baldas-

sarre et al. (2010), uncertainties can result in deterministic maps which are only spuriously accurate. But probabilistic maps

can account for the uncertainties by assigning a probability of flooding to each domain element. This analysis is generally615

carried out with probabilistic methods such as Monte Carlo simulations (e.g., Papaioannou et al., 2017). However, since they

require a vast amount of simulations, only simpler numerical models are used. DL models could be used as surrogates to speed

up computation and improve the accuracy of the simpler models. Nonetheless, brute-force simulations, such as Monte Carlo,

may require up to hundreds of thousands of simulations to obtain a satisfactory measure of the uncertainty (Liu, 2017). Thus,

we need models that can intrinsically work with probabilistic input distributions of parameters.620

Dam break and dike breach floods concern a relevant category of flood events that has been poorly approached with deep

learning models. The motivation is probably related to the rarity of such events and the complexity of the phenomena. However,

their catastrophic and unexpected effects make their modeling necessary in several situations. Moreover, the effect of flood

defenses’ failure is often disregarded, also because location and modality of possible failures are uncertain. A common way

to include the failure of structures is to investigate all possible combinations of locations and boundary conditions, but it can625

be constrictive both for time and storage capacities. Probabilistic hazard mapping may be a relevant application to include the

uncertainty in the failure probability of the flood defense (Domeneghetti et al., 2013).
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4.2 Generalization

Generalization refers to the capacity of a model to extrapolate from a training dataset into unseen testing data. This means

that a DL model can correctly predict scenarios unused in its development. This property is particularly relevant because630

training requires data, model set-up, and time. In the context of flood modelling, there are two main generalization objectives:

(i) boundary conditions, i.e.
:::
e.g., different rainfall events, and (ii) topographical changes, i.e., different case studies. However,

the transference between different areas is challenging for DL models because of the difference in input and output data. In

fact, except for flood inundation mapping, most reviewed papers focused on generalizing different boundary conditions (e.g.,

Guo et al., 2021; Berkhahn et al., 2019). Instead, only a few papers tested the model on areas not considered during training.635

Löwe et al. (2021) could generate flood hazard maps for unseen areas within the same study region as the training dataset,

as there was little variability of inputs and outputs. Zhao et al. (2021b) instead pre-trained a model for flood susceptibility on

an urban area and then used it for another similar area. They showed that pre-training improves predictions with respect to a

model trained from scratch, both in cases of low and high data availability. These works show that such approaches are in their

infancy and have been tested on limited datasets. A DL model which cannot generalize to new areas has to be trained every640

time for a new study case. Thus, it may have limited advantages over a hydraulic model, since it requires more effort, data, and

time. Instead, a general DL model which can generalize to new areas could emphasize the advantages over numerical models.

This concept was experimented also for rainfall-runoff modeling where DL models outperformed state-of-the-art alternatives

in the prediction of ungauged basins in new study areas (Kratzert et al., 2019b).

4.3 Modeling limitations645

Complex interactions with the natural and built environment, such as dikes or buildings, are difficult to include in deep learning

models. Kabir et al. (2020) showed that flood defenses can be included if they are present in the simulations used for training

and testing. However, no solution presented so far can directly include new flood defenses in it. Building can be statically

included as well in the DEM (e.g., Löwe et al., 2021), but bridges and other hydraulic structures that influence the behavior of

the floods may be harder to include, due to their strong influence on the flow path.650

4.4 Data availability

Deep learning models usually require large quantities of data to achieve good performances. While simulations can provide

potentially limitless data, observed data are scarce and depend on the study area. Simulations may also encounter instability

issues depending on the numerical schemes and study area. Remote sensing has provided large quantities of data since its vast

development in the past decades, but satellite data is still limited by its frequency of observations and dependency on favorable655

meteorological conditions. Also, UAVs cannot cover wide areas at once. Precipitation and water depth data are available only

in a few locations where the measuring stations are present. Thus, new data sources are needed to overcome these limitations.

Another issue, which emerges also from Section 3.2.5, is the lack of a unified framework to compare different approaches

with each other. This can be achieved by creating flood-based benchmark datasets for each mapping application. For flood
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inundation, some datasets have been already used across different works (e.g., Bonafilia et al., 2020). However, works on both660

flood susceptibility and hazard mapping consider different datasets, focusing on different geographic areas or flood types. One

possibility could then be to unify different case studies in a single dataset, for each application, allowing to assess the validity

of a model more objectively. For flood susceptibility, case studies with the same input availability could be merged in a dataset

with many flood types, scales, and geographical areas. A similar reasoning could be made for flood hazard mapping, selecting,

for each case study, initial and boundary conditions for specific return periods.665

5 Future research directions

The present review shows that flood practitioners still need to be up to date with the latest and most successful deep learning

models. We suggest that the outstanding identified issues can be approached by resorting to Deep Learning state-of-the-art

advancements to our field. As such, we propose future research directions to transfer this knowledge and address the above-

identified gaps.670

5.1 Mesh-based deep learning

Figure 8. The irregular geometrical structure of the mesh allows capturing information in a more efficient way than regular grids by following

the properties of the underlying system (picture taken from (Ferreira et al., 2015)).

Current deep learning models lack generalization across different case studies, meaning that they can work exclusively for a

specific purpose or area. They also cannot represent complex interactions with the natural and built environment. Both issues

may depend on the regular grids used in the reviewed papers, which are unable to follow the geometric properties of irregular

inputs, as illustrated in Fig. 8. Hence, the model cannot exploit many data patterns, ultimately limiting its generalizability675

and, for the same motivation, being unable to account for the irregular geometrical structures. Unstructured meshes may solve

this problem by discretizing the domain more flexibly (Mavriplis, 1997). A mesh is a structure composed of a collection of

nodes, edges, and faces used to discretize a continuous domain. Meshes are commonly used for numerical simulations in many

physical systems (e.g., Ferraro et al., 2020; Bomers et al., 2019). Their flexible definition allows to increase the resolution

where needed and coarsen it otherwise, ultimately decreasing the computational time and improving efficiency (Candy, 2017).680

Moreover, they are equivalent to regular grids if the mesh is structured. Thus, the following principles could also be transferred
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to rasters, if needed. Unstructured meshes, nonetheless, inherit similar problems as those typical of numerical models, such as

mesh generation and the need of explicitly defining how each node is connected. Standard DL models, such as CNNs, cannot

be applied on meshes. There are currently several lines of work which, instead, can use meshes as a learning framework. They

are here referred to as mesh-based neural networks. Two highly promising mesh-based approaches for flood applications are685

geometric deep learning and physics-based deep learning.

5.1.1 Geometric deep learning

Geometric deep learning provides a generic framework to work with any type of data by enforcing symmetries with respect to

transformations, such as translations and rotations (Bronstein et al., 2017). Symmetries result in inductive biases, which address

the curse of dimensionality by decreasing the required training data (e.g., Wang et al., 2020a) and enabling the processing of690

different data types, such as meshes. From a flooding perspective, symmetries can be understood and motivated by referring to

the example in Section 2.2.1. For instance, analogously to translation, the rotation of a domain should result in an equivalent

rotation of the predictions. Among the several geometric deep learning models which can work with meshes, graph neural

networks (GNN) are the most developed ones. Graphs are structures defined by a set of nodes and edges and can be considered

as the underlying skeleton of a mesh. GNNs allow to model data on graphs by considering how its elements are connected695

(Wu et al., 2021; Gama et al., 2020). They take as input the information encoded in the nodes, in the edges, and in the graph

structure, and then process it with neural networks, in a similar way as done by CNNs and RNNs with grid elements and

sequential data, respectively. For example, nodes can carry information on the elevation of a point or its boundary conditions,

while edges may encode the spatial distance between nodes. Several variations of GNNs exist that give more importance to

certain parts of the data by weighting information from different neighbours (Wu et al., 2021; Isufi et al., 2021). There already700

exist promising works which simulate fluid dynamics with mesh-based GNNs, with increased generalization, accuracy, and

stability, with respect to CNNs (e.g., Pfaff et al., 2020; Lino et al., 2021). However, GNNs consider only pairwise geometrical

properties as connections between nodes, thus neglecting the mesh structure. Recent developments focused on extending

the GNN framework to include it. Mesh convolutional neural networks adapt GNNs to include a representation of the local

geometry, which preserves the angles between edges (De Haan et al., 2020; Zhou et al., 2020). Simplicial neural networks705

(Yang et al., 2021; Ebli et al., 2020) and cell complex neural networks (Bodnar et al., 2021; Hajij et al., 2020), instead,

generalize GNNs to higher-order structures. They can consider as well information on triangular and polyhedral elements,

which can represent, for example, a flooded area or a volume. This inclusion of the mesh properties in such approaches may

further enhance the power of GNNs. Even though they are still in their infancy, their potential for learning on meshes could

reveal to be useful also for flood modelling in future research.710

5.1.2 Physics-based deep learning

While promising, the aforementioned approaches ignore any underlying physical laws present in flood modelling and let the

model figure them out. But these physical laws provide additional inductive biases, hence we could include them in modeling

to enhance the performance. Physics-based neural networks and neural operators are approaches that account for them.
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Physics-informed neural networks (PINN) employ physical laws to constraint the model solution (Raissi et al., 2019). The715

idea is to parameterize a partial differential equations (PDE) solution with a neural network, while keeping the same physical

formulation. Then, each partial derivative in the equations is determined via automatic differentiation. Many works have shown

the capabilities of PINNs to follow the underlying PDEs in fluid dynamics (e.g., Mao et al., 2020; Yang et al., 2019b). This

is relevant also in flood modelling where PDEs such as shallow water equations or the Navier-Stokes equations are employed

(e.g., Mahesh et al., 2022). However, PINNs can only be trained for a specific boundary condition (e.g., a specific rain event)720

and can subsequently only simulate that specific event (Kovachki et al., 2021).

Neural operators, instead, can learn mappings between function spaces, i.e., they learn a whole family of equations (Ko-

vachki et al., 2021). In other words, they can approximate any differential operator. Moreover, since neural operators learn a

mapping between infinite-dimensional spaces, they are invariant with respect to the chosen discretization. Thus, their solution

is transferable to any mesh resolution. While many approaches have been proposed, such as DeepONets (Lu et al., 2019) or725

multipole graph neural operator (Li et al., 2020), Fourier neural operators (FNO) have currently achieved the best results

(Li et al., 2021). In general, the idea is to extract features from the input function, process them in the function space, and,

finally, map them to the output function. In FNOs, the function space is given by the Fourier space, which allows to use fast

Fourier transforms, providing faster approximations of the integral operator. Results show that FNOs improve the speed of

several PDEs by up to three orders of magnitude. Jiang et al. (2021) used FNOs for simulating sea surface height, showing730

increased performance with respect to CNNs, and noticeable speed-up compared to the numerical simulator. Consequently,

they could also be used in flood management to overcome computational speed limitations while preserving the underlying

physics, allowing also for more reliable real-time flood warning. Thanks to the inductive biases given by the physical laws,

both physics-based neural networks and neural operators also require less data.

5.2 Probabilistic deep learning735

Uncertainties in floods are often determined via probabilistic hazard mapping. These maps show the inundation depths and

extents together with their confidence intervals and are traditionally obtained with Monte-Carlo simulations (e.g., Domeneghetti

et al., 2013). To avoid brute-force simulations and provide uncertainty guarantees, certain deep learning models can consider

uncertainty in the model inputs. An example of these models is deep Gaussian processes (DGP). DGP are models composed

by the stacking of Gaussian processes (GP), in a similar fashion done in neural networks (Damianou and Lawrence, 2013).740

A GP is a collection of random variables whose joint distribution is a Gaussian (Rasmussen, 2003). They benefit from the

properties of normal distributions and thus their output can be obtained analytically. The advantage of DGPs over GPs is that

they can better extract patterns in data thanks to their increased complexity. DGPs can determine the distribution of the output

and could, therefore, be used in probabilistic hazard modeling to determine the range of variation of the predicted flood hazard

map. No example of DGPs used for flood mapping exists yet. However, GPs have been used for the statistical estimation of the745

correlation between flooding and sea-level rise (Vandenberg-Rodes et al., 2016).

Along with those related to the model’s input, uncertainties are also present in the model’s prediction. To account for this

kind of uncertainty we can use Bayesian neural networks (BNN). BNNs are models with stochastic components trained using
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Bayesian inference. They assign prior distributions to the model parameters to provide an estimate of the model’s confidence

on the final prediction (Blundell et al., 2015). If, for different parameter sampling, the output is unvaried, then the model has750

a good confidence on the prediction and vice versa if different parameters give different results. Jacquier et al. (2021) used

BNNs to determine the confidence intervals in flood hazard maps, providing a measure of the model’s reliability.

5.3 Data augmentation

Even though remote sensing and measuring stations provide noticeable amounts of data, several parts of the world still lack

enough data to deploy deep learning models. New satellite missions and added sensor networks throughout the world increas-755

ingly provide new data sources (e.g., van de Giesen et al., 2014). But here we focus on how DL itself can be one solution for

data scarcity.

The flexibility of DL partially overcomes data scarcity by facilitating the use of a wider variety of data sources. For instance,

several papers already employ cameras to detect floods and measure the associated water depth (e.g., Vandaele et al., 2021;

Jafari et al., 2021; Moy De Vitry et al., 2019). Structural monitoring with cameras can provide reliable data where it was760

previously hard to obtain, such as in urban environments. Social media information can also be used to identify flood events

and flooded areas, via tweets or posted pictures (e.g., Rossi et al., 2018; Pereira et al., 2020). In this case, the information’s

validity and reliability must be considered before its use for real applications. Moreover, the heterogeneity of the sources of

these data needs to be carefully taken into account when deploying a DL model.

Another approach can be to generate artificial data to supplement scarce data. This can be done using generative adversarial765

networks (GAN), which create new data from a given dataset (Goodfellow et al., 2014). GANs are composed of two neural

networks, named generator and discriminator, whose purpose is, respectively, to generate new data and to detect if a given

data is real or fake. A trained GAN can produce new fake but plausible data, facilitating data augmentation, i.e., providing

more training samples. Interesting applications of GANs could overcome some limitations of satellite data (Lütjens et al.,

2020, 2021), predict flood maps (Hofmann and Schüttrumpf, 2021) or meteorological forecasts (Ravuri et al., 2021), and770

create realistic scenarios of flood disasters for projected climate change variations (Schmidt et al., 2019). GANs could also be

used to generate a plausible urban drainage system or topography for cities that do not have any sewers construction plan or in

areas where only low-resolution data is available (e.g., Fang et al., 2020b).

However, GANs are difficult to train (Goodfellow, 2016). Variational autoencoders (VAE) are another type of generative

model, which can overcome this issue. Differently from standard autoencoders, VAEs model the latent space with probability775

distributions that aim to ensure good generative properties to the model (Kingma and Welling, 2013). Once the model is trained,

new synthetic data can be generated by taking new samples from the latent distributions. Nonetheless, because of the model’s

definition, the predictions are less precise than GANs. As such, VAEs and GANs offer a trade-off between the reality of the

prediction and the availability of training data.
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6 Conclusions780

This paper presented a review of current applications of deep learning models for flood mapping. The search criteria focused

on DL applications in flood mapping from 2010 until 2021, leading to
::::::
chosen

:::::
search

:::::::
criteria

::::::
yielded

:
a total of 58 reviewed

papers . Our main conclusions
::::::
papers

::::::::
published

:::::::
between

::::
2010

::::
and

:::::
2021.

::::
From

:::
our

:::::::
analysis

:::
we

::::::::
conclude

:::
that

::::
there

:::
are

::::::::
common

::::::
patterns

::::::
across

::::::
works,

:::
that

:
can be summarized as follows:

– Flood inundation, susceptibility, and hazard mapping were investigated using deep learning models. Flood inundation785

considers as the main data images of floods, mostly taken via satellite. The main and most accurate deep learning models

were CNNs. In flood susceptibility, deep learning models consider several inputs, the most important being slope, land

use, aspect, terrain curvature, and distance from the rivers. The main deep learning model used were MLPs, often in

combination with other statistical techniques , but
:::::::
although CNNs provided more accurate results. So far, flood hazard

maps estimate the water depth
::::
Deep

:::::::
learning

::::
for

::::
flood

::::::
hazard

::::::::
mapping

::::::::
generally

::::::::
involves

:::::::::
developing

:::::::::
surrogates

:::
of790

::::::::
numerical

::::::
models

::::
that

:::::::
estimate

:::::
water

::::::
depths

:
in a study areaby using deep learning as a surrogate model for numerical

simulations. For this application, there are no deep learning model preferences. However, RNNs are preferable for spatio-

temporal simulations. Regardless of the application, results show that deep learning solutions outperform traditional

approaches as well as other ML techniques.

– MLPs and CNNs were the most common type of deep learning model considered in flood mapping, while RNNs were795

less used. To overcome their lack of inductive biases and achieve good accuracy, MLPs are often coupled with other

statistical techniques. On the other hand, thanks to their spatial and temporal inductive biases, CNNs and RNNs were

found to regularly outperform other models. DL models used for surrogate modeling provide significant speed-up (up to

three orders of magnitude) while maintaining sufficient accuracy.

– Most papers dealt with river and urban floods, while only a few works described applications for flash, coastal, and800

dam break floods. Case studies were mainly addressed at local or regional scales, arguably due to the availability of

high-resolution data. Conversely, the community should further investigate the suitability of DL
::::
deep

:::::::
learning

:
models

for flood applications at larger scales.

– Concerning the development data, we found that models producing susceptibility and inundation maps rely on the avail-

ability of real flood observations. Instead, DL-based surrogate models for hazard mapping require target data from805

numerical simulations.

This review
::
In

:::::
terms

::
of

::::::::::
comparison

::::
with

::::::::
traditional

::::
and

:::::::
machine

:::::::
learning

:::::::::
approaches

:::
we

:::::
found

:::::
that:

–
:::::::::
Regardless

::
of

:::
the

::::::::::
application,

::::::
results

:::::
show

::::
that

::::
deep

::::::::
learning

::::::::
solutions

:::::::::
outperform

:::::::::
traditional

::::::::::
approaches

::
as

::::
well

:::
as

::::
other

:::::::
machine

:::::::
learning

::::::::::
techniques.

–
::::
deep

:::::::
learning

::::::
models

::::
used

:::
for

::::::::
surrogate

::::::::
modeling

:::::::
provide

:::::::::
significant

::::::::
speed-up

:::
(up

::
to

::::
three

::::::
orders

::
of

::::::::::
magnitude)

:::::
while810

::::::::::
maintaining

:::::::
sufficient

::::::::
accuracy.

:
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::::
This

:::::
review

:::
did

:::
not

:::::::
consider

::::::
works

:::::::
featuring

::::
ML

:::::::
methods

:::::
alone.

:::::::::
Therefore,

::::::
further

:::::::
research

:
is
::::::
needed

::
to

:::::::::
thoroughly

::::::::
compare

:::
ML

::::::
against

::::
DL

:::::::
methods,

:::::::::
especially

::::
with

::::::
respect

:::
to

::::::::::::
explainability,

::::::::::::
generalization

::::::
ability,

:::
and

::::
data

::::::::::::
requirements.

::::
This

::::::
review

:::
also

:
outlined several knowledge gaps, which can be addressed via deep learning to improve the state of the art of flood mapping.

To solve these gaps we proposed possible solutions based on recent advances in fundamental machine learning research:815

– Flood risk could be addressed in a similar way as for flood susceptibility by using physical and economical characteristics

to obtain a risk map. Flood arrival time maps can provide both spatial and temporal information of a flood event and may

be obtained similarly as for flood hazard maps.

– Current deep learning models struggle to generalize across different case studies and regions, meaning
::::::::
implying that a

new model has to
::::
must

:
be created each time. Moreover, they cannot account for

::::::
Further

:::::::
problems

:::::
occur

:::::
when

:::::::::
modelling820

the complex interactions with the natural and built environment. A
:::::
While

:::::
some

::
of

:::
the

::::::::
reviewed

::::::
papers

::::::
provide

::::::
initial

:::::::::
suggestions

::
to

::::::
tackle

::::
these

::::::
issues,

:::
the

:::::::::
community

::::::
should

:::::
invest

:::::
more

:::::
efforts

::
in

:::
this

::::::::
direction.

::
A
:::::::
possible

:
solution to these

problems is to use novel DL
::::
deep

:::::::
learning architectures that include meshes as learning frameworks. Mesh-based neural

networks, such as graph neural networks and neural operators, can consider arbitrarily shaped domains and thus provide

the required flexibility to generalize across case studies and model the effects of complex interactions.825

– Physics-based deep learning provides a reliable framework for flood modelling since it considers the underlying physical

equations. Probabilistic hazard mapping can take advantage of deep Gaussian processes or Bayesian neural networks to

determine the uncertainties associated with the model and its inputs.

– DL
::::
deep

:::::::
learning

:
necessitates large quantities of data which are difficult to collect in several areas of the world. New

data sources such as camera pictures and videos, or social media information can potentially be used thanks to deep830

learning models. Moreover, generative models, such as GANs and VAEs, can be employed to produce synthetic data for

such data-scarce regions, based on training data collected elsewhere.

:::::
While

:::
our

::::::
review

:::::
draws

:::::::
insights

:::
for

::::::
future

:::::::
research

::::::::
directions

:::::
from

:::
the

:::::::
machine

:::::::
learning

:::::::::
literature,

::::::
further

::::::::::::
understanding

:::
may

:::::::
emerge

::::
from

::
a
::::::
broader

::::::
review

::::::::
including

:::::
deep

:::::::
learning

::::::::::
applications

:::::
across

:::::
other

::::::
water-

:::
and

::::::::::::::::::
natural-hazard-related

::::::
fields,

:::
and

::::::::
featuring

:
a
:::::::::::
bibliometric

:::::::
analysis

::::::::::::::::::::::::
(Fazeli-Varzaneh et al., 2021)

:
.
::::
This

::::::::
approach

::::
may

::::::::
facilitate

::::::::::::::
cross-fertilization

::::::::
between835

::::
sister

::::::::::
disciplines,

:::::::::
especially

::::
with

:::::::
respect

::
to

:::
the

:::::::::
successful

:::::::::::::
implementation

:::
of

::::::::
advanced

:::::
deep

:::::::
learning

::::::::
methods

:::
for

::::::
spatial

:::::::
analysis. We expect deep learning to be a promising tool to improve and speed up flood mapping. Nonetheless, deep learning

models are black-box models, meaning that the underlying operations are unknown. Thus, their deployment in real emergencies

has to be taken cautiously. As deep learning for flood mapping is still novel, we advise its use in critical situations to be always

validated by traditional models and expert knowledge, until robust and corroborated models are available. The above concern840

highlights the main challenge DL
::::
deep

:::::::
learning models for flood management need to face. However, DL

::::
deep

:::::::
learning models

are still in their infancy and carry the large potential to aid researchers for many applications, especially where traditional

models cannot provide sufficient accuracy or speed. In particular, deep learning-based flood mapping approaches could provide

an added value for regions with limited data or limited resources to invest in setting up time-consuming hydraulic models.
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Appendix A: Comparison metrics845
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Figure A1. Distribution of the comparison metrics in the reviewed papers per type of application.

Abbreviations: AUC = Area Under the ROC Curve; CSI = Critical Success Index; FAR = False Alarm Ratio; MAE = Mean Average Error;

MRE = Mean Relative Error; MSE = Mean Squared Error; NPV = Negative Predictive Value; NSE = Nash-Suitcliffe Efficiency; RMSE =

Root Mean Squared Error; R2 = Coefficient of determination

Appendix B: Flood susceptibility inputs

Figure 1b shows the complete list of the inputs used in the flood susceptibility models. Inputs which were considered only once

were discarded from this graph.
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Figure B1. Distribution of the inputs for flood susceptibility for the 23 reviewed papers. The inputs are categorized in topographical, meteo-

rological, geographical, geological, and anthropogenic factors. Inputs which were considered only once were discarded from this graph.

Abbreviations: CI = Convergence Index; CN = Curve Number; DD = Drainage Density; DEM = Digital Elevation Model; DRI = Distance

from Rivers; DRO = Distance from Roads; FAV = Flow Accumulation Value; NDVI = Normalized Difference Vegetation Index; SPI =

Stream Power Index; STI = Sediment Transport Index; TWI = Topographic Wetness Index

Appendix C: Reviewed papers

Table C1: A brief description of the reviewed papers, following the same ordering as in Table 2.

Reference Brief description

Li et al. (2015) A MLP combined with genetic algorithm is used for super-resolution mapping of wetland inundation. Images are taken

from Landsat remote sensing for two areas, in China and Australia.

Li et al. (2016a) A MLP optimized with particle swarm optimization is used for super-resolution mapping. Images are taken from Landsat

remote sensing for two areas, in China and Australia.

Nogueira et al. (2017) Satellite image patches, collected from eight flooding events, are classified in flooded and non flooded areas using a CNN.

Gebrehiwot et al. (2019) A set of images taken from unmanned aerial vehicles is used for flood inundation mapping using a CNN. The dataset is

composed by three study areas in North Carolina, USA, with a total of 100 images.

Ichim and Popescu (2020) A combination of five different CNN based models is used for flood inundation mapping. A set of 2000 images derived

from UAVs in a Romanian rural region is classified into flooded, vegetation and non-flooded areas.

Hou et al. (2021) A flood propagation experiment in a small scale laboratory is used to develop a CNN model for inundation mapping. The

dataset is composed by a sequence of 1930 images detected from cameras.

Hashemi-Beni and Gebrehiwot (2021) A encoder-decoder CNN is developed for flood inundation mapping. The study area is the same as Gebrehiwot et al. (2019).

Wieland and Martinis (2019) A encoder-decoder CNN model is trained to identify five classes (water, land, snow, shadow, cloud) from Landsat and

Sentinel-2 satellite images.

Kang et al. (2018) A CNN model is developed for flood detection from satellite images for three study areas in China.

Sarker et al. (2019) A CNN model is trained to predict flood extent from Landsat satellite images across Australia.

Nemni et al. (2020) A CNN model is trained to predict flood extent from Sentinel-1 SAR imagery. The United Nations Satellite Centre (UN-

OSAT) flood dataset, which covers flood events from Africa and East Asia, is used for the model development.

Isikdogan et al. (2017) A CNN model is trained to identify five classes (water, land, snow, shadow, cloud) from Landsat satellite images.

Amini (2010) High-resolution images are classified into five categories with a MLP. The study area is located in a Iranian city.



Li et al. (2016b) A MLP is developed for super-resolution mapping. Images are taken from Landsat remote sensing for two areas, in China

and Australia.

Peng et al. (2019) A CNN which considers pre- and post-flood satellite images is used for urban flood detection. The study area is in Texas,

USA, and considers two hurricane events.

Dong et al. (2021) A combination of 1D-CNN and GRU is used for prediction of flood inundation in urban area in Texas, USA. The dataset

is composed by a channel sensor network. Given information on the temporal evolution of water depth and precipitation,

for each sensor, the model predicts which nodes will be flooded.

Liu et al. (2019) A CNN which considers pre- and post-flood SAR images is used for coastal flood detection. The study area is in Texas,

USA, and considers six pairs of satellite images for a hurricane event.

Muñoz et al. (2021) A CNN model is developed for compound flood mapping for the Atlantic coast of USA. The model takes as input Landsat

and SAR satellite data, along with a DEM of the study areas, and combines them with data fusion. The model distinguishes

then between several categories, such as flooded areas and vegetation.

Syifa et al. (2019) A MLP which considers pre- and post-flood satellite images is used for flood inundation mapping after a dam break in

Brazil.

Khoirunisa et al. (2021) A MLP is developed to obtain a flood susceptibility map for a Taiwanese city, using nine flood conditioning factors. The

model is then compared with SOBEK, a 2D hydraulic model. The data is given by 307 flood events collected between 2015

and 2019.

Jahangir et al. (2019) A MLP is employed in a river basin in Iran to predict discharges, using seven flood conditioning factors. The discharges are

then converted into a flood susceptibility map via a GIS software. The data is given by hydrometric stations in the basin.

Ahmadlou et al. (2021) Several MLP architectures are presented for the development of two flood susceptibility maps in Iran and India using,

respectively, nine and twelve flood conditioning factors. The datasets are composed by 147 and 300 flood events, respec-

tively.

Popa et al. (2019) A combination of MLP with frequency ratio is used to determine flash flood and river flood potential indexes for a Roma-

nian catchment, using respectively 14 and 13 flood conditioning factors. The datasets are composed respectively by 168

and 172 flood locations.

Kia et al. (2012) A MLP is employed in a river basin in Malaysia to predict discharges, which are then converted into a flood susceptibility

map via GIS. The model considers seven flood conditioning factors.

Ahmed et al. (2021) Two MLP models are developed to obtain a flood susceptibility map for a catchment in Bangladesh, using 12 flood condi-

tioning factors. The data is given by 521 flood events collected during 2019.

Chakrabortty et al. (2021b) Two MLP models are developed to obtain a flood susceptibility map for a catchment in India, using 15 flood conditioning

factors. The models are then used estimate future flood susceptibility scenarios by considering rainfall variations due to

climate change.

Saeed et al. (2021) A MLP model is developed to obtain a flood susceptibility map for a basin in Pakistan, using nine flood conditioning

factors.

Wang et al. (2020b) Three CNN models, based on 1D, 2D, and 3D convolutional layers are proposed for a region in China using 13 flood

conditioning factors. The dataset is based on 108 historical flood events. The model is also compared with support vector

machine.

Khosravi et al. (2020) A national scale flood susceptibility map is developed for Iran, using a CNN. The model uses ten flood conditioning factors

and a dataset composed by 2769 flood events.

Fang et al. (2020a) A LSTM model is developed for flood susceptibility in a Chinese county. The model uses 11 flood conditioning factors

and a dataset of 108 flood events. The model is also compared with MLP, 1D-CNN, and 3D-CNN.

Tien et al. (2020) A MLP, based on nine flash flood conditioning factors, is developed for a province in Vietnam. The dataset contains 732

flood events.

Ngo et al. (2018) A combination of MLP with firefly algorithm optimization technique is proposed for flash flood susceptibility in a Viet-

namese region. The model considers 12 flood conditioning factors and a dataset of 654 flooded areas

Costache et al. (2020) Two MLP models, combined with analytical hierarchy process and frequency ratio, respectively, are developed for flash

flood susceptibility mapping in a catchment in Romania. The model considers ten flood conditioning factors and 178

flooded locations.

Chakrabortty et al. (2021a) Two MLP models are developed to obtain a flash flood susceptibility map for a catchment in India, using 14 flood condi-

tioning factors.

Kourgialas and Karatzas (2017) A national-scale flash flood susceptibility map is obtained with a MLP for Greece. The model considers seven flood

conditioning factors and a dataset of 600 flood events.



Panahi et al. (2021) Two models, CNN and RNN, are developed for flash flood susceptibility in a province in Iran. The model considers nine

flood conditioning factors and a dataset of 143 flood events.

Liu et al. (2021) A 1D-CNN model combined with fuzzy membership value is proposed for flood susceptibility mapping for a basin in

China, using nine flood conditioning factors. The dataset is based on 485 flood locations. The model is also compared with

support vector machine.

Darabi et al. (2021) A MLP ensemble model is used for urban flood susceptibility mapping in a Iranian city. The model uses six flood condi-

tioning factors and a dataset of 118 flooded locations.

Kalantar et al. (2021) Three MLP models, one of which optimized with particle swarm optimization, are developed for flood susceptibility

mapping in a urban catchment in Australia. The model considers 13 flood conditioning factors and 128 flooded locations.

Zhao et al. (2020b) Two CNN models are used to assess urban flood susceptibility for a Chiese catchment. The model considers nine flood

conditioning factors and 202 flooded locations. The model is also compared with support vector machine and random

forest.

Zhao et al. (2021b) A pre-trained CNN model, taken from Zhao et al. (2020b), is deployed in two urban areas, with data-rich and data-scarce

scenarios.

Lei et al. (2021) Two models, CNN and RNN, are developed for urban flood susceptibility in Seoul, South Korea. The model considers 10

flood conditioning factors and a dataset of 295 flood events.

Chu et al. (2020) A MLP is used to estimate the water depth for a river reach in Australia. The dataset is generated using a 2D hydrodynamic

model, TUFLOW, and considers ten flood events.

Lin et al. (2020b) A MLP is used to estimate the water depth and extent for a river reach in a German city. The dataset is generated using a

2D hydrodynamic model, HEC-RAS, and considers 180 flood events.

Lin et al. (2020a) A MLP is used to forecast water depth and flood extent for a river reach in a German city. The dataset is the same as in Lin

et al. (2020b).

Huang et al. (2021a) Two models, MLP and RNN, are developed for water depth estimation for an American river. Before being given as input

to the models, the data is clustered based on slope, drainage area and hydrologic length. The dataset is generated using a

2D hydrodynamic model and considers 20 flood events.

Xie et al. (2021) Three MLPs are used to estimate the water depth for a river reach in Australia (also considered by Chu et al. (2020)). The

dataset is generated using a 2D hydrodynamic model, TUFLOW, and considers nine flood events.

Jacquier et al. (2021) A combination MLPs with reduced-order modelling is applied to a river and a dam break flood simulations. Moreover, the

model provides uncertainty estimates using ensembles and Bayesian neural networks. The dataset is obtained using a 2D

hydrodynamic model, CuteFlow.

Kabir et al. (2020) A 1D-CNN model is used to predict a flood hazard map, from a discharge hydrograph, for a river reach in England. The

dataset is generated using a 2D hydrodynamic model, LISFLOOD-FP, and considers 10 flood events. The model is also

compared with support vector regression.

Hosseiny (2021) A encoder-decoder CNN is used for flood mapping in a river reach in the USA. The dataset is generated using a 2D

hydrodynamic model, iRIC, and considers 7 flood events.

Guo et al. (2021) A encoder-decoder CNN is used for flood mapping in three catchments, two in Switzerland and one in Portugal. The dataset

is generated using a cellular-automata flood model, CADDIES, and considers 18 flood events.

Zhou et al. (2021) A LSTM model is used to predict the temporal evolution of water depth in few representative locations along an Aus-

tralian river. The water depths are then interpolated to obtain a flood hazard map. The dataset is generated using a 2D

hydrodynamic model, TUFLOW, and considers 74 flood events.

Kao et al. (2021) A stacked encoder decoder LSTM is used to determine flood hazard maps in time from precipitation. The study area is

located in Taiwan. The dataset is generated using a storm water management model, HEC-1, plus a 2d hydrodynamic

model and considers 24 flood events.

Chang et al. (2010) A MLP is developed to forecast one hour ahead flood hazard maps in a Taiwanese county. The data is also pre-processed

by clustering. The dataset is generated using a storm water management model, HEC-1, plus a 2d hydrodynamic model

and considers 120 flood events.

Yokoya et al. (2020) A encoder-decoder CNN is used for flash flood and debris flow mapping in Japan. The dataset is generated using a 2D

hydrodynamic model coupled with a debris-flow module and considers 160 flood events. The model is then trained to

estimate flood depths and debris flows from pre- and post-flood event images.

Berkhahn et al. (2019) A MLP is used to predict maximum water levels for two urban areas. The dataset is generated using a coupled sewer-surface

model, HE 2D, and considers 64 flood events.



Löwe et al. (2021) A encoder-decoder CNN is used for flood mapping in a urban area in Denmark. The dataset is generated using a 2D

hydrodynamic model, MIKE 21, and considers 53 flood events.

Hu et al. (2019) A LSTM model is developed to simulate a tsunami in Japan. The model is trained in a lower dimensional space to reduce

the problem’s complexity. The dataset is obtained using a 3D hydrodynamic model, Fluidity, and consists of 100 snapshots

of a modelled tsunami event.
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