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Abstract. As a key component in the water and energy cycle, precipitation with high resolution and accuracy is of great 9 

significance for hydrological, meteorological, and ecological studies. However, current satellite-based precipitation products 10 

have a coarse spatial resolution (from 10 to 50 km) not meeting the needs of several applications (e.g., flash floods and 11 

landslides). The implementation of spatial downscaling methods can be a suitable approach to overcome this shortcoming. In 12 

this study, we developed a Soil Moisture-based Precipitation Downscaling (SMPD) method for spatially downscaling the 13 

Integrated Multi-satellitE Retrievals for GPM (IMERG) V06B daily precipitation product over a complex topographic and 14 

climatic area in southwestern Europe (Iberia Peninsula), in the period 2016-2018. By exploiting the soil water balance equation, 15 

high-resolution surface soil moisture (SSM) and Normalized Difference Vegetation Index (NDVI) products were used as 16 

auxiliary variables. The spatial resolution of the IMERG daily precipitation product was downscaled from 10 km to 1 km. An 17 

evaluation using 1027 rain gauge stations highlighted the good performance of the downscaled 1 km IMERG product compared 18 

to the original 10 km product, with a correlation coefficient of 0.61, root mean square error (RMSE) of 4.83 mm and a relative 19 

bias of 5%. Meanwhile, the 1 km downscaled results can also capture the typical temporal and spatial variation behaviours of 20 

precipitation in the study area during dry and wet seasons. Overall, the SMPD method greatly improves the spatial details of 21 

the original 10 km IMERG product with also a slight enhancement of the accuracy. It shows good potential to be applied for 22 

the development of high quality and high-resolution precipitation products in any region of interest. 23 
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1 Introduction 27 

Precipitation, as a key driving force of the global water cycle under climate change conditions, changes greatly in 28 

space and time and is among the key factors affecting the hydrology, water resources and ecosystem of a watershed 29 

(Salzmann, 2016; Spötl et al., 2021). Hence, accurate and reliable spatial-temporal precipitation estimates are critical for 30 
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the assessment and understanding of climate change, hydrology, climatology, and its impacts on the environment, 31 

ecosystem, and human society (Xia et al., 2015; Wehbe et al., 2020; Wei et al., 2020; Bezak et al., 2021; Ma et al., 2021; 32 

Yang and Huang, 2021).  33 

The most common ground-based method for precipitation measurement relies on rain gauge observations. Although 34 

rain gauges can provide accurate observations and capture the temporal variability in precipitation within a certain radius, 35 

these measurements are known to be prone to spatial representativeness issues due to the high spatiotemporal 36 

heterogeneity of precipitation (Wehbe et al., 2017; Tang et al., 2018). With the development of meteorological satellites, 37 

remote sensing has become the main tool for estimating regional to global precipitation because of its wide spatial 38 

coverage and continuous observation periods. These series of satellites include the Global Precipitation Climatology 39 

Project (GPCP) (Huffman et al., 1997), the Tropical Rainfall Measuring Mission (TRMM) Multisatellite Precipitation 40 

Analysis (TMPA) (Huffman et al., 2007), the NOAA Climate Prediction Center (CPC) morphing technique (CMORPH) 41 

(Joyce et al., 2004), Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks 42 

(PERSIANN) (Sorooshian et al., 2000), Global Satellite Mapping of Precipitation (GSMaP) (Kubota et al., 2007), and 43 

Integrated Multisatellite Retrievals for Global Precipitation Measurement (GPM) (Hou et al., 2014). Although each 44 

product has its own more strengths in the capture of precipitation spatial patterns, there is a common issue, induced by 45 

its coarse spatial resolution (e.g., 0.1°-0.5°), greatly blocking the application of these products in hydrological and 46 

meteorological research at the local scale (Lin and Wang, 2011; Prakash et al., 2016; Chen et al., 2018).  47 

To enhance the applications of current coarse-resolution precipitation products, a procedure that involves spatially 48 

downscaling these products to fine scales has become an important solution. In recent decades, many downscaling 49 

methods have been proposed with the use of different satellite precipitation products. There are two major categories of 50 

downscaling methods: statistical downscaling and dynamical downscaling (Maraun et al., 2010; Tang et al., 2016). 51 

Statistical downscaling methods are mainly conducted by building the explanatory ability of the precipitation spatial 52 

distribution with fine-scale predictors, including topographic, geographic, atmospheric and vegetation variables, with 53 

the use of traditional regression methods (Xu et al., 2015; Ma et al., 2019b; Mei et al., 2020), optimal interpolation 54 

techniques (Shen et al., 2014; Chao et al., 2018), multidata fusion (Rozante et al., 2020; Ma et al., 2021), spatial data 55 

mining algorithm (called cubist) (Ma et al., 2017b; Ma et al., 2017a), geographical ratio analysis (Duan and Bastiaanssen, 56 

2013; Ma et al., 2019a) and machine learning algorithms (He et al., 2016; Baez-Villanueva et al., 2020; Min et al., 2020a). 57 

Comparatively, dynamical downscaling refers to the use of regional climate models driven by global climate model 58 

output or reanalysis data to generate regional precipitation information (Rockel, 2015), which requires information 59 

related to complex physical processes of precipitation, such as atmospheric, oceanic and surface information (Tang et 60 
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al., 2016). Hence, spatial downscaling is achieved by modelling the conditional distribution of precipitation at a fine 61 

scale to characterize the spatial structure of precipitation (Haylock et al., 2006; Munsi et al., 2021).  62 

Among the existing methods, due to the computational efficiency and the consideration of orography and vegetation 63 

in precipitation distribution, the statistical downscaling methods have been widely used in recent years. Most of them 64 

were conducted with the use of predictors, such as topographic and vegetation factors (Immerzeel et al., 2009; Jia et al., 65 

2011; Jing et al., 2016a; Zeng et al., 2021). However, these predictors do not have physical connections with precipitation, 66 

they act as important environmental variables influencing precipitation distribution. Consequently, the lack of the 67 

physical background of this type method may introduce high uncertainty to the final downscaled results. Comparatively, 68 

surface soil moisture (SSM) presents an obvious and strong physical connection with precipitation via their coupling 69 

and feedback processes (Seneviratne et al., 2010). As indicated by Brocca et al. (2014). Precipitation is the main driver 70 

of SSM temporal variability. A sudden increase may occur in SSM after a rainfall pulse, followed by a smooth recession 71 

limb driven by evapotranspiration and drainage. This relationship can be well reflected by an example of the time series 72 

of precipitation and SSM from Dec 26 to 28, 2017 at station BRAGANCA, Portugal (Figure 1). A rapid increase in SSM 73 

occurs after these rainfall events. Then, the moisture condition gradually becomes drier when there is no further rainfall.  74 

20
17

-1
2-

20

20
17

-1
2-

22

20
17

-1
2-

24

20
17

-1
2-

26

20
17

-1
2-

28

20
17

-1
2-

30

20
18

-1
-1

20
18

-1
-3

20
18

-1
-5

20
18

-1
-7

20
18

-1
-9

20
18

-1
-1

1

20
18

-1
-1

3

20
18

-1
-1

5

0.0

0.1

0.2

0.3

S
S

M
 (

m
3
/m

3
)

Date

0

10

20

30

40

50

P
re

ci
p

it
a
ti

o
n

 (
m

m
)

 75 

Figure 1. Time series of observed precipitation and satellite observed SSM at station BRAGANCA, Portugal. 76 

According to this feature, SSM shows a big advantage in estimating precipitation and this connection was approved 77 

by the SM2RAIN method proposed by Brocca et al. (2013). Fan et al. (2021) demonstrated that the good performance 78 

of the SM2RAIN products over the TP where the terrain is complex and the surface cover is heterogeneous. The Soil 79 

Moisture Analysis Rainfall Tool (SMART) proposed by Chen et al. (2012) also improved the sub-monthly scale accuracy 80 

of a multidecadal global daily rainfall product with a lower root mean square error (-13%) and a higher probability of 81 

detection (+5%). Recent applications of this bottom-up approach further demonstrate the success of using SSM in 82 
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precipitation estimation at coarse-resolution scales (Brocca et al., 2016; Ciabatta et al., 2017; Ciabatta et al., 2018; Brocca 83 

et al., 2019a; Wehbe et al., 2020). Thus, it should be a very promising solution to improve the downscaling accuracy by 84 

introducing SSM in current downscaling schemes. However, the availability of high-resolution SSM data is very limited 85 

and most of the current SSM products have a spatial resolution of more than 10 km (Peng et al., 2021), placing significant 86 

restrictions on these applications. Furthermore, suffering from an indirect physical connection between topographic and 87 

vegetation factors and precipitation at coarse temporal scale, a large amount of downscaling research has been conducted 88 

at monthly or annual scales (Abdollahipour et al., 2021). In addition, although daily high-resolution precipitation data 89 

have been produced by different methods (Brocca et al., 2019b; Hong et al., 2021), the use of high-resolution SSM data 90 

to improve the spatial resolution of satellite precipitation products for generating daily-scale high-resolution precipitation 91 

data based on physical mechanisms is less studied. 92 

In recent decades, there has been substantial progresses in soil moisture downscaling studies (Merlin et al., 2008; 93 

Piles et al., 2014; Peng et al., 2016; Tagesson et al., 2018; Long et al., 2019; Sabaghy et al., 2020; Wen et al., 2020; Zhao 94 

et al., 2021), which makes the availability of high-resolution soil moisture data possible at a daily scale. Thus, the main 95 

objective of this study is to establish a soil moisture-based precipitation downscaling (SMPD) scheme as a novel way of 96 

obtaining fine-scale precipitation by fragmenting the coarse-pixel rainfall to fine-scale pixels. For this purpose, the 25-97 

km European Space Agency (ESA) Climate Change Initiative (CCI) SSM product is used to derive 1-km SSM data 98 

based on the seamless downscaling method proposed by Zhao et al. (2021). Based on the inversion of the water balance 99 

equation, a simplified model for estimating precipitation is constructed with the use of the downscaled 1-km seamless 100 

soil moisture data and the vegetation index derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) 101 

observation and then applied to daily GPM precipitation products to obtain the daily downscaled precipitation estimates.  102 

2 Study area and datasets 103 

2.1 Study area 104 

The central part of the Iberian Peninsula was selected as the study area (Figure 2). It is located in the southwestern 105 

Europe between 37.66°–42.99°N and 8.30° W–1.63° E. The region has a distinctly seasonal mild climate, with hot and 106 

dry summers inland, cooler summers along the coast, and cold and wet winters. Precipitation presents a double peak 107 

pattern, typical from the Mediterranean, with increased precipitation in Autumn and Spring. The central part of the study 108 

area has a temperate continental climate, while the southern part has a Mediterranean climate, with warm and humid 109 

winters and hot and dry summers. Generally, the south is dry and warm, while the north is relatively wet and cool. 110 

Enhanced by the complex topographic pattern and diverse land cover conditions, this region has a highly heterogeneous 111 

spatial environment, which makes this region a satisfactory candidate for precipitation downscaling. In addition, there 112 
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are many meteorological stations with long-term precipitation measurements in this area, which is an important 113 

prerequisite for this study. 114 

 115 

Figure 2. Geolocation and land cover map of the study area. The black triangles denote the meteorological stations collected in this 116 

study. 117 

2.2 Datasets 118 

2.2.1 GPM IMERG satellite precipitation data  119 

As the successor of the successful Tropical Rainfall Measuring Mission (TRMM), the Global Precipitation 120 

Measurement (GPM) not only expands the measurement range and temporal and spatial resolution of the TRMM, but 121 

also estimates the instantaneous precipitation more accurately, especially light-intensity precipitation (i.e., <0.5 mm h-1) 122 

and falling snow (Hou et al., 2014; Huffman et al., 2015), GPM-IMERG (Integrated Multisatellite Retrievals for GPM) 123 

is the level 3 multisatellite precipitation algorithm of the GPM, which combines precipitation information measured from 124 

the microwave sensor and infrared sensors onboard GPM constellations and monthly gauge precipitation data, and 125 

IMERG employs the 2014 version of the Goddard Profiling Algorithm (GPROF2014) to compute precipitation estimates 126 

from all passive microwave (PMW) sensors onboard GPM satellites, which is a significant improvement compared with 127 

TMPA (GPROF2010) (Huffman et al., 2015; Huffman et al., 2020). Hence, it has attracted much attention in the satellite 128 

remote sensing of precipitation.  129 
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Currently, the GPM product provides near-real-time products (early and late run) and postural-rime products (final 130 

run) from sub-hourly to monthly resolution at a 0.1°×0.1° spatial scale. Owing to the infusion of multiple data, such as 131 

microwave, infrared, radar, and Global Precipitation Climatology Centre (GPCC) rain gauge data (Hou et al., 2014), the 132 

GPM-IMERG final run product provides more accurate estimates over the globe with a relatively long time series (June 133 

2000- present) with a minimum latency of 3.5 months. In this study, the GPM-IMERG final run daily precipitation 134 

product (downloaded from https://pmm.nasa.gov/data-access/downloads/gpm) was adopted as the downscaling object. 135 

A three-year period from 2016 to 2018 was selected to verify the performance of the downscaling method based on the 136 

availability of rain gauge data. 137 

2.2.2 ESA CCI surface soil moisture data 138 

The Soil Moisture CCI project is a part of ESA’s Program on the Global Monitoring of Essential Climate Variables 139 

(ECV), which was initiated in 2010 and has produced an updated SSM product annually since 1978 (Colliander et al., 140 

2017). The ESA CCI SSM series contains three separate SSM datasets, which are derived from active and passive 141 

microwave remote missions as well as a combination of both, and the combined ESA CCI SSM product (version 04.7) 142 

provides a spatial resolution of 0.25° and a temporal resolution of one day on a global scale (http://www.esa-143 

soilmoisture-cci.org/).  144 

The combined ESA CCI SSM product provides the amount of water in the surface soil (approximately the top 5 145 

cm), which integrates observations derived from 11 microwave sensors including active sensors such as Advanced 146 

Scatterometer-A/B (ASCAT-A/B) and European Remote-sensing Satellite-1/2 (ERS-1/2), and passive sensors such as 147 

Special Sensor Microwave Imager (SSM/I), the Scanning Multichannel Microwave Radiometer (SMMR), the TRMM 148 

Microwave Imager (TMI), AMSR-E, WindSAT, AMSR2 and SMOS (Gruber et al., 2019). Previous evaluation studies 149 

have demonstrated that ESA CCI SM generally agrees well with the spatial and temporal patterns estimated by land 150 

surface models and in situ observations (Mcnally et al., 2016; Dorigo et al., 2017). Therefore, this combined product 151 

was used in this study for the study period of January 1, 2016 to December 31, 2018 to obtain fine-resolution soil 152 

moisture to assist in precipitation downscaling. 153 

2.2.3 Normalized difference vegetation index (NDVI) 154 

NDVI is an important indicator of vegetation activity (Neinavaz et al., 2020; Zhang et al., 2020a; Pan et al., 2021), 155 

especially for surface evapotranspiration (Joiner et al., 2018; Maselli et al., 2020). Therefore, it also presents a positive 156 

correlation with precipitation (Quiroz et al., 2011; Birtwistle et al., 2016). The intuitive correlation between rainfall and 157 

plant biomass represented by NDVI would enhance the downscaling study with high-resolution NDVI data. In this study, 158 

the NDVI data were obtained from the MODIS/Terra 16-day vegetation index product 159 

http://www.esa-soilmoisture-cci.org/
http://www.esa-soilmoisture-cci.org/
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(https://lpdaac.usgs.gov/products/mod13a2v006/). It is a 16-day composite product obtained by choosing the best 160 

available pixel value from all the acquisitions over 16 days with the spatial resolution of 1 km. 161 

2.2.4 Rain gauge data 162 

Daily precipitation data collected from 1027 rain gauge stations from 2016 to 2018 with different land cover 163 

properties were used as the independent validation of the downscaled results in this study. These data were provided by 164 

the Spanish State Meteorological Agency (AEMET). The distribution of the selected stations is mapped in Figure 2. 165 

3 Methodology 166 

3.1 Soil moisture-based precipitation estimation model 167 

The soil water balance equation for a layer depth Z can be described by the following expression: 168 

( )
( ) ( ) ( ) ( )

ds t
Z p t g t e t r t

dt
   

                (1) 169 

where s(t) [-] is the relative saturation of the soil or relative SSM, t is the time and p(t), r(t), e(t) and g(t) are the 170 

precipitation, runoff, evapotranspiration, and drainage rate, respectively. By rearranging Eq. (1), precipitation can be 171 

depicted as a function of SSM, runoff, evapotranspiration, and drainage rate. Based on this rule, Brocca et al. (2013) 172 

proposed a bottom-up approach (SM2RAIN) by doing “hydrology backward” to infer precipitation with the use of 173 

variations in SSM sensed by microwave satellite sensors. To perform this estimation, the model is simplified in different 174 

ways by neglecting different components in Eq. (1) (Brocca et al., 2014; Massari et al., 2014) and the comparison study 175 

indicated that the average contribution of surface runoff and evapotranspiration components amounts to less than 4% of 176 

the total rainfall, while the soil moisture variation (63%) and subsurface drainage (30%) terms provide a much greater 177 

contribution (Brocca et al., 2015). Although the contribution of evapotranspiration is relatively small, the dry 178 

Mediterranean climate in most of this region emphasizes its importance. Therefore, the precipitation estimation model 179 

was reorganized by only neglecting the runoff component: 180 

( )
( ) ( ) ( )

ds t
p t Z g t e t

dt
  

                 (2) 181 

In Eq. (2), the drainage rate is approximated by considering the relation in Famiglietti and Wood (1994) to include 182 

the contribution of both deep percolation and subsurface runoff (interflow plus baseflow): 183 

( ) ( )bg t as t
                    (3) 184 

where a and b are two parameters expressing the nonlinearity between drainage rate and soil saturation. Regarding the 185 

evapotranspiration component, there are many methods have been developed to estimate ET in natural ecosystems (Mu 186 
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et al., 2009; Sheffield et al., 2009; Carpintero et al., 2020). For instance, the daily evapotranspiration can be derived as 187 

a function of the vegetation index (VI) and air temperature (Ta) (Nagler et al., 2005a; Nagler et al., 2005b): 188 

    ( )/
( ) 1 1 aT d ebVIe t a e c e f

    
               (4) 189 

where the coefficients (a-f) were determined by conducting regression between ET and the independent variables. 190 

Although there is the air temperature in Eq. (4) to specify the impact of the air temperature difference within a wide 191 

range, this term can be assumed to be invariant when considering the pixels to a small extent. Therefore, Eq. (4) can be 192 

further simplified with the use of the NDVI as follows: 193 

 ( ) 1 kNDVIe t c e 
                   (5) 194 

Based on the above approximation, the soil moisture-based precipitation estimation model was finally expressed 195 

by the following equation: 196 

 
( )

( ) ( ) 1b kNDVIds t
p t Z as t c e

dt

   
               (6) 197 

where ds(t)/dt can be calculated as the difference between the SSM estimates on nearby days. According to the 198 

simplification in Eq. (5), this proposed model is appropriate for estimation to a local extent.  199 

3.2 Soil moisture-based precipitation downscaling (SMPD) method 200 

To perform precipitation downscaling, an important prerequisite is the assumption of spatial invariancy in the 201 

precipitation estimation model described in Eq. (6) at coarse and fine scales, which is also the basis of many related 202 

downscaling studies aiming at other surface parameters, such as soil moisture and temperature (Hutengs and Vohland, 203 

2016; Mishra et al., 2018; Zhao et al., 2018; Ebrahimy and Azadbakht, 2019). Therefore, the estimation model 204 

established at the 10-km level is thought to be applicable at the 1-km level. The estimated parameters Z, a, b, c and k at 205 

10 km resolution scale resolution are not scale-independent, which can be used for the corresponding 100 sub-images 206 

units (1 km). Moreover, because the downscaled model was constructed by using self-adaptive windows in different 207 

local regions on the daily scale, these parameters vary in time and space. Thus, they are also temporal independent. Most 208 

importantly, to preserve the mean rain rate over each coarse-scale pixel, the bias should be corrected by redistributing 209 

the residual to each fine-scale pixel. According to the above principle, the downscaling method consists of the following 210 

parts. 211 

3.2.1 Generation of daily SSM at a fine resolution 212 

As shown in Eq. (6), SSM is an important variable in the estimation model. The ESA CCI SSM product can only 213 

provide coarse-resolution SSM data with unexpected gaps. To obtain daily SSM at a 1-km resolution, the seamless SSM 214 

downscaling method proposed by Zhao et al. (2021) is a good choice to achieve this goal. In comparison to the 215 
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REMEDHUS network, the downscaled SSM performs better in terms of spatiotemporal coverage and evaluation metrics, 216 

which indicated that this method could be successfully used to produce high-resolution SSM data with no spatiotemporal 217 

gaps. This downscaling method mainly includes three steps: 1) filling gaps in the 25-km ESA CCI SSM maps with 218 

neighbourhood information based on a local linear regression method, 2) estimating the 1-km regression SSM and 219 

coarse-resolution residual with a geographically weighted regression (GWR) method, and 3) downscaling the coarse-220 

resolution residual to 1-km spatial resolution with the area-to-point kriging (ATPK) method and obtaining the fine-221 

resolution SSM. For details about the downscaling method, please refer to Zhao et al. (2021). 222 

3.2.2 Calibration of the precipitation estimation model with an adaptive window method 223 

Before model calibration, the 1-km downscaled SSM data and the NDVI data were first aggregated into a 10-km 224 

scale to spatially match the spatial resolution of the GPM-IMERG product. Then, these data were applied to calibrate 225 

the coefficients of the precipitation estimation model. As introduced in section 3.1, the application of this model requires 226 

a prerequisite to work at a local extent because of the simplification of the evapotranspiration estimation. Therefore, a 227 

local window with a radius from 3 to 7 cells was adopted in the fitting process. Initialized from the size of 3 cells, the 228 

optimal window size was adaptively selected when the correlation coefficient (CC) of the fitting result reached to the 229 

maximum value. This adaptive method was applied to each coarse-resolution pixel with a sliding window, and the model 230 

coefficients of this pixel were derived. During the model calibration, coarse pixels with zero precipitation were excluded.  231 

   10km

10km 10km 10km 10km( ) ( ) ( 1) ( ) 1
kNDVIbp t Z SSM t SSM t aSSM t c e


     

        (7) 232 

3.2.3 Residual correction and fine-scale precipitation estimation 233 

Based on the calibrated estimation model coefficients in Eq. 7, the precipitation estimates determined with this 234 

model can be calculated for each high-resolution pixel within the corresponding coarse pixel: 235 

   1km

1km

m

1km 1km 1km( ) ( ) ( 1) ( ) 1
kNDVIbp t Z SSM t SSM t aSSM t c e


     

         (8) 236 

However, there is a residual between the original precipitation value of each coarse-resolution cell pixel
10km

op and 237 

the mean value of the estimated precipitation of all fine-resolution pixels within this cell. For the n 1-km pixels within 238 

each coarse-resolution cell, the residual is expressed as follows: 239 

10km 10km 1km,

1

n
o m

i

i

R p p


                    (9) 240 

To meet the requirement of value preservation in the downscaling process, the residual should be corrected by 241 

redistributing it to each fine-resolution pixel. The kriging interpolation method was used here to obtain the interpolated 242 

residuals at fine-scale pixels. The high-resolution residual was expressed as a weighted integration of the residuals of 243 

the neighbouring coarse-resolution cells. 244 
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1km 10km,

1

n

ij k k

k

R R


，
                          (10) 245 

where 
1km ijR ，

represents the estimated precipitation of the ith high-resolution residual pixel in the coarse-resolution cell j, 246 

R10km,k represents the kth coarse-resolution cell in the self-adaptive window, n is the number of cells in the self-adaptive 247 

window, and λk is the weight coefficient derived from the kriging interpolation. 248 

Finally, the high-resolution precipitation was obtained by integrating the fine-resolution estimates via Eq. (8) and 249 

the residual term in Eq. (10): 250 

1km

m

1km 1km=p p R
                    (11) 251 

3.3 Validation 252 

To better assess the performance of the proposed downscaling method, the downscaled GPM results were validated 253 

by observations from the collected stations in the study area at both daily and monthly scales. The evaluation metrics 254 

include the correlation coefficient (CC), root mean square error (RMSE), and the relative bias (BIAS). They are defined 255 

as follows: 256 

  

   

1

2 2

1

=

n

i i

i

n

i i

i

S S P P

CC

S S P P





 

 





                 (12) 257 

 
2

1=

n

i i

i

S P

RMSE
n




                  (13) 258 

1

1

( )

=

n

i i

i

n

i

i

S P

BIAS

P








                   (14) 259 

where Pi and Si are the precipitation measured by the rain gauge and downscaled satellite precipitation at station i, respectively. 260 

𝑃̅ is the mean value of all rain gauge observations, and 𝑆̅ represents the mean value of the downscaled satellite precipitation 261 

at all the stations, and n is the number of stations in this analysis. 262 

Additionally, three metrics reflecting the capability of capturing precipitation events were introduced in the 263 

assessment: the probability of detection (POD), the false alarm ratio (FAR) and critical success index (CSI). The POD 264 

refers to the ratio of rain occurrences correctly detected to the total number of observed events, the optimum score is 1. 265 

The FAR refers to the proportion of the precipitation events that the satellite falsely detects and the rain gauges do not 266 

recognize it, the optimum score is 0. The CSI represents the fraction of precipitation events correctly detected by satellites 267 

to the total number of observed or detected rainfall events, the optimum score is 1. The definition of a rainfall 268 
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accumulation “event” is one-day rainfall accumulation in excess of a given threshold of 0.1 mm. These three terms are 269 

depicted as below: 270 

H
POD

H M



                    (15) 271 

F
FAR

H F



                     (16) 272 

H
CSI

H F M


 
                     (17) 273 

where H indicates the precipitation events concurrently detected by rain gauges and satellites, M indicates the 274 

precipitation events detected by rain gauges but not detected by satellites, and F indicates the precipitation events 275 

detected by satellites but not detected by rain gauges. 276 

4 Results  277 

4.1 Accuracy of the soil moisture-based precipitation estimation model 278 

Before the downscaling process, the performance of the soil moisture-based precipitation estimation model was 279 

evaluated first based on the calibrated estimation model in Eq. 7. Figure 3 shows the maps of the mean value of the daily 280 

CCs and RMSEs during the period of 2016–2018 and their standard deviation (STD) by comparing the precipitation 281 

estimated with the proposed estimation model and the GPM precipitation product at 10 km scale. Most of the CC values 282 

are above 0.70 with an average value of 0.71, and most of the RMSE values are within the range from 0.50 to 1.00 mm, 283 

with an average value of 1.00 mm. These results indicate the good consistency and small error between the estimated 284 

precipitation and the original precipitation product. Furthermore, in view of the STD map, it represents the variability in 285 

CC and RMSE during the period. The CC-STD values are within the range from 0.18 to 0.28 with an average value of 286 

0.23, most of the RMSE-STD values are concentrated in the range of 0.50 to 1.50 mm, and only a few are in the range 287 

of more than 3 mm, with an overall mean of 1.39 mm. Combined with the frequency distributions of CC and CC-STD, 288 

RMSE, and RMSE-STD, the proposed estimation model can generally capture the precipitation with soil moisture 289 

variations and it has a relatively stable performance. 290 
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 291 

Figure 3. (a) Maps of the mean value of the correlation coefficient (CC), (b) mean standard deviation of the CC (CC-STD), (c) mean 292 

root mean square error(RMSE), and (d) mean standard deviation of the RMSE (RMSE-STD) between the precipitation estimated 293 

with the soil moisture-based estimation model and the original GPM product during the period of 2016-2018. The mean value 294 

represents the average value of the corresponding index in the whole study area. 295 

According to the fitting performance assessment with the original GPM product, the soil moisture-based 296 

precipitation estimation model has been approved to be able to capture the variation of precipitation with acceptable 297 

accuracy. Therefore, the fitted estimation model at 10 km scale was applied to the SSM and NDVI data at 1 km scale to 298 

obtain the estimated high-resolution precipitation. Then, the residual between the estimated precipitation and the original 299 

precipitation product was calculated. The kriging interpolation method was implemented to redistribute the residuals to 300 

the estimated values at 1 km scale. Finally, the downscaled daily GPM precipitation products were obtained with the 301 

integration of the estimated precipitation and the interpolated residual. The performance of the downscaled results was 302 

further evaluated by spatio-temporal distribution and observations from meteorological stations.  303 

4.2 Overall performance of the downscaled precipitation 304 

4.2.1 Spatial distribution 305 

To demonstrate the advantages of the downscaling results, two separate days (Jul. 7 and Nov. 25, 2017) in the dry 306 

season and wet season were selected to compare the original coarse-resolution precipitation data and the downscaled 307 

high-resolution precipitation data (Figure 4). From the visual inspection, the spatial distributions of the downscaled 308 

precipitation are highly consistent with those of the original ones in both seasons, especially for the distribution of the 309 

precipitation centers (>50 mm/day). The downscaled results maintained the original precipitation pattern in the GPM 310 
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product, which can be reflected well by the very similar histograms of the original and downscaled precipitation on these 311 

two days, as shown in Figure 4c and f. In addition to their consistency, the downscaled results present higher spatial 312 

heterogeneity than the coarse-resolution product, which provides much more detailed information on the precipitation 313 

distribution within each coarse-resolution cell. More importantly, the downscaled results prevent the blockiness at the 314 

edges of the coarse-scale pixels.  315 

 316 

Figure 4. Original daily GPM precipitation products, downscaled results, and their frequency histograms on July 7, 2017(a-c) and 317 

November 25, 2017(d-f). 318 

4.2.2 Temporal variability 319 

In addition to the spatial distribution analysis, the temporal variation in the downscaled precipitation was further 320 

evaluated by introducing the downscaled results from Dec. 8 to Dec. 11, 2017. Figure 5 shows the daily maps of the 321 

original precipitation and downscaled precipitation. For the spatial distribution, both the original GPM precipitation 322 

product and the downscaled result have almost the same patterns on different days. Not only heavy rainfalls but also 323 

light rainfalls can also be captured by the proposed downscaling method in most circumstances. Moreover, the temporal 324 

variability in the daily precipitation was also preserved after the downscaling, and some outliers in the coarse-resolution 325 

GPM product were effectively filled with valid values, as shown by the downscaling results on Dec. 11 in Figure 5. 326 
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 327 

Figure 5. Original daily GPM precipitation product and corresponding downscaled results from Dec.8th to Dec.11th, 2017. 328 

4.3 Validation with rain gauge measurements  329 

4.3.1 Validation at the daily scale 330 

To quantitatively evaluate the performances of the downscaling results, the daily original-scale GPM precipitation 331 

data and the downscaled results are compared separately with the precipitation measurements from the selected 1027 332 

meteorological stations. Two metrics, rainfall events and precipitation volumes, were used to evaluate the performances 333 

of both datasets. As shown by the density plots in Figure 6a, there is a relatively high uncertainty in the original GPM 334 

precipitation product compared with the in-situ observation with a CC of 0.60, an RMSE of 4.99 mm and a BIAS of 9 %, 335 

which shows the GPM product generally overestimated observed precipitation at daily scale. These differences may be 336 

attributed to the differences in the spatial representativeness of both observations (one for the average value over a grid 337 

cell and one for a single point). Because of the value preservation during the downscaling process, the downscaled result 338 

also has a validation effect similar to that of the original GPM precipitation product (Figure 6b). However, compared 339 

with the original GPM product, the downscaled result shows an overall improvement in terms of CC, RMSE, and BIAS. 340 

There is a slight increase in CC, with its value increasing from 0.60 to 0.61. In contrast, both the RMSE and BIAS have 341 

a moderate reduction, with decreases of 0.16 mm and 4%, respectively. For rainfall event assessment, the downscaled 342 

result remarkably enhanced the ability to identify rainfall events at every station when compared with the original GPM 343 

product. Both the POD, FAR and CSI were moderately enhanced relative to those of the original GPM data, with an 344 

increasing POD from 0.84 to 0.88, a decrease in the FAR from 0.52 to 0.47 and an increasing CSI from 0.44 to 0.48. 345 

The comparison showed that the downscaled results could better detect precipitation occurrence than the original GPM 346 

product. The increase in spatial heterogeneity in the downscaled result assists rainfall event detection.  347 
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 348 

Figure 6. Density plots of the original GPM precipitation product (a) and the downscaled results (b) plotted against daily 349 

precipitation recorded by available meteorological stations over the study period. The red dotted line represents the 1:1 line and the 350 

blue solid line represents the fitting line. 351 

In addition to the validation during the period of 2016-2018, further investigation was performed for the downscaled 352 

results at individual months. Table 1 lists the evaluation indicators of the downscaled and original precipitation against 353 

rain gauge observations from 1027 stations. In general, the downscaled results show similar accuracy performance 354 

among different months from the detection accuracy of precipitation events reflected by POD, FAR and CSI. However, 355 

from the RMSE values, seasonal differences can be detected. The dry season months from June to September have 356 

relatively smaller RMSE values than other months. It is not because of the better performance of the proposed method 357 

in these months but the inherent small precipitation of these months enables the low value of RMSE. This feature can be 358 

also detected from the evaluation of the original data. About the downscaled results performance, the downscaled data 359 

have better accuracy in detecting precipitation events according to the improvement in POD, FAR and CSI in each month. 360 

Comparatively, the correlation feature of the downscaled results shows a small improvement than the original data, 361 

represented by the CC values every month. Meanwhile, there are all decreasing trends in terms of RMSE and the 362 

improvements in the wet seasons from October to May are relatively bigger than the dry season months. For the BIAS 363 

values, the improvements are also very clear with the extent from 3% to 7%. The monthly comparison further indicated 364 

the improvement from the downscaled results which not only maintain the temporal correlation characteristics of the 365 

original data with the gauge-based observations but also improve the absolute accuracy according to the refinement of 366 

CC, POD, CSI, FAR, RMSE, and BIAS via introducing more detailed information in the downscaling scheme.  367 
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Table 1. Validation of the downscaled precipitation data, original GPM precipitation data with the daily precipitation measured by the 368 

selected stations at each month from 2016 to 2018. 369 

Month 

Original Downscaled 

CC POD FAR CSI RMSE (mm) BIAS CC POD FAR CSI RMSE (mm) BIAS 

January  0.57  0.76 0.49  0.47  6.36  14% 0.58  0.84 0.43  0.48  6.14  10% 

February 0.56  0.78 0.49  0.47  6.83  7% 0.57  0.86 0.42  0.50  6.51  2% 

March 0.66  0.83 0.45  0.52  6.27  -3% 0.66  0.89 0.40  0.54  6.10  -6% 

April 0.60  0.85 0.45  0.51  5.67  9% 0.60  0.89 0.41  0.53  5.44  5% 

May 0.60  0.86 0.46  0.50  4.78  5% 0.61  0.90 0.42  0.53  4.59  1% 

June 0.55  0.86 0.48  0.49  3.31  15% 0.56  0.90 0.43  0.52  3.18  11% 

July 0.63  0.86 0.49  0.48  2.72  24% 0.63  0.90 0.44  0.52  2.64  19% 

August 0.61  0.86 0.50  0.48  2.05  14% 0.60  0.90 0.44  0.51  2.04  9% 

September 0.50  0.86 0.51  0.47  2.74  34% 0.50  0.90 0.45  0.50  2.69  27% 

October 0.57  0.86 0.51  0.46  4.34  12% 0.58  0.89 0.45  0.50  4.22  8% 

November 0.59  0.85 0.50  0.47  6.18  10% 0.60  0.89 0.45  0.50  5.99  6% 

December 0.59  0.84 0.51  0.46  5.66  14% 0.58  0.88 0.45  0.50  5.57  11% 

4.3.2 Spatial distribution of the daily validation at all stations 370 

In addition to the general evaluation with the measurements from all stations, the downscaled results are separately 371 

validated by the observations from each station, and the results are illustrated in Figure 7. In general, the downscaled 372 

precipitation estimates produce less error than the original GPM precipitation products with respect to all overall error 373 

statistics from 2016 to 2018, with an increase of CC values from 0.62 to 0.63, a decrease of RMSE values from 4.80 mm 374 

to 4.63 mm, a decrease of BIAS values from 17% to 13%, a decrease of FAR values from 0.50 to 0.45, an increase of 375 

POD values from 0.83 to 0.87 and an increase of CSI values from 0.47 to 0.50, respectively, which show moderate 376 

improvement compared to that of the original GPM products. Moreover, from the frequency histogram of validation 377 

indicators at 1027 stations, the downscaled results present a better correlation with rain gauge observations with most of 378 

the CC values being above 0.71 in the central and north-western regions. Regarding RMSE in Figure 7e, the validation 379 

at 728 stations derives a low RMSE value (lower than 5.01 mm) and these stations are mainly located in the central and 380 

south-eastern regions. In comparison, the validation with high RMSE is majorly occurred in the north-western regions 381 

due to the originally bigger annual mean precipitation. Figure 7f clearly shows the improvement of the downscaled result 382 

with regard to RMSE. For BIAS, there is a relatively wide range from -72% to 99% in the whole region, systematic 383 

overestimation is observed at 685 stations, and underestimation is also observed at 342 stations. After downscaling, the 384 

overestimation was lightened. About the rainfall event assessment, most of the CSI values are higher than 0.48 at these 385 

stations and the FAR values are generally lower than 0.46, the POD values are generally higher than 0.81, as shown in 386 

Figure 7 j-r. It can also be seen that the detection accuracy of precipitation events in the humid northern region is better 387 
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than that in the southern region with less precipitation. Those results indicate that the fitting relationship between 388 

observed precipitation and downscaled GPM products is good in the northwest region, but the errors in precipitation 389 

volumes are large in north-western regions due to rich precipitation. In addition, because the improvement in rainfall 390 

events introduced by the downscaling method is not limited to specific locations and covers the whole area, the 391 

downscaled results are more accurate in describing spatial precipitation details. 392 

 393 
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Figure 7. CC (a-c), RMSE (d-f), BIAS (g-i), FAR (j-l), CSI (m-o) and corresponding frequency distributions for daily precipitation 394 

of original and downscaled GPM precipitation estimates at 1027 gauge sites during 2016–2018. The background value represents 395 

the original GPM annual average precipitation value from 2016 to 2018 396 

Generally, the improvement from the overall performance for the downscaled results in Figure 7 is attributed to the 397 

number of improvements in the validation site indicators that occur between the original GPM product, the downscaled 398 

results, and the observation stations at the daily scale. The downscaled results outperformed the original product in the 399 

detection accuracy of rainfall events and precipitation volumes, and the numbers of improvements in CSI and FAR are 400 

1008 and 1026, respectively. Similarly, the number of improvements of CC, RMSE, and BIAS are 765, 886, and 884, 401 

respectively. The downscaled results are more accurate than the original product when they are validated by field 402 

measurements at most stations. In summary, the improvement in the precipitation downscaled by the SMPD method 403 

occurs at most rain gauge stations. The evaluation demonstrates the ability of this method to increase spatial 404 

heterogeneity to enhance the correlation with field measurements while also retaining the original GPM spatial 405 

distribution pattern. All the above results clearly prove the effectiveness of the downscaling method, which enhances 406 

daily GPM precipitation in both spatial information and accuracy. 407 

4.3.3 Evaluation of precipitation intensities 408 

To assess the GPM products' performance at different precipitation intensity events. The daily precipitation intensity 409 

is classified into five categories, and the rainfall thresholds are classified as 0, 10, 20, 40 mm respectively (Zambrano-410 

Bigiarini et al., 2017). The performance metrics for the five daily precipitation intensity classes listed in Table 2. In 411 

summary, original and downscaled GPM products performed the best in terms of all performance metrics for the no-rain 412 

events, while performed the worst for the violent rain events (> 40 mm d−1). All precipitation products indicated that 413 

FAR values continuously performed the worst for the violent rain intensities, which showed that the products are still 414 

unable to accurately capture high precipitation values. Due to the reduced FAR values, the CSI value performed the best 415 

for no-rain events, followed by light rain ([0, 10) mm d−1), moderate rain ([10, 20) mm d−1), heavy rain ([20, 40) mm 416 

d−1) and violent rain events (> 40 mm d−1), respectively. Additionally, the BIAS values showed that all precipitation 417 

products overestimated the number of light rain and underestimated moderate rain, heavy rain, and violent rain events. 418 

Most importantly, the performance of the downscaled precipitation product was slightly better than the original 419 

precipitation product for different rainfall intensity events in terms of CC, RMSE, POD, FAR and CSI values, indicating 420 

the reliability and accuracy of the downscaled products in capturing different rainfall intensity events than the original 421 

precipitation products. 422 

Table 2 CC, RMSE, BIAS, POD, FAR and CSI values for the different precipitation intensities for original and 423 

downscaled GPM products from 2016 to 2018. 424 
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 425 

Intensity 

(mm/d) 

Original Downscaled 

CC 

RMSE 

(mm) 

BIAS 

(%) 

POD FAR CSI CC 

RMSE 

(mm) 

BIAS 

(%) 

POD FAR CSI 

0 - 1.83 - 0.93 0.34 0.63 - 1.73 - 0.94 0.26 0.70 

0-10 0.30 6.39 27.00 0.69 0.65 0.31 0.30 5.98 23.00 0.73 0.60 0.34 

10-20 0.15 11.85 -20.00 0.26 0.75 0.15 0.15 11.50 -22.00 0.25 0.74 0.15 

20-40 0.15 18.41 -33.00 0.25 0.78 0.13 0.14 18.31 -36.00 0.26 0.77 0.14 

>40 0.28 39.53 -47.00 0.23 0.84 0.11 0.28 39.33 -50.00 0.25 0.82 0.12 

4.3.4 Validation at the monthly scale 426 

In addition to the validation at the daily scale, the downscaling results were further evaluated at the monthly scale 427 

by integrating the daily results into the monthly amount. Figure 8 shows the multiannual average maps of the monthly 428 

precipitation from 2016 to 2018, including the original GPM product and the downscaled results. Similar to the daily 429 

comparison, the monthly distributions of both datasets have quite similar patterns over different months. The northern 430 

part of the study area has more precipitation than the southern part. The downscaled results maintain the precipitation 431 

centers in each month and depict the distributions around the centers well. The downscaled results can provide more 432 

detailed information regarding the spatial distribution.  433 

 434 

Figure 8. Spatial distribution of the multiannual mean value of monthly precipitation for the original GPM product (first line) and 435 

the downscaled results (second line) from 2016 to 2018.  436 

By collecting the monthly precipitation of each station, the accuracy of the monthly precipitation from the original 437 

and downscaled data was further quantitatively assessed. As shown in Figure 9a, after temporal integration, the 438 

uncertainty in the daily observation was greatly reduced in the monthly precipitation of the original GPM product. There 439 
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is a significant increase in CC from 0.60 in Figure 6a to 0.83 in Figure 9a. However, systematic overestimation still 440 

occurs. After spatial downscaling, although there is no big change in terms of CC, both the RMSE and BIAS are clearly 441 

improved based on a comparison of the density plots in Figure 9a and b. For the analysis of the improvement ratio, only 442 

the performances of CC, RMSE, and BIAS are analyzed because the POD, FAR and CSI mainly reflect the rainfall 443 

events at the daily scale. Among the 1027 stations, the numbers of stations with improvements during the validation in 444 

terms of CC, RMSE, and BIAS are 734, 587, and 912, respectively. Combined with the overall validation and individual 445 

validation, the downscaled results at the monthly scale outperformed the original GPM product. The evaluation shows 446 

that the downscaling method also presents a good accuracy in the downscaling results and high robustness at the monthly 447 

scale.  448 

 449 

Figure 9. Density plots of the original GPM precipitation product (a) and the downscaled precipitation data (b) plotted against the 450 

monthly precipitation measured by the selected stations during the period from 2016 to 2018.  451 

5 Discussion 452 

In this study, a spatial downscaling method for coarse-resolution precipitation products was proposed to produce 453 

high-spatial resolution precipitation data at a 1 km scale with the use of 1-km SSM data downscaled from microwave 454 

remote sensing estimations. To establish the connection between SSM and precipitation, a simplified precipitation 455 

estimation model based on the surface water balance equation was developed with inspiration from the SM2RAIN model 456 

proposed by Brocca et al. (2014). By calibrating the model coefficients with a self-adaptive window at the coarse-457 

resolution scale, the precipitation model was applied to high-resolution variables to obtain the high-resolution estimates. 458 

Compared with previous downscaling methods that mainly establish empirical relationships with surface variables, such 459 

as NDVI and topographic factors, this method introduces the physical relationship between SSM and precipitation via 460 

the water balance equation and has a solid physical basis. Therefore, the validation analysis conducted at both daily and 461 



21 

 

monthly scales indicated that the downscaled precipitation data outperformed the original precipitation product in most 462 

circumstances and presented high robustness over three years with different rainfall strengthens. 463 

5.1 Advantages of the downscaling method 464 

In general, the SMPD method adopted the bottom-up approach in precipitation estimation, in which the variations 465 

in SSM sensed by microwave satellite sensors have a strong connection with rainfall amounts according to the principle 466 

of water balance (Brocca et al., 2014; Brocca et al., 2016; Mao et al., 2018). After a sudden increase in soil moisture 467 

induced by rainfall event, the moisture condition gradually becomes drier when there is no further rainfall. Therefore, 468 

this method has a clear physical mechanism and is the only downscaling method using SSM as the key driving factor. 469 

Comparatively, the traditional statistical downscaling methods were established based on the statistical relationship 470 

between environmental factors and precipitation. Take the spatial interpolation method as an example, although the 471 

application of this method is convenient, the accuracy of the interpolated precipitation data is limited by the rainfall 472 

gauge density, especially in mountainous watershed with complex topography (Zhang et al., 2020b; Guo et al., 2021). 473 

The high dependency of in-situ measurements constrains its applications in area with few observations. In contrast, the 474 

SMPD method breaks the limitation caused by the rainfall gauge density and has a broader application prospect. To 475 

further demonstrate the advantage of the SMPD method, it is beneficial to compare the validation accuracy of this method 476 

with the validation accuracies of existing downscaled approaches, as shown in Table 3. In current existing downscaling 477 

studies, the involvement of daily SSM ensures downscaling at a daily scale is rarely considered. However, the 478 

relationship between SSM and precipitation ensures the daily downscaling in the proposed SMPD method. 479 

Comparatively, although Yan et al. (2021) conducted daily precipitation downscaling with the use of the random forest 480 

(RF) method, the RMSE value was considerably lower than that of the SMPD method. Moreover, this machine learning 481 

method is highly dependent on the available training dataset. Comparatively, the daily or sub-daily downscaling studies 482 

conducted by Long et al. (2016) and Chao et al. (2018) have relatively better performances in terms of RMSE and CC, 483 

respectively. However, the incorporation of gauge precipitation data in the downscaling process partly enhances the 484 

estimation accuracy. These methods highly rely on in situ measurements without the independence to rain gauge 485 

measurements. In a recent hour scale downscaling study conducted by Ma et al. (2020a), a geographically moving 486 

window weight disaggregation analysis (GMWWDA) method was developed by introducing cloud properties as 487 

covariates to downscale GPM precipitation products. Although it provided estimates at a very high temporal frequency, 488 

the limited rainfall-related environmental variables at the 0.01°/hourly scale constrained its application. 489 

For the intercomparison of the monthly accuracy, the daily downscaled results of the proposed method 490 

outperformed most of the previous monthly downscaling studies using either RF or GWR algorithms (Jia et al., 2011; 491 

Xu et al., 2015; Jing et al., 2016b; Chen et al., 2018; Zhan et al., 2018). As shown in Figure 9b, the CC value was higher 492 
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than most of them in the abovementioned studies. Although the RF-based downscaling method in Jing et al. (2016b) has 493 

a relatively low RMSE, the measurements from in situ stations were used to train the downscaling model which greatly 494 

reduces the dependence of the downscaling process on field observations. A similar requirement is also presented in Lu 495 

et al. (2019) and Long et al. (2016), and the GWR and multivariate regression models are largely dependent on the 496 

number of available training stations and variables related to the geophysical mechanisms of precipitation. The 497 

independence of field observations in the SMPD method shows a large advantage, especially for regions with sparse 498 

meteorological stations. Zeng et al. (2021) also proposed an independent downscaling approach considering temporal 499 

lag from vegetation changes to precipitation. However, the relationship shows high variability which may result in a 500 

negative correlation within a short time. Therefore, both the CC and RMSE of this method have worse performances 501 

than those of the proposed method. In general, according to the methodology comparison, the proposed SMPD method 502 

exhibits good performance in terms of both CC and RMSE. Unlike using the empirical regression method to build the 503 

relationship between precipitation and other surface variables, the SMPD method demonstrated high effectiveness, 504 

independence, and robustness.  505 
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Table 3. List of the performance of downscaling procedures to improve the spatial resolution of satellite precipitation products at different temporal scales. The bold 506 

letters represent the proposed method in this study. 507 

Original products 
Downscaled 

algorithm 
Auxiliary variables 

Temporal 

resolution 

Downscaled products 

Reference Spatial 

resolution 
CC RMSE (mm) 

TRMM (25 km) RF DEM, NDVI Monthly 1 km 0.86 15.70 Jing et al. (2016b) 

GPM (10 km) GWR DEM, NDVI Monthly 1 km 0.79 20.94 Lu et al. (2019) 

GPM (10 km) GWR DEM, NDVI Monthly 1 km 0.79 27.23 Zhan et al. (2018) 

TRMM (25 km) GWR 
DEM, Rain gauge 

data 
Monthly 1 km 0.87 46.14 Chen et al. (2018) 

TRMM (25 km) GWR DEM, NDVI Monthly 1 km 0.82 25.10 Xu et al. (2015) 

GPM (10 km) RF DEM, NDVI, LST Daily 1 km 0.64 6.06 Yan et al. (2021) 

TRMM (25 km) 
Multivariate 

regression model 
DEM, Climate data Daily 1 km - 2.71 Long et al. (2016) 

GPM (10 km) LPVIAL NDVI 16-day 1 km 0.81 46.77 Zeng et al. (2021) 

CMORPH 

(8 km) 
GWR DEM, NDVI 30 min 1 km 0.86 7.27 Chao et al. (2018) 

GPM (10 km) AMCN, GDA LST, EVI, LSR Monthly 1 km 0.83 30.88 Jing et al. (2022) 

GPM (10 km) GMWWDA 
Cloud Property 

Data 
Hourly 1 km 0.53 5.16 Ma et al. (2020a) 

GPM (10 km) SVM 
Atmospheric, 

variables, DEM 
Daily 1 km 0.78 12.55 Min et al. (2020b) 

GPM (10 km) SMPD SSM, NDVI Daily 1 km 0.61 4.83 Proposed method 

508 
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5.2 Limitations and prospects 509 

Despite the superior performance of the SMPD method, some issues still need to be considered in practical 510 

applications. The first issue should relate to the accuracy of the original GPM precipitation data. Due to the limitation of 511 

the inherent accuracy of original GPM precipitation data, which are mainly manifested in two aspects, firstly the IMERG-512 

Final products are corrected on a monthly scale using the interpolated precipitation product Global Precipitation 513 

Climatology Centre (GPCC, 1.0°/Monthly) based on ground observations. However, there is no mature calibration 514 

algorithm for calibrating the daily satellite-based precipitation estimates (Ma et al., 2020b). Second, the a-priori 515 

databases of cloud cover and precipitation profiles for retrieving passive microwave-based satellite precipitation 516 

estimates are not sufficiently robust due to the lack of ground-based radar observations. In addition, since passive 517 

microwave remote sensing-based precipitation retrieval is the primary input to the IMERG-Final products, it may lead 518 

to poor performance of the satellite-based product in winter and high-latitude regions (Xu et al., 2022). Therefore, the 519 

improvement in the accuracy of downscaling results is limited because of the value preservation during the downscaling 520 

process. The downscaling performance is highly dependent on the accuracy of the original GPM products. The 521 

multisource data fusion model based on observed rain gauge stations and reanalysis data proposed by Ma et al. (2021) 522 

and Li and Long (2020) could increase its ability to describe the daily precipitation fluctuations and it would be helpful 523 

for providing more accurate downscaling precipitation values. In view of the spatial inconsistency of the point 524 

measurement and grid-scale estimation, which may lead to some uncertainty in the evaluation results. Thus, the 525 

difference in spatial scale between satellite and gauge-based precipitation measurements should be paid more attention 526 

in future comparison based on reanalysis-based precipitation with high spatial resolution. 527 

In addition, the uncertainty of SSM and the sensitivity relationship between SSM and precipitation under continuous 528 

rainfall conditions may introduce uncertainty in the downscaling precipitation results. First, the responses of SSM with 529 

different land cover conditions and vegetation coverages to precipitation are relatively different (Fan et al., 2021), and 530 

topographic factors such as depressions and slopes also affect the uncertainty of SSM. Therefore, it is necessary to 531 

establish the relationship between SSM and precipitation for different land cover types or different terrain types. The 532 

establishment of a more reliable fitting relationship based on precipitation data with different land cover properties or 533 

topographic factors would be helpful to enhance the accuracy of the downscaling results (Chen et al., 2020; Senanayake 534 

et al., 2021; Zhao et al., 2021). Second, although the relationship between SSM and precipitation has been well 535 

demonstrated in many previous studies, the sensitivity of SSM to precipitation will decrease when soil water storage 536 

becomes saturated after repeated precipitation. Therefore, it is necessary to further improve the relationship by 537 

considering the soil water threshold saturation in future studies. Moreover, this downscaling method was based on the 538 

surface water balance principle, and the runoff factor under heavy precipitation conditions at a certain time was not 539 
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considered because of the inherent scarcity of high-resolution runoff datasets from in situ measurements. Some studies 540 

have provided good alternatives to obtain runoff data with high spatiotemporal resolution (Jadidoleslam et al., 2019; 541 

Muelchi et al., 2021). Hence, the use of this runoff factor in the water balance equation for heavy precipitation will assist 542 

in improving downscaling accuracy. 543 

Most importantly, many previous studies have successfully generated fine precipitation data at hourly or half-hourly 544 

scale (Ma et al., 2020a; Ma et al., 2020b; Lu et al., 2022; Ma et al., 2022). Nevertheless, these studies lacked physical 545 

mechanisms in the downscaling process and do not use surface soil moisture covariates that respond in real time to 546 

precipitation. In the proposed method, the key inputs of the downscaling process are surface soil moisture and 547 

precipitation data. Even on hourly or half-hourly scales, the soil moisture exhibits an instantaneous response to collocated 548 

precipitation. Then, the soil moisture estimation method has achieved seamless downscaling for high-resolution soil 549 

moisture generation under cloudy conditions. Therefore, it would be able to obtain real-time soil moisture from 550 

microwave satellite observations combined with surface temperature and vegetation index derived from optical and 551 

thermal infrared remote sensing. Therefore, this approach has potential for generating high spatial resolution 552 

precipitation data at hourly or half-hourly scale.  553 

6 Conclusions 554 

In this paper, by introducing high-resolution SSM data and the NDVI as independent variables, a novel physical 555 

downscaling approach based on the principle of surface water balance is developed to obtain high-resolution (1 km × 1 556 

km) daily precipitation estimation. At both daily and monthly scales, the downscaled precipitation presents a similar 557 

spatial and temporal distribution pattern as the original GPM product. Furthermore, a systematic evaluation of the 558 

downscaled GPM data was conducted on multiple time scales at the station level. The downscaled precipitation showed 559 

a good correlation with the observed measurements at each station at the daily scale, with POD, FAR, CSI, CC, RMSE, 560 

and BIAS values of 0.88, 0.47, 0.48, 0.61, 4.83 mm, and 5%, respectively, and the evaluation results outperformed the 561 

original GPM product. For monthly scale comparison, the downscaled data also presented a strong correlation with the 562 

observed precipitation, with CC, RMSE, and BIAS values of 0.84, 30.88 mm, and 5%, respectively. With the increase 563 

in spatial heterogeneity in the downscaled results, there is also an increasing trend in the improvements in the 564 

precipitation accuracy through the comparison at most stations. 565 

In summary, the proposed method with the use of surface water balance principle has a solider physical basis than 566 

previous downscaling methods. Through introducing SSM as an auxiliary variable, the impact of inherent bias in satellite 567 

estimates on the downscaled results can be moderately reduced compared to the conventional statistical method. The 568 

validation with rain gauge data highlights the importance of SSM as a fully independent source of information that can 569 
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be effectively used for downscaling coarse-resolution precipitation at a daily scale, which is rarely conducted in current 570 

related studies. Therefore, this method is a promising way to derive high-resolution precipitation data and shows good 571 

potentials for real-time precipitation data downscaling with the provision of SSM data, which will assist further 572 

applications in related fields (such as hydrology, agriculture, natural hazards, water resources, and climate change).  573 
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