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Abstract. Large sample datasets are transforming the catchment sciences, but few off-the-shelf stream water 

chemistry datasets exist with complementary atmospheric deposition, streamflow, meteorology, and catchment 

physiographic attributes. The existing CAMELS (Catchment Attributes and Meteorology for Large-sample 

Studies) dataset includes data on topography, climate, streamflow, land cover, soil, and geology across the 

continental U.S. With CAMELS-Chem, we pair these existing attribute data for 516 catchments with atmospheric 20 

deposition data from the National Atmospheric Deposition Program and water chemistry data and instantaneous 

discharge from U.S. Geological Survey over the period from 1980 through 2018 in a relational database and 

corresponding dataset. The data include 18 common stream water chemistry constituents: Al, Ca, Cl, dissolved 

organic carbon, total organic carbon, HCO3, K, Mg, Na, total dissolved N, total organic N, NO3, dissolved oxygen, 

pH (field and lab), Si, SO₄, and water temperature. Annual deposition loads and concentrations include hydrogen, 25 

NH4, NO3, total inorganic N, Cl, SO₄, Ca, K, Mg, and Na. We demonstrate that CAMELS-Chem water chemistry 

data is sampled effectively across climate, seasons, and discharge for trend analysis and highlight the coincident 

sampling of stream constituents for process-based understanding. To motivate use by the larger scientific 

community across a variety of disciplines, we show examples of how these publicly-available datasets can be 

applied to trend detection and attribution, biogeochemical process understanding, and new hypothesis generation 30 

via data-driven techniques.   



2 

 

1 Introduction 

Earth surface processes include coupled and complex interactions that involve atmosphere, biosphere, lithosphere 

and hydrosphere, however, tracking these important dynamics across time, space and disciplines remains a 

challenge that is, amongst others, related to data availability and connectedness. To address the need for ‘balancing 35 

breadth with depth’ (Gupta et al. 2014, Hubbard et al. 2020), the hydrological sciences have developed large sample 

size datasets that are of high quality and then made these available to the research community. One of the key 

advantages of aggregating and harmonizing data into larger sample size datasets is to test how model hypotheses 

reproduce observed response across variable conditions and sites to reduce the uniqueness of place issues (i.e. 

individual catchment behavior might not be generalizable to explain a larger scale pattern and vice versa, Gupta et 40 

al. (2014) and Hubbard et al. (2020)). As a result, several recent efforts have focused on generating and using 

datasets across the continental U.S. (CONUS) where observation networks are relatively dense. For example, the 

Model Parameter Estimation Experiment (MOPEX, Duan et al. (2006)) dataset has been used to detect the effects 

of shifts from snow to rain on streamflow (Berghuijs et al. 2014) and to better diagnose the cause of catchment-

scale water budgets (Brooks et al. 2015). Recent efforts have extended the record and detail of auxiliary data of 45 

older efforts (e.g. MOPEX) to develop longer-term streamflow and hydrometeorological forcing data for a larger 

number of minimally disturbed catchments, including the CONUS (Newman et al. 2015), Chile (Alvarez-Garreton 

et al. 2018), and Brazil (Chagas et al. 2020). The Catchment Attributes for Large-Sample Studies (CAMELS, 

Newman et al. (2015)) compiled high quality streamflow measurement in 671 unimpaired catchments across the 

CONUS, as well as climate forcing datasets (e.g. daily precipitation and temperature) and physiographic properties 50 

(e.g. land cover, topography, etc., Addor et al. (2017)). CAMELS has seen widespread adoption by the hydrological 

community as a benchmarking tool for hydrological models (Melsen et al. 2018, Mizukami et al. 2019, Pool et al. 

2019, Kratzert et al. 2023), in the development of hydrological signatures and new information theory-based 

approaches, and the application of novel machine learning tools (Kratzert et al. 2019). The Global River Water 

Quality archive (GRQA), which includes the GLObal RIver Chemistry Database (GLORICH), offers opportunities 55 

for water quality analyses across time and land scale (Hartmann et al. 2014, Virro et al. 2021). The combination of 

catchment attributes and  matching datasets on stream water chemistry has recently been developed for Germany 

(Ebeling et al. 2022), however, for the CONUS this approach has not  seen as much development (Arora et al. 

2023). Furthermore, atmospheric deposition data is available for CONUS but has seen less inclusion in such data 

sets, despite the significant impact of atmospheric contribution to stream chemistry (Shao et al. 2020). 60 
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Many important insights across Earth science disciplines over the last several decades developed from 

investigations that combined several datasets such as long-term stream chemistry data, stream discharge, 

hydroclimatology, and catchment properties (e.g. vegetation, geology, topography). For example, global analyses 

of CO2 evasion from headwater streams have helped to quantify global fluxes (Lauerwald et al. 2012, Gaillardet et 

al. 1999, Raymond et al. 2013, Horgby et al. 2019). Changes in dissolved organic carbon (DOC) in stream water 65 

were partially related to changes in atmospheric deposition and acidity only viewable with longer records (Monteith 

et al. 2007). Stream flow and chemistry data, in particular paired concentration and discharge data, have also been 

shown to illuminate subsurface flow paths and chemical vertical stratification (Zhi and Li 2020, Zhi et al. 2020, 

Stewart et al. 2022). Applying an integrative dataset in the Northeastern U.S., recent studies showed differential 

sensitivity of headwater catchments to reductions in SO4 and NO3 and resulting variations in stream DOC efflux 70 

(Adler et al. 2021, Ruckhaus et al. 2023). Importantly, this work confirmed that much of the long-term recovery 

from acid rain is mediated by catchment-scale processes in variable soils and bedrock as well as variable 

hydrological and climatic forcings. Only by aggregating data across many catchments could these interacting 

factors and their effect on stream chemistry be determined (Clow and Mast 2010, Harpold et al. 2010). Further, 

long-term water chemistry datasets have also given insight into rock weathering and solute flux estimates. For 75 

example, Godsey et al. (2009) used the GLORICH dataset that focuses on large, human impacted riverine systems 

and contains corresponding catchment properties and streamflow data and showed the ubiquity of ‘chemostasis’, 

i.e. solute fluxes being primarily driven by stream discharge and not variations in concentrations in many 

catchments. More recent work on >2,000 GLORICH catchments began to illustrate the role of aridity and catchment 

properties in controlling the concentration-discharge (C-Q) relationship in key solutes (Godsey et al. 2019). 80 

However, one of the limitations of current datasets like GLORICH is the lack of observed instantaneous streamflow 

discharge measurements and deposition chemistry, as well as important catchment properties taken from reliable 

sources.   

There is a need for more open-source datasets that integrate information scattered across different databases and 

formats to present comprehensive and verified data on water chemistry, event-scale hydrology, atmospheric 85 

deposition and critical zone attributes to facilitate new ecohydrological research and understanding at broad scales. 

For example, Vlah et al. (2023), have combined data from watershed studies and supplemented these with 

watershed attributes to provide a finer spatial resolution (smaller watersheds) and finer temporal resolution. Our 

contribution is the compilation and release of multiple harmonized datasets that take advantage of one of the most 

comprehensive collections of catchment attributes across the CONUS i.e., CAMELS (Newman et al. 2015, Addor 90 
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et al. 2017). Building on CAMELS, we developed “CAMELS-Chem”, a relational database that provides fast query 

processing, enforces data integrity, and provides detailed information about current data and schema (i.e., relational 

structure). The database comprises individual water chemistry measurements and paired streamflow data harvested 

from the U.S. Geological Survey (USGS) National Water Information System (NWIS), for up to 516 catchments 

and 18 constituents from earliest available sample times through 2018 (USGS 2023) and earliest atmospheric 95 

deposition data from the National Atmospheric Deposition Program (NADP, available since 1985). To facilitate 

the use of the CAMELS-Chem dataset for interdisciplinary research, we explore the potential application of 

CAMELS-Chem to examine the interconnections among water chemistry, hydrology, atmospheric deposition, and 

biogeochemistry. Our investigation is guided by two main groups of questions related to data availability and novel 

applications: 1. How consistent is water chemistry sampling across regions, how well does sampling capture the 100 

range of discharge variability, and how coincident are various water chemistry sampling programs across the 

CAMELS watersheds?  2. Can we use CAMELS-Chem to explore trends in stream water and deposition chemistry, 

biogeochemical processes, or develop hypotheses not apparent from current process understanding?   

We first introduce the methods used to develop the CAMELS-Chem database and dataset to highlight the value 

added by the dataset (Section 2) and then evaluate questions on data availability to illustrate the utility of the dataset 105 

for a variety of intended purposes (Section 3).  We then tackle considerations of novel applications, offering 

examples of interdisciplinary uses that demand multiple data streams in (bio)geochemistry, ecology, and hydrology 

(Section 4). These examples can help illuminate how the dataset can be used and facilitate the integration of ideas, 

as it is often challenging to see connections across disciplinary boundaries. Many of these examples highlight the 

cross-disciplinary publications that have already used this dataset (Zhi et al. 2019, Zhi and Li 2020, Adler et al. 110 

2021, Zhi et al. 2021, Li et al. 2022).  

2 Materials and Methods 

In our CONUS study area, we leveraged the CAMELS data set (Newman et al. 2015, Addor et al. 2017) compiled 

for 671 catchments of the US Geological Survey (USGS) National Water Information System (NWIS). These are 

minimally-disturbed catchments filtered from the Hydro-Climatic Data Network (Lins 2012) that have been used 115 

in previous studies (Godsey et al. 2019). Catchment attributes from this data set span categories of topography, 

land cover characteristics, soil characteristics, and geological characteristics, as well as climatic indices and 

hydrological signatures.  The hydrological signatures were computed using daily discharge time series (sourced 

from NWIS) to calculate average values and ratios (e.g., mean daily discharge, runoff ratio, frequency of high 
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flows) over a multi-year period of observation (Newman et al. 2015, Addor et al. 2017); these indices describe the 120 

hydrological character of each catchment at seasonal to annual scales. To facilitate more temporally-refined 

ecohydrological analyses at catchment to CONUS scales, we built a relational database linking these CAMELS 

attributes to instantaneous discharge and streamwater chemistry time series data, as well as wet deposition data. 

2.1 Data sources and description  

From USGS NWIS, we harvested: (1) (bio)geo-chemical stream water quality data and (2) paired instantaneous 125 

and daily mean discharge data; we also compiled (3) wet deposition data from the National Atmospheric Deposition 

Program.  Analyses and summary figures displayed in this work cover the time period from 1980 to 2018, to be 

consistent with the start date of hydrological signatures computed in Newman et al. (2015). Data for the full 

available length of record (in some cases dating back to 1906) up through 2018 are contained in supplementary 

materials and in the linked data repositories. Instantaneous (15-minute to hourly) discharge data, daily mean 130 

discharge data, and (bio)geo-chemical sample data were harvested from the NWIS repository.  USGS protocols 

provide for a consistent methodology, location, and paired discharge record for collected water quality samples. 

Approximately 93% of the samples in CAMELS-Chem have a paired daily discharge value; however, the coverage 

for paired instantaneous discharge values was lower (~15%) because not all gauges provided hourly observations 

or only from a more recent part of the record.  135 

Wet deposition data were obtained from NADP for the earliest availability, starting in 1985, through 2018. This 

data product is generally an inverse distance weighted interpolation of the wet deposition observation stations and 

is reported as a concentration and deposition (mass per area) in a raster data set of 2.5 km resolution; more details 

are provided on their website (Accessed July 1, 2023: https://nadp.slh.wisc.edu/maps-data/ntn-gradient-maps/). We 

compiled annual deposition data for 10 species (H+, NH4, NO3, NH4, Cl, SO4, Ca, K, Mg, and Na) for each 140 

CAMELS-Chem watershed, relying on catchment shape files available from CAMELS. Quantum GIS 3.12 was 

used to calculate mean, minimum, maximum, and standard deviation of the concentration and deposition values 

for each species by catchment and by year.   

2.2 Automated data acquisition and integration 

Acquiring and integrating data from multiple sources can be a process replete with challenges including missing 145 

data, mis-matched sample times, inconsistent parameter names, or varying units of measure (Sprague et al. 2017, 

Niu et al. 2018). Fortunately, NWIS sources already have high quality records that have been quality-assured and 
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normalized; issues of missing data were relatively minor and limited to missing time stamps for approximately 

10% of the water quality records. Additionally, use of different constituent names and analytical methods across 

catchments presented some issues for data harmonization and integration. To address these challenges, we used 150 

state-of-the-art methods to automate data acquisition and integration, coupled with a relational database (Bansal 

and Kagemann 2015). The Extract, Transform, and Load (ETL; Figure S1 in supplementary materials) framework 

from Pentaho Data Integration was employed to: (1) extract discharge and water quality data from siloed systems; 

(2) transform the data into formats to fit operational needs; and (3) load the data into a relational database to provide 

maximum flexibility for retrieval, exploration and analysis.  155 

Our ETL process started with the extraction of data from USGS flat files for each gauge. These flat files comprised 

(bio)geochemical data, daily discharge, and instantaneous discharge data. The raw data were then loaded into a 

staging table for initial processing. The transformation phase involved normalizing differing units of measure 

across constituents (Table 1), adjusting sample times across time zones, and using sophisticated algorithms to fill 

missing time stamps for a subset of water quality records (next section). Large-scale corrections and data 160 

harmonization were handled using automated processes, significantly reducing the potential for human error and 

enhancing data consistency.  Of the original 671 CAMELS watersheds, 516 watersheds had water quality data, 506 

watersheds returned instantaneous or daily mean discharge data during periods of water quality sampling, and 488 

returned both discharge and water quality data for the time between 1980 and 2018. For the final comprehensive 

data repository, we selected Oracle’s free and open-source database (PostgreSQL 2020).  Such a database makes 165 

data provisioning easier and is optimized to prevent data anomalies by only storing data in one place and using 

keys to relate different tables and data to each other. 

2.3 Data imputing, harmonizing, and harnessing 

While several packages are available to facilitate the retrieval of streamflow and water chemistry data from NWIS 

(e.g., “dataRetrieval” package for R), we selected the ETL framework and relational database for the advantages 170 

of this architecture in imputing, harmonizing and harnessing data.   

• Harnessing data.  Multiple decades of discharge and water chemistry data exist for the 516 catchments, 

comprising well over 2.67 million records. This volume of data makes it impractical to work with flat file formats 

that would be generated using standard data retrieval packages, particularly for broad-scale analyses across multiple 

catchments. A relational database provides fast query processing, enforces data integrity, provides detailed 175 
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information about current data and schema (i.e., relational structure), and represents a flexible platform to export 

data in a consistent format for external analysis.  

• Missing time stamps. We applied algorithms to fill in missing time stamps for water chemistry data.   We 

made the assumption that field technicians generally collect samples for multiple solutes at the same time, thus the 

recorded timestamp for one solute can be applied to other solutes taken on that day. By assuming one sampling 180 

time every day per site we obtained 397 more instantaneous discharge values (out of a total of 8,975 records without 

timestamps). The updated time stamps were used to fill hourly, instantaneous discharge values for roughly 30% of 

samples. 

• Missing discharge values.  For a small percentage (9.9%) of water chemistry records with a missing value 

for instantaneous discharge, the (bio)geo-chemical sample time was adjusted forward/backward to pair with the 185 

closest quarter -hour (or sometimes hourly) instantaneous discharge observation using date math programming in 

PostgreSQL. 

• Harmonizing data.  Through transformation steps, and before data were uploaded to the repository, we 

ensured consistent units of measure and normalized sample times across time zones.  Also, data with somewhat 

different constituent names and analytical methods across catchments were aggregated (i.e, NO3, Cl, SO4) 190 

following USGS guidance (Oelsner et al. 2017).  

2.4 Statistical Summaries and Example Analyses  

Summary statistics were calculated using the database for key parameters such as flow duration curve (FDC), 

standard deviation, low/medium/high flow conditions, mean daily and annual flow. The FDC was calculated 

following the methods of Newman et al. (2015) to use all daily values and compute percent exceedance. We then 195 

reported FDC information in terciles of high, normal, and low flow.    

We developed two examples in Section 4 using CAMELS-Chem datasets and simple analyses.  In Section 4.1 we 

investigate trends in atmospheric SO4 deposition and resulting trends in stream water chemistry using a Mann-

Kendall test for three timeframes (Hirsch and Slack 1984): 1985-2002, 2003-2012, 2003-2010.  In section 4.2, we 

investigate weathering by developing molar ratios between HCO3 to Na and Mg to Na using only low flow 200 

discharge when FDC >66%. 

3 Results  



8 

 

3.1 Stream Water Chemistry 

The CAMELS-Chem dataset comprises 18 water chemistry and property values (Table 2) and is summarized for 

general water quality and physical parameters (discharge, dissolved oxygen, pH, and temperature), carbon and 205 

nutrient species ((DOC), total organic carbon (TOC), dissolved organic nitrogen (DON), total organic nitrogen 

(TON), total dissolved nitrogen (TDN), nitrate (NO3)), anions (Cl, bicarbonate (HCO3), sulfate (SO₄) and cations 

(Ca, K, Mg, Na, Si, and Al; see Figure 1). While the lengths of discharge and climate records extend up to or greater 

than 30 years for many CAMELS-Chem catchments, the water chemistry data are not as continuous and spatially 

consistent (see Section 3.2). The total number of stream water samples varies substantially depending on the 210 

variable of interest, which should be taken into consideration when using this dataset. For example, the dataset has 

19,784 total Si measurements from 325 catchments, compared to only 10,322 DOC measurements from 179 

catchments (Figure 1r and 1e, respectively).  

Patterns of different water chemistry constituents reflect the broad range of geology, climate, land use history, land 

cover, and other factors (Figure 2).  For example, water temperature shows clear latitudinal patterns in both mean 215 

and coefficient of variation (CV, Figure 2d) that likely reflect warmer climate and greater solar radiation in southern 

locations.  Conversely, variables like Cl and Na have much smaller variability in mean and CV and less geographic 

patterning (Figure 2k and q, respectively).  Some of the biologically derived solutes such as DOC and TOC show 

high variability in mean and CV across CONUS, without clear geographic patterns (Figure 2e and f). In contrast, 

many of the nitrogen constituents show hot spots of agriculture in the Midwest and upper great plains (Figure 2g-220 

j).  Similarly, ions associated with agriculture and human impacts, like Ca, K, and Mg had higher mean values and 

larger CV in the central part of the CONUS (Figure 2n, o and p); whereas the geographical pattern of mean and 

variance of Si and Al is less distinct (Figure 2r and s). These results demonstrate the complexity of spatial patterns 

across the CONUS. In the following sections we offer more background on the strengths and weaknesses of the 

dataset for different applications. 225 

3.2 Number of Samples and Length of Record 

CAMELS-Chem offers long-term records for trend analysis and broad geographic coverage in catchments (Figure 

1, see Figure S5 for the entire length of record). Because USGS sampling foci varied between decades, temporal 

biases in the sampling record exist (Shanley et al. 2015). For example, many of the stream water constituents 

impacted by acid rain (i.e., SO₄ and Ca) were sampled less frequently starting in the late 1990’s (Fig 3l and m). In 230 

contrast, sampling frequency for many solutes related to local water quality issues (i.e. NO3, and K) have increased 
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in recent decades (Figure 3i and n). The NO3 data are more abundant in the Midwest and along the east coast where 

sampling for nutrients is common. In contrast, DOC observations highlight the location of long-term sites focused 

on minimally human-impacted catchments (i.e., USGS Hydrologic Benchmark Network) that have the most 

comprehensive sampling of all solutes (Figure 3d). 235 

Longer records and sampling across seasons and lower streamflows increase the capability for trend detection. DO, 

pH, and temperature are more consistently measured (up to 516 out of the 671 CAMELS watersheds, Figure 3a-c). 

For example, temperature was measured 3,000-7,000 times each year, resulting in a dataset that represents >400 

sites with >20 years of records and >100 samples (Figure 3c). However, temperature is generally measured in the 

field, whereas other water quality constituents require additional work, such as filtration in a laboratory. Among 240 

these samples, weathering-related, lithogenic solutes such as Ca, K, Mg, Na and Si (Figure 3m-q) are more 

comprehensively sampled (i.e. longer records and more catchments) than biologically driven constituents such as 

DOC, TOC or DON (Figure 3d-f).  For example, lithogenic solutes have around 50 sites with >20 year records and 

>100 samples, with a total of between 50-150 catchments and 1,000-2,000 samples each year. In contrast, 

biologically related solutes are sampled around 500-1,000 times per year, have <50 records that are >20 years and 245 

>100 samples. NO3 is sampled 1,000-2,000 times per year, but much of the additional sampling is concentrated in 

agricultural catchments in the midwestern part of the US. Thus, data users should be aware of the different sampling 

frequencies at each location. Interestingly, though sampling frequency varies greatly by solute and water year, 

seasonal coverage is relatively even in the dataset (Figure 4, see Figure S5 for the entire length of record). Across 

all watersheds, CAMELS-Chem covers a wide range of hydroclimate, which offers ample opportunities for 250 

investigating the connection between climate, catchment attributes, and stream water chemistry.  We illustrate this 

by showing the range of some variables from the CAMELS database (Figure 5) for all 671 catchments versus the 

catchments sampled by CAMELS-Chem for Cl (high frequently sampled) and Al (less often sampled).  The range 

of hydrological and meteorological conditions represented is nearly identical between CAMELS and CAMELS-

Chem catchments.  255 

     3.3 Consistency of Sampling Across Discharge Records and Variable Hydroclimate 

Because CAMELS-Chem is paired with measured discharge data, we can effectively assess and constrain the 

effects of discharge on water chemistry analyses. Concentration-discharge (C-Q) relationships are routinely used 

to compute solute loads for mass budgets (Cohn et al. 1989) and have been used to infer catchment effects on 

biogeochemical cycling (Basu et al. 2010, Musolff et al. 2015). CAMELS-Chem has distinct advantages in this 260 
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context, as we used instantaneous (hourly) discharge data to supplement the NWIS database and 30-year daily 

discharge records are a reference for C-Q ranges. Because discharge can be quite variable at diel scales during high 

flow versus low flow periods, instantaneous discharge measurements are more critical on high flow days than low 

flow days.  

To apply a C-Q analyses to a dataset, the stream chemistry sampling for the solute of interest must span a large 265 

range of discharge values. Conversely, if only low flow (baseflow) values are available, careful subsampling is 

required. The FDC is often used to represent variance in streamflow and can be constructed using all daily 

streamflow values in ranked order.  To aid assessment of the dataset in this context, we offer a visual representation 

of the percent of the FDC covered during water chemistry sampling (i.e. highest minus lowest percentiles of water 

sampling dates) for each catchment (Figure 6 and S6 for the full length of record). The CAMELS-Chem sampling 270 

covers >75% of the FDC curve in most catchments, with coverage less than 50% of the FDC in parts of the Gulf 

Coast and Upper Midwest areas (Figure 6). Despite the greater sampling frequency of the weathering related solutes 

(Figure 6m-q), all solutes show relatively high coverage of the FDC, including the biological solutes that were 

sampled fewer times and over shorter record lengths (e.g. Figure 6d-i). In terms of sampling consistency and 

numbers across the FDC, we examined the percentage of sampling that occurred in each tercile of the FDC across 275 

solutes (Table 5), where an even sampling distribution would be 33% of samples in each tercile. There is a small 

bias towards high flow measurements (<33% tercile), especially for the biological solutes and many lithogenic 

solutes (Table 4). Over 25% of all samples are collected at low flow (>66% tercile) for all solutes (except Al) and 

HCO3 is exclusively sampled at low and moderate flows.   

3.4 Coincidence of Sampling Across Species 280 

A key strength of the USGS sampling program is that a variety of water constituents are measured simultaneously, 

which allows concentration ratios and mixing models to be more readily developed (Godsey et al. 2019).  We report 

this information as a table of percent of coincident samples (Table 5). For example, we see that daily discharge is 

co-sampled with the water chemistry constituents >90% of the time (right most column), however only about 10-

30% of discharge sampling dates have a water chemistry measurement (bottom most row). Lithogenic solutes and 285 

some anions appear to be co-sampled over 90% of the time, while many of the biological solutes were sampled less 

often. In this case, between 30%-80% of samples had coincident ion chemistry, with constituents like DOC and 

NO3 being more likely to have coincident ion chemistry than TN, TON, DON, and DO. The nitrogen sampling was 

often coincident between TN and NO3, with the other nitrogen species sampled less coincidentally.  
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3.5. Atmospheric deposition data 290 

Wet deposition data obtained from NADP started in 1985 and ended (at the time of publication) in 2018. 

Atmospheric deposition needs to be considered when evaluating water chemistry patterns and especially for 

weathering studies, the contribution of atmospheric deposition needs to be corrected for (Berner and Berner 2012). 

For example, Cl and Na deposition values are higher in coastal areas (Figure 7e and j), while NH4 and NO3 

deposition vales are higher in places where anthropogenic inputs of fertilizer are high (Figure 7b and c). Ca typically 295 

has higher values away from coastal areas and is strongly impacted by local bedrock and soil composition (Berner 

and Berner 2012). In many cases these patterns are consistent with patterns in stream chemistry; for example, 

patterns of NO3 deposition (Figure 7c) compare closely with the corresponding pattern in chemistry (Figure 1j) 

4 Example Analyses Using CAMELS-Chem 

The CAMELS-Chem combines stream water chemistry with deposition and catchment properties for i) trend 300 

attribution, ii) process understanding, and iii) generating new hypotheses of how systems work.  Our goal for this 

section is to demonstrate the different applications of the CAMELS-Chem dataset in this context, its potential 

limitations, and to motivate future work.  For this we highlight select examples for data use ranging from trends in 

SO4 deposition and stream chemistry by bedrock lithology to biogeochemical processes controlling stream 

chemistry. We finish by offering examples on how such datasets offer opportunities for hypothesis generation using 305 

“pattern to process” frameworks.  

4.1 Trend Detection and Attribution  

Trend detection and attribution is important for assessing long-term changes from climate change, atmospheric 

deposition, vegetation change, or other disturbance vectors. The filtering and querying capabilities of the 

CAMELS-Chem database offer important advantages for large-scale studies designed to detect trends in stream 310 

water chemistry in response to disturbance at regional to continental scales across minimally disturbed catchments.  

The CAMELS-Chem dataset we discuss here focuses on a shorter record from 1980-2018 but contains data from 

before 1950 for most constituents (Figure S5). Individual sites have >100 samples over >20 years for most 

constituents, as well as sparser sampling at other gauges (Figure 1 and Table 4).   

CAMELS-Chem provides new potential to analyze the effects of acid deposition on long-term stream chemistry 315 

trends across a range of hydrological conditions. The Industrial Revolution caused a rapid increase in fossil fuel 

emissions, which introduced acid anions (SO₄ and NO3) in excess of background conditions leading to acidic 
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precipitation throughout many industrialized regions (Newell and Skjelkvåle 1997). The Clean Air Act in 1970 and 

subsequent amendment in 1990 led to major reduction in air pollution as apparent in progressively decreasing 

deposition amounts (Baumgardner et al. 2002, Lloret and Valiela 2016). Many (but not all) CAMELS-Chem sites 320 

have >100 SO4 stream samples spanning over 20 years of record (Figure 2m). As expected, when plotting trends 

in SO4 stream chemistry and wet deposition for an earlier timeframe (1985-1992, Figure 8a) decreasing trends in 

SO4 deposition and corresponding decreasing trends in SO4 stream chemistry are apparent.  Wet deposition trends 

remain decreasing in the following two decades (1992-2002 and 2002-2010), but without much response in SO4 

stream chemistry. Our results are in agreement with previous findings of declining SO4 deposition following the 325 

1990 Clear Air Amendments (Figure 7, Garmo et al. (2014)). For example, in the Northeastern United States, SO4 

stream chemistry has generally responded to declines in SO4 deposition (McHale et al. 2017, Siemion et al. 2018). 

This initial analysis provides a starting point for hypothesis testing - for example, on the role of catchment attributes 

such as the dominant geology on mitigating the effects of changes in atmospheric deposition (Figure 8a-c).  

4.2 Improving Process Understanding 330 

One of the key uses of long-term and large sample datasets is increasing and testing process understanding.  Often 

this takes the form of hypotheses or models being applied or tested using a large dataset to test transferability and 

scalability.  The CAMELS-Chem dataset has already been applied to several process understanding based studies 

with success. For example, (Li et al. 2022) developed a reactor versus transporter model for arid and humid 

catchments and used the CAMELS-Chem database for 12 constituents. The breadth of climate gradients and 335 

sampling across streamflows was critical to the findings of climate controls on river chemistry.  In another example 

Stewart et al. (2022) used DIC stream chemistry from CAMELS-Chem to show seasonal changes were controlled 

by CO2 concentration distribution with depth, while long-term DIC concentrations were controlled by climate.  In 

these examples, availability of high-resolution discharge data improved the process inferences possible. 

CAMELS-Chem datasets are particularly useful when different constituents are related to one another, such as 340 

discharge versus concentration relationships or molar ratios between different species.  For example, to display the 

impact of major rock classes (i.e. silicates, carbonates, evaporites) on riverine composition, the use of molar ratios 

for geogenic species (Ca/Na, Mg/Na, HCO3/Na) instead of absolute concentrations is useful, because large 

differences in concentrations between solid and liquid phases make comparisons difficult.  Riverine composition 

is often used as an indicator for weathering rates and to draw inferences at larger scales. A classic example is the 345 

study by Gaillardet et al. (1999) where 60 of the world largest rivers were used to show a strong role of bedrock 
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lithology on weathering rates from Si effluxes.  We display these molar ratios of stream water composition for all 

CAMELS-Chem sites as a function of bedrock lithology including igneous, metamorphic and sedimentary rocks 

(Figure 9, see Figure S7 for the entire length of record).  The lower tercile encompasses more Ca and Mg samples 

than HCO3 and Na samples based on overall sampling frequency (Figure 3m and o vs. Figure 3k and p, 350 

respectively). Similar to previous studies (Gaillardet et al. 1999), we observe an expected pattern based on 

lithology, with catchments underlain by carbonate plotting in the upper right (i.e., high Ca/Na, Mg/Na, and 

HCO3/Na ratios) and unconsolidated sediments plotting in the lower left (e.g., low Ca/Na, Mg/Na, and HCO3/Na 

ratios). These results are consistent with the high weathering rates of carbonates, where even small amounts of 

carbonate lithology lead to significant shifts to higher Ca/Na (calcite endmember) and Mg/Na (presence of 355 

dolomite) ratios. Although beyond the scope of this work, CAMELS-Chem gives sufficient samples to provide 

uncertainty estimates in Figure 9, particularly given the uneven number of samples and distribution across solutes 

(Figure 1). Including baseflow index further reveals higher baseflow in carbonates-underlain catchments (Figure 

9), which is consistent with fractures and highly conductive conduits that are common in carbonate aquifers 

(Hartmann et al. 2009). In contrast, unconsolidated sediments tend to have low weathering rates and low baseflow 360 

index (Figure 9).    

4.3 Hypotheses Generation 

Large sample datasets are necessary for most data-driven approaches that can point us towards new controls and 

interactions, but domain knowledge is required to ascribe meaning (Goldstein et al., 2018) and refine hypotheses 

for further testing using process-based methods.  Many new machine learning (ML) and artificial intelligence (AI) 365 

techniques are capable of determining potential linkages that are not apparent with conventional frameworks and 

statistical tools (Reichstein et al., 2019).  Most of these new ML/AI techniques require large co-sampled datasets 

across a range of environmental and state conditions. For example, Underwood et al. (2023) used DOC 

concentrations from CAMELS-Chem paired with an Evolutionary Algorithm (EA) to develop new hypotheses of 

the controls on large-scale patterns.  EA has several advantages over logistic regression. First, the EA can be applied 370 

to nonparametric data and is robust to varying data types (nominal, ordinal, continuous), skewed distributions, 

bounded data, censored data (e.g., water quality data that have a minimum or maximum reporting limit), and 

missing values (Anderson et al. 2020, Hanley et al. 2020). These types of ML/AI have distinct advantages when 

using water chemistry data like CAMELS-Chem, which often having missing or bounded data that is non-

parametric. Future efforts using EA, or similar ML/AI techniques, could categorize different constituents (e.g., 375 

nitrogen, phosphorus, etc.) into high and low concentrations to explore controls on alternate catchment dynamics 
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(e.g. weathering, nutrient cycling, etc.). The same tool could be applied to data collected at high temporal resolution 

(e.g., nutrient time series) to suggest possible hourly to seasonal scale controls in future research. Although 

applications of ML/AI are nascent, datasets like CAMELS-Chem are fundamental to their application and the 

advancement of new hypotheses in the fields of biogeochemistry and ecohydrology.  380 

5 Summary and Conclusions 

We developed and released CAMELS-Chem, as a flat .csv file and a relational database comprising water chemistry 

measurements, corresponding instantaneous discharge, and wet deposition data. As a relational database, this 

provides fast query processing, enforces data integrity, provides detailed information about current data and schema 

(i.e., relational structure), and represents a flexible platform to export data in a consistent format for external 385 

analysis. The accompanying dataset available on Hydroshare will be sufficient for most applications and the 

relational database is available upon request due to its large size.  

We found that the CAMELS-Chem database represents the CONUS with sufficient sampling across regions and 

climates (Figure 5), discharge variability (Table 5), and coincidence across a wide variety of constituents (Table 

4). One of the key requirements for most studies are long-term water chemistry datasets with regular sampling. We 390 

show that sampling of different constituents varies spatially and temporally (Figure 1), reflecting changing 

priorities and budgets within the USGS.  However, records beginning in 1980 (or earlier) span most of the CONUS 

for most constituents (Figure 1) and reflect semi-regular sampling that was similar across seasons (Figure 4).  

However, the user needs to take limitations of these data into account, such as, some constituents (i.e. water 

temperature, cations, etc.) are more regularly sampled than others (i.e. DOC, Al, etc.).  Using FDC we show that 395 

water quality sampling spans discharge variability sufficiently (Table 3), making it suitable for constructing long-

term concentration-discharge relationships and producing flow-weighted load estimates. Finally, we show that 

coincident sampling of water chemistry by the USGS, with variables like pH and water temperature, is necessary 

for many hypotheses testing or modelling, such as developing molar ratios or training process-based geochemical 

reaction models. 400 

CAMELS-Chem offers unique aspects for trend detection and attribution by including long-term atmospheric 

deposition data and consistent daily climate data.  We show that CAMELS-Chem allows for detection of long-term 

changes in SO4 in stream water due to the Clean Air Act and consistent with other studies.  Indeed, CAMELS-

Chem has already shown its utility in testing and improving process understanding. For example, that the coincident 

sampling of discharge helps to improve understanding of climate controls on DIC specifically (Stewart et al. 2022) 405 
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and a large variety of nutrient and geogenic constituents (Li et al. 2022). Another example shows the utility of 

coincident sampling for developing molar ratios and improving understanding of weathering processes (Figure 9).  

Finally, we show how data-driven ML/AI approaches could help generate new hypotheses and expose linkages not 

evident with current process understanding.  The example by Underwood et al. (2023), shows how ML/AI 

techniques can be applied to CAMELS-Chem to elucidate new hypotheses for the continental-scale controls on 410 

DOC.  New applications of ML/AI have the potential to better take advantage of water chemistry data that have 

issues of missing data, bounded data, and are nonparametric. Despite limitations in sampling frequency and record 

length for some constituents, CAMELS-Chem offers a unique ‘off-the-shelf’ stream water chemistry and wet 

deposition dataset across catchments with varying climate and physiographic properties.   

Code and Data Availability 415 

The dataset and associated metadata are available on Hydroshare 

link  https://www.hydroshare.org/resource/841f5e85085c423f889ac809c1bed4ac/. Code used will be made 

available GitHub and the SQL database is available from University of Vermont co-authors upon request.  
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Table 1: NADP depositional dataset, attribute, name, concentration and deposition units.  

Attribute Name Concentration units Deposition units 

H+ Hydrogen mg/l kg/ha 

NH4 Ammonium mg/l kg/ha 

NO3 Nitrate mg/l kg/ha 

NO3 + NH4 Inorganic Nitrogen mg/l N kg/ha 

Cl Chloride ug/l kg/ha 

SO4 Sulfate mg/l kg/ha 

Ca Calcium mg/l kg/ha 

K Potassium mg/l kg/ha 

Mg Magnesium mg/l kg/ha 

Na Sodium mg/l kg/ha 

 



17 

 

Table 2: The stream water chemistry datasets in the CAMELS-Chem dataset including attribute, name, abbreviation in the 430 

database, description, units and USGS parameter codes. 

Attribute Name Database 

abbreviation 

Description Units USGS parameter 

code(s) 

Q discharge q Stream discharge, 61 is instantaneous  cfs 00060, 00061 

DO Dissolved Oxygen o Water, unfiltered mg/l 00300 

pH pH ph Water, unfiltered, field std units 00400 

pH_l pH ph2 Water, unfiltered, laboratory std units 00403 

temp water temperature temp Water, field degree C 00010 

DIC Dissolved Inorganic Carbon DIC Water, unfiltered mg/l 00691 

DOC Dissolved Organic Carbon doc Water, filtered mg/l 00681 

TOC Total Organic Carbon toc Water, unfiltered mg/l 00680 

DON Dissolved Organic Nitrogen don Water, filtered mg/l 00607 

TON Total Organic Nitrogen ton Water, unfiltered mg/l 00605 

TDN Total Dissolved Nitrogen tn Water, filtered 

[nitrate + nitrite + ammonia + organic-

N] 

mg/l 00602 

NO3 Nitrate no3 Water, filtered and total mg/l as N 00618, 00620 

Cl Chloride cl Water, filtered and total mg/l 00940, 99220 

Alkalinity Alkalinity alk Alkalinity, water, filtered, Gran 

titration, laboratory 

mg/l as CaCO3 00410, 00417, 

29803 

HCO3 Bicarbonate hco3 Water, filtered, field, inflection-point 

(incremental titration method) 

mg/l 00453 

SO4 Sulfate so4 Water, filtered and total mg/l 00945, 00946, 

99127 

Ca Calcium ca Water, filtered mg/l 00915 

K Potassium k Water, filtered mg/l 00935 

Mg Magnesium mg Water, filtered mg/l 00925 

Na Sodium na Water, filtered mg/l 00930 

Si Silica si Water, filtered mg/l 00955 

Al Aluminium al Water, filtered µg/l 01106 
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Table 3: Summary statistics of CAMELS-Chem. The stream water chemistry datasets in the CAMELS-Chem dataset including 

attribute, name, abbreviation in the database, description, units and USGS parameter codes. Statistics include the total number 

of gauges that measure each attribute; the median number of gauges that measure each attribute each year; the median number 435 

of measurements made each year; the range of median attribute values across all gauges; the median first year of record across 

all gauges; and the median final year of record across all gauges. 

 

 440 

 

 

  

Attribute 

Total no. 

of gauges 

Median no. of 
gauges per year 

(min., max.) 

Median no. of 

measurements per 
gauge (25th, 75th 

%) 

Range of median 
values across gauges 

(min., max.) 

Median first year of 

record (min., max.) 

Median final year of record 

(min., max.) 

Q 509 196 (94, 270) 110 (15, 197) (0.1, 10800) 1980 (1980, 2018) 2009 (1980, 2018) 

DO 381 81 (54, 140) 27 (4, 88) (2, 13) 1985 (1980, 2017) 2004 (1980, 2018) 

pH 420 110 (68, 200) 40 (6, 119) (4, 9) 1981 (1980, 2017) 2002 (1980, 2018) 

pH_l 329 72 (3, 149) 28 (3, 76) (4, 8) 1983 (1980, 2015) 1998 (1981, 2018) 

temp 515 197 (92, 294) 111 (16, 194) (0.5, 27) 1980 (1980, 2018) 2008 (1980, 2018) 

DIC 5 1 (1, 3) 1 (1, 1) (1, 24) 1981 (1981, 1993) 1981 (1981, 1993) 

DOC 179 22 (3, 60) 7 (2, 32) (0.3, 44) 1993 (1980, 2017) 1999 (1980, 2018) 

TOC 165 19 (11, 82) 14 (4, 29) (0.8, 48) 1981 (1980, 2016) 1991 (1980, 2018) 

DON 183 15 (2, 65) 9 (2, 23) (0.01, 2) 1989 (1980, 2018) 1995 (1980, 2018) 

TON 258 43 (31, 93) 24 (4, 50) (0.04, 8) 1985 (1980, 2016) 1999 (1980, 2018) 

TDN 178 14 (1, 67) 10 (2, 21) (0.1, 8) 1988 (1980, 2015) 1995 (1980, 2018) 

NO3 310 57 (35, 104) 13 (3, 52) (0.0, 8) 1991 (1980, 2018) 2002 (1980, 2018) 

Cl 404 82 (58, 160) 15 (3, 71) (0.1, 5500) 1984 (1980, 2017) 2002 (1980, 2018) 

Alkalinity 20 4 (1, 10) 8 (3, 22) (5, 729) 1994 (1988, 2014) 1996 (1988, 2014) 

HCO3 170 20 (1, 69) 20 (3, 34) (1, 769) 1994 (1986, 2015) 1997 (1988, 2018) 

SO4 384 82 (57, 166) 18 (3, 74) (0.09, 1200) 1982 (1980, 2018) 2002 (1980, 2018) 

Ca 360 73 (54, 151) 22 (3, 77) (0.5, 224) 1982 (1980, 2018) 1997 (1980, 2018) 

K 348 72 (48, 150) 22 (3, 76) (0.1, 27) 1982 (1980, 2018) 1997 (1980, 2018) 

Mg 360 73 (54, 151) 22 (3, 77) (0.02, 80) 1982 (1980, 2018) 1997 (1980, 2018) 

Na 352 72 (48, 151) 21 (3, 76) (0.3, 3900) 1982 (1980, 2018) 1997 (1980, 2018) 

Si 325 53 (32, 149) 22 (3, 71) (1, 90) 1981 (1980, 2015) 1996 (1980, 2018) 

Al 163 25 (5, 70) 18 (4, 35) (2, 604) 1984 (1980, 2014) 1996 (1980, 2018) 
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Table 4: The percentage of samples that were sampled at flows with exceedance probabilities on the flow duration curve 445 

(FDC) < 33% (higher flows) and >66% (lower flows) for water years 1980-2018. See table 1 for parameter codes.  Note: we 

do not show alkalinity or DIC here because coverage is so limited in the dataset (Table 2). 
 

 FDC    FDC  

Attribute <33% (%) >66% (%)  Attribute <33% (%) >66% (%) 

DO 35 34  Cl 40 31 

pH (field) 37 33  HCO3 39 30 

Temperature 41 29  SO4 41 30 

HCO3 0 83  Ca 40 31 

DOC 48 25  K 40 31 

TOC 38 36  Mg 40 30 

DON 46 27  Na 40 31 

TON 42 30  Si 42 29 

TDN 49 26  Al 51 22 

NO3 43 28     

 

  450 
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Table 5: Percent of samples stream water chemistry datasets in CAMELS-Chem for all constituents. Table is read as the percent of co-

sampling with column constituent in all samples in the top right of table and the row constituent in the bottom left of table.  For 

example, 95% of Temperature (Temp) have discharge (Q) samples and 88% of Q samples have Temp samples. See table 1 for 

abbreviations for USGS parameter codes for most solutes. Note: we do not show alkalinity or DIC here because coverage is 

so limited in the dataset (Table 2). 455 

 Temp Q DO Cl Na K Mg Si Al N TDN NO3 SO4 Ca DOC TOC pH Alk HCO3 DON 

Temp 100  95  37  31  28  28  29  26  9  14  7  18  30  29  13  7  28  1  6  6  

Q 88  100  33  30  26  26  27  24  9  13  7  18  28  27  14  6  26  1  6  5  

DO 96  92  100  52  49  48  51  42  14  32  11  30  50  51  14  17  48  1  16  13  

Cl 86  91  56  100  83  83  85  75  24  24  15  43  88  85  38  11  74  2  17  10  

Na 89  90  59  93  100  97  100  86  27  26  16  43  93  99  40  11  79  2  17  11  

K 90  90  60  94  100  100  100  86  27  26  16  44  95  99  40  11  79  2  17  11  

Mg 89  90  60  92  96  94  100  83  28  25  16  42  91  99  39  12  79  2  16  11  

Si 87  90  55  92  93  91  93  100  27  28  20  48  91  93  45  14  81  2  19  16  

Al 89  96  54  88  87  86  93  80  100  24  23  58  84  93  44  8  90  2  17  6  

N 91  91  80  56  54  53  54  53  16  100  25  36  54  54  13  27  52  1  15  33  

TDN 93  96  56  69  67  67  67  77  29  50  100  70  68  67  52  28  69  0  14  54  

NO3 88  95  58  76  67  67  68  69  28  27  26  100  74  68  50  12  65  1  21  16  

SO4 90  90  58  95  90  89  91  81  25  25  16  46  100  90  41  11  77  2  18  11  

Ca 89  90  60  92  96  94  100  83  28  25  16  42  91  100  39  12  79  2  16  11  

DOC 85  98  35  89  82  82  83  87  29  13  26  66  89  83  100  7  73  1  17  14  

TOC 93  81  82  47  44  43  47  51  10  51  26  31  43  47  13  100  61  0  9  26  

pH 90  91  59  85  81  79  84  77  29  26  17  43  82  83  36  16  100  2  16  10  

Alk 97  98  96  96  92  91  94  92  31  29  6  53  92  94  39  1  94  100  97  2  

HCO3 93  96  93  87  78  78  78  80  25  34  16  63  86  78  38  10  72  8  100  14  

DON 91  95  79  58  57  57  57  74  9  80  67  51  56  57  35  35  52  0  15  100  
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Figure 1: The number of samples (symbol color) and length or record (symbol size) for the stream data between 1980 and 2018 for all flow 460 
conditions (a) discharge, (b) dissolved oxygen (DO), (c) pH (field), (d) temperature, (e) dissolved organic carbon (DOC), (f) total organic 

carbon (TOC), (g) dissolved organic nitrogen (DON), (h) total organic nitrogen (TON), (i) total dissolved nitrogen (TDN), (j) nitrate (NO3), 

(k) Cl, (l) bicarbonate (HCO3), (m) sulfate (SO₄), (n) Ca, (o) K, (p) Mg, (q) Na, (r) Si, and (s) Al. The inset histogram shows the number of 

samples by 8-year periods. 

 465 
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Figure 2: The mean concentration (symbol size) and coefficient of variation (in %, symbol color) for the stream data between 1980 and 470 
2018 for (a) discharge, (b) dissolved oxygen (DO), (c) pH (field), (d) temperature, (e) dissolved organic carbon (DOC), (f) total organic 

carbon (TOC), (g) dissolved organic nitrogen (DON), (h) total organic nitrogen (TON), (i) total dissolved nitrogen (TDN), (j) nitrate (NO3), 

(k) Cl, (l) bicarbonate (HCO3), (m) sulfate (SO₄), (n) Ca, (o) K, (p) Mg, (q) Na, (r) Si, and (s) Al. Note: we do not show alkalinity or 

DIC here because coverage is so limited in the dataset (Table 2). 
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Figure 3: The number of samples (symbol color) and length or record (symbol size) for the stream data at low flows (flow 

duration curve >66%) between 1980 and 2018 for (a) discharge, (b) dissolved oxygen (DO), (c) pH (field), (d) temperature, 

(e) dissolved organic carbon (DOC), (f) total organic carbon (TOC), (g) dissolved organic nitrogen (DON), (h) total organic 

nitrogen (TON), (i) total dissolved nitrogen (TDN), (j) nitrate (NO3), (k) Cl, (l) bicarbonate (HCO3), (m) sulfate (SO₄), (n) Ca, 485 

(o) K, (p) Mg, (q) Na, (r) Si, and (s) Al. The inset histogram shows the number of samples by 8-year periods.  Note: we do not 

show alkalinity or DIC here because coverage is so limited in the dataset (Table 2). 
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Figure 4: The number of samples by water year and seasons (color code) for the stream data between 1980 and 2018 for discharge, dissolved 490 
oxygen (DO), pH (field), temperature, dissolved organic carbon (DOC), total organic carbon (TOC), dissolved organic nitrogen (DON), 

total organic nitrogen (TON), (i) total dissolved nitrogen (TDN), (j) nitrate (NO3), (k) Cl, (l) bicarbonate (HCO3), (m) sulfate (SO₄), (n) 

Ca, K, Mg, Na, Si, and Al. Note: we do not show alkalinity or DIC here because coverage is so limited in the dataset (Table 2). 
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 495 

 

 

Figure 5. Distribution of values for climate and hydrological metrics for all CAMELS gauges (n = 671) versus gauges that have chloride 

(Cl) data (n = 404) or aluminum (Al) data (n = 263) when the data are subset for water years 1980 to 2018. P = precipitation. PET = potential 

evapotranspiration. Q = discharge. Boxplots represent the median and interquartile range with outlier values shown as points. See Addor et 500 
al. 2017 for more information on attribute description. 

 



29 

 

 



30 

 

 

Figure 6: Range of the flow duration curve (FDC %, symbol color) and length or record (symbol size) for the stream data between 1980 505 
and 2018 for (a) discharge, (b) dissolved oxygen (DO), (c) pH (field), (d) temperature, (e) dissolved organic carbon (DOC), (f) total organic 

carbon (TOC), (g) dissolved organic nitrogen (DON), (h) total organic nitrogen (TON), (i) total dissolved nitrogen (TDN), (j) nitrate (NO3), 

(k) Cl, (l) bicarbonate (HCO3), (m) sulfate (SO₄), (n) Ca, (o) K, (p) Mg, (q) Na, (r) Si, and (s) Al. The inset histogram shows the number of 

samples by 8-year periods.  Note: we do not show alkalinity or DIC here because coverage is so limited in the dataset (Table 2). 
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Figure 7: Average atmospheric wet deposition in kg/ha (color code) using data from the NADP network from 1985-2018 for (a) protons 

(H+), (b) ammonium (NH4), (c) nitrate (NH4), (d) inorganic nitrogen (NH4 and NH4), (e) Cl, (f) sulfate (SO₄), (g) Ca, (h) K, (i) Mg, and (j) 

Na. The number of locations represented are referenced as n. 525 
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Figure 8: Long-term Sen slope (e.g. average trend) from Mann Kendall analysis of SO4 deposition (a) from 1985-1992, (b) 1992-2002, and 

(c) 2002-2010.  Symbol color shows dominant geology.   
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Figure 9: Molar ratios of HCO3 and Mg to Na as a function of the molar ratio of Mg/Na at low flows (flow duration curve 

>66%). Symbol color is the dominant geology and symbol size is the baseflow index. 
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