
1 

 

 

CAMELS-Chem: Augmenting CAMELS (Catchment Attributes and 

Meteorology for Large-sample Studies) with Atmospheric and Stream 

Water Chemistry Data 

Gary Sterle1, Julia Perdrial2, Dustin W. Kincaid34
 ,Kristen Underwood34

,Julia Donna Rizzo34
, , Ijaz Ul Haq4,  

Li Li53, Thomas Adler2, Kristen Underwood4, Donna Rizzo4, Hang Wen65, Helena Middleton1   and Adrian 

Harpold1   

 
1 Department of Natural Resources and Environmental Science, University of Nevada, Reno, USA 
2 Department of Geography and GeosciencesGeology, University of Vermont, USA 
3 Department of Civil and Environmental Engineering, Pennsylvania State University, University Park, USA 

34 Department of Civil and Environmental Engineering, University of Vermont, USA 

4Department of Computer Science, University of Vermont, USA 

5 Department of Civil and Environmental Engineering, Pennsylvania State University, University Park, USA 
65 School of Earth System Science, Tianjin University, Tianjin, China 

Correspondence to: Adrian A. Harpold (aharpold.unr.edu), Julia Perdrial (Julia.Perdrial@uvm.edu) 

Abstract. Large sample datasets are transforming hypothesis testing and model fidelity in the catchment sciences, but few 

large stream water chemistry datasets exist with complementary streamflow, meteorology, and catchment physiographic 

attributes. The existing CAMELS (Catchment Attributes and Meteorology for Large-sample Studies) dataset includes data on 

topography, climate, streamflow, land cover, soil, and geology across the continental U.S. With CAMELS-chem, we pair Here, 

we these existing catchment attribute data with atmospheric deposition data from the National Atmospheric Deposition 

Program and pair atmospheric deposition and water chemistry related information with the existing CAMELS (Catchment 

Attributes and Meteorology for Large-sample Studies) dataset, which which .  The newly developed dataset, CAMELS-Chem, 

comprises U.S. Geological Survey water chemistry data and instantaneous discharge from U.S. Geological Survey over the 

period from 1980 through 2018.  in 506 minimally impacted headwater catchments. The CAMELS-Chem dataset includes 18 

common stream water chemistry constituents: Al, Ca, Cl, Dissolved Organic Carbon, Total Organic Carbon, HCO3HCO3, K, 

Mg, Na, Total Dissolved Nitrogen [nitrate + nitrite + ammonia + organic-N], Total Organic Nitrogen, NO3NO3, Dissolved 

Oxygen, pH (field and lab), Si, SO₄, and water temperature for up to 516 minimally impacted headwater catchments. . We also 

provide an aAnnual wet deposition loads and concentrations include from the National Atmospheric Deposition Program over 
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the same catchments that includes: Ca, Cl, H, K, Mg, Na, NH4, NO3, SO₄. and Total Nitrogen from deposition [precipitation 

NO3NO3 + NH4NH4, dry deposition of particulate NH4NH4, + NO3NO3, and gaseous NH3NH3]. We pair d mean daily 

discharge measurements for all chemistry samples and instantaneous discharge for about 30%. We demonstrate the geographic 

and hydroclimatic coverage of the dataset and explore the consistency of sampling across sites, seasons, and discharge. 

ofFurther, tTo motivate wider use by the largerthe larger scientific community across a variety of disciplines, we exemplify 

the potential use of this dataset for develop three example two analyses: 1. Atmospheric-aquatic linkages using atmospheric 

and stream SO4SO4 trends, and 2. Geological-biogeochemical linkages using weathering relations.  

1 Introduction 

Earth surface processes include coupled and complex processes that involve atmosphere, biosphere, lithosphere and 

hydrosphere, however, tracking these important processes across time, space and disciplines remains a challenge that is, 

amongst others, related to data availability and connectedness. To address the need for ‘balancing breadth with depth’ (Gupta 

et al., 2014, Hubbard et al., 2020), the hydrological sciences have developed large sample size datasets that are of high quality 

and then made these available to the research community. One of the key advantages of aggregating and harmonizing data into 

larger sample size datasets is to test how model hypotheses reproduce observed behaviour across variable conditions and sites 

to reduce the uniqueness of place issues (i.e. individual catchment behavior  might not be generalizable to explain a larger 

scale pattern and vice versa) (Gupta et al., 2014) (Hubbard et al., 2020). As a result, several recent efforts have focused on 

generating and using datasets across the continental U.S. (CONUS) where observation networks are relatively dense. For 

example, the Model Parameter Estimation Experiment (MOPEX, Duan et al., 2006) dataset has been used to detect the effects 

of shifts from snow to rain on streamflow (Berghuijs et al. 2014) and to better diagnose the cause of catchment -scale water 

budgets (Brooks et al., 2015). Recent efforts have extended the record and detail of auxiliary data of older efforts (e.g. MOPEX) 

to develop longer-term streamflow and hydrometeorological forcing data for a larger number of minimally disturbed 

catchments, including the continental U.S (Newman et al. 2014), Chile (Alvarez-Garreton et al., 2018), and Brazil (Chagas et 

al., 2020). The Global River Water Quality archive (GRQA) and GLObal RIver Chemistry Database (GLORICH) have offered 

opportunities for water quality analyses across time and land scale (Hartmann et al. 2014, Virro et al. 2021) and  the  Catchment 

Attributes for Large-Sample Studies (CAMELS, Newman et al. (2015)) compile high quality streamflow measurement in 671 

unimpaired catchments across the CONUS, as well as climate forcing datasets (e.g. daily precipitation and temperature) and 

physiographic properties (e.g. land cover, topography, etc., Addor et al. (2017). CAMELS has seen widespread adoption by 

the hydrological community as a benchmarking tool for hydrological models (Melsen et al. 2018, Mizukami et al. 2019, Pool 

et al. 2019), in the development of hydrological signatures and new information theory-based approaches, and the application 

of novel machine learning tools (Kratzert et al. 2019). The combination of catchment attributes and  matching datasets on 

stream water chemistry has recently been developed for Germany (Ebeling et al. 2022), however, for the CONUS this approach 
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has not  seen as much development (Arora et al. 2023). Furthermore, atmospheric deposition data is typically not included in 

such data sets, despite the significant impact of atmospheric contribution to stream chemistry. 

Many important insights across Earth science disciplines over the last several decades derived from investigations that 

combined several datasets such as long-term stream chemistry data, stream discharge, hydroclimatology, and catchment 

properties (e.g. vegetation, geology, topography).  For example, global analyses of CO2CO2 evasion from headwater streams 

have helped to quantify global fluxes (Gaillardet et al., 2018; Horgby et al., 2019; Lauerwald et al., 2015; Raymond et al., 

2013). Changes in dissolved organic carbon (DOC) in stream water were partially related to changes in atmospheric deposition 

and acidity only viewable with longer records (Monteith et al., 2007). Stream flow and chemistry data, in particular 

pairedcombined(?) concentration and discharge data, have also been shown to  illuminate subsurface flow paths and chemical 

vertical stratification (Stewart et al., 2022; Zhi and Li, 2020). Applying an integrative dataset in the Northeastern U.S., a recent 

study showed differential sensitivity of headwater catchments to reductions in SO4SO4 and NO3NO3 and resulting variations 

in stream DOC efflux (CITE Adler et al. 2021). Importantly, this study confirmed that much of the long-term recovery from 

acid rain is mediated by catchment-scale processes in variable soils and bedrock as well as variable hydrological and climatic 

forcings. Only by aggregating data across many catchments could these interacting factors affecting stream chemistry be 

deterimineddetermined because transferability from a small number of regional catchments is very limited (Clow et al, 1999; 

Garmo et al., 2014; Harpold et al., 2010). Further, long-term water chemistry datasets have also given insight into rock 

weathering and solute flux estimates.  For example, Godsey et al. (2009) used theeh GLORICH dataset that focuses on large, 

human impacted riverine systems and contains corresponding catchment properties and streamflow data and showed the 

ubiquity of ‘chemostasis, i.e. solute fluxes being primarily driven by stream discharge and not variations in concentrations in 

many catchments. More recent work using 2,186 catchments from the Global River Chemistry Dataset (GLORICH) began to 

illustrate the role of aridity and catchment properties in controlling the concentration-discharge (C-Q) relationship in key 

solutes (Godsey et al., 2019).   

 

Thus, we now have There are opportunities to inform our understanding of the inter-relationships between water chemistry, 

hydrology, and biogeochemistry by developing facilitated by datasets that link stream chemistry to discharge and other 

catchment properties. For example, Vlah et al. (2023), have combined data from watershed studies and supplemented these 

with watershed attributes. Our contribution is the compilation of a new dataset that takes advantage of one of the most 

comprehensive collections of catchment attributes across the CONUS i.e., CAMELS (Addor et al., 2017; Newman et al., 

2014). Building on CAMELS, we developed “CAMELS-Chem”, a relational database that provides fast query processing, 

enforces data integrity, provides detailed information about current data and schema (i.e., relational structure), and 

represents a flexible platform to export data in a consistent format for external analysis. The database comprises 
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individual water chemistry measurements harvested from the U.S. Geological Survey (USGS) National Water Information 

System (NWIS), with up to 516 catchments and 18 constituents (USGS 2023) and earliest atmospheric deposition data from 

the National Atmospheric Deposition Program (NADP, available since 1985). While stream data from as early as 1898 is 

available for some instances (and is included in the relational database), this publication and accompanying dataset covers the 

timeframe from 1980 to 2018 because CAMELS spans the timeframe from 1980 to 2014. We first introduce the methods used 

to develop the CAMELS-Chem database and dataset (Section 2) and then summarize the availability and spatial patterns of 

key water chemistry constituents (Section 3). Finally, we exemplify the utility of CAMELS-Chem for interdisciplinary 

applications that require several data streams for (bio)geo-chemistry, ecology, and hydrology (Section 4). These examples can 

help illuminate how the dataset can be used and therefore facilitate the integration of ideas, as it is often challenging to see 

connections across disciplinary boundaries. Readers are also referred to cross-disciplinary publications already using this 

dataset (Zhi et al. 2019, Zhi and Li 2020, Adler et al. 2021, Zhi et al. 2021, Li et al. 2022, Underwood et al. 2023).  

 

2 Materials and Methods 

2.1 Data sources and description 2.1 Data Harvesting and Integration Approach Data Sources 

  2.1 Data sources and description  

CAMELS covers the time period from 1980-2014 and we added stream discharge and solute concentration for the entire length 

of record (as early as 1898) until 2018. To showcase data for the timeframe where both CAMELS data and stream data are 

available, all figures in the main body of the publication feature the stream data starting in 1980. We show data for the entire 

length of record in supplementary materials.  

CAMELS-Chem record shows that most of its sites are drawn come from the USGS Hydrologic Benchmark Network  

(https://www.usgs.gov/centers/new-york-water-science-center/science/hydrologic-benchmark-network) that have been 

utilized in previous studies (Godsey et al. 2019) and are supplemented with all additional shorter or less consistent USGS 

NWIS records from the Hydro-Climatic Data Network (https://water.usgs.gov/GIS/metadata/usgswrd/XML/hcdn.xml).   

The USGS provides a consistent methodology, locations, and paired discharge record for all collected water samples. 

Approximately 93% of the samples in CAMELS-Chem have a paired daily discharge value; however, the coverage for paired 

instantaneous discharge values was lower (~15%) because not all gauges provide hourly observations or they provide discharge 

only from a more recent part of the record. For these cases the (bio)geo-chemical sample time was adjusted forward/backward 

to pair with the closest quarter -hour (or sometimes hourly) instantaneous discharge observation. Missing time stamps for 

(bio)geo-chemical sampling is more challenging to correct. We address this by making the assumption that field technicians 

https://www.usgs.gov/centers/new-york-water-science-center/science/hydrologic-benchmark-network
https://water.usgs.gov/GIS/metadata/usgswrd/XML/hcdn.xml
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generally collect samples for multiple solutes at the same time, thus the recorded timestamp for one solute can be applied to 

all taken on that day. By assuming one sampling time every day per site we obtained 397 more instantaneous discharge values 

(out of a total of 8,975 records without timestamps).  Using hourly observations and field observations during water chemistry 

sampling, we provide instantaneous data from roughly 30% of samples. 

2.2 Data Harvesting and Integration Approach 

Integrating water resources data from multiple sources can be a process replete with challenges including missing data, mis-

matched sample times, inconsistent parameter names, or varying units of measure (Sprague et al. 2017, Niu et al. 2018). While 

NWIS sources already have high quality records that have been quality-assured and normalized, issues of missing data and 

different constituent names across catchments can present problems for data harmonization and integration.  To address these 

challenges, we used state-of-the-art methods to automate data acquisition and integration, coupled with a relational database 

(Bansal and Kagemann 2015). The Extract, Transform, and Load (ETL; Figure S1 in supplementary materials) framework 

from Pentaho Data Integration was employed to: (1) extract discharge and water quality data from siloed systems; (2) transform 

the data into formats to fit operational needs; and (3) load the data into a relational database to provide maximum flexibility 

for retrieval, exploration and analysis.  

During extraction, we relied on unique gauge identifiers from NWIS to relate the two gage-specific data sources: 1) 

instantaneous and daily mean discharge data and 2) (bio)geo-chemical stream water quality data.  Of the original 671 CAMELS 

watersheds, 506 watersheds returned instantaneous or daily mean discharge data and 488 returned both discharge and water 

quality data for the time between 1980 and 2018. The transformation part of the workflow addressed data quality issues and 

harmonization before data were uploaded to the repository.  For example, we normalized differing units of measure across 

constituents and sample times across time zones.  We employed algorithms to impute missing time stamps for a subset of the 

water quality records (see Data Sources and Description section).  For the final comprehensive data repository, we selected 

Oracle’s free and open-source database (PostgreSQL 2020). A relational database provides fast query processing, enforces 

data integrity, provides detailed information about current data and schema (i.e., relational structure), and represents a flexible 

platform to export data in a consistent format for external analysis. Statistics were calculated for key parameters such as 

probability of exceedance, standard deviation, low/medium/high flow conditions, mean daily and annual flow. These statistics 

appear in the following figures and are also available as part of this data release.   

 

 

3 Results  

3.1 Stream Water Chemistry 

The CAMELS-Chem dataset comprises 18 water chemistry and property values (Table 1) and is summarized for general water 

quality parameters (discharge, dissolved oxygen, pH, and temperature), carbon and nutrient species ((DOC), total organic 
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carbon (TOC), dissolved organic nitrogen (DON), total organic nitrogen (TON), total dissolved nitrogen (TDN), nitrate (NO 3)), 

anions (Cl, bicarbonate (HCO3), sulfate (SO₄) and cations (Ca, K, Mg, Na, Si, and Al, Figure 1). While the lengths of discharge 

and climate records extend up to or greater than 30 years for many CAMELS-Chem catchments, the water chemistry data are 

not as continuous and spatially consistent (Figure 1 for all flows and 2 for flow duration curve [FDC ]>66%). The total number 

of stream water samples varies substantially depending on the variable of interest, which should be taken into consideration 

when using this dataset. For example, the dataset has 34,704 total Si measurements from 325,477 catchments, compared to 

only 11,101 DOC measurements from 17,989 catchments (Figure 1r and 1e, respectively).  

 

 

Table 1: The stream water chemistry datasets in the CAMELS-Chem dataset including attribute, name, abbreviation in the 

database, description, units and USGS parameter codes. 

Attribute Name Database 

abbreviation 

Description Units USGS parameter 

code(s) 

Q discharge  discharge   

DO Dissolved Oxygen o Water, unfiltered mg/l 300 

pH pH ph Water, unfiltered, field std units 400 

pH_l pH ph2 Water, unfiltered, laboratory std units 403 

temp water temperature temp Water, field degree C 10 

DOC Dissolved Organic Carbon doc Water, filtered mg/l 681 

TOC Total Organic Carbon toc Water, unfiltered mg/l 680 

DON Dissolved Organic Nitrogen don Water, filtered mg/l 607 

TON Total Organic Nitrogen ton Water, unfiltered mg/l 605 

TDN Total Dissolved Nitrogen tn Water, filtered 

[nitrate + nitrite + ammonia + organic-

N] 

mg/l 602 

NO3 Nitrate no3 Water, filtered and total mg/l as N 618, 620 

Cl Chloride cl Water, filtered and total mg/l 940, 99220 

HCO3 Bicarbonate hco3 Water, filtered, field, inflection-point 

(incremental titration method) 

mg/l 453 

SO4 Sulfate so4 Water, filtered and total mg/l 945, 946, 99127 

Ca Calcium ca Water, filtered mg/l 915 

K Potassium k Water, filtered mg/l 935 

Mg Magnesium mg Suspended sediment, total mg/l 925 

Na Sodium na Water, filtered mg/l 930 
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Si Silica si Water, filtered mg/l 955 

Al Aluminium al Water, filtered µg/l 1106 

 

3.1 Water Chemistry Constituents and Data Availability and Patterns in Water and Deposition Chemistry 

While the lengths of discharge and climate records extend up to or greater than 30 years for many CAMELS-Chem 

catchments, the water chemistry data are not as continuous and spatially consistent (Figure 2 and S1 for the entire 

length of record).  The total number of stream water samples varies substantially depending on the variable of interest, 

which should be taken into consideration when using this dataset. For example, the dataset has 34,704 total Si 

measurements from 325477 catchments, compared to only 11,101 DOC measurements from 17989 catchments (Figure 

2r and 2e, respectively).  In general, weathering-related solutes (Si, Ca, K, Mg, Na) are more comprehensively sampled 

(i.e. longer records and more catchments) than biologically driven constituents (NO3, TDN, DOC). Temperature and 

DO are sampled more often because they are part of the standard USGS field measurements at the time of water 

chemistry sampling.  Annual average atmospheric deposition maps developed by the National Atmospheric Deposition 

Program (NADP) are reported for each catchment (Figure 4).   

 

Patterns of different water chemistry constituents reflect the broad range of geology, climate, land use history, land cover and 

other factors (Figure 1 and 2).  For example, water temperature shows clear latitudinal patterns in both mean and coefficient 

of variation (CV, Figure 1, 2d) that likely reflect warmer climate and greater solar radiation in southern locations.  Conversely, 

variables like DO and pH have much smaller variability in mean and CV and less geographic patterning (Figure 1, 2b and c, 

respectively).  Some of the biologically derived solutes such as DOC and TOC show high variability in mean and CV across 

CONUS, without clear geographic patterns (Figure 1, 2e and f). In contrast, many of the nitrogen constituents show hot spots 

of agriculture in the Midwest and upper great plains (Figure 1,2g-j).  Similarly, ions associated with agriculture and human 

impacts, like Ca, K, and Mg had higher mean values and larger CV in the central part of CONUS (Figure 1,2 n, k and p); 

whereas the geographical pattern of mean and variance of Si and Al is less distinct (Figure 1,2 r and s). These results shown 

here demonstrate the complexity of spatial patterns across the CONUS.  In the following sections we offer more background 

on the strengths and weaknesses of the dataset for different applications. 

 

3.2 Consistency of Stream Sampling Across Sites and Seasons 

CAMELS-Chem offers long-term records for trend analysis and broad geographic coverage in catchments (Figure 3 as well 

as S4 in supplementary materials). Because USGS sampling foci varied between decades, temporal biases in the sampling 

record exist (Shanley et al. 2015). For example, many of the stream water constituents impacted by acid rain (i.e., SO₄ and Ca) 

were sampled less frequently starting in the late 1990’s (Fig 3m and n). In contrast, sampling frequency for many solutes 

related to local water quality issues (i.e. NO3, and K) have increased in recent decades (Figure 3j and o). The NO3 data are 

more abundant in the Midwest and along the east coast where sampling for nutrients is common. In contrast, DOC observations 
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highlight the location of long-term sites focused on minimally human-impacted catchments (i.e., USGS Hydrologic 

Benchmark Network) that have the most comprehensive sampling of all solutes (Figure 3e).   

 

Longer records and sampling across seasons increase the capability for trend detection. Field data collection is more 

consistently measuring water DO, pH and temperature (up to 516 out of the 671 CAMELS watersheds, Figure 3b-d).  

Temperature measurements demonstrate the dedication of USGS staff, with 3,000-7,000 samples taken each year, which led 

to >400 sites with >20 years of records and >100 samples (Figure 3d). In general, other chemical analyses are done with 

filtered samples (exception TON) back in a laboratory. Among these samples, weathering-related, lithogenic solutes such as 

Ca, K, Mg, Na and Si (Figure 3n-r) are more comprehensively sampled (i.e. longer records and more catchments) than 

biologically driven constituents such as DOC, TOC or organic nitrogen (Figure 3e-h).  For example, lithogenic solutes have 

around 50 sites with >20 year records and >100 samples, with a total of between 50-150 catchments and 1,000-2,000 samples 

each year (Figure 4.  In contrast, biologically related solutes are sampled around 500-1,000 times per year, have <50 records 

that are >20 years and >100 samples. NO3 is sampled 1,000-2,000 times per year, but much of the additional sampling is 

concentrated in agricultural catchments in the midwestern part of the US. Thus, users of the data should be aware of the 

different sampling frequencies at each location, and while sampling frequency varies greatly by solute and water year, different 

seasons are roughly evenly represented in the dataset (Figure 4). Across all watersheds, CAMELS-Chem covers a wide range 

of hydroclimate that offers ample opportunities for investigating the connection between climate, catchment attributes and 

stream water chemistry.  We illustrate this by showing the range of some variables from the CAMELS database (Figure 5) for 

all 671 catchments versus the catchments sampled by CAMELS-Chem for Cl (high sampled) and Al (less sampled).  The range 

of catchments sampled is nearly identical between CAMELS and CAMEL-Chem, which both span a wide range of 

hydrological and hydrometerological conditions.  

3.12 Consistency of Stream Sampling Across Sites and Seasons,in Place and Record Length 

CAMELS-Chem offers long-term records for trend analysis and broad geographic coverage in catchments.  The  

Because USGS sampling foci varied over each decade, temporal biases in the sampling record exist (Shanley et. al 2015).  

For example, many of the stream water constituents impacted by acid rain (e.g. SO₄, Ca) were sampled less frequently 

starting in the late 1990’s.  In contrast, sampling frequency for many solutes related to local water quality issues (i.e. 

NO3NO3, and K) have increased in recent decades (Figure 2je).  The NO3NO3 data are more abundant focused in the 

Midwest and east coast where agriculture is generally more intense and focussed sampling for nutrients is common.  In 

contrast, DOC observations highlight the location of long-term sites focused on minimally human-impacted catchments 

(e.g., USGS Hydrologic Benchmark Network) that have the most comprehensive sampling of all solutes (Gupta et al., 

2014; Mast, 2013).   

 

Longer records and sampling across seasons increase the capability for trend detection.  Field data collection is more 

consistently measuring water temperature, DO, and pH (up to 516 of 671 CAMELS watersheds).  Temperature 

measurements demonstrate the dedication of USGS staff, with 3000-7000 samples taken each year, which led to >400 

with >20 years of records and >100 samples (Figure 2d?).  In general, other chemical analyses are done with filtered 
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samples (exception TON) back in a laboratory.  Among these samples, weathering-related solutes (Si, Ca, K, Mg, Na) 

are more comprehensively sampled (i.e. longer records and more catchments) than biologically driven constituents 

(NO3, TDN, DOC, Fig 2).   With the exception of Al and HCO3HCO3, weathering-related solutes have around 50 sites 

with >20 year records and >100 samples, with a total of between 50-150 catchments and 1000-2000 samples each year 

(Figure S1?).  In contrast, biologically related solutes like DOC, TOC, and TON are sampled around 500-1000 times 

per year and have <50 records that are >20 years and >100 samples.  DON, TN, and HCO3HCO3 are sampled even 

less frequently at around 300 samples per year.  NO3NO3 is sampled 1000-2000 times per year, but many of the 

additional sampling is concentrated in agricultural catchments in the midwestern part of the US.  We also investigate 

how the sampling is distributed across seasons (Figure SX), which shows relatively even sampling across the four 

seasons.   

 

End users of the data should be aware of the different sampling frequencies at each location, with long-term trends and seasonal 

trend analysis possible at select sites and with select solutes that cover a wide range of climate and physiographic conditions.   

We visualize the watersheds where water chemistry sampling occurs with the full range of CAMELs watersheds (Figure X) 

to show the potential range of hydroclimatology across the catchments. 

3.3 Consistency of Sampling Across Discharge Records and Variable Hydroclimate 

Because CAMELS-Chem is paired with measured discharge data, we can effectively assess and constrain the effects of 

discharge on water chemistry analyses. Concentration-discharge (C-Q) relationships are routinely used to compute solute loads 

for mass budgets (Cohn et al. 1989) and have been used to infer catchment effects on biogeochemical cycling (Basu et al. 

2010, Musolff et al. 2015). CAMELS-Chem has distinct advantages in this context, as we used instantaneous (hourly) 

discharge data to supplement the NWIS database and 30-year daily discharge records are a reference for C-Q ranges. Because 

Q values are more likely to change over daily periods at high flows than low flows, instantaneous discharge measurements are 

more critical on high flow days than low flow days. 

To apply a C-Q analyses to a dataset, the stream chemistry sampling for the solute of interest must span a large range of 

discharge values. Conversely, if only low flow (baseflow) values are available, careful subsampling is required. To aid 

assessment of the dataset in this context, we offer a visual representation of the coverage of the percent of the FDC (i.e. highest 

minus lowest percentiles of water sampling dates) for each catchment (Figure 6 and S5). The CAMELS-Chem sampling covers 

>75% of the FDC curve in most catchments, with coverage less than 50% of the FDC in parts of the Gulf Coast and Upper 

Midwest areas (Figure 6). Despite the greater sampling of the weathering related solutes (Figure 6m-q), all solutes show 

relatively high coverage of the FDC, including the biological solutes that were sampled many less times and over shorter 

records (e.g. Figure 6d-i).  In terms of sampling consistency and numbers across the FDC, we look at the percent fraction of 

sampling occurs in each tercile of the FDC across solutes (Table 2), where even sampling would be 33% of samples in each 

tercile. There is a small bias to sampling at high flows (<33% tercile), especially for the biological solutes and many lithogenic 

solutes (Table 2).   
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3.3 Consistency of Sampling Across Discharge Records and Variable Hydroclimate 

 

 

Table 3X: The percentage of samples that were sampled at flows with exceedance probabilities on the flow duration 

curve (FDC) < 33% (higher flows) and >66% (lower flows) for water years 1980-2018. pH here is field measured. 

 FDC    FDC  

Attribute <33% (%) >66% (%)  Attribute <33% (%) >66% (%) 

DO 35 34  NO3 43 28 

Alkalinity 38 28  Cl 40 31 

pH 37 33  HCO3 39 30 

Temperature 41 29  SO4 41 30 

DIC 0 83  Ca 40 31 

DOC 48 25  K 40 31 

TOC 38 36  Mg 40 30 

DON 46 27  Na 40 31 

TON 42 30  Si 42 29 

TDN 49 26  Al 51 22 

 

Over 25% of all samples are collected at low flow (>66% tercile) for all solutes (except Al) and HCO3 is exclusively sampled 

at low and moderate flows.   

3.4 Coincidence of Sampling Across Species 

A key strength of the USGS sampling program is that a large number of water constituents are measured simultaneously, which 

allows concentration ratios and mixing models to be more readily developed (Godsey et al. 2019).  We report this information 

as a table of fractions of coincident samples (Table 3). For example, we see that daily discharge is co-sampled with the water 

chemistry constituents >90% of the time (right most column), however only about 10-30% of discharge sampling dates have 

a water chemistry measurement (bottom most row). Lithogenic solutes and some anions appear to be co-sampled over 90% of 

the time, while many of the biological solutes were sampled less often. In this case, between 30%-80% of samples had 
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coincident ion chemistry, with constituents like DOC and NO3 being more likely to have coincident ion chemistry than TN, 

TON, DON, and DO. The nitrogen sampling was often coincident between TN and NO3, with the other nitrogen species 

sampled less coincidentally.  

3.4 Coincidence of Sampling Across Species 

Another key strength of the USGS sampling program is that a large number of water constituents are measured 

simultaneously, which allows concentration ratios and mixing models to be more readily developed (Godsey et al.,).  

We report this information as a table of fractions of coincident samples (Table X) from both datasets.  For example, we 

see that daily discharge is co-sampled with the water chemistry constituents >90% of the time (right most column), 

however only about 10-30% of discharge sampling dates have a water chemistry measurement (bottom most row).  

Likely because of similar analytical ion chemical analysis, the base cation and some anions appear to be co-sampled 

>90%, including Ca, SO4, Mg, Na, Si, and K.  Many of the biological solutes were sampled less often and only 30%-

80% of samples had coincident ion chemistry, with constituents like DOC and NO3 being more likely to have coincident 

ion chemistry than TN, TON, DON, and DO.  The nitrogen sampling was often coincident between TN and NO3, with 

the other nitrogen species sampled less coincidentally.  We leverage this conicidence sampling of ion chemistry to 

investigate weathering relationships in Section 4. 

Table from Dustin 

Table 3: Percent of samples stream water chemistry datasets in CAMELS-Chem for all constituents. Table is read as the percent of co-

sampling with column constituent in all samples in the top right of table and the row constituent in the bottom left of table.  For 

example, 95% of Temperature (Temp) have discharge (Q) samples and 88% of Q samples have Temp samples. DO=dissolved 

Oxygen, TDN=total dissolved nitrogen, DOC=dissolved organic carbon, TOC=total organic carbon, *Alk=alkalinity, 

DON=dissolved organic nitrogen. See table 1 for USGS parameter codes for most solutes. *USGS parameter codes for 

alkalinity (not included in table 1) = 418,421,99431, and 99432. 

 
Temp Q DO Cl Na K Mg Si Al N TDN NO3 SO4 Ca DOC TOC pH Alk HCO3 DON 

Temp 100  95  37  31  28  28  29  26  9  14  7  18  30  29  13  7  28  1  6  6  

Q 88  100  33  30  26  26  27  24  9  13  7  18  28  27  14  6  26  1  6  5  

DO 96  92  100  52  49  48  51  42  14  32  11  30  50  51  14  17  48  1  16  13  

Cl 86  91  56  100  83  83  85  75  24  24  15  43  88  85  38  11  74  2  17  10  

Na 89  90  59  93  100  97  100  86  27  26  16  43  93  99  40  11  79  2  17  11  

K 90  90  60  94  100  100  100  86  27  26  16  44  95  99  40  11  79  2  17  11  

Mg 89  90  60  92  96  94  100  83  28  25  16  42  91  99  39  12  79  2  16  11  

Si 87  90  55  92  93  91  93  100  27  28  20  48  91  93  45  14  81  2  19  16  

Al 89  96  54  88  87  86  93  80  100  24  23  58  84  93  44  8  90  2  17  6  
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N 91  91  80  56  54  53  54  53  16  100  25  36  54  54  13  27  52  1  15  33  

TDN 93  96  56  69  67  67  67  77  29  50  100  70  68  67  52  28  69  0  14  54  

NO3 88  95  58  76  67  67  68  69  28  27  26  100  74  68  50  12  65  1  21  16  

SO4 90  90  58  95  90  89  91  81  25  25  16  46  100  90  41  11  77  2  18  11  

Ca 89  90  60  92  96  94  100  83  28  25  16  42  91  100  39  12  79  2  16  11  

DOC 85  98  35  89  82  82  83  87  29  13  26  66  89  83  100  7  73  1  17  14  

TOC 93  81  82  47  44  43  47  51  10  51  26  31  43  47  13  100  61  0  9  26  

pH 90  91  59  85  81  79  84  77  29  26  17  43  82  83  36  16  100  2  16  10  

Alk 97  98  96  96  92  91  94  92  31  29  6  53  92  94  39  1  94  100  97  2  

HCO3 93  96  93  87  78  78  78  80  25  34  16  63  86  78  38  10  72  8  100  14  

DON 91  95  79  58  57  57  57  74  9  80  67  51  56  57  35  35  52  0  15  100  

 

      

 

 

 

3.5. Atmospheric deposition data 

Wet deposition data were obtained from NADP for the earliest availability, which started in 1985 and ended (at the time of 

publication) in 2018. The data product is generally an inverse distance weighted interpolation of the wet deposition observation 

stations and reported as a concentration and deposition (mass per area); more details are provided on their website. Data rasters 

were positioned to correspond to CAMELS catchment shape files to determine total watershed deposition for 10 species for a 

given year (Figure 7). Quantum GIS 3.12 was used to calculate mean, minimum, maximum, and standard deviation of the 

concentration and deposition values for each catchment and each year (Table 4). 

 

 

Table 4: NADP depositional dataset, attribute, name, concentration and deposition units.  

Attribute Name Concentration units Deposition units 
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H+ Hydrogen mg/l kg/ha 

NH4 Ammonium mg/l kg/ha 

NO3 Nitrate mg/l kg/ha 

NO3 + NH4 Inorganic Nitrogen mg/l N kg/ha 

Cl Chloride ug/l kg/ha 

SO4 Sulfate mg/l kg/ha 

Ca Calcium mg/l kg/ha 

K Potassium mg/l kg/ha 

Mg Magnesium mg/l kg/ha 

Na Sodium mg/l kg/ha 

 

Atmospheric deposition needs to be considered when evaluating water chemistry patterns and especially for weathering 

studies, the contribution of atmospheric deposition needs to be corrected for (Berner and Berner 2012). For example, Cl and 

Na deposition values are higher in coastal areas (Figure 7e and j), while NH4 and NO3 deposition vales are higher in places 

where anthropogenic inputs of fertilizer are high (Figure 7b and c). Ca typically has higher values away from coastal areas and 

is strongly impacted by local bedrock and soil composition (Berner and Berner 2012). In many cases these patterns are 

consistent with patterns in stream chemistry (e.g. Figure 1j for stream NO3).  

Wet deposition can help explain some context for  water chemistry patterns.  For example, Cl deposition (Figure 43b) is higher 

streamflow Cl concentrations along the coast relative to more inland catchment (Figure 3).  Conversely, atmospheric deposition 

of NO3 is much higher in the Midwest and other places where anthropogenic inputs of fertilizer are high (Figure 4a) and are 

consistent with patterns in stream chemistry (Figure 32e).  The annual resolution of the wet deposition data is sufficient to 

investigate trends in air and water quality (see example 4.3) and could be supplemented as additional datasets become available 

(i.e., total wet and dry deposition; Schwede et al., 2014).We explore how the consistency of spatial and temporal sampling can 

affect analysis techniques and inferences in Section 4.   

 

4 Example Analyses Using CAMELS-Chem 

To motivate adoption of this dataset by the larger scientific community, especially in fields that span multiple disciplines, we 

intentionally decided to offer We illustrate the research potential of CAMELS-Chem using three themes and examples in three 

themes: 1. by investigating trends in SO4SO4 deposition and stream chemistry over the continental U.S we show highlight 

atmospheric-aquatic linkages, 2. by investigating continental-scale C-Q relations we highlight hydrological and 

biogeochemical linkages, and 3. by investigating weathering patterns we highlight geological-biogeochemical linkages.  Our 
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goal for this section is to demonstrate the unique value of the CAMEL-Chem dataset, its potential limitations, and to motivate 

future work.   

4.1 Trends in Atmospheric SO4SO4 Deposition and Stream Chemistry 

4.1.1 Background and Motivation 

The Industrial Revolution caused a rapid increase in fossil fuel emissions, which introduced acid anions (SO₄, NO3NO3) in 

excess of background conditions leading to acidic precipitation throughout many industrialized regions (Newell & Skjelkvåle, 

1997). The Clean Air Act in 1970 and subsequent amendment in 1990 led to major reduction in air pollution as apparent in 

progressively decreasing deposition amounts ( Accessed September 20, 2020: https://www.epa.gov/air-trends/sulfur-dioxide-

trends). These significant changes in atmospheric composition served as an experiment in stream chemistry response (Stoddard 

et al, 1990) and motivated several studies across the US and Europe. For example, Stoddard et al. (1990) showed that stream 

water acid anion concentration declined more in the 1990s than the 1980s and later research indicated that effects were larger 

in Europe than North America (Garmo et al., 2014).  In the Northeastern U.S., SO4SO4 stream chemistry has generally 

responded to declines in SO4SO4 deposition (McHale et al., 2017; Siemion et al., 2018). However, catchment properties and 

flow regime were shown to impact the sensitivity of stream response to shifts in deposition (Clow et al., 2018; Murdoch et al., 

2006).  The lack of co-located long-term deposition data, stream water chemistry and discharge data, and catchment attributes 

hinders investigation of the legacy of effects of acid rain on stream chemistry at continental scales. 

4.1.2 Analysis and Findings 

CAMELS-Chem provides new potential to analyze the effects of acid deposition on long-term stream chemistry trends across 

a range of hydrological conditions.  Many (but not all) sites have >100 SO4 stream samples spanning over 20 years of record 

(Figure 2m). Our analyses of FDC show that bias towards part of the flow regime when SO4 samples are common and depend 

on the location of interest (Figure 3l). To investigate trends in atmospheric SO4 deposition and resulting trends in stream water 

chemistry, we performed a Mann-Kendall test for three timeframes (Hirsch and Slack 1984). Our results are in agreement with 

previous findings of declining SO4 deposition following the 1990 Clear Air Amendments (Figure 7, Garmo et al. (2014)). As 

expected, plotting trends in SO4 stream chemistry and wet deposition for an earlier timeframe (1985-1992, Figure 8a) 

decreasing trends in SO4 deposition and corresponding decreasing trends in SO4 stream chemistry are apparent.  Wet deposition 

trends remain decreasing in the following two decades (1992-2002 and 2002-2010), but without much response in SO4 stream 

chemistry. This initial analysis provides a starting point for hypothesis testing - for example, on the role of catchment attributes 

such as the dominant geology (Figure 8a-c). Furthermore, we hope to motivate more sophisticated statistical and machine 

learning techniques to investigate coupled trends in solutes and the role of climate physiographic information as predictor 

variables. 
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4.2 Weathering Response 

4.2.1 Background and Motivation 

Weathering (i.e. the breakdown of bedrock and regolith) involves key physical and chemical processes that shape Earth surface 

processes and provides important nutrients for all ecosystems. Further, weathering of silicate minerals regulates global 

atmospheric CO2 levels over geologic time scales (Spence and Telmer 2005), and weathering of carbonate rocks modulate CO2 

levels at the human to century time scales (Ulloa-Cedamanos et al. 2021). Riverine composition is often used as an indicator 

for weathering rates and to draw conclusions on implications at larger scales. A classic example is the study by Gaillardet et 

al. (1999) where 60 of the world largest rivers were used to show a strong role of bedrock lithology on weathering rates from 

Si effluxes. To display the impact of major rock classes (i.e. silicates, carbonates, evaporites) on riverine composition, the use 

of molar ratios for geogenic species (Ca/Na, Mg/Na, HCO3/Na) instead of absolute concentrations is useful, because large 

differences in concentrations between solid and liquid phases make comparisons difficult. CAMELS-Chem provides complete 

and co-sampled water chemistry datasets, with known lithology, making these types of weathering analyses possible across 

CONUS. 

4.2.2 Analysis and Findings 

We display these molar ratios of stream water composition for all CAMELS-Chem sites (with a sample number larger than 5) 

as a function of bedrock lithology including igneous, metamorphic and sedimentary rocks (Figure 9). We included only 

samples in the lower tercile of daily discharge values because the low flow discharge is more likely from longer residence 

groundwater that carries the weathering signal.  The lower tercile encompasses more Ca and Mg samples than HCO3 and Na 

samples based on overall sampling frequency (Figure 3m and o vs. Figure 3k and p, respectively).  Similar to previous studies 

(Gaillardet et al. 1999), we observe a pattern based on lithology, with catchments underlain by carbonate plotting in the upper 

right (i.e., high Ca/Na, Mg/Na, and HCO3/Na ratios) and unconsolidated sediments plotting in the lower left (e.g., low Ca/Na, 

Mg/Na, and HCO3/Na ratios). These results are consistent with the high weathering rates of carbonates, where even small 

amounts of carbonate lithology lead to significant shifts to higher Ca/Na (calcite endmember) and Mg/Na (presence of 

dolomite) ratios. Although beyond the scope of this work, CAMELS-Chem gives sufficient samples to provide uncertainty 

estimates in Figure 9, particularly given the uneven number of samples and distribution across solutes (Figure 1). Including 

baseflow index further reveals higher baseflow in carbonates-underlain catchments (Figure 9), which is consistent with 

fractures and highly conductive conduits that are common in carbonate aquifers (Hartmann et al. 2009). In contrast, 

unconsolidated sediments tend to have low weathering rates and low baseflow index (Figure 9).    
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4.2 Concentration-Discharge Relationships 

4.2.1 Background and Motivation 

Concentration-discharge (C-Q) relationships are routinely used to compute solute loads for mass budgets (Cohn et al., 1989) 

and have been used to infer catchment effects on biogeochemical cycling (Basu et al., 2010, Musolff et al., 2015).  When 

event-scale data is not available, routine sampling can be used to compute a log-log C-Q relationship to visualize the extent of 

discharge dependency.  The log-log C-Q relationship is considered chemostatic if the regression slope is near zero, implying 

that export of that solute is negligibly influenced by discharge (Godsey et al., 2009, Underwood et al., 2017, Zhi and Li, 2020).   

 

This chemostatic relation is more likely for geogenic solutes, like Si and Ca, and less so for biogenic solutes, like nutrients, 

with large anthropogenic or natural legacy effects (Musolff et al., 2015).  Recent work by Godsey et al., (2019) suggests that 

groundwater and fast chemical reactions buffer C-Q relationships towards chemostasis, but that the baseline concentrations 

reflect catchment differences in geology, land use, etc.  Godsey et al. (2019) also found that nutrients can be chemostatic, but 

their long-term mean concentrations correlated more to land use than climate.  Moreover, sampling bias occurring at high and 

low streamflow (Figure 5, as well as rising and falling limb of hydrograph, season, etc.) may bias effects towards chemostatic 

behavior (Zhi et al., 2019).  These efforts with CAMELS-Chem show the value of large-sample datasets for inferring C-Q 

relations and their uncertainty. 

4.2.2 Analysis and Findings 

The CAMELS-Chem dataset offers potential to resolve C-Q relationships by improving discharge estimates and pairing with 

substantial existing physiographic information.  Here we repeat the methods and analysis of Godsey et al. (2019) to show 

similar event-scale (i.e. instananeous water chemistry and discharge) C-Q slopes across the overlapping solutes (Figure 6).  

The existing physiographic data compiled by (Addor et al., 2017) allows us to easily filter by the aridity index to match the 

previous analysis of Godsey et al. 2019. Arid catchments were defined as those in which potential evapotranspiration was 

greater than actual evapotranspiration, the reverse was used to determine humid catchments.  In general, the findings for 

CONUS sites are consistent with the global-scale analysis of Godsey et al. (2019), showing near-chemostatic behavior of DOC 

and Si.  In contrast to Godsey et al. (2019), Na for the CAMELS sites shows more pronounced negative slopes in arid 

catchments than in humid catchments. This analysis could be expanded to include additional solutes, or physiographic data, in  

more complex statistical or machine learning based approaches that attempt to infer association with biogeochemical process 

and uncertainty due to irregular and limited sampling.   

 

The CAMELS-Chem dataset has several advantages in this C-Q analysis: 1) instantaneous (hourly) discharge data were used 

to supplement the NWIS database and 2) 30-year daily discharge records are a reference for C-Q ranges. Because Q values are 

more likely to change over daily periods at high flows than low flows, instantaneous discharge measurements are more critical  
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on high flow days than low flow days.  Instantaneous discharge during the chemistry sampling can be > 50% higher or lower 

than the daily mean discharge for a range of important solutes, despite little overall bias (Figure S4).  Thus, the CAMELS-

Chem discharge data could improve accuracy in previous C-Q analysis that rely on daily measured or modeled discharge data. 

The 30-year daily discharge records can be used to assess the degree of discharge variation covered by chemistry sampling 

dates.  We show this as the percent of the long-term FDC covered by the minimum and maximum discharge during sampling 

in Figure 7.  While many sites cover > 90% of the FDC, like those in the upper Midwest, other locations cover less than 50% 

of the FDC, like many of the Gulf Coast sites.  The slope of the response of the concentration discharge relationship can be 

different at high and low flows (Li et al., 2020).  The diverse number of samples with uneven collection dates, as well as the 

lack of discharge variation during solute sampling, suggest that future work should explore C-Q uncertainty estimates using 

more sophisticated statistical techniques with CAMELS-Chem. 

5 Summary and Conclusions 

We developed and released CAMELS-Chem, a relational database comprising water chemistry measurements, corresponding 

instantaneous discharge, and wet deposition data. As a relational database, this provides fast query processing, enforces data 

integrity, provides detailed information about current data and schema (i.e., relational structure), and represents a flexible 

platform to export data in a consistent format for external analysis. This database is continuously updated, and collaborations 

are welcome to explore the full capacity of the database. However, the accompanying dataset available on Hydroshare and 

codes on GitHub will be sufficient for most applications.  

 

This dataset has several advantages because it is paired with hydrometeorological and hydrological modelling data (Newman 

et al. 2015), as well as catchment physiographic properties (Addor et al. 2017). In addition, the consistency of U.S. Geological 

Survey (USGS) water chemistry analysis increases the comparability of the dataset across regions and decades, which is a 

well-recognized problem (Niu et al. 2014, Godsey et al. 2019). The connection between catchment attributes, long-term 

discharge and stream chemistry data as well as paired atmospheric deposition data allows for novel ways of data-driven 

investigation of integrated Earth science studies. The use of CAMELS-Chem in ‘big data’ applications of advanced statistical 

or machine learning tools holds much promise in this regard.  For example, large data approaches can develop new predictive 

tools for ungauged locations to help with water quality management (Zhi et al. 2020) or make process inferences and improve 

predictive models (Nearing et al. 2021). All of the research directions take advantage of the many unique aspects of CAMELS-

Chem, which bodes well for its adoption and use by a variety of scientific disciplines. 

 

However, the user needs to take the limitations of these data into account: for example, the sampling frequency and chemical 

variables of interest are not consistent over time, reflecting changing priorities and budgets within the USGS. This may require 
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sub-setting data into the catchments with longer records or using new machine learning and statistical techniques that can take 

advantage of sparse data within a larger data analysis.  

Code and Data Availability 

The dataset is available on Hydroshare link  https://www.hydroshare.org/resource/841f5e85085c423f889ac809c1bed4ac/. All 

code used for figures will be made available GitHub after the review process is completed.  
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Figure 1: The mean concentration (symbol size) and coefficient of variation (in %, symbol color) for the stream data between 1980 and 

2018 for (a) discharge, (b) dissolved oxygen (DO), (c) pH (field), (d) temperature, (e) dissolved organic carbon (DOC), (f) total organic 

carbon (TOC), (g) dissolved organic nitrogen (DON), (h) total organic nitrogen (TON), (i) total dissolved nitrogen (TDN), (j) nitrate (NO3), 

(k) Cl, (l) bicarbonate (HCO3), (m) sulfate (SO₄), (n) Ca, (o) K, (p) Mg, (q) Na, (r) Si, and (s) Al. The inset histogram shows the number of 

samples by 8-year periods. 
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Figure 2: The number of samples (symbol color) and length or record (symbol size) for the stream data between 1980 and 2018 for all flow 

conditions (a) discharge, (b) dissolved oxygen (DO), (c) pH (field), (d) temperature, (e) dissolved organic carbon (DOC), (f) total organic 

carbon (TOC), (g) dissolved organic nitrogen (DON), (h) total organic nitrogen (TON), (i) total dissolved nitrogen (TDN), (j) nitrate (NO3), 

(k) Cl, (l) bicarbonate (HCO3), (m) sulfate (SO₄), (n) Ca, (o) K, (p) Mg, (q) Na, (r) Si, and (s) Al. The inset histogram shows the number of 

samples by 8-year periods. 
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Figure 3: The number of samples (symbol color) and length or record (symbol size) for the stream data at  low flows (flow 

duration curve >66%) between 1980 and 2018 for (a) discharge, (b) dissolved oxygen (DO), (c) pH (field), (d) temperature, 

(e) dissolved organic carbon (DOC), (f) total organic carbon (TOC), (g) dissolved organic nitrogen (DON), (h) total organic 

nitrogen (TON), (i) total dissolved nitrogen (TDN), (j) nitrate (NO3), (k) Cl, (l) bicarbonate (HCO3), (m) sulfate (SO₄), (n) Ca, 

(o) K, (p) Mg, (q) Na, (r) Si, and (s) Al. The inset histogram shows the number of samples by 8-year periods. 
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Figure 4: The number of samples by water year and seasons (color code) for the stream data between 1980 and 2018 for discharge, dissolved 

oxygen (DO), pH (field), temperature, dissolved organic carbon (DOC), total organic carbon (TOC), dissolved organic nitrogen (DON), 

total organic nitrogen (TON), (i) total dissolved nitrogen (TDN), (j) nitrate (NO3), (k) Cl, (l) bicarbonate (HCO3), (m) sulfate (SO₄), (n) 

Ca, K, Mg, Na, Si, and Al.  
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Figure 5. Distribution of values for climate and hydrological metrics for all CAMELS gauges (n = 671) versus gauges that have chloride 

(Cl) data (n = 404) or aluminum (Al) data (n = 263) when the data are subset for water years 1980 to 2018. P = precipitation. PET = potential 

evapotranspiration. Q = discharge. Boxplots represent the median and interquartile range with outlier values shown as points. See Addor et 

al. 2017 for more information on attribute description. 

 



27 

 

 



28 

 

 

Figure 6: Range of the flow duration curve (FDC %, symbol color) and length or record (symbol size) for the stream data between 1980 

and 2018 for (a) discharge, (b) dissolved oxygen (DO), (c) pH (field), (d) temperature, (e) dissolved organic carbon (DOC), (f) total organic 

carbon (TOC), (g) dissolved organic nitrogen (DON), (h) total organic nitrogen (TON), (i) total dissolved nitrogen (TDN), (j) nitrate (NO3), 

(k) Cl, (l) bicarbonate (HCO3), (m) sulfate (SO₄), (n) Ca, (o) K, (p) Mg, (q) Na, (r) Si, and (s) Al. The inset histogram shows the number of 

samples by 8-year periods. 
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Figure 7: Average atmospheric wet deposition in kg/ha (color code) using data from the NADP network from 1985-2018 for (a) protons 

(H+), (b) ammonium (NH4), (c) nitrate (NH4), (d) inorganic nitrogen (NH4 and NH4), (e) Cl, (f) sulfate (SO₄), (g) Ca, (h) K, (i) Mg, and (j) 

Na. The number of locations represented are referenced as n. 
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Figure 8: Long-term Sen slope (e.g. average trend) from Mann Kendall analysis of SO4 deposition (a) from 1985-1992, (b) 1992-2002, and 

(c) 2002-2010.  Symbol color shows dominant geology.   
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Figure 9: Molar ratios of HCO3 and Mg to Na as a function of the molar ratio of Mg/Na at low flows (flow duration curve 

>66%). Symbol color is the dominant geology and symbol size is the baseflow index. 
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