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Abstract. As a key component in the water and energy cycle, precipitation with high resolution and accuracy is of great 9 

significance for hydrological, meteorological, and ecological studies. However, current satellite-based precipitation products 10 

have a coarse spatial resolution (from 10 to 50 km) not meeting the needs of several applications (e.g., flash floods and 11 

landslides). The implementation of spatial downscaling methods can be a suitable approach to overcome this shortcoming. In 12 

this study, we developed a Soil Moisture-based Precipitation Downscaling (SMPD) method for spatially downscaling the 13 

Integrated Multi-satellitE Retrievals for GPM (IMERG) V06B daily precipitation product over a complex topographic and 14 

climatic area in southwestern Europe (Iberia Peninsula), in the period 2016-2018. By exploiting the soil water balance equation, 15 

high-resolution surface soil moisture (SSM) and Normalized Difference Vegetation Index (NDVI) products were used as 16 

auxiliary variables. The spatial resolution of the IMERG daily precipitation product was downscaled from 10 km to 1 km. An 17 

evaluation using 1027 rain gauge stations highlighted the good performance of the downscaled 1 km IMERG product compared 18 

to the original 10 km product, with a correlation coefficient of 0.61, root mean square error (RMSE) of 4.83 mm and a relative 19 

bias of 5%. Meanwhile, the 1 km downscaled results can also capture the typical temporal and spatial variation behaviors of 20 

precipitation in the study area during dry and wet seasons. Overall, the SMPD method greatly improves the spatial details of 21 

the original 10 km IMERG product with also a slight enhancement of accuracy. It shows good potential to be applied for the 22 

development of high-quality and high-resolution precipitation products in any region of interest. 23 
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1 Introduction 27 

Precipitation, as a key driving force of the global water cycle under climate change conditions, changes greatly in 28 

space and time and is among the key factors affecting the hydrology, water resources and ecosystem of a watershed 29 

(Salzmann, 2016; Spötl et al., 2021). Hence, accurate and reliable spatial-temporal precipitation estimates are critical for 30 
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the assessment and understanding of climate change, hydrology, climatology, and its impacts on the environment, 31 

ecosystem, and human society (Xia et al., 2015; Wehbe et al., 2020; Wei et al., 2020; Bezak et al., 2021; Ma et al., 2021; 32 

Yang and Huang, 2021).  33 

The most common ground-based method for precipitation measurement relies on rain gauge observations. Although 34 

rain gauges can provide accurate observations and capture the temporal variability in precipitation within a certain radius, 35 

these measurements are known to be prone to spatial representativeness issues due to the high spatiotemporal 36 

heterogeneity of precipitation (Wehbe et al., 2017; Tang et al., 2018). With the development of meteorological satellites, 37 

remote sensing has become the main tool for estimating regional to global precipitation because of its wide spatial 38 

coverage and continuous observation periods. These series of satellites include the Global Precipitation Climatology 39 

Project (GPCP) (Huffman et al., 1997), the Tropical Rainfall Measuring Mission (TRMM) Multisatellite Precipitation 40 

Analysis (TMPA) (Huffman et al., 2007), the NOAA Climate Prediction Center (CPC) morphing technique (CMORPH) 41 

(Joyce et al., 2004), Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks 42 

(PERSIANN) (Sorooshian et al., 2000), Global Satellite Mapping of Precipitation (GSMaP) (Kubota et al., 2007), and 43 

Integrated Multisatellite Retrievals for Global Precipitation Measurement (GPM) (Hou et al., 2014). Although each 44 

product has its strengths in the capture of precipitation spatial patterns, there is a common issue, induced by its coarse 45 

spatial resolution (e.g., 0.1°-0.5°), greatly blocking the application of these products in hydrological and meteorological 46 

research at the local scale (Lin and Wang, 2011; Prakash et al., 2016; Chen et al., 2018).  47 

To enhance the applications of current coarse-resolution precipitation products, a procedure that involves spatially 48 

downscaling these products to fine scales has become an important solution. In recent decades, many downscaling 49 

methods have been proposed with the use of different satellite precipitation products. There are two major categories of 50 

downscaling methods: statistical downscaling and dynamical downscaling (Maraun et al., 2010; Tang et al., 2016). 51 

Statistical downscaling methods are mainly conducted by building the explanatory ability of the precipitation spatial 52 

distribution with fine-scale predictors, including topographic, geographic, atmospheric and vegetation variables, with 53 

the use of traditional regression methods (Xu et al., 2015; Ma et al., 2019b; Mei et al., 2020), optimal interpolation 54 

techniques (Shen et al., 2014; Chao et al., 2018), multidata fusion (Rozante et al., 2020; Ma et al., 2021), spatial data 55 

mining algorithm (called cubist) (Ma et al., 2017b; Ma et al., 2017a), geographical ratio analysis (Duan and Bastiaanssen, 56 

2013; Ma et al., 2019a) and machine learning algorithms (He et al., 2016; Baez-Villanueva et al., 2020; Min et al., 2020). 57 

Due to their convenience and efficiency, these approaches are dominant in precipitation spatial downscaling research 58 

(Abdollahipour et al., 2021). Comparatively, dynamical downscaling refers to the use of regional climate models driven 59 

by global climate model output or reanalysis data to generate regional precipitation information (Rockel, 2015), which 60 

requires more information on internal mechanisms related to complex physical processes of precipitation, such as 61 
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atmospheric, oceanic and surface information (Tang et al., 2016). Hence, spatial downscaling is achieved by modelling 62 

the conditional distribution of precipitation at a fine scale to characterize the spatial structure of precipitation (Haylock 63 

et al., 2006; Munsi et al., 2021).  64 

Among the existing methods, due to the computational efficiency and the consideration of orography and vegetation 65 

in precipitation distribution, the statistical downscaling methods have been widely used in recent years. Most of them 66 

were conducted with the use of predictors, such as topographic and vegetation factors (Immerzeel et al., 2009; Jia et al., 67 

2011; Jing et al., 2016a; Zeng et al., 2021). However, these predictors do not have physical connections with precipitation, 68 

they act as important environmental variables influencing precipitation distribution. Consequently, the lack of the 69 

physical background of this type method may introduce high uncertainty to the downscaled results. Comparatively, 70 

surface soil moisture (SSM) presents an obvious and strong physical connection with precipitation via their coupling 71 

and feedback processes (Seneviratne et al., 2010). As indicated by Brocca et al. (2014). Precipitation is the main driver 72 

of SSM temporal variability. A sudden increase may occur in SSM after a rainfall pulse over a period of time, followed 73 

by a smooth recession limb driven by evapotranspiration and drainage. This relationship can be well reflected by an 74 

example of the time series of precipitation and SSM from Dec 26 to 28, 2017 at station BRAGANCA, Portugal (Figure 75 

1). A rapid increase in SSM occurs after these rainfall events. Then, the moisture condition gradually becomes drier 76 

when there is no further rainfall.  77 
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Figure 1. Time series of observed precipitation and satellite observed SSM at station BRAGANCA, Portugal. 79 

According to this feature, SSM shows a big advantage in estimating precipitation, and this connection was approved 80 

by the SM2RAIN method proposed by Brocca et al. (2013). Fan et al. (2021) also demonstrated the good performance 81 

of the SM2RAIN products over the Tibet Plateau (TP) where the terrain is complex and the surface cover is 82 

heterogeneous. Additionally, the Soil Moisture Analysis Rainfall Tool (SMART) proposed by Chen et al. (2012) also 83 

javascript:;
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improved the sub-monthly scale accuracy of a multidecadal global daily rainfall product with a lower root mean square 84 

error (-13%) and a higher probability of detection (+5%). Recent applications of this bottom-up approach further 85 

demonstrate the success of using SSM in precipitation estimation at coarse-resolution scales (Brocca et al., 2016; 86 

Ciabatta et al., 2017; Ciabatta et al., 2018; Brocca et al., 2019; Wehbe et al., 2020). Although there is a lagging effect of 87 

the changes in soil moisture to precipitation, the rainfall-runoff experiment conducted by Song et al. (2020) further 88 

confirmed this effect becomes small with the increase of the temporal aggregation interval and its impact is relatively 89 

small at daily time scale (Brocca et al., 2016). Thus, it should be a very promising solution to improve the accuracy of 90 

daily precipitation downscaling by introducing daily SSM in current downscaling schemes. However, the availability of 91 

high-resolution SSM data is very limited and most of the current SSM products have a spatial resolution of more than 92 

10 km (Peng et al., 2021), placing significant restrictions on these applications. Furthermore, suffering from an indirect 93 

physical connection between topographic and vegetation factors and precipitation at a coarse temporal scale. Thus, a 94 

large amount of downscaling research has been conducted at monthly or annual scales (Abdollahipour et al., 2021). In 95 

addition, although daily high-resolution precipitation data have been produced by different methods (Brocca et al., 2019; 96 

Hong et al., 2021), the use of high-resolution SSM data to improve the spatial resolution of satellite precipitation products 97 

for generating daily-scale high-resolution precipitation data based on physical mechanisms is less studied. 98 

In recent decades, there have been substantial progress in soil moisture downscaling studies (Merlin et al., 2008; 99 

Piles et al., 2014; Peng et al., 2016; Tagesson et al., 2018; Long et al., 2019; Sabaghy et al., 2020; Wen et al., 2020; Zhao 100 

et al., 2021), which makes the availability of high-resolution soil moisture data possible at a daily scale. Thus, the main 101 

objective of this study is to establish a soil moisture-based precipitation downscaling (SMPD) scheme as a novel way of 102 

obtaining fine-scale precipitation by fragmenting the coarse-pixel rainfall into fine-scale pixels. For this purpose, the 25-103 

km European Space Agency (ESA) Climate Change Initiative (CCI) SSM product is used to derive 1-km SSM data 104 

based on the seamless downscaling method proposed by Zhao et al. (2021). Based on the inversion of the water balance 105 

equation, a simplified model for estimating precipitation is constructed with the use of the downscaled 1-km seamless 106 

soil moisture data and the vegetation index derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) 107 

observation and then applied to daily GPM precipitation products to obtain the daily downscaled precipitation estimates.  108 

2 Study area and datasets 109 

2.1 Study area 110 

The central part of the Iberian Peninsula was selected as the study area (Figure 2). It is located in southwestern 111 

Europe between 37.66°–42.99°N and 8.30° W–1.63° E. The region has a distinctly seasonal mild climate, with hot and 112 

dry summers inland, cooler summers along the coast, and cold and wet winters. Precipitation presents a double peak 113 
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pattern, typical from the Mediterranean, with increased precipitation in Autumn and Spring. The central part of the study 114 

area has a temperate continental climate, while the southern part has a Mediterranean climate, with warm and humid 115 

winters and hot and dry summers. Generally, the south is dry and warm, while the north is relatively wet and cool. 116 

Enhanced by the complex topographic pattern and diverse land cover conditions, this region has a highly heterogeneous 117 

spatial environment, which makes this region a satisfactory candidate for precipitation downscaling. In addition, there 118 

are many meteorological stations with long-term precipitation measurements in this area, which is an important 119 

prerequisite for this study. 120 

 121 

Figure 2. Geolocation and land cover map of the study area. The black triangles denote the meteorological stations collected in this 122 

study. 123 

2.2 Datasets 124 

2.2.1 GPM IMERG satellite precipitation data  125 

As the successor of the successful Tropical Rainfall Measuring Mission (TRMM), the Global Precipitation 126 

Measurement (GPM) not only expands the measurement range and temporal and spatial resolution of the TRMM, but 127 

also estimates the instantaneous precipitation more accurately, especially light-intensity precipitation (i.e., <0.5 mm h-1) 128 

and falling snow (Hou et al., 2014; Huffman et al., 2015), GPM-IMERG (Integrated Multisatellite Retrievals for GPM) 129 

is the level 3 multisatellite precipitation algorithm of the GPM, which combines precipitation information measured from 130 

the microwave sensor and infrared sensors onboard GPM constellations and monthly gauge precipitation data, and 131 
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IMERG employs the 2014 version of the Goddard Profiling Algorithm (GPROF2014) to compute precipitation estimates 132 

from all passive microwave (PMW) sensors onboard GPM satellites, which is a significant improvement compared with 133 

TMPA (GPROF2010) (Huffman et al., 2015; Huffman et al., 2020). Hence, it has attracted much attention in the satellite 134 

remote sensing of precipitation.  135 

Currently, the GPM product provides near-real-time products (early and late run) and postural-rime products (final 136 

run) from sub-hourly to monthly resolution at a 0.1°×0.1° spatial scale. Owing to the infusion of multiple data, such as 137 

microwave, infrared, radar, and Global Precipitation Climatology Centre (GPCC) rain gauge data (Hou et al., 2014), the 138 

GPM-IMERG final run product provides more accurate estimates over the globe with a relatively long time series (June 139 

2000- present) with a minimum latency of 3.5 months. In this study, the GPM-IMERG final run daily precipitation 140 

product (downloaded from https://pmm.nasa.gov/data-access/downloads/gpm) was adopted as the downscaling object. 141 

A three-year period from 2016 to 2018 was selected to verify the performance of the downscaling method based on the 142 

availability of rain gauge data. 143 

2.2.2 ESA CCI surface soil moisture data 144 

The Soil Moisture CCI project is a part of ESA’s Program on the Global Monitoring of Essential Climate Variables 145 

(ECV), which was initiated in 2010 and has produced an updated SSM product annually since 1978 (Colliander et al., 146 

2017). The ESA CCI SSM series contains three separate SSM datasets, which are derived from active and passive 147 

microwave remote missions as well as a combination of both, and the combined ESA CCI SSM product (version 04.7) 148 

provides a spatial resolution of 0.25° and a temporal resolution of one day on a global scale (http://www.esa-149 

soilmoisture-cci.org/).  150 

The combined ESA CCI SSM product provides the amount of water in the surface soil (approximately the top 5 151 

cm), which integrates observations derived from 11 microwave sensors including active sensors such as Advanced 152 

Scatterometer-A/B (ASCAT-A/B) and European Remote-sensing Satellite-1/2 (ERS-1/2), and passive sensors such as 153 

Special Sensor Microwave Imager (SSM/I), the Scanning Multichannel Microwave Radiometer (SMMR), the TRMM 154 

Microwave Imager (TMI), AMSR-E, WindSAT, AMSR2 and SMOS (Gruber et al., 2019). Previous evaluation studies 155 

have demonstrated that ESA CCI SM generally agrees well with the spatial and temporal patterns estimated by land 156 

surface models and in situ observations (Mcnally et al., 2016; Dorigo et al., 2017). Therefore, this combined product 157 

was used in this study for the study period of January 1, 2016, to December 31, 2018, to obtain fine-resolution soil 158 

moisture to assist in precipitation downscaling. 159 

http://www.esa-soilmoisture-cci.org/
http://www.esa-soilmoisture-cci.org/
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2.2.3 Normalized difference vegetation index (NDVI) 160 

NDVI is an important indicator of vegetation activity (Neinavaz et al., 2020; Zhang et al., 2020a; Pan et al., 2021), 161 

especially for surface evapotranspiration (Joiner et al., 2018; Maselli et al., 2020). Therefore, it also presents a positive 162 

correlation with precipitation (Quiroz et al., 2011; Birtwistle et al., 2016). The intuitive correlation between rainfall and 163 

plant biomass represented by NDVI would enhance the downscaling study with high-resolution NDVI data. In this study, 164 

the NDVI data were obtained from the MODIS/Terra 16-day vegetation index product 165 

(https://lpdaac.usgs.gov/products/mod13a2v006/). It is a 16-day composite product obtained by choosing the best 166 

available pixel value from all the acquisitions over 16 days with the spatial resolution of 1 km. 167 

2.2.4 Rain gauge data 168 

Daily precipitation data collected from 1027 rain gauge stations from 2016 to 2018 with different land cover 169 

properties were used as the independent validation of the downscaled results in this study. These data were provided by 170 

the Spanish State Meteorological Agency (AEMET). The distribution of the selected stations is mapped in Figure 2. 171 

3 Methodology 172 

3.1 Soil moisture-based precipitation estimation model 173 

The soil water balance equation for a layer depth Z can be described by the following expression: 174 

( )
( ) ( ) ( ) ( )

ds t
Z p t g t e t r t

dt
= − − −

                (1) 175 

where s(t) [-] is the relative saturation of the soil or relative SSM, t is the time and p(t), r(t), e(t) and g(t) are the 176 

precipitation, runoff, evapotranspiration, and drainage rate, respectively. By rearranging Eq. (1), precipitation can be 177 

depicted as a function of SSM, runoff, evapotranspiration, and drainage rate. Based on this rule, Brocca et al. (2013) 178 

proposed a bottom-up approach (SM2RAIN) by doing “hydrology backward” to infer precipitation with the use of 179 

variations in SSM sensed by microwave satellite sensors. To perform this estimation, the model is simplified in different 180 

ways by neglecting different components in Eq. (1) (Brocca et al., 2014; Massari et al., 2014) and the comparison study 181 

indicated that the average contribution of surface runoff and evapotranspiration components amounts to less than 4% of 182 

the total rainfall, while the soil moisture variation (63%) and subsurface drainage (30%) terms provide a much greater 183 

contribution (Brocca et al., 2015). Although the contribution of evapotranspiration is relatively small, the dry 184 

Mediterranean climate in most of this region emphasizes its importance. Therefore, the precipitation estimation model 185 

was reorganized by only neglecting the runoff component: 186 

( )
( ) ( ) ( )

ds t
p t Z g t e t

dt
= + +

                 (2) 187 
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In Eq. (2), the drainage rate is approximated by considering the relation in Famiglietti and Wood (1994) to include the 188 

contribution of both deep percolation and subsurface runoff (interflow plus baseflow): 189 

( ) ( )bg t as t=                     (3) 190 

where a and b are two parameters expressing the nonlinearity between drainage rate and soil saturation. Regarding the 191 

evapotranspiration component, there are many methods have been developed to estimate ET in natural ecosystems (Mu 192 

et al., 2009; Sheffield et al., 2009; Carpintero et al., 2020). For instance, the daily evapotranspiration can be derived as 193 

a function of the vegetation index (VI) and air temperature (Ta) (Nagler et al., 2005a; Nagler et al., 2005b): 194 

( ) ( )( )( )/
( ) 1 1 aT d pbVIe t a e m e f

− −−= − + +                (4) 195 

where the coefficients (a, b, m, d, p, and f) were determined by conducting regression between ET and the independent 196 

variables. Although there is a variable representing air temperature in Eq. (4) to specify the impact of air temperature 197 

difference within a wide range, this variable can be assumed to be invariant when considering the pixels to a small extent. 198 

Therefore, the term with the second brackets of Eq. 4 is simplified to the coefficient c, and Eq. (4) is further rewritten as 199 

follows by introducing NDVI to present the VI variable: 200 

( )( ) 1 kNDVIe t c e−= −
                   (5) 201 

Based on the above approximation, the soil moisture-based precipitation estimation model was finally expressed 202 

by the following equation: 203 

( )
( )

( ) ( ) 1b kNDVIds t
p t Z as t c e

dt

−= + + −
               (6) 204 

where ds(t)/dt can be calculated as the difference between the SSM estimates on nearby time steps. According to the 205 

simplification in Eq. (6), this proposed model is appropriate for estimation to a local extent.  206 

3.2 Soil moisture-based precipitation downscaling (SMPD) method 207 

To perform precipitation downscaling, an important prerequisite is an assumption of spatial invariancy in the 208 

precipitation estimation model described in Eq. (6) at coarse and fine scales, which is also the basis of many related 209 

downscaling studies aiming at other surface parameters, such as soil moisture and temperature (Hutengs and Vohland, 210 

2016; Mishra et al., 2018; Zhao et al., 2018; Ebrahimy and Azadbakht, 2019). Therefore, the estimation model 211 

established at the 10-km level is thought to be applicable at the 1-km level. The estimated parameters Z, a, b, c and k at 212 

10 km resolution scale resolution are not scale-independent, which can be used for the corresponding sub-pixel units (1 213 

km). Moreover, because the downscaled model was constructed by using self-adaptive windows in different local regions 214 

on the daily scale, these parameters vary in time and space. Thus, they are also temporal independent. The fitted 215 

estimation model at 10 km scale was applied to the SSM and NDVI data at 1 km scale to obtain the estimated high-216 
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resolution precipitation. Then, to preserve the mean rain rate over each coarse-scale pixel, the bias was corrected by 217 

redistributing the residual to each fine-scale pixel based on the kriging interpolation method. Finally, the downscaled 218 

daily GPM precipitation products were obtained with the integration of the estimated precipitation and the interpolated 219 

residual. According to the above principle, the downscaling method consists of the following parts and the main 220 

procedures in the downscaling processes are shown in Figure 3. 221 

 222 

Figure 3. Flowchart of the process for downscaling the GPM data from 2016 to 2018. 223 

3.2.1 Generation of daily SSM at a fine resolution 224 

As shown in Eq. (6), SSM is an important variable in the estimation model. The ESA CCI SSM product can only 225 

provide coarse-resolution SSM data with unexpected gaps. To obtain daily SSM at a 1-km resolution, the seamless SSM 226 

downscaling method proposed by Zhao et al. (2021) is a good choice to achieve this goal. In comparison to the 227 

REMEDHUS network, the downscaled SSM performs better in terms of spatiotemporal coverage and evaluation metrics, 228 

which indicated that this method could be successfully used to produce high-resolution SSM data with no spatiotemporal 229 

gaps. This downscaling method mainly includes three steps: 1) filling gaps in the 25-km ESA CCI SSM maps with 230 
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neighbourhood information based on a local linear regression method, 2) estimating the 1-km regression SSM and 231 

coarse-resolution residual with a geographically weighted regression (GWR) method, and 3) downscaling the coarse-232 

resolution residual to 1-km spatial resolution with the area-to-point kriging (ATPK) method and obtaining the fine-233 

resolution SSM. For details about the downscaling method, please refer to Zhao et al. (2021). 234 

3.2.2 Calibration of the precipitation estimation model with an adaptive window method 235 

Before model calibration, the 1-km downscaled SSM data and the NDVI data were first aggregated into a 10-km 236 

scale to spatially match the spatial resolution of the GPM-IMERG product. Then, these data were applied to calibrate 237 

the coefficients of the precipitation estimation model. As introduced in section 3.1, the application of this model requires 238 

a prerequisite to work at a local extent because of the simplification of the evapotranspiration estimation. Therefore, a 239 

local window with a radius from 3 to 7 cells was adopted in the fitting process. Initialized from the size of 3 cells, the 240 

optimal window size was adaptively selected when the correlation coefficient (CC) of the fitting result reached the 241 

maximum value. This adaptive method was applied to each coarse-resolution pixel with a sliding window, and the model 242 

coefficients of this pixel were derived. During the model calibration, coarse pixels with zero precipitation were excluded.  243 

( ) ( )10km

10km 10km 10km 10km( ) ( ) ( 1) ( ) 1
kNDVIm bp t Z SSM t SSM t aSSM t c e

−
= − − + + −         (7) 244 

3.2.3 Residual correction and fine-scale precipitation estimation 245 

Based on the calibrated estimation model coefficients in Eq. 7, the precipitation estimates determined with this 246 

model can be calculated for each high-resolution pixel within the corresponding coarse pixel: 247 

( ) ( )1km

1km

m

1km 1km 1km( ) ( ) ( 1) ( ) 1
kNDVIbp t Z SSM t SSM t aSSM t c e

−
= − − + + −

         (8) 248 

However, there is a residual between the original precipitation value of each coarse-resolution cell pixel and the 249 

mean value of the estimated precipitation of all fine-resolution pixels within this cell. For each coarse-resolution cell, 250 

the residual is expressed as follows: 251 

10km 10km 10km

o mR p p= −                  (9) 252 

The kriging interpolation method was used here to interpolate residuals 10kmR at coarse-resolution cells to obtain 253 

kriging residuals fine-resolution scale (Wackernagel, 2003). The high-resolution residual was expressed as a weighted 254 

integration of the residuals of the neighbouring coarse-resolution cells. 255 

To meet the requirement of value preservation in the downscaling process, the kriging residuals should be corrected 256 

by redistributing it to each fine-resolution pixel i. That is, the ratio of the thi high-resolution residual pixel in the thj257 

coarse-resolution cell to the sum of the precipitation in the thj coarse pixel is used as the weight
ij , and the residual 10kmR258 
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is multiplied by the
ij , the kriging residuals were redistributed to each fine resolution pixel i to obtain the residual after 259 

value preservation can be expressed as follows: 260 

1km 10km,ij ij ijR R=， , s. t.  1km, 

1km, 

1

m

ij

ij n
m

ij

i

p

p



=

=


                   (10) 261 

where 
1km ijR ，

represents the estimated precipitation of the thi high-resolution residual pixel in the coarse-resolution cell 262 

j, 
10km,ijR represents the thj coarse-resolution cell residual in the self-adaptive window, n is the number of high-resolution 263 

residual pixels in the coarse-resolution cell, and
ij is the weight coefficient of the thi high-resolution residual pixel in the264 

thj coarse-resolution cell. 1km, 

m

ijp  is the kriging interpolated residual 1km, 

m

ijp at the fine-scale pixel i in the thj coarse-265 

resolution cell. 266 

Finally, the high-resolution precipitation was obtained by integrating the fine-resolution estimates via Eq. (8) and 267 

the residual term in Eq. (10): 268 

1km

m

1km 1km=p p R+
                    (11) 269 

3.3 Validation 270 

To better assess the performance of the proposed downscaling method, the downscaled GPM results were validated 271 

by observations from the collected stations in the study area at both daily and monthly scales. The evaluation metrics 272 

include the correlation coefficient (CC), root mean square error (RMSE), and the relative bias (BIAS). They are defined 273 

as follows: 274 

( )( )

( ) ( )

1

2 2

1

=

n

i i

i

n

i i

i

S S P P

CC

S S P P

=

=

− −

− −





                 (12) 275 

( )
2

1=

n

i i

i

S P

RMSE
n

=

−
                  (13) 276 

1

1

( )

=

n

i i

i

n

i

i

S P

BIAS

P

=

=

−


                   (14) 277 

where Pi and Si are the precipitation measured by the rain gauge and satellite precipitation, respectively. i is the index of the 278 

precipitation series. �̅� is the mean value of all rain gauge observations, and 𝑆̅ represents the mean value of the satellite 279 

precipitation, and n represents the sample number of precipitation pairs. 280 
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Additionally, three metrics reflecting the capability of capturing precipitation events were introduced in the 281 

assessment: the probability of detection (POD), the false alarm ratio (FAR) and critical success index (CSI). The POD 282 

refers to the ratio of rain occurrences correctly detected to the total number of observed events; the optimum score is 1. 283 

The FAR refers to the proportion of the precipitation events that the satellite falsely detects and the rain gauges do not 284 

recognize it, the optimum score is 0. The CSI represents the fraction of precipitation events correctly detected by satellites 285 

to the total number of observed or detected rainfall events, the optimum score is 1. The definition of a rainfall 286 

accumulation “event” is one-day rainfall accumulation in excess of a given threshold of 0.1 mm. These three terms are 287 

depicted as below: 288 

H
POD

H M
=

+
                    (15) 289 

F
FAR

H F
=

+
                     (16) 290 

H
CSI

H F M
=

+ +
                     (17) 291 

where H indicates the precipitation events concurrently detected by rain gauges and satellites, M indicates the 292 

precipitation events detected by rain gauges but not detected by satellites, and F indicates the precipitation events 293 

detected by satellites but not detected by rain gauges. 294 

4 Results  295 

4.1 Accuracy of the soil moisture-based precipitation estimation model 296 

Before the downscaling process, the performance of the soil moisture-based precipitation estimation model was 297 

evaluated first based on the calibrated estimation model in Eq. 7. Figure 4 shows the maps of the mean value of the daily 298 

CCs and RMSEs during the period of 2016–2018 and their standard deviation (STD) by comparing the precipitation 299 

estimated with the proposed estimation model and the GPM precipitation product at 10 km scale. Most of the CC values 300 

are above 0.70 with an average value of 0.71, and most of the RMSE values are within the range from 0.50 to 1.00 mm, 301 

with an average value of 1.00 mm. These results indicate the good consistency and small error between the estimated 302 

precipitation and the original precipitation product. Furthermore, in view of the STD map, it represents the variability in 303 

CC and RMSE during the period. The CC-STD values are within the range from 0.18 to 0.28 with an average value of 304 

0.23, most of the RMSE-STD values are concentrated in the range of 0.50 to 1.50 mm, and only a few are in the range 305 

of more than 3 mm, with an overall mean of 1.39 mm. Combined with the frequency distributions of CC and CC-STD, 306 

RMSE, and RMSE-STD, the proposed estimation model can generally capture the precipitation with soil moisture 307 

variations and it has relatively stable performance. According to the fitting performance assessment with the original 308 
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GPM product, the soil moisture-based precipitation estimation model has been approved to be able to capture the 309 

variation of precipitation with acceptable accuracy. 310 

 311 

Figure 4. (a) Maps of the mean value of the correlation coefficient (CC), (b) mean standard deviation of the CC (CC-STD), (c) mean 312 

root mean square error (RMSE), and (d) mean standard deviation of the RMSE (RMSE-STD) between the precipitation estimated 313 

with the soil moisture-based estimation model and the original GPM product during the period of 2016-2018. The mean value 314 

represents the average value of the corresponding index in the whole study area. 315 

4.2 Overall performance of the downscaled precipitation 316 

4.2.1 Spatial distribution 317 

To demonstrate the advantages of the downscaling results, two separate days (Jul. 7 and Nov. 25, 2017) in the dry 318 

season and wet season were selected to compare the original coarse-resolution precipitation data and the downscaled 319 

high-resolution precipitation data (Figure 5). From the visual inspection, the spatial distributions of the downscaled 320 

precipitation are highly consistent with those of the original ones in both seasons, especially for the distribution of the 321 

precipitation centers (>50 mm/day). The downscaled results maintained the original precipitation pattern in the GPM 322 

product, which can be reflected well by the very similar histograms of the original and downscaled precipitation on these 323 

two days, as shown in Figures 4c and f. In addition to their consistency, the downscaled results present higher spatial 324 

heterogeneity than the coarse-resolution product, which provides much more detailed information on the precipitation 325 

distribution within each coarse-resolution cell. More importantly, the downscaled results prevent the blockiness at the 326 

edges of the coarse-scale pixels.  327 
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 328 

Figure 5. Original daily GPM precipitation products, downscaled results, and their frequency histograms on July 7, 2017(a-c) and 329 

November 25, 2017(d-f). 330 

4.2.2 Temporal variability 331 

In addition to the spatial distribution analysis, the temporal variation in the downscaled precipitation was further 332 

evaluated by introducing the downscaled results from Dec. 8 to Dec. 11, 2017. Figure 6 shows the daily maps of the 333 

original precipitation and downscaled precipitation. For the spatial distribution, both the original GPM precipitation 334 

product and the downscaled result have almost the same patterns on different days. Not only heavy rainfalls but also 335 

light rainfalls and no rains can also be captured by the proposed downscaling method in most circumstances. Moreover, 336 

the temporal variability in the daily precipitation was also preserved after the downscaling, and some outliers in the 337 

coarse-resolution GPM product were effectively filled with valid values, as shown by the downscaling results on Dec. 338 

11 in Figure 6. 339 
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 340 

Figure 6. Original daily GPM precipitation product and corresponding downscaled results from Dec.8th to Dec.11th, 2017. 341 

4.3 Validation with rain gauge measurements  342 

4.3.1 Validation at the daily scale 343 

To quantitatively evaluate the performances of the downscaling results, the daily original-scale GPM precipitation 344 

data and the downscaled results are compared separately with the precipitation measurements from all 1027 345 

meteorological stations in the period of 2016 to 2018. Three metrics (POD, FAR, and CSI) for rainfall events, and CC, 346 

RMSE and BIAS for precipitation volumes, were used to make a comparison between the performances of both datasets. 347 

As shown by the density plots in Figure 7a, there is relatively high uncertainty in the original GPM precipitation product 348 

compared with the in-situ observation with a CC of 0.60, an RMSE of 4.99 mm and a BIAS of 9 %, which shows the 349 

GPM product generally overestimated observed precipitation at daily scale. These differences may be attributed to the 350 

differences in the spatial representativeness of both observations (one for the average value over a grid cell and one for 351 

a single point). Because of the value preservation during the downscaling process, the downscaled result also has a 352 

validation effect similar to that of the original GPM precipitation product (Figure 7b). However, compared with the 353 

original GPM product, the downscaled result shows an overall improvement in terms of CC, RMSE, and BIAS. There 354 

is a slight increase in CC, with its value increasing from 0.60 to 0.61. In contrast, both the RMSE and BIAS have a 355 

moderate reduction, with decreases of 0.16 mm and 4%, respectively. For rainfall event assessment, the downscaled 356 

result remarkably enhanced the ability to identify rainfall events at every station when compared with the original GPM 357 

product. Both the POD, FAR and CSI were moderately enhanced relative to those of the original GPM data, with an 358 

increasing POD from 0.84 to 0.88, a decrease in the FAR from 0.52 to 0.47 and an increasing CSI from 0.44 to 0.48. 359 

The comparison showed that the downscaled results could better detect precipitation occurrence than the original GPM 360 

product. The increase in spatial heterogeneity in the downscaled result assists rainfall event detection.  361 
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 362 

Figure 7. Scatterplots of the original GPM precipitation product (a) and the downscaled results (b) plotted against daily precipitation 363 

recorded by available meteorological stations over the study period. The red dotted line represents the 1:1 line and the blue solid 364 

line represents the fitting line. 365 

In addition to the validation during the period of 2016-2018, further investigation was performed for the downscaled 366 

results at individual months. Table 1 lists the evaluation indicators of the downscaled and original precipitation against 367 

rain gauge observations for 1027 in-situ measurements from 2016 to 2018. In general, the downscaled results show 368 

similar accuracy performance among different months from the detection accuracy of precipitation events reflected by 369 

FAR and CSI. It is worth noting that the POD decreased compared to the original precipitation product, which may be 370 

because compared with the coarse pixel precipitation at the daily scale, the downscaled products of the sub-pixels at the 371 

same in-situ measurements location do not necessarily have precipitation, resulting in fewer precipitation events detected 372 

by the downscaled products. From the RMSE values, seasonal differences can be detected. The dry season months from 373 

June to September have relatively smaller RMSE values than other months. It is not because of the better performance 374 

of the proposed method in these months but the inherent small precipitation of these months enables the low value of 375 

RMSE. This feature can be also detected from the evaluation of the original data. Regarding the downscaled results 376 

performance, the downscaled data have better accuracy in detecting precipitation events according to the improvement 377 

in FAR and CSI in each month. Comparatively, the correlation feature of the downscaled results shows a small 378 

improvement than the original data, represented by the CC values every month. Meanwhile, there are all decreasing 379 

trends in terms of RMSE and the improvements in the wet seasons from October to May are relatively bigger than in the 380 

dry season months. For the BIAS values, the improvements are also very clear with the extent from 3% to 7%. The 381 

monthly comparison further indicated the improvement from the downscaled results which not only maintain the 382 

temporal correlation characteristics of the original data with the gauge-based observations but also improve the absolute 383 

accuracy according to the refinement of CC, POD, CSI, FAR, RMSE, and BIAS via introducing more detailed 384 

information in the downscaling scheme.  385 
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Table 1. Validation of the downscaled precipitation data, and original GPM precipitation data with the daily precipitation measured by the 386 

selected stations at each month from 2016 to 2018. 387 

Month 
Original Downscaled 

CC POD FAR CSI RMSE (mm) BIAS CC POD FAR CSI RMSE (mm) BIAS 

January 0.57 0.84 0.49 0.47 6.36 14% 0.58 0.76 0.43 0.48 6.14 10% 

February 0.56 0.86 0.49 0.47 6.83 7% 0.57 0.78 0.42 0.50 6.51 2% 

March 0.66 0.89 0.45 0.52 6.27 -3% 0.66 0.83 0.40 0.54 6.10 -6% 

April 0.60 0.89 0.45 0.51 5.67 9% 0.60 0.85 0.41 0.53 5.44 5% 

May 0.60 0.90 0.46 0.50 4.78 5% 0.61 0.86 0.42 0.53 4.59 1% 

June 0.55 0.90 0.48 0.49 3.31 15% 0.56 0.86 0.43 0.52 3.18 11% 

July 0.63 0.90 0.49 0.48 2.72 24% 0.63 0.86 0.44 0.52 2.64 19% 

August 0.61 0.90 0.50 0.48 2.05 14% 0.60 0.86 0.44 0.51 2.04 9% 

September 0.50 0.90 0.51 0.47 2.74 34% 0.50 0.86 0.45 0.50 2.69 27% 

October 0.57 0.89 0.51 0.46 4.34 12% 0.58 0.86 0.45 0.50 4.22 8% 

November 0.59 0.89 0.50 0.47 6.18 10% 0.60 0.85 0.45 0.50 5.99 6% 

December 0.59 0.88 0.51 0.46 5.66 14% 0.58 0.84 0.45 0.50 5.57 11% 

4.3.2 Spatial distribution of the daily validation at all in-situ measurements 388 

In addition to the general evaluation with the measurements from all stations, the downscaled results are separately 389 

validated by the observations from each station, and the results are illustrated in Figure 8. In general, the downscaled 390 

precipitation estimates produce less error than the original GPM precipitation products with respect to all overall error 391 

statistics from 2016 to 2018, with an increase of CC values from 0.62 to 0.63, a decrease of RMSE values from 4.80 mm 392 

to 4.63 mm, a decrease of BIAS values from 17% to 13%, a decrease of FAR values from 0.50 to 0.45, an increase of 393 

POD values from 0.83 to 0.87 and an increase of CSI values from 0.47 to 0.50, respectively, which show moderate 394 

improvement compared to that of the original GPM products. Moreover, from the frequency histogram of validation 395 

indicators at 1027 in-situ measurements, the downscaled results present a better correlation with rain gauge observations 396 

with most of the CC values being above 0.71 in the central and north-western regions. Regarding RMSE values of 397 

downscaled results in Figure 8f, the validation at 728 in-situ measurements derives a low RMSE value (lower than 5.01 398 

mm) and these stations are mainly located in the central and south-eastern regions. In comparison, the validation with 399 

high RMSE majorly occurred in the north-western regions due to the originally bigger annual mean precipitation. For 400 

BIAS, there is a relatively wide range from -72% to 99% in the whole region, systematic overestimation is observed at 401 

685 stations, and underestimation is also observed at 342 stations. After downscaling, the overestimation was lightened. 402 

About the rainfall event assessment, most of the CSI values are higher than 0.48 at these stations and the FAR values 403 

are generally lower than 0.46, the POD values are generally higher than 0.81, as shown in Figure 8 j-r. It can also be 404 

seen that the detection accuracy of precipitation events in the humid northern region is better than that in the southern 405 
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region with less precipitation. Those results indicate that the fitting relationship between observed precipitation and 406 

downscaled GPM products is good in the northwest region, while the errors in precipitation volumes are large in north-407 

western regions due to rich precipitation, which is consistent with the performance of the original GPM precipitation 408 

product, while the accuracy was slightly better than that of the original precipitation product in the central and 409 

southeastern regions. It proves that the improvement in rainfall events introduced by the downscaling method is not 410 

limited to specific locations and covers the whole area, the downscaled results are more accurate in describing spatial 411 

precipitation details. 412 
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 413 

Figure 8. CC (a-c), RMSE (d-f), BIAS (g-i), FAR (j-l), CSI (m-o) and corresponding frequency distributions for daily precipitation 414 

of original and downscaled GPM precipitation estimates at 1027 in-situ measurements during 2016–2018. The background value 415 

represents the original GPM annual average precipitation value from 2016 to 2018. 416 

Generally, the improvement from the overall performance for the downscaled results in Figure 8 is attributed to the 417 

number of improvements in the validation site indicators that occur between the original GPM product, the downscaled 418 
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results, and the observation stations at the daily scale. The downscaled results outperformed the original product in the 419 

detection accuracy of rainfall events and precipitation volumes, and the numbers of improvements in CSI and FAR are 420 

1008 and 1026, respectively. Similarly, the number of improvements of CC, RMSE, and BIAS are 765, 886, and 884, 421 

respectively. The downscaled results are more accurate than the original product when they are validated by field 422 

measurements at most stations. In summary, the improvement in the precipitation downscaled by the SMPD method 423 

occurs at most rain gauge stations. The evaluation demonstrates the ability of this method to increase spatial 424 

heterogeneity to enhance the correlation with field measurements while also retaining the original GPM spatial 425 

distribution pattern. All the above results clearly prove the effectiveness of the downscaling method, which enhances 426 

daily GPM precipitation in both spatial information and accuracy. 427 

4.3.3 Evaluation of precipitation intensities 428 

To assess the downscaled GPM products' performance at different precipitation intensity intervals. The daily 429 

precipitation intensity is classified into five categories based on the rainfall thresholds (0, 10, 20, and 40 mm) Zambrano-430 

Bigiarini et al. (2017). The performance metrics for the five daily precipitation intensity classes from 2016 to 2018 for 431 

1027 in-situ measurements are listed in Table 2. In summary, original and downscaled GPM products performed the best 432 

in terms of all performance metrics for the no-rain events, while performing the worst for the violent rain events (> 40 433 

mm d−1). All precipitation products indicated that FAR values continuously performed the worst for the violent rain 434 

intensities, which showed that the products are still unable to accurately capture high precipitation values. Due to the 435 

reduced FAR values, the CSI value performed the best for no-rain events, followed by the light rain ([0, 10) mm d−1), 436 

moderate rain ([10, 20) mm d−1), heavy rain ([20, 40) mm d−1) and violent rain events (> 40 mm d−1), respectively. 437 

Additionally, the BIAS values showed that all precipitation products overestimated the number of light rain and 438 

underestimated moderate rain, heavy rain, and violent rain events. Most importantly, the performance of the downscaled 439 

precipitation product was slightly better than the original precipitation product for different rainfall intensity events in 440 

terms of CC, RMSE, POD, FAR and CSI values, indicating the reliability and accuracy of the downscaled products in 441 

capturing different rainfall intensity events than the original precipitation products. 442 

Table 2 CC, RMSE, BIAS, POD, FAR and CSI values for the different precipitation intensities for original and 443 

downscaled GPM products from 2016 to 2018 for 1027 rain gauge stations. 444 

Intensity 

(mm/d) 

Original Downscaled 

CC 

RMSE 

(mm) 

BIAS 

(%) 

POD FAR CSI CC 

RMSE 

(mm) 

BIAS 

(%) 

POD FAR CSI 

0 - 1.83 - 0.93 0.34 0.63 - 1.73 - 0.94 0.26 0.70 
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0-10 0.30 6.39 27.00 0.69 0.65 0.31 0.30 5.98 23.00 0.73 0.60 0.34 

10-20 0.15 11.85 -20.00 0.26 0.75 0.15 0.15 11.50 -22.00 0.25 0.74 0.15 

20-40 0.15 18.41 -33.00 0.25 0.78 0.13 0.14 18.31 -36.00 0.26 0.77 0.14 

>40 0.28 39.53 -47.00 0.23 0.84 0.11 0.28 39.33 -50.00 0.25 0.82 0.12 

4.3.4 Validation at the monthly scale 445 

In addition to the validation at the daily scale, the downscaling results were further evaluated at the monthly scale 446 

by integrating the daily results into the monthly amount. Figure 8 shows the multiannual average maps of the monthly 447 

precipitation from 2016 to 2018, including the original GPM product and the downscaled results. Similar to the daily 448 

comparison, the monthly distributions of both datasets have quite similar patterns over different months. The northern 449 

part of the study area has more precipitation than the southern part. The downscaled results maintain the precipitation 450 

centers in each month and depict the distributions around the centers well. The downscaled results can provide more 451 

detailed information regarding spatial distribution.  452 

 453 

Figure 9. Spatial distribution of the multiannual mean value of monthly precipitation for the original GPM product (first line) and 454 

the downscaled results (second line) from 2016 to 2018.  455 

By collecting the monthly precipitation of 1027 stations from 2016 to 2018, the accuracy of the monthly 456 

precipitation from the original and downscaled data was further quantitatively assessed. As shown in Figure 10a, after 457 

temporal integration, the uncertainty in the daily observation was greatly reduced in the monthly precipitation of the 458 

original GPM product. There is a significant increase in CC from 0.60 in Figure 6a to 0.83 in Figure 9a. However, 459 

systematic overestimation still occurs. After spatial downscaling, although there is no big change in terms of CC, both 460 

the RMSE and BIAS are clearly improved based on a comparison of the density plots in Figures 9a and b. For the analysis 461 

of the improvement ratio, only the performances of CC, RMSE, and BIAS are analyzed because the POD, FAR and CSI 462 

mainly reflect the rainfall events on the daily scale. Among the 1027 stations, the numbers of stations with improvements 463 
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during the validation in terms of CC, RMSE, and BIAS are 734, 587, and 912, respectively. Combined with the overall 464 

validation and individual validation, the downscaled results at the monthly scale outperformed the original GPM product. 465 

The evaluation shows that the downscaling method also presents good accuracy in the downscaling results and high 466 

robustness at the monthly scale.  467 

 468 

Figure 10. Scatterplots of the original GPM precipitation product (a) and the downscaled precipitation data (b) plotted against the 469 

monthly precipitation measured by the meteorological stations during the period from 2016 to 2018.  470 

5 Discussion 471 

In this study, a spatial downscaling method for coarse-resolution precipitation products was proposed to produce 472 

high-spatial resolution precipitation data at a 1 km scale with the use of 1 km SSM data downscaled from microwave 473 

remote sensing estimations. To establish the connection between SSM and precipitation, a simplified precipitation 474 

estimation model based on the surface water balance equation was developed with inspiration from the SM2RAIN model 475 

proposed by Brocca et al. (2014). By calibrating the model coefficients with a self-adaptive window at the coarse-476 

resolution scale, the precipitation model was applied to high-resolution variables to obtain the high-resolution estimates. 477 

Compared with previous downscaling methods that mainly establish empirical relationships with surface variables, such 478 

as NDVI and topographic factors, this method introduces the physical relationship between SSM and precipitation via 479 

the water balance equation and has a solid physical basis. Therefore, the validation analysis conducted at both daily and 480 

monthly scales indicated that the downscaled precipitation data outperformed the original precipitation product in most 481 

circumstances and presented high robustness over three years with different rainfall strengthens. 482 

5.1 Advantages of the downscaling method 483 

In general, the SMPD method adopted the bottom-up approach in precipitation estimation, in which the variations 484 

in SSM sensed by microwave satellite sensors have a strong connection with rainfall amounts according to the principle 485 
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of water balance (Brocca et al., 2014; Brocca et al., 2016; Mao et al., 2018). After a sudden increase in soil moisture 486 

induced by rainfall events, the moisture condition gradually becomes drier when there is no further rainfall. Therefore, 487 

this method has a clear physical mechanism and is the only downscaling method using SSM as the key driving factor. 488 

Comparatively, the traditional statistical downscaling methods were established based on the statistical relationship 489 

between environmental factors and precipitation. Take the spatial interpolation method as an example, although the 490 

application of this method is convenient, the accuracy of the interpolated precipitation data is limited by the rainfall 491 

gauge density, especially in the mountainous watershed with complex topography (Zhang et al., 2020b; Guo et al., 2021). 492 

The high dependency on in-situ measurements constrains its applications in the area with few observations. In contrast, 493 

the SMPD method breaks the limitation caused by the rainfall gauge density and has a broader application prospect. 494 

 To further demonstrate the advantage of the SMPD method, it is beneficial to compare the validation accuracy of 495 

this method with the validation accuracies of existing downscaled approaches, as shown in Table 3. In current existing 496 

downscaling studies, the involvement of daily SSM ensures downscaling at a daily scale is rarely considered. However, 497 

the relationship between SSM and precipitation ensures the daily downscaling in the proposed SMPD method. 498 

Comparatively, although Yan et al. (2021) conducted daily precipitation downscaling with the use of the random forest 499 

(RF) method, the RMSE value was considerably lower than that of the SMPD method. Moreover, this machine-learning 500 

method is highly dependent on the available training dataset. Comparatively, the daily or sub-daily downscaling studies 501 

conducted by Long et al. (2016) and Chao et al. (2018) have relatively better performances in terms of RMSE and CC, 502 

respectively. However, the incorporation of gauge precipitation data in the downscaling process partly enhances the 503 

estimation accuracy. These methods highly rely on in situ measurements without the independence of rain gauge 504 

measurements. In a recent hour-scale downscaling study conducted by Ma et al. (2020a), a geographically moving 505 

window weight disaggregation analysis (GMWWDA) method was developed by introducing cloud properties as 506 

covariates to downscale GPM precipitation products. Although it provided estimates at a very high temporal frequency, 507 

the limited rainfall-related environmental variables at the 0.01°/hourly scale constrained its application. 508 

For the intercomparison of the monthly accuracy, the daily downscaled results of the proposed method 509 

outperformed most of the previous monthly downscaling studies using either RF or GWR algorithms (Jia et al., 2011; 510 

Xu et al., 2015; Jing et al., 2016b; Chen et al., 2018; Zhan et al., 2018). As shown in Figure 9b, the CC value was higher 511 

than most of them in the abovementioned studies. Although the RF-based downscaling method in Jing et al. (2016b) has 512 

a relatively low RMSE, the measurements from in situ stations were used to train the downscaling model which greatly 513 

reduces the dependence of the downscaling process on field observations. A similar requirement is also presented in Lu 514 

et al. (2019) and Long et al. (2016), and the GWR and multivariate regression models are largely dependent on the 515 

number of available training stations and variables related to the geophysical mechanisms of precipitation. The 516 
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independence of field observations in the SMPD method shows a large advantage, especially for regions with sparse 517 

meteorological stations. Zeng et al. (2021) also proposed an independent downscaling approach considering temporal 518 

lag from vegetation changes to precipitation. However, the relationship shows high variability which may result in a 519 

negative correlation within a short time. Therefore, both the CC and RMSE of this method have worse performances 520 

than those of the proposed method. In general, according to the methodology comparison, the proposed SMPD method 521 

exhibits good performance in terms of both CC and RMSE. Unlike using the empirical regression method to build the 522 

relationship between precipitation and other surface variables, the SMPD method demonstrated high effectiveness, 523 

independence, and robustness.  524 
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Table 3. List of the performance of downscaling procedures to improve the spatial resolution of satellite precipitation products at different temporal scales. The bold 525 

letters represent the proposed method in this study. 526 

Original products 
Downscaled 

algorithm 
Auxiliary variables 

Temporal 

resolution 

Downscaled products 

Reference Spatial 

resolution 
CC RMSE (mm) 

TRMM (25 km) RF DEM, NDVI Monthly 1 km 0.86 15.70 Jing et al. (2016b) 

GPM (10 km) GWR DEM, NDVI Monthly 1 km 0.79 20.94 Lu et al. (2019) 

GPM (10 km) GWR DEM, NDVI Monthly 1 km 0.79 27.23 Zhan et al. (2018) 

TRMM (25 km) GWR 
DEM, Rain gauge 

data 
Monthly 1 km 0.87 46.14 Chen et al. (2018) 

TRMM (25 km) GWR DEM, NDVI Monthly 1 km 0.82 25.10 Xu et al. (2015) 

GPM (10 km) RF DEM, NDVI, LST Daily 1 km 0.64 6.06 Yan et al. (2021) 

TRMM (25 km) 
Multivariate 

regression model 
DEM, Climate data Daily 1 km - 2.71 Long et al. (2016) 

GPM (10 km) LPVIAL NDVI 16-day 1 km 0.81 46.77 Zeng et al. (2021) 

CMORPH 

(8 km) 
GWR DEM, NDVI 30 min 1 km 0.86 7.27 Chao et al. (2018) 

GPM (10 km) AMCN, GDA LST, EVI, LSR Monthly 1 km 0.83 30.88 Jing et al. (2022) 

GPM (10 km) GMWWDA 
Cloud Property 

Data 
Hourly 1 km 0.53 5.16 Ma et al. (2020a) 

GPM (10 km) SVM 
Atmospheric, 

variables, DEM 
Daily 1 km 0.78 12.55 Min et al. (2020) 

GPM (10 km) SMPD SSM, NDVI Daily 1 km 0.61 4.83 Proposed method 

527 
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5.2 Limitations and prospects 528 

Despite the superior performance of the SMPD method, some issues still need to be considered in practical 529 

applications. The first issue should relate to the accuracy of the original GPM precipitation data. Due to the limitation of 530 

the inherent accuracy of original GPM precipitation data, which are mainly manifested in two aspects, firstly the IMERG-531 

Final products are corrected on a monthly scale using the interpolated precipitation product Global Precipitation 532 

Climatology Centre (GPCC, 1.0°/Monthly) based on ground observations. However, there is no mature calibration 533 

algorithm for calibrating the daily satellite-based precipitation estimates (Ma et al., 2020b). Second, the prior databases 534 

of cloud cover and precipitation profiles for retrieving passive microwave-based satellite precipitation estimates are not 535 

sufficiently robust due to the lack of ground-based radar observations. In addition, since passive microwave remote 536 

sensing-based precipitation retrieval is the primary input to the IMERG-Final products, it may lead to poor performance 537 

of the satellite-based product in winter and high-latitude regions (Xu et al., 2022). Therefore, the improvement in the 538 

accuracy of downscaling results is limited because of the value preservation during the downscaling process. The 539 

downscaling performance is highly dependent on the accuracy of the original GPM products. The multisource data fusion 540 

model based on observed rain gauge stations and reanalysis data proposed by Ma et al. (2021) and Li and Long (2020) 541 

could increase its ability to describe the daily precipitation fluctuations and it would help provide more accurate 542 

downscaling precipitation values. Given the spatial inconsistency of the point measurement and grid-scale estimation, 543 

which may lead to some uncertainty in the evaluation results. Thus, the difference in spatial scale between satellite and 544 

gauge-based precipitation measurements should be paid more attention to in future comparisons based on reanalysis-545 

based precipitation with high spatial resolution. 546 

In addition, the uncertainty of SSM and the sensitivity relationship between SSM and precipitation under continuous 547 

rainfall conditions may introduce uncertainty in the downscaling precipitation results. First, the responses of SSM with 548 

different land cover conditions and vegetation coverages to precipitation are relatively different (Fan et al., 2021), and 549 

topographic factors such as depressions and slopes also affect the uncertainty of SSM. Therefore, it is necessary to 550 

establish the relationship between SSM and precipitation for different land cover types or different terrain types. The 551 

establishment of a more reliable fitting relationship based on precipitation data with different land cover properties or 552 

topographic factors would be helpful to enhance the accuracy of the downscaling results (Chen et al., 2020; Senanayake 553 

et al., 2021; Zhao et al., 2021). Second, although the relationship between SSM and precipitation has been well 554 

demonstrated in many previous studies, the sensitivity of SSM to precipitation may decrease when soil water storage 555 

becomes saturated after repeated precipitation (Song et al., 2020). Therefore, it is necessary to further improve the 556 

relationship by considering the soil water threshold saturation in future studies. Moreover, this downscaling method was 557 

based on the surface water balance principle, and the runoff factor under heavy precipitation conditions at a certain time 558 
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was not considered because of the inherent scarcity of high-resolution runoff datasets from in situ measurements. Some 559 

studies have provided good alternatives to obtain runoff data with high spatiotemporal resolution (Jadidoleslam et al., 560 

2019; Muelchi et al., 2021). Hence, the use of this runoff factor in the water balance equation for heavy precipitation 561 

will assist in improving downscaling accuracy. 562 

Most importantly, many previous studies have successfully generated fine precipitation data at hourly or half-hourly 563 

scales (Ma et al., 2020a; Ma et al., 2020b; Lu et al., 2022; Ma et al., 2022). Nevertheless, these studies lacked physical 564 

mechanisms in the downscaling process and do not use surface soil moisture covariates that respond in real-time to 565 

precipitation. In the proposed method, the key inputs of the downscaling process are surface soil moisture and 566 

precipitation data. Even on hourly or half-hourly scales, the soil moisture exhibits an instantaneous response to collocated 567 

precipitation. Then, the soil moisture estimation method achieved seamless downscaling for high-resolution soil moisture 568 

generation under cloudy conditions. Therefore, it would be able to obtain real-time soil moisture from microwave 569 

satellite observations combined with surface temperature and vegetation index derived from optical and thermal infrared 570 

remote sensing. Therefore, this approach has the potential for generating high spatial resolution precipitation data at 571 

hourly or half-hourly scale.  572 

6 Conclusions 573 

In this paper, by introducing high-resolution SSM data and the NDVI as independent variables, a novel physical 574 

downscaling approach based on the principle of surface water balance is developed to obtain high-resolution (1 km × 1 575 

km) daily precipitation estimation. At both daily and monthly scales, the downscaled precipitation presents a similar 576 

spatial and temporal distribution pattern as the original GPM product. Furthermore, a systematic evaluation of the 577 

downscaled GPM data was conducted on multiple time scales at the station level. The downscaled precipitation showed 578 

a good correlation with the observed measurements at each station at the daily scale, with POD, FAR, CSI, CC, RMSE, 579 

and BIAS values of 0.88, 0.47, 0.48, 0.61, 4.83 mm, and 5%, respectively, and the evaluation results outperformed the 580 

original GPM product. For monthly scale comparison, the downscaled data also presented a strong correlation with the 581 

observed precipitation, with CC, RMSE, and BIAS values of 0.84, 30.88 mm, and 5%, respectively. With the increase 582 

in spatial heterogeneity in the downscaled results, there is also an increasing trend in the improvements in the 583 

precipitation accuracy through the comparison at most stations. 584 

In summary, the proposed method with the use of surface water balance principle has a more solid physical basis 585 

than previous downscaling methods. By introducing SSM as an auxiliary variable, the impact of inherent bias in satellite 586 

estimates on the downscaled results can be moderately reduced compared to the conventional statistical method. The 587 

validation with rain gauge data highlights the importance of SSM as a fully independent source of information that can 588 
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be effectively used for downscaling coarse-resolution precipitation at a daily scale, which is rarely conducted in current 589 

related studies. Therefore, this method is a promising way to derive high-resolution precipitation data and shows good 590 

potential for real-time precipitation data downscaling with the provision of SSM data, which will assist further 591 

applications in related fields (such as hydrology, agriculture, natural hazards, water resources, and climate change).  592 

Code and data availability 593 

This study used the surface soil moisture data with high resolution (https://doi.org/10.5281/zenodo.7451422) to 594 

produce the downscaled precipitation data (https://doi.org/10.5281/zenodo.7451690), which were available at the zenodo 595 

data survey portal. The part of observed data obtained on (https://www.ncei.noaa.gov/access/search/data-search/global-596 

summary-of-the-day). The Matlab codes can be obtained upon request from the corresponding author. 597 
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